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Abstract

Helmholtz resonator is a shell Ωshell separating a compact domain- the
cavity - Ωint ⊂ R3 from the non-compact domain Ωout = R3\[Ωint∪Ωshell]. It
is assumed that a small opening in the shell connects Ωint with Ωout, causing
transformation of real eigen-frequencies of the Neumann Laplacian on Ωint

into complex scattering frequencies of the corresponding stationary acoustic
problem −∆u = λu, in Ω = Ωint ∪ Ωout, with Neumann boundary condition

on the C2-smooth boundary ∂u
∂n

∣∣∣
∂Ω

= 0. The Kirchhoff model [1] gives a

convenient Ansatz

Ψout(x, ν, λ) = ΨN
out(x, ν, λ) + AoutG

N
out(x, a, , λ), x ∈ Ωout,

Ψint(x, ν, λ) = AintG
N
int(x, a, λ), x ∈ Ωint, (1)

for calculation of components of the scattered wave of the acoustic problem
in Ωint, Ωout in terms of the scattered wave ΨN

out(x, ν, λ) and the Green func-
tions GN

int,out(x, a, λ) of the Neumann Laplacians in Ωint,out. In this paper
we suggest an explicit formula for the Kirchhoff coefficients Aint,out, based
on construction of a fitted solvable model for the Helmholtz resonator with
a narrow short channel connecting Ωint,Ωout. The scattering matrix of the
model serves an approximation of the scattering matrix of the Helmholtz res-
onator on a certain essential spectral interval. Calculation of the scattering
frequencies of the model is reduced to solution of an algebraic equation.
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1 Preliminaries

Helmholtz resonator is a compact shell in R3, with a piece-wise smooth
boundary. The shell separates the outer domain Ωout from the inner domain
- the cavity- Ωint. We do not suppose that the shell is uniformly thin, but
assume that the outer domain and the cavity are connected by the cylindrical
channel Ωδ, length H, radius δ << H, with imaginable “upper” and “lower”
lids ΓH ,Γ, separating the channel from Ωout, Ωint respectively. In this note
we assume that the lids are flat and orthogonal to the axis of the channel.
On the domain Ω = Ωout ∪ Ωint ∪ Ωδ we consider the Neumann Laplacian
LN =: L. The Meixner conditions are imposed on the edges of the lids in form
D(LN) ⊂ W 1

2 (Ω). We consider full stationary scattering problem for the Neu-
mann Laplacian L in Ω. We are interested in scattering data on an “essential
spectral interval” situated on the positive semi-axis, in the range of relatively
small wave-numbers kH < π/2 or, equivalently, of large wavelengths, com-
pared with the length H of the connecting channel. We obtain essential
part of analytic results of the paper assuming that the channel is short and
thin kH << π/2, δ/H << 1. Thin short channel can be considered as a
“point-wise” opening at the point a, coincident with the centers xΓ, xH ≈ a
of the lower and upper lids Γ, ΓH , |xΓ − xH | = H << π/2k,xΓ ≈ xH ≈ a,
see Fig. 1 below. A convenient Ansatz for the Green function of the above
spectral problem, with the “point-wise” opening at aΓ = aH =: a, was sug-
gested by Kirchhoff, [1], in form of a linear combination of the unperturbed
Green functions. Hereafter we consider the corresponding scattering Ansatz
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Figure 1: The opening is point-wise for the waves length k−1, if π/2 >>
kH, H >> δ.

(1), with undefined coefficients Aint, Aout. This Ansatz obviously satisfies the
Helmholtz equation

−∆Ψ = λΨ

in Ωint,out, and the Neumann homogeneous boundary condition on ∂Ω, but
has singularity at a. The Kirchhoff coefficients were never rigorously calcu-
lated. Note that the problem of calculation of scattered waves and scattering
frequencies - resonances - was posed by Rayleigh in the beginning of previous
century, see [2], but estimates [3] and approximate formulae for them in form
of asymptotic series were found much later, see for instance [4, 5, 6, 7, 8].

Kirchhoff coefficients can be found easily when replacing the resonator
by the corresponding solvable model. A solvable model of the Helmholtz
resonator was constructed in [9] as a self-adjoint extension, see [10], of the
Neumann Laplacian, restricted onto smooth functions vanishing near a. The
domain of the extended operator contains singular deficiency elements, and
is characterized by some asymptotic boundary conditions at the opening a.
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With the boundary conditions properly selected, the model gives explicit
formulae for the scattering matrix and the scattered waves and permits to
reduce the calculation of the scattering frequencies to the solution of an
algebraic equation. The general question on fitting of all parameters of the
model [9] remained unsolved until now, because these parameters do not have
any naive physical interpretation. It was conjectured in [4] that the model
based on the operator extensions can emulate the resonance scattering by
Helmholtz resonator with a small opening, if the parameters of the model
are “properly selected”, but no general procedure of the choice was suggested
at that moment.

In this paper we suggest a procedure of fitting of the slightly modified
solvable model [9], based on analysis of the Neumann-to-Dirichlet map (ND-
maps) of the Laplacian in Ωint,out, and the transport properties of the short
thin channel, connecting the outer domain with the cavity. The scattering
matrix of the fitted model serves an approximation, on a certain spectral in-
terval, of the scattering matrix of the Helmholtz resonator with a short thin
channel. In particular we suggest an explicit formula for the Kirchhoff coef-
ficients Aint,out. The zeros of the model scattering matrix- the resonances -
can be found approximately as solutions of some algebraic equation. We con-
jecture that the resonances of the model are situated near to the resonances
of the original scattering problem, but the proof of his statement supposedly
based on operator - valued Rouche theorem, see [11] requires more precise
asymptotic estimates techniques.

2 Solvable model of the Helmholtz Resonator.

In this section we assume that the shell separating the inner domain from
the outer domain is thinning at the opening, see Fig. 1 . The upper and the
lower lids ΓH , Γ of the channel Ωδ are the parts of the common boundary
of the shell, of the outer domain Ωout and the inner domain Ωint respec-
tively: Γ ∈ ∂Ωint, ΓH ∈ ∂Ωout. Restrict the inner and the outer Neumann
LaplaceanLint,out → (Lint,out)0 onto smooth functions vanishing near the cen-
ters of the upper and lower lids xΓH

= xH ∈ ∂Ωout, xΓ ∈ ∂Ωint. The
deficiency indices of the restricted operators Lint, Lout are (1, 1), and the
deficiency elements at any complex point of the spectral parameter λ̄ are
the Green functions Gint(x, xΓ, λ), Gout(x, xH , λ), see [9]. The asymptotic
formulae for the Green functions Gint,out with the poles at xH , xΓ include
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details of the shape of the boundary and the spectral characteristics of the
inner and outer operators. Indeed, following [9] one can calculate, based on
Hilbert identity for some regular M , the normal limits of the inner and the
outer Neumann Green functions :

G
int

(x, xΓ, λ) =
1

2π|x− xΓ|
− αint ln

1

|x− xΓ|
+

C
Γ
(xΓ,M) + (λ−M)

∞∑
s=1

ψs(x)ψs(xΓ)

(λs − λ)(λs −M)
,

Gout(x, xH , λ) =
1

2π|x− xH |
+ αout ln

1

|x− xH |
+ C

H
(xH ,M)+

(λ−M)

8π3

∫ ∞

0

|k|2d|k|
∫

Σ1

dω
ψ̄ω(x, |k|)ψω(xH , |k|)
(|k|2 − λ)(|k|2 −M)

. (2)

Here ψs are real normalized eigenfunctions, λs are the eigenvalues of the
Neumann Laplacian in Ωint and ψω are the eigenfunctions of the continuous
spectrum of the Neumann Laplacian in Ωout - the scattered waves. The con-
stants αint, αout have a certain geometrical meaning, see [9]. Indeed, consider
the equation of the (curved ) lid Γ ⊂ ∂Ω∫ near the center aΓ represented in
terms of coordinates connected to the outer normal n (with respect to Ωint)
and the tangent plane T (aΓ) = {t1 , t2} at the point aΓ = (0, 0), where
∇Φ(a

Γ
) := ∇Φ(0, 0) = 0. We write this equation as n = Φ(~t), and represent

the corresponding second quadratic form as Φ(t1, t2) =
t
2

2

R1
+

t2
2

R2
, |t| << 1.

Assume that the mean curvature C(aΓ) := 1
R1

+ 1
R1

at aΓ is not equal to zero.

Then αint does not depend on the spectral parameter and is calculated as

αint =
1

8π

[
1

Rint
1

+
1

Rint
2

]
.

Similarly the corresponding term in the asymptotic of the outer Green func-
tion can be calculated:

αout =
1

8π

[
1

Rout
1

+
1

Rout
2

]
.

The spectrum of Lint is discrete, and the spectrum of Lout is absolutely
continuous. The eigenfunctions of the discrete spectrum are real, and the
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eigenfunctions of the absolutely continuous spectrum are usually selected
such that ψ̄ω(x, |k|) = ψ̄out(x, ω, |k|) = ψout(x,−ω, |k|).

If the lids are situated on flat pieces of the boundary of the shell, then
Rint,out

1,2 = ∞, so that the logarithmic singular terms are trivial: αint,out = 0.
Hereafter we assume that this is the case. Then the asymptotic of Gint, Gout

at xΓ ≈ xH ≈ a is defined by the higher order addendum of the iterated
resolvent equation. For instance after three iterations we obtain:

G(x, a, λ)−G(x, a,M)− (λ−M)G(x, ∗, λ)G(∗, a,M) =

(λ−M)2 [G(x, ∗,M)G(∗, ∗,M)G(∗, a,M)] +

(λ−M)3 [G(x, ∗,M)G(∗, ∗, λ)G(∗, ∗,M)G(∗, a,M)]

For the Laplace equation in R3 the higher order addenda are continuous with
respect to x and their values at the point a ∈ Ωint ∪ ∂Ωint can play a role of
the local spectral characteristic. For instance, if a = aΓ ∈ Γ:

Gint(x, aΓ, λ) =

Gint(x, aΓ,M) + CΓ(x, aΓ,M) + (λ−M)3

∞∑
s=1

ψs(x)ψs(aΓ)

(λs − λ)(λs −M)3
=

Gint(x, aΓ,M) + M̃int(aΓ, λ). (3)

Here CΓ(x, aΓ,M) x ∈ Γ is a generalized kernel of a bounded operator acting
on Γ and M̃int(aΓ, λ) is represented by a convergent spectral series

(λ−M)3

∞∑
s=1

ψs(x)ψs(aΓ)

(λs − λ)(λs −M)3
.

Similar spectral characteristics of the outer problem is represented in form
of the spectral integral over scattered waves of Lout at the point aH on the
upper section:

Gout(x, aH , λ) = Gout(x, aH ,M)+

C
H
(x, aH ,M) + (λ−M)3 1

8π3

∫ ∞

0

|k|2d|k|
∫

Σ1

dω
ψ̄ω(x, |k|)ψω(aH , k)

(|k|2 − λ)(|k|2 −M)3
≈

Gout(x, aH ,M) +Mout(aH , λ), if x→ aH , =λ 6= 0. (4)
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Both ”kernels” C
Γ
(x, aΓ,M), C

H
(x, aH ,M) admit appropriate spectral rep-

resentation, for instance

C
Γ
(x, aΓ,M) = CΓ (aΓ) +M

∑
s

ψs(x)ψs(aΓ)

λs(λs −M)
,

with some operator function CΓ (aΓ,M) which smoothly depends M , and the
series summarized with Abel procedure. After appropriate re-normalization
of the constants we can represent the asymptotic of the inner and the outer
Green functions at the points aΓ, aH situated on flat pieces of the boundary,
∂Ωint,out, without the logarithmic terms:

Gint(x, aΓ,M) =
1

2π|x− aΓ|
+Mint(aΓ, λ) + . . . ,

Gout(x, aH ,M) =
1

2π|x− aH |
+Mout(aH , λ) + . . . , (5)

where the dots stay for the terms vanishing at aΓ, aH . The structure of the
limit of Mout(λ0 + i0) on the real axis, λ0 = k2

0 > 0 is defined by the Plejel
formula. For instance, the integral term in the right side of (4) in the formula
for the outer Green -function is represented as an integral over the spectral
measure:

lim
λ→k2

0+i0

∫ ∞

0

k2dk

8π3

∫
Σ1

dω
ψ̄ω(x, k)ψω(aH , k)

(k2 − λ)(k2 −M)3
= lim

λ→k2
0+i0

∫ ∞

0

dE
dµ

(x, aH , µ)dµ

(µ− λ)(µ−M)3
=

iπ k2
0

8π3

∫
Σ1

dω
ψ̄ω(x, k0)ψω(aH , k0)

2k0(k
2

0 −M)3
+
V.P.

8π3

∫ ∞

0

k2dk

∫
Σ1

dω
ψ̄ω(x, k)ψω(aH , k)

(k2 − k2
0)(k

2 −M)3
=:

iπ

(k
2

0 −M)3

∂E
∂λ

(x, aH) +
I

(k
2

0 −M)3
MV P (x, aH , λ), (6)

where the first addendum in the last formula is proportional to the kernel of
the derivative of the spectral measure of the Neumann Laplacian in the outer
domain and the last term is a V.P. integral of a singular integrand with the
pole at k = k0. For the non-perturbed Laplacian this term is reduced to an
integral operator in L2(ΓH) with the kernel

iπ
sin k0|x− y|
|x− y|

1

4π2(k
2

0 −M)3
≈
(

1− k2
0|x− y|2

3!
+ . . .

)
i k0

4π(k
2

0 −M)3
.
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One can derive a similar asymptotic for the perturbed Neumann Laplacian
on an arbitrary outer domain, everywhere on some essential spectral interval
∆, except, probably. a finite set of spectral points where the derivative of the
kernel of the spectral measure degenerates, ∂E

∂λ
(xH , xH , λ) = 0. Finiteness of

the set follows from the uniqueness theorem for smooth analytic functions
with a positive imaginary part, see [13].

Assumption Hereafter we assume that, for given small flat upper lid cen-
tered at xH , there are no degenerate points on the selected essential interval
∆. It means that for λ = k2 ∈ ∆, x, y ∈ Γ:

=Gout(x, y, λ+ i0) ≈ π
∂E
∂λ

(xH , xH) 6= 0, (7)

Combining the asymptotic formula (4) for the Green function at the pole xH
in the center of the upper section ΓH with the asymptotic of the imaginary
part of Gout(x, xH , λ+ i0) for x→ xH we obtain the asymptotic of the outer
Green - function when x→ xH :

Gout(x, xH ,M) =

1

2π|x− xH |
+ C(xH ,M) + iπ

∂E
∂λ

(xH , xH) +MV P (xH , xH , λ) + . . . , (8)

where the dots stay for terms vanishing at xH , C(xH ,M),MV P (aH , aH , λ)
are real constants and iπ ∂E

∂λ
(xH , xH) is a nonzero purely imaginary adden-

dum. The obtained asymptotic of the non-polar term

C(xH ,M) + iπ
∂E
∂λ

(xH , xH) +MV P (xH , xH , λ) =: Mout(xH) (9)

will be used in course of discussion of properties of the fitted solvable model
of the Helmholtz resonator, see section 5.

In [9] a solvable model of the Helmholtz resonator was suggested in form of
a self-adjoint extension of the orthogonal sum (Lin)0⊕(Lout)0 of the restricted
Neumann Laplacians in Ωint,out. The domain of the extension is obtained via
imposing a special boundary condition onto the asymptotic boundary values
A,B at x→ xΓ, xH . In [9] we assumed that kH ≈ 0, hence xΓ ≈ xH . Hence
the asymptotic boundary values Ain,out, Bin,out are defined as the coefficients
in front of the leading terms at xΓ, xH :

uint =
Aint

2π|x− xΓ|
+Bint + . . . , uout =

Aout
2π|x− xH |

+Bout + . . . .
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of elements from the domain of the corresponding adjoint operators (Lint)
+

0 ⊕
(Lout)

+

0 . The boundary forms of the adjoint operators are calculated in terms
of the boundary values A,B. For instance, if uout ∼ (A

u

out
, B

u

out
) and vout ∼

(A
v

out
, B

v

out
), then the integration by parts on the complement of a small ball

Bε : |x − xΓ| < ε, with subsequent passing to the limit ε → 0, gives an
expression for the outer boundary form:

Jout(u, v) := lim
ε→0

∫
Ωout\Bε

[−∆ū v + ū∆v] dx3 = B̄
u

out
A

v

out
− Ā

u

out
B

v

out
. (10)

Similar formula is true for the inner boundary form. The sum of the inner
and the outer boundary forms vanishes if the asymptotic boundary values
are submitted to some self-adjoint boundary condition, for instance :(

β00 β01

β10 β11

) (
Bout

A
int

)
=

(
Aout

−B
int

)
. (11)

with an Hermitian 2×2 matrix β. The Neumann Laplacian L
β

in Ωint∪Ωout

defined by this boundary condition is self-adjoint.
More difficult part of the problem is fitting of the parameters of the model,

in particular: physically reasonable choice of the matrix β defining the con-
nection between the inner and the outer space. It is not clear a-priori, if
the elements of the matrix have any physical meaning. Eventually we will
fit the boundary parameters based on comparison of an explicit expression
for the model scattering amplitude and an approximate expression for the
amplitude of the original problem, with a thin short channel, represented in
a similar form.

First of all we attempt to fit the above solvable model, as it was repre-
sented in [9], before any modification. The scattered wave are characterized
by the asymptotic at infinity in the direction ω, x → ω∞, |ω| = 1, and
involve so-called scattering amplitude a(ω, ν,

√
λ) = a(k, l)for k = ω|k|, l =

ν|k|, |k| =
√
λ :

ψ(x, k) = e−i|k|<x, ν> − 2π2 e
i|k||x|

|x|
a(k, l) + o(

1

|x|
). (12)

We choose the Ansatz for the scattered waves of the model operator in Kirch-
hoff form:

ψ
β

(x) = ψout(x) + AHGout(x, xH , λ) (13)
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in Ω
H
, and

ψ
β

(ω, x) = AΓGint(x, xΓ, λ), (14)

where Gout(x, xH , λ), Gint(x, xΓ, λ) are, respectively the limit values of the
Green functions of Lout, Lint from the upper half-plane: λ := λ + i0. The
asymptotic boundary values of the Ansatz are calculated, due to (5), as
Bout = ψout(xH) + AHMout(xH , λ); Aint = AΓ, Bint = AΓMint(aΓ, λ).
Then, inserting the asymptotic boundary values into the boundary condition
(11) we obtain, after an elementary calculation, the following expression for
A

H
:

AH = − |β01|
2 − β00(β11 +M

int
)

(1− β00Mout)(β11 +M
int

) + |β01|
2 Mout

ψout(xH , ν) =: −Aψout(xH , ν)

(15)
Inserting this expression into (13), and taking the limit x → ω∞ with use

of the asymptotic Gout(x, y, λ) ≈ (4π)−1 ei
√
λ|x||x|−1Ψout(y, ω), we obtain the

formula for the additional term of the amplitude, caused by the opening:

ψout(xH , ω)
A

8π3
ψout(xH , ν). (16)

The obtained expression (15) for the Kirchhoff coefficient and the corre-
sponding expression for the additional term of the amplitude contain four
parameters βst. Fitting of the constructed model is reduced to the appropri-
ate choice of the parameters. It is natural to say, that the model is fitted on
an essential spectral interval ∆, if the model scattering matrix serves on ∆
an approximation of the scattering matrix of the original perturbed operator,
see an extended discussion of fitting below, in section 5.

Unfortunately the above naive model, suggested in [9] can’t be fitted, as
follows from comparison of (15,16) with an approximate expressions for the
original Helmholtz resonator obtained in section 4. The reason for it is the
non-zero length of the channel H > 0. Luckily, for thin short channel an-
other modified model can be constructed, based on the same outer operator
LNout =: Lout and some finite matrix A : E → E acting in an abstract space E
attached to the point-wise opening a = xH with a lead length H. The mod-
ified model is constructed as a “zero-range model with an inner structure”,
see for instance [14] and also a recent paper [15]. This model can be fitted
on a certain essential spectral interval ∆, but certainly not on the whole
spectrum. Fitting of a similar model in case of quantum networks is based
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on spectral properties of the quantum dot, see [17]. In the case of Helmholtz
resonator we will also fit the model based on properly re-normalized spectral
data of the cavity.

We will use here the standard notations for the zero-range models with
inner structure, see for instance [17]. The role of coordinates is played by
symplectic coordinates ξ± ∈ Ni of elements from the defect N = Ni +N−i -
the sum of the deficiency subspaces. The boundary form in the inner space
is represented as

Jint(u, v) = 〈ξu+, ξv−〉E − 〈ξu−, ξv+〉E. (17)

The symplectic coordinates ξ± ∈ Ni of the solution u = u0+ A
A−iI ξ+−

I
A−iI ξ−

of the adjoint homogeneous equation (A+
0 −λI)u = 0 are connected, see [16]

via the Krein matrix-function M as

ξ− = −P I + λA

A− λI
P ξ+ =: −M ξ+. (18)

Here P is an orthogonal projection onto Ni. Generally the Krein function and
its inverse −M−1 are matrix R-functions which admit the standard Herglotz
representation for a rational matrix R-function:

M(λ) = M0 +M1λ+
N∑
l=1

1 + λAl
Al − λI

ql, (19)

where M0 is an hermitian matrix in Ni, M1- a positive hermitian matrix,
Al- the eigenvalues of A, and ql = PQlP = q+

l - the spectral projections Ql

of A, framed by the projections P onto the selected deficiency subspace Ni.
To construct the fittable model of the Helmholtz resonator we attach the

inner structure {E,A} to the point-wise opening a via a one-dimensional
channel length H, see the Fig. 2. If the unperturbed inner Hamiltonian A
is just a second order differential operator, Au = −u′′ + qu in L2(0, 1) on
the interval (0, 1) attached to xΓ with its right end x = 1. We assume that
the link (xΓ, xH), playing the role of the channel in the model, is direct and
one-dimensional, with the operator −d2 on it. Then the transmission of the
Neumann/Dirichlet data u′Γ, uΓ −→ u′H , uH from the lower end xΓ of the
link to the upper end ΓH = a is defined by the 1-d Neumann-to-Dirichlet
map of the link:

NDΓ =
uΓ

u′Γ
−→ uH

u′H
= NDH =

λ−1/2 tan
√
λH +NDΓ

1−
√
λ tan

√
λHNDΓ

(20)
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Figure 2: Inner structure for the cavity of the resonator, attached to the
opening a via a one-dimensional channel.

Here we define the direction of differentiation by the vector (xΓ, xH). Then
the ND coefficient NDΓ is connected with the Weyl function M of the inner
Hamiltonian by the formula

NDΓ = −1/M. (21)

Comparing the boundary forms JΓ,ΓH
(u, v) = ūv′− ū′v

∣∣∣
Γ,ΓH

with the bound-

ary form of the inner structure Jint = ξ̄u+ξ
v
− − ξ̄u−ξ

v
+ we extend the above

formula (21) to the case of an abstract inner structure A via the identifi-
cation: uΓ = ξΓ

+, u
′
Γ = ξΓ

− and the Weyl function M substituted by the
corresponding Krein function MΓ:

uΓ

u′Γ
= NDΓ =

ξΓ
+

ξΓ
−

= − 1

MΓ

,

uH
u′H

= NDH =
ξH+
ξH−

= − 1

MH

.

Lemma 2.1 The symplectic coordinates ξH± of the solution of the adjoint ho-
mogeneous equation of the inner structure with the one-dimensional channel
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attached are connected via MH as ξH− = −MHξ
H
+ with

MH = −1− (λ)−1/2 tan
√
λH MΓ

MΓ +
√
λ tan

√
λH

=

tan
√
λH√
λ

− 1

cos2
√
λH[MΓ +

√
λ tan

√
λH]

. (22)

For any rational R-function MΓ, the Krein function MH of the inner struc-
ture with the 1-d link included, is also R-function: it is analytic with respect
λ in the upper half-plane and lower half-planes =λ > 0, =λ < 0, and it’s first
derivative exists on the real axis everywhere except a discrete set of simple
poles and is positive.

Proof is obtained based on the transfer matrix of the 1-d channel

uH = uΓ cos
√
λH + u′Γλ

−1/2 sin
√
λH,

u′H = −
√
λuΓ sin

√
λH + u′Γ cos

√
λH

and the above identification. The positive derivative M′
H is obtained via

direct calculation.
End of the proof
Remark 1 For thin short channel λH2 << 1 we substitute tan

√
λH by√

λH and obtain an approximate expression for MH on ∆:

MH ≈
HMΓ − 1

MΓ + λH
= H − 1− λH2

MΓ + λH
≈ H − 1

MΓ + λH
(23)

The boundary form of the inner structure at the upper contact point a = aH ,
with the one-dimensional channel attached, is

ξ̄H+ (u)ξH− (v)− ξ̄H− (u)ξH+ (v) = J H(u, v).

The sum of the boundary forms of the adjoint outer Neumann Laplacian and
the inner structure at the upper contact point is, due to (10)

J H(u, v) + Jout(u, v) = ξ̄H+ (u)ξH− (v)− ξ̄H− (u)ξH+ (v) + B̄u
outA

v
out − ĀuoutB

v
out.

We will construct a fittable solvable model of the Helmholtz resonator as a
common self-adjoint extension of the orthogonal sum of the restricted outer

13



Neumann Laplacian and the restricted operator A of the inner structure with
a one-dimensional channel attached, via choosing a Lagrangian plane L in
the space of the boundary data ξH± , Aout, Bout such that the sum J H(u, v) +
Jout(u, v) of the boundary forms vanishes on L. In particular we can connect
the boundary data with an hermitian matrix β(

β00 β01

β10 β11

) (
Bout

ξH+

)
=

(
Aout

ξH−

)
. (24)

The boundary condition (24) defines a selfadjoint operator Lβ - a solvable
model of the Helmholtz resonator,- which will be fitted later, see section
5. Inserting the boundary data of the solutions of the adjoint homogeneous
equation

[
A+

0 ⊕ L+
0 − λI

]
u = 0 into (24) we obtain an equation for the

Kirchhoff coefficient Aout:(
β00 β01

β10 β11

) (
ψout(a) + AoutMout

ξH+

)
=

(
Aout

−MHξ
H
+

)
(25)

Theorem 2.1 The outer Kirchhoff constant of the constructed model with
β00 = 0 is found as

Aout = − ψout(a)

Mout + |β01|−2MH + β11|β01|−2
.

Proof Elimination of ξH+ from the second equation gives

ξH+ = − 1

β11 +MH

β10 [ψout(a) + AoutMout] .

Substitution of the result into the first equation gives

Aout = − (β11 +MH)β00 − |β01|2

Mout[(β11 +MH)β00 − |β01|2]− (β11 +MH)
ψout(a) = −Aψout

and is transformed to the announced form if β00 = 0.
The end of the proof
Remark 2 Similarly to (16) we conclude that the additional term of the

amplitude of the solvable model with the inner structure is

ψout(ω, a)ψout(ν, a)

Mout + |β01|−2MH + β11|β01|−2
. (26)

14



The constructed model is parametrized by the matrix A and by the matrix
elements βik. One may guess that the eigenvalues of the matrix A should
simulate properly renormalized eigenvalues of the cavity. The boundary pa-
rameters βik do not have any naive physical meaning, so they can’t be defined
trivially, and even the connection between the eigenvalues of the inner struc-
ture A with the eigenvalues of the cavity is not simple, see sections 4 and
5.

The aim of this paper is: to fit the constructed model Lβ on a certain
essential spectral interval ∆, that is - to select the boundary parameters βst
and the eigenvalues of the operator A such that the scattering matrix of the
model serves an approximation of the “full” scattering matrix of the spectral
problem for Helmholtz resonator on the selected essential spectral interval
∆. Then the Kirchhoff coefficients of the model are calculated explicitly.

We will fit the model for Helmholtz resonator with a short narrow channel
Ωδ, based on spectral data of the inner and outer Neumann problems and
the geometry of the channel.

3 Scattering matrix via Neumann-to-Dirichlet

map.

We proceed in this section by considering an extended inner domain Ωint ∪
Ωδ =: Ω∗int obtained via inclusion of the channel into it. Consider two bound-
ary problems for the Neumann Laplacean Lint, L

∗
int in Ωint, Ω∗int respectively,

assuming that the normal is directed outward - to Ωout:

−∆u = λu,
∂u

∂n

∣∣∣
Γ

= ρΓ, x ∈ Ωint, −∆u = λu,
∂u

∂n

∣∣∣
ΓH

= ρH , x ∈ Ω∗int.

Solutions of these problem are given by integral transforms with kernels de-
fined by the corresponding Neumann Green functions Gint, G

∗
int of the inner

and the extended inner problems on the lids Γ,ΓH ,respectively, for instance:

[Q∗
int(λ) ρH ] (x) =

∫
ΓH

G∗int(x, y, λ)ρH(y)dΓ, x ∈ Ω∗int. (27)

Traces of QintρΓ and Q∗
intρΓH

on Γ and ΓH respectively define the restrictions
of the standard Neumann-to-Dirichlet maps in Ωint,Ω

∗
int onto Γ,ΓH :

∂QintρΓ

∂n

∣∣∣
Γ

= ρΓ,
∂QintρΓ

∂n

∣∣∣
∂Ωint\Γ

= 0.
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This implies:

QintρΓ = NDΓρΓ

∣∣∣
Γ

= ND
∣∣∣
Γ
ρΓ.

Similarly, for Q∗
int we have:

∂Q∗
intρH
∂n

∣∣∣
ΓH

= ρH ,
∂Q∗

intρH
∂n

∣∣∣
Ω∗int\ΓH

= 0.

Hence the trace of Q∗
intρH on ΓH coincides with Q∗

intρH that is, with ND-map
ND∗intρH . It is important to notice, that the inverse map [NDΓ]−1 exist, if λ
does not coincide with the eigenvalue of the corresponding mixed boundary
problem

−∆u = λu,
∂u

∂n
|Ωint\Γ = 0, u|Γ = 0

and coincides with the associated relative Dirichlet-to-Neumann map ob-
tained as restriction onto Γ of the boundary current of the solution of the
relative Dirichlet boundary problem:

−∆u = λu,
∂u

∂n
|Ωint\Γ = 0, u|Γ = uΓ,

∂u

∂n
|Γ =: DN ΓuΓ :

DN ΓNDΓρΓ = ρΓ. (28)

Similar statement holds for ΓH .
One can consider a similar boundary problem in Ωout, with the normal

on ΓH directed to Ωout:

−∆u = λu,
∂u

∂n
|ΓH

= −ρH ,
∂u

∂n
|∂Ωout\ΓH

= 0.

Solution of this problem is given by the integral transform:

[QρH ] (x) =

∫
ΓH

GN
out(x, s)ρH(s)dΓH ,

because, with the normal defined above,

∂QρH
∂n

|H = ρH .

Hence the corresponding standard Neumann-to-Dirichlet map NDout, asso-
ciated with the normal on ΓH directed outside Ωout is defined by the trace of
QρH onto ΓH :

QoutρH = TraceΓH
QoutρH .

16



Again, it is convenient to notice that the inverse [ND∗ΓH
]−1 of the ND-map

associated with ΓH is obtained as relative Dirichlet-to-Neumann map for the
boundary problem on Ωout with relative Dirichlet boundary data, for instance

−∆u = λu,
∂u

∂n

∣∣∣
∂Ωout\ΓH

= 0, u
∣∣∣
ΓH

= uΓH
,
∂u

∂n

∣∣∣
ΓH

=: DNH uΓH
.

Then, with matching outer normals on Γ we have

DNH
outNDout

∣∣∣
ΓH

ρΓH
= ρΓH

. (29)

It is proved in [18] that the singularities if DN int(λ) as an unbounded oper-

ator in W
3/2

2
(Γ), and the poles of DN int(λ) at the eigenvalues of the inner

Dirichlet problems can be separated, see the theorems 3.1, 3.2 below. These
statements are valid both in case of the classical DN-maps and in case of
the relative DN-map due to above statements (28,29). Hence in the follow-
ing theorems 3.1,3.2, quoted from [18] we mean both standard and relative
DN-maps, associated with Dirichlet of relative Dirichlet boundary problems:

Theorem 3.1 Consider the Dirichlet Laplacian L
D

int
or relative Dirichlet

Laplacian in L2(Ωint
) on a compact domain Ω

int
⊂ R3 with a smooth bound-

ary ∂Ω = Γ or ∂Ω ⊃ Γ respectively. The DN-map (relative DN-map) of
L

D

int
has the following representation on the complement of the corresponding

spectrum σ
D

int
in complex plane λ, with M > 0:

DN Γ(λ) =

= DN Γ(M)− (λ−M)P+(M)P(M)− (λ−M)2P+(M)RλP(M), (30)

where Rλ is the resolvent of L
D

int
, and P(−M) is the corresponding Poisson

kernel. Similar formula is true for the ND map, after two iterations of the
resolvent equation we obtain:

NDΓ(λ) =

= NDΓ(M)+(λ−M)Q+
int(M)Qint(M)+(λ−M)2Q+

int(M)RλQint(M). (31)

Here NDΓ(λ) is obtained as the trace of Q(λ)ρ on Γ. The operators

DN Γ(M), P+

(M)P(M)
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are respectively bounded from W
3/2

2
(Γ) onto W

1/2
2 (Γ) and bounded in W

3/2

2
(Γ),

and the operator-function

[
P+(M)RλP(M)

]
(x

Γ
, y

Γ
) =

∑
λs∈ΣL

∂ϕs

∂n
(x

Γ
)∂ϕs

∂n
(y

Γ
)

(λs −M)2(λs − λ)
(32)

is compact in W
3/2
2 (Γ).

On the continuous spectrum, λ ≥ 0, the Dirichlet-to-Neumann map is de-
fined as the boundary current of the outgoing solution of the corresponding
boundary problem, which is obtained as limε→0 uλ+iε

. The statement similar
to the above theorem remains true for the DN-map of the Laplacian on Ω∗int,
and, after appropriate re-formulation, for the corresponding ND-map. We
calculate the boundary currents for both inner and outer domain via differ-
entiation of the outgoing solution of the corresponding boundary problem in
the outward direction on ΓH . A statement similar to the above theorem 3.1
is also true for the DN-map of the exterior domain. Again we choose the
outward normal on ΓH . Then we obtain:

DN out(λ) = (33)

DN out(M)− (λ−M)P+

(M)P(M)− (λ−M)2P+

(M)RλP(M),

with only difference that first terms of the decomposition contain the DN-
map and Poisson kernel for the exterior domain and the generalized kernel
in the last term is represented via the integral over the absolutely continuous
spectrum σaL = [0,∞), and the integrand combined of normal derivatives of
the scattered waves ψ(x, |k|, ν), k = |k|ν, |ν| = 1,=λ 6= 0:

P+

(M)RλP(M)(xΓ, yΓ
) =

1

(2π)3

∫
|k|2 ∈ Σ

a
L

∂ψ̄
∂n

(x
Γ
, |k|, ν)∂ψs

∂n
(y

Γ
|k|, ν)

(|k|2 −M)2(|k|2 − λ)
d3k.

The absolutely-continuous spectra σ
D,N

out
of both Dirichlet and Neumann Laplacean

L
D,N

out
fill the positive semi-axis 0 ≤ λ <∞ with infinite multiplicity and the

scattered waves ψ(x, k)- are parametrized by the energy λ > 0, |k| =
√
λ,

and the direction ν, |ν| = 1, or just by the momentum k = |k|ν ∈ R3
.
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The normal limit values of NDout can be calculated, due to absolute
continuity of the spectrum of Lout based on the Plejel formula:

lim
λ→λ+i0

NDout = iπ
dE
dλ

+ V PQout,

where V PQout is calculated as VP-value of the sum of the spectral integrals.
For instance, with M > 0,

V P Qout(M) Rλ Qout(M) =

1

(2π)3
V P

∫ ∞

0

d|k|
∫

Σ1

dΣν
ψ(x

Γ
, |k|, ν)ψ(y

Γ
|k|, ν)

(|k|2 −M)2(|k|2 − λ)
|k|2,

where the VP-limit of integrals is taken over the complements of a sequence
of small nesting intervals centered at λ = λ̄. Following [18] we can connect
the resolvent of the self-adjoint operator L on the composite domain Ω∗int ∪
Ωout with the resolvents of the orthogonal sum of the self-adjoint operators
L∗int ⊕ Lout defined in L2(Ω

∗
int) ⊕ L2(Ωout) by the homogeneous Neumann

boundary conditions.

Theorem 3.2 The resolvent kernel Gλ(x, y) of the operator L for regular λ
and x, y in Ωout is represented by the Krein formula

G(x, y, λ) = Gout(x, y, λ)−

Gout(x, ∗, λ) [Q∗
int(λ) +Qout(λ)]−1Gout(∗, y, λ), (34)

where the asterisk stays for the argument on ΓH .
The following formula connects the scattered waves ψ(x, ν, λ) of the per-

turbed problem (with opening), in the outer domain, with the scattered waves
of the outer Neumann problem,

ψ(x, ν, λ) = ψout(x, ν, λ)−

−Gout(x, ∗, λ) [Q∗
int(λ) +Qout(λ)]−1 ψout(∗, ν, λ). (35)

The expression for the scattering amplitude of the original Neumann Lapla-
cian L is given by the formula:

a(ω, ν, λ) = aout(ω, ν, λ)+
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1

8π3ψout(∗, ω, λ) [Q∗
int(λ) +Qout(λ)]−1 ψout(∗, ν, λ). (36)

Both formulae (35,36) admit analytical continuation on the spectral sheet
of the variable λ = k

2
, (=k > 0), and all operator-functions involved are

calculated on the real axis λ as weak limits from the upper half-plane, =λ→
0

+
.

Remark 3 Calculation of the amplitude based on (36) requires solution of
the equation

[Q∗
int(λ) +Qout(λ)]u = ψout(∗, ν, λ). (37)

Both operators which stay in the left side of this equation exists and act,
generically, as

W
1/2
2 (Γ)

Qout−→ W
3/2
2 (Γ)

for any λ ( if R3\Ωout is compact), and

W
1/2
2 (Γ)

Qint−→ W
3/2
2 (Γ)

if λ is not an eigenvalue of the relative Dirichlet problem

−∆u = λu, u
∣∣∣
Γ

= 0,
∂u

∂n

∣∣∣
∂Ωint\Γ

= 0.

Both Qout, Qint can be extended from W
1/2
2 (ΓH) onto L2(ΓH). The extended

operators are compact in L2(ΓH). The sum of them is a compact opera-
tor too. To construct the corresponding inverse we need to regularize the
problem. We will do it following approach based on closed graph theorem,
suggested in [20], where more details can be found.

If λ0 is an eigenvalue of the relative Dirichlet problem, and u0 is the
corresponding eigenfunction, then

∂u0

∂n

Qint−→ 0,

hence Qint has zero eigenvalue, and

QintL2(∂Ω) = L2(∂Ω)	
{
∂u0

∂n

∣∣∣
Γ

}
.

Due to absence of eigenvalues of the outer problem, the operator Qout is
invertible, and the inverse of it is an operator of the differential order 1 :

Q−1
out = DNH

out : W 3/2(ΓH) → W
1/2
2 (ΓH).
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or
Q−1
out = DNH

out : W 1(ΓH) → L2(ΓH).

The inverse coincides with the relative DN-map which is associated with the
boundary problem

−∆u = λu,
∂u

∂n

∣∣∣
∂Ωout\ΓH

= 0, u
∣∣∣
ΓH

= uH ,

with the Meixner condition imposed on inner angles:

DNH
out := DN ΓH

out : uH −→
∂u

∂n

∣∣∣
ΓH

The operator Q∗
int(λ) can be represented due to (31), as:

Q∗
int(λ) = Q∗

int(M)+(λ−M)Q+
int(M)Qint(M)+(λ−M)2Q+

int(M)RλQint(M)
(38)

Lemma 3.1 The third term in the right side of (38) can be represented as a
series of one-dimensional polar terms, convergent in operator norm W 1

2 (Γ)×
L2(Γ):

(λ−M)2

N∑
l=1

ϕl

∣∣∣
Γ
〉 〈ϕl

∣∣∣
Γ
, g〉

(λl −M)2(λl − λ)
+ (λ−M)2 O

(
∞∑
N+1

1

λ
3−α/2−α′/2
l

)
=:

QN
int + (λ−M)2 O

(
∞∑
N+1

1

λ
3−α/2−α′/2
l

)
, (39)

with α > 1/2, α′ > 3/2, α/2 + α′/2 < 3/2.

Proof is derived from embedding results

|ϕl|L2(Γ) ≤ λ
β/2
l , β > 1/2, |ϕl|W2(Γ) ≤ λ

β/2
l , if 1 + 1/2 < α′,

because, due to Weyl asymptotic for eigenvalues of L∗int the series
∑∞

l=1 λ
−γ
l

is converging if γ > 3/2.
The end of the proof
Note that the compact operator Qout : L2(Γ) → W 1

2 (Γ) is invertible.
It inverse exists for any λ, =λ ≥ 0 and acts as the relative DN-map DN out,
associated with the generalized W

3/2
2 (Ωout) solution of the boundary problem

−∆u = λu,
∂u

∂n

∣∣∣
∂Ωout\Γ

= 0, u
∣∣∣
Γ

= uΓ,=λ > 0.
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The generalized W
3/2
2 (Ωout)- solution of this problem is unique, see [12] and

the corresponding relative DN- map is a closed operator

DN Γ : W 1
2 (Γ) → L2(Γ).

Then the inverse operator is a closed map Qout onto L2(Γ) → W 1
2 (Γ).

The operator R-function in the upper half-plane =λ ≥ 0:

Qout(λ) +Qint(M) + (λ−M)Q+
int(M)Qint(M) =: Q(λ)

is compact in L2(Γ) and defines a closed operator L2(Γ) → W 1
2 (Γ). The map

is “onto” if Q(λ) does not have zero eigenvalue. In this case the corresponding
inverse exists and is bounded, due to closed graph theorem, see for instance
[16]

Q−1(λ) : W 1
2 (Γ) → L2(Γ), ‖ Q−1(λ ‖W 1

2 (Γ)×L2(Γ)<∞.

The operator R-function Q(λ) is smooth in the closed upper half-plane. Then
vector zeros µs of it are real

Q(µs)es = 0, es ∈ L2(Γ)

and, according to [13] it may have only a finite number of the vector zeros
on any finite interval of the real axis of the spectral parameter. Denote by
∆µ the finite set of all vector-zeros on the essential spectral interval ∆ and
select, for given rational approximation (39), a real neighborhood of ∆µ such
that on the complement of it in ∆ the condition

sup
λ∈∆\∆µ

(λ−M)2 ‖ Q−1(λ)KN ‖L2(Γ)=: q < 1 (40)

is fulfilled. Then the operator -function Q + KN(λ) is invertible on ∆\∆µ

and the following statement is true:

Lemma 3.2 The equation (37 ) can be re-written on ∆\∆µ in the finite-
dimensional form:

u+
[
Q +KN(λ)

]−1QN
intu =

[
Q +KN(λ)

]−1
ψout(∗, ν, λ). (41)

Proof follows directly from the above arguments.
The end of the proof
Summarizing the above results we obtain the required regularization of

the problem (37):
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Theorem 3.3 The problem (37) is reduced on ∆\∆µ to the finite-dimensional

equation, and has a unique smooth solution u ∈ W 1/2
2 (Γ) if λ ∈ ∆\∆µ is not

a zero of the corresponding determinant:

det
[
I +

[
Q +KN(λ)

]−1QN
int

]
=: D(λ) 6= 0.

Proof We use the smoothness of the trace ψout

∣∣∣
Γ
∈ W

3/2
2 (Γ) on Γ of the

generalized eigenfunction ψout (scattered waves ) of Lout.
The end of the proof
Remark 4 Smoothness of the scattered waves ψout is defined by the

smoothness of the boundary. In particular, for the properly smooth bound-

ary, ∂Ωout ∈ C2, we have at least ψout

∣∣∣
Γ
∈ W

5/2
2 (Γ), then the right side of

(41) belongs to W
3/2
2 (Γ), hence u ∈ W 3/2

2 (Γ) ∈ C(Γ).
Unfortunately the suggested general regularization does not help in prac-

tical calculation of u. In next section we develop a special regularization
method for (37) based on filtering of signals by the channel, barred at a
certain level frequencies.

4 Transport properties of

a short thin channel.

Now we evaluate the contribution of the channel to the additional term of
the amplitude (36) under assumption that the channel is relatively short and
thin : kH < π/2, δ/H << 1, see the Figure 2. In fact each of these condition
can be loosen, see the concluding comments. In fact we will also use in this
section more hard conditions kH << π/2, δ/H << 1 which define “short
thin” channels.

The denominator Q∗
int

(λ)+Qout(λ) in above formulae (36), where Q∗
in

(λ)
is the ND-map of the extended inner domain. In fact we should transfer
the ND map of the inner domain from the lower lid ΓG to the upper lid
along the channel Ωδ. It may be done based on transport properties of the
channel. If the channel is relatively short and thin, the final formulae appear
to be convenient for explicit asymptotic calculation of the additional term of
the scattering amplitude. We assume, see section 1 above, that the channel
has a form of a relatively short and thin circular cylinder, see Fig.3, hight
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Figure 3: The short thin channel

H, 0 < x < H, radius δ, 0 < r < δ, with the lower lid Γ, and the upper lid
ΓH .

Denote by λn,s = ν
2

n,s(δ) = δ−2
[
ν1
n,s

]2
the eigenvalues of the Laplacian

on the cross-section of the cylinder, with homogeneous Neumann boundary
conditions at r = δ, and by Pn,s the projections onto the corresponding nor-
malized eigenfunctions YnJn(νn,s r), n = 1, 2, . . ., with Yn(ϕ) = Const e± inϕ.
The eigenvalues ν2

n,s = δ−2 (ν1)2
n,s are defined by the zeros of the derivative

of the Bessel functions: J ′n(νn,sδ) = 0. Denote by P0 the projection onto
the constant eigenfunction Y0,0 = (

√
2π δ)−1 corresponding to the eigenvalue

ν2
0 = 0. Then

∑
(n,s) 6=(0,0) Pn,s = P⊥ is the projection onto the orthogo-

nal complement of constants on the cross-sections Γ, ΓH , P0 ⊕ P⊥ = I in
L2(Γ), L2(ΓH). The complementary projections P0, P

⊥ in L2(Γ), L2(ΓH) are
represented as:

P0 =
χ(x)〉 〈χ(y)

πδ2
, P⊥ = I − χ(x)〉 〈χ(y)

πδ2
. (42)

Here χ(x) = χΓ(x), χH(x) is an indicator of the corresponding lid Γ, ΓH ,
for instance : χH(x) = 1, if x ∈ ΓH , and 0 on the complement ∂Ωout\ΓH .
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Hereafter we use spectral data for the scaled Neumann Laplacian −41 on an
orthogonal cross-section of the channel Ωδ with respect to the scaled variables
δ−1 r =: ξ, 0 < ξ < 1, with the scaled eigenvalues λ1

n,s = (ν1
n,s)

2.
We also consider the boundary problem for the Laplacian on the channel

with Neumann boundary condition at r = δ and non-homogeneous Dirichlet
boundary conditions on the lids:

−∆u = λu, u
∣∣∣
Γ

= u
Γ
, u
∣∣∣
H

= u
H
.

The relative Dirichlet-to-Neumann map Λδ of this problem on Γ,ΓH is defined
by the normal outward derivatives with respect to the inner domain, on both
sections Γ,ΓH , and is obtained via separation of variables:

Λδ =(
Λ

HH
Λ

HΓ

Λ
ΓH

Λ
ΓΓ

)
=

√
λ

sin
√
λH

(
cos

√
λH −1

1 − cos
√
λH

)
P0+

+

∞∑
n,s=1

√
ν2

n,s
− λ

sinh
√
ν2

n,s
− λ H

×

×

 cosh
√
ν2

n,s
− λ H −1

1 − cosh
√
ν2

n,s
− λ H

Pn,s := Λ
δ

0
+ Λδ

⊥. (43)

For thin channel the non-trivial (non-diagonal) component of the DN-map,
responsible for the transmission of Dirichlet/Neumann data from one lid to
another, is essentially defined by the constant eigenfunction of the cross-
section:

Λδ ≈ Λ
δ

0
+

(
δ
−1√−41 −δ2λI P

⊥

H
0

0 −δ−1√−41 −δ2λI P
⊥

Γ

)
, (44)

where −41 is the Neumann Laplacian in the orthogonal complement of con-
stants on the lids Γ, ΓH represented in terms of the scaled variables (on the
corresponding scaled section radius 1). See below an extended discussion of
the approximation suggested.

The inverse operator - Neumann-to-Dirichlet map- is calculated as

Qδ :=

(
Qω
HH Qω

HΓ

Qω
ΓH Qω

ΓΓ

)
=

(
− 1√

λ tan
√
λH

1√
λ sin

√
λH

− 1√
λ sin

√
λH

1√
λ tan

√
λH

)
P0+
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∑
n,s

 1√
λn,s−λ tanh

√
λn,s−λH

− 1√
λn,s−λ sinh

√
λn,s−λH

1√
λn,s−λ sinh

√
λn,s−λH

− 1√
λn,s−λ tanh

√
λn,s−λH

Pn,s =:

=: Qδ
0 +Qδ

⊥.

It coincides with restriction of the full ND-map of the channel onto the lids.
Note that the second addendum admits also the spectral representation:

Qδ
⊥ =

(
1 e−

√
−∆⊥−λI⊥H

e−
√
−∆⊥−λI⊥H 1

) 1√
−∆⊥−λI⊥H

0

0 − 1√
−∆⊥−λI⊥H


(

1 −e−
√
−∆⊥−λI⊥H

−e−
√
−∆⊥−λI⊥H 1

)
1

1− e−2
√
−∆⊥−λI⊥H

,

which shows that, for the thin channel, δ/H << 1 and the values of the
spectral parameter below the second threshold Qδ

⊥ can be substituted, with
a small error, by the diagonal matrix 1√

−∆⊥−λI⊥ tanh
√
−∆⊥−λI⊥H

0

0 − 1√
−∆⊥−λI⊥ tanh

√
−∆⊥−λI⊥H

 ,

or just by  1√
−∆⊥−λI⊥H

0

0 − 1√
−∆⊥−λI⊥H

 ,

because tanh
√
−∆⊥ − λI⊥H ≈ 1 for thin channel δ/H << 1. Hereafter, for

short thin channel
0 <

√
λH < π/2, δH−1 << 1, (45)

we use the following approximation:

Qδ ≈ Qδ
0 + P⊥ (−∆− λI)−1/2 P⊥

(
1 0
0 −1

)
, (46)

where the second addendum deviates from the corresponding exact term by
the exponentially small error 0 1√

λn,s−λ sinh
√
λn,s−λH

− 1√
λn,s−λ sinh

√
λn,s−λH

0

 ≈ e−
√
λ1

n,s−δ2λ H/δ,

(47)
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For the short channel
√
λH << π/2 further simplification is possible:

1

λH

(
−1 1
−1 1

)
P0 + P⊥ (−∆− λI)−1/2 P⊥

(
1 0
0 −1

)
,

but now the deviation of first term of the second line of (46) from the corre-
sponding exact term contains powers of λ−1/2.

Hereafter we neglect the exponentially small terms (47) in the second
addendum of the first line of (46), but retain exact expression for the first
term Q0:

Qδ
appr =

(
− 1√

λ tan
√
λH

1√
λ sin

√
λH

− 1√
λ sin

√
λH

1√
λ tan

√
λH

)
P0+

∑
n,s

 1√
λn,s−λ tanh

√
λn,s−λH

0

0 − 1√
λn,s−λ tanh

√
λn,s−λH

Pn,s =:

(
−γt γs
−γs γt

)
P0 +

(
d⊥ 0
0 −d⊥

)
=:

(
Qδ
HH Qδ

HΓ

Qδ
ΓH Qδ

ΓΓ

)
. (48)

Hereafter the following notations are used:
√
λH tan−1

√
λH =: γt,

√
λ, H sin−1

√
λH =: γs,∑

n,s

1√
λn,s − λ tanh

√
λn,s − λ H

Pn,s =

1√
−∆⊥ − λP⊥ tanh

√
−∆⊥ − λP⊥ H

=: d⊥, (49)

and the exponentially small non-diagonal elements of Qδ
⊥ are neglected. Note

that the diagonal elements Qδ
ΓΓ,Qδ

ΓH ,ΓH
are invertible if the conditions (45)

are fulfilled. Substituting, for thin channel δ/H << 1, of the exact ND-map
of Ωδ by the above approximation Qδ

appr we admit an exponentially small

error O(e−H/δ). In all calculations with precision o(δ/H), o(
√
λH) we may

just replace Qδ by Qδ
appr. In particular, based on the above approximation

(48) for Qδ, we will calculate the restriction onto ΓH of the ND - map of the
extended inner domain Ω∗int := Ωint ∪ Ωδ.

One can construct, based on [11] an approximate spectral representation
for the DN-map of the basic domain Ωint:

DN Γ =
N∑
l=1

∂ϕl

∂n
〉 〈∂ϕl

∂n

λ− λl
+KN =: DNN

Γ +KN
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with respect to Γ, on an essential spectral interval ∆ and its complex neigh-
borhood G∆. The number N can be selected such that ‖ Qδ

ΓΓKN ‖
W

3/2
2 ΓH

< 1.

Then the operators

I −Qδ
ΓΓKN , Qδ

ΓΓ −Qδ
ΓΓKNQδ

ΓΓ (50)

are invertible. Denote

[Qδ
ΓΓ −Qδ

ΓΓKNQδ
ΓΓ]−1 =: V = [Qδ

ΓΓ]−1 I

I −Qδ
ΓΓKN

Denote by EN =
∨N
l=1 ϕl an invariant subspace of Lint which corresponds

to the eigenfunctions {ϕl}Nl=1 and introduce the spectral projection PN =∑N
l=1 ϕl〉 〈ϕl and the part

LNint =
N∑
l=1

λlϕl〉 〈ϕl

of Lint in EN . Hereafter we use also the maps

T :=
N∑
l=1

ϕl〉 〈
∂ϕl
∂n

, Qδ
ΓΓ∗〉, T+ :=

N∑
l=1

Qδ
ΓΓ

∂ϕl
∂n
〉 〈ϕl, ∗〉. (51)

The following statement describes the transmission of the Dirichlet / Neu-
mann data from the lower lid Γ of the channel Ωδ to the upper lid ΓH :

Theorem 4.1 The approximation (48) for Qδ implies the following approx-
imate formula for the relative ND-map NDH of Ω∗int on ΓH , for thin channel
δ/H << 1:

NDH = d⊥ +
tan

√
λH√
λ

P0−

I

λ sin2
√
λH

P0

[
V T+ I

λIN − LN − TV T+
TV + V

]
P0, (52)

Proof The DN-map of Lint with respect to Γ is connected to ND map of L∗int
on the extended domain Ω∗int by the linear system:(

Qδ
HH Qδ

HΓ

Qδ
ΓH Qδ

ΓΓ

)(
ρH

DN ΓuΓ

)
=

(
NDH ρH

uΓ

)
. (53)
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This system implies the representation:

NDH =
[
Qδ
HH −Qδ

HΓ

[
Qδ

ΓΓ

]−1Qδ
ΓH

]
+Qδ

HΓ

[
Qδ

ΓΓ −Qδ
ΓΓDN ΓQδ

ΓΓ

]−1Qδ
ΓH ,

(54)
which can be simplified based on explicit expressions for Qδ substituted by
Qδ
appr, with an exponentially small error. In particular, the first addendum

in the right side of (54) is simplified to

Qδ
HH −Qδ

HΓ

[
Qδ

ΓΓ

]−1Qδ
ΓH = d⊥ +

tan
√
λH√
λ

P0.

To calculate the second addendum of (54) we should solve the equation:[
Qδ

ΓΓ −Qδ
ΓΓDN ΓQδ

ΓΓ

]
u = Qδ

ΓHρH (55)

If the spectral rational approximation of DN is selected such that

[Qδ
ΓΓ −Qδ

ΓΓKNQδ
ΓΓ]−1 =: V (56)

exists, see (50), then the solution of the above equation is reduced to the
inversion of a finite matrix. Indeed, introduce a new variable

v =
N∑
l=1

ϕl
〈Qδ

ΓΓ
∂ϕl

∂n
, u〉

λ− λl
= (λIN − LN)−1Tu.

In terms of v the above equation (55) can be re-written as

(λIN − LN)v − TV T+v = TVQδ
ΓHρ, (57)

hence

v =
I

λIN − LN − TV T+
TVQδ

ΓHρ.

Then
u = V T+v + VQδ

ΓHρ =

V T+ I

λIN − LN − TV T+
TVQδ

ΓHρ+ VQδ
ΓHρ,

and

NDHρ = d⊥ρ+
tan

√
λH√
λ

P0ρ+
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Qδ
HΓ

[
V T+ I

λIN − LN − TV T+
TV + V

]
Qδ

ΓHρ (58)

Note that Qδ
HΓ = I√

λ sin
√
λH
P0 = −Qδ

ΓH . This implies the announced result.

The end of the proof
Remark 5 When deriving the expression for DNH we neglected the

exponentially small non-diagonal terms O(e−H/δ) of the component Q⊥ and
obtained the diagonal expression (58) for DNH :

NDH ≈ d⊥ + MP0. (59)

with the scalar function

M =
tan

√
λH√
λ

− I

λ sin2
√
λH

Trace

[
V T+ I

λIN − LN − TV T+
TV + V

]
P0 =:

tan
√
λH√
λ

− D

λ sin2
√
λH

− TraceP0V

λ sin2
√
λH

where

D = Trace

[
V T+ I

λIN − LN − TV T+
TV

]
P0.

It is easy to see, that the diagonal expression (59) differs from the exact value
of NDH by the exponentially small error estimated as

‖ NDH − d⊥ −MP0 ‖≤ CDe−H/δ, (60)

which is small outside of a small neighborhood of the poles of D.
Remark 6 We consider also another, less accurate, but more conve-

nient for fitting, approximation of NDH for short thin channel kH <<
π/2, δ/H << 1. We obtain it via replacement of D by

D = Trace

[
P0

N∑
l,m=1

∂ϕl
∂n
〉 〈ϕl

I

λIN − LN − TV T+
ϕm〉 〈

∂ϕm
∂n

]
.

Due to the estimation, for small Qδ
ΓΓKN ,

Trace

[
TV −

∑
l

ϕl〉 〈
∂ϕl
∂n

]
P0 ≈ TraceKNP0,
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we see, that the difference D−D is small on the complement of a neighbor-
hood of poles of D

|D−D| ≤ |D|Trace KNP0. (61)

Under the same condition we estimate

Trace [P0V − P0(Qδ
ΓΓ)−1] ≈ TraceKNP0. (62)

Summarizing above observations (61,62) we see that for small TraceKNDδ
ΓΓ)

and
√
λH << 1, the function M can be substituted by

H − D
λ2H2

− I

λH
=: M,

with a relatively minor error estimated by

C
TraceP0KN

λ2H2
[|D|+ λH], (63)

with come constant C (independent on H, λ). It is important that the struc-
ture of functions M and M is the same as one of the function MH , which
appeared in (23) as a parameter of the solvable model, see remark 1:

Lemma 4.1 For thin short channel the structure of M is described by the
expression:

M = H − D
λ2H2

− 1

λH
. (64)

If MΓ is selected such that

1

MΓ

+
1

λH
+

1

D
= 0,

then
M = MH .

Proof The formula (64) is already proved above. The second statement of
the lemma is derived based on (64) and (45). Indeed, if

H −MH =
1

λH +MΓ

=
D + λH

λ2H2
= H −M,

then

MΓ =
λ2H2

D + λH
− λH = − DλH

D + λH
.
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The end of the proof
Remark 7 Inserting the expression for M into (59) we obtain, withQH(λ) =:
Q∗

int
(λ) a convenient approximate expression for the denominator of the ad-

ditional term of the scattering amplitude (36):

δa :=
1

8π3ψout(∗, ω, λ) [Q∗
int(λ) +Qout(λ)]−1 ψout(∗, ν, λ) ≈

1

8π3ψout(∗, ω, λ)
[
d⊥ + MP0 +Qout(λ)

]−1
ψout(∗, ν, λ) =: δaM , (65)

with an exponential estimate of deviation of Q∗
int from d⊥ + MP0, on the

complement of some neighborhood of poles of M, and, more rough estimate
(5) of the deviation from d⊥ +M on a complement of a small neighborhood
of poles of D.

5 Fitting of the solvable model

It was noticed in section 2, that the solvable model of the Helmholtz res-
onator may be considered as“fitted” on an essential spectral interval if the
model scattering matrix serves an approximation of the original scattering
matrix of the Helmholtz resonator. One may relax this non-formal definition
when comparing the basic formula for the additional terms of the scattering
amplitudes of the model problem (26) with the additional term of the scat-
tering amplitude of the original problem for the Helmholtz resonator (36).
Notice, first of all, that for zero-range model the values of scattered waves
ψout(x, ω, λ), ψout(x, ν, λ) should be taken at the single point xH = a. Ac-
cording to Remark 3 at the end of section 3, the solution u of the basic
equation (37), obtained with the corresponding regularization, is unique and

smooth, u ∈ W 3/2
2 (Γ), for non-singular λ. Now we evaluate the solution u of

(37) replacing Q∗
int by the approximate expression (59), see Remark 4 above.

We also substitute ψout(∗, ω, λ) and ψout(∗, ν, λ) on ΓH by their values at
the center xH of the upper lid, multiplied by the indicator χΓH

=: χH of the
upper lid:

ψout(x), ω, λ) −→ ψout(xH , ω, λ)χH(x), x ∈ ΓH ,

ψout(x), ν, λ) −→ ψout(xH , ν, λ)χH(x), x ∈ ΓH , .
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Due to ψout ∈ W 2
2 (Ω) the trace of ψout on ΓH is smooth, ψout ∈ W 3/2

2 (ΓH),hence,

due to embedding theorem W
3/2
2 (ΓH) ⊂ Lip 1(ΓH) we have

|ψout(x), ω, λ)− ψout(xH , ω, λ)χ(x)| ≤ δ|λ|C, x ∈ ΓH , (66)

with an absolute constant C, because ‖ ψout ‖W 3/2
2

(ΓH) ≤ C|λ|. The result-

ing expression for the approximate correcting term of the amplitude coincides
with

1

8π3
ψout(xH , ω, λ) 〈χH ,

1

Q∗
int +Qout

χH〉 ψout(xH , ν, λ) =: δâ (67)

We estimate first the difference between δâ and the original correcting term

1

8π3ψout(∗, ω, λ) [Q∗
int(λ) +Qout(λ)]−1 ψout(∗, ν, λ =: δa. (68)

Denote by u, û solutions of the equations

[Q∗
int +Qout]u = ψout(x), [Q∗

int +Qout]û = χHψout(xH)(xH , ν, λ).

Applying to this equation the procedure described in remark 4, we reduce it
to the finite-dimensional linear system, with the determinant

det
[
I +

(
I +DN outK

N
)−1DN outQN

int

]
=: detB(Λ).

If detB(Λ) 6= 0, then for thin channel, δ/H << 1,

‖ u− û ‖≤ Cδ|λ|
detB(λ)

,

with a constant C non depending on λ. This implies an estimate of the
difference δa− δâ between the original and approximate correcting term by
the following expression:

sup
x
|ψout(x)− ψout(xH)| sup

ΓH

|u|+ sup |u− û| sup
ΓH

|ψout| ≤
Cδ|λ|

detB(λ)
,

again with some constant C which does not depend on λ.
On the second step we compare the approximate correcting term

1

8π3ψout(xH , ω, λ)
[
d⊥ + MP0 +Qout(λ)

]−1
ψout(xH , ν, λ). (69)
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with the correcting term recovered from the above solvable model, see (26).

Definition We call the solvable model fitted, if the model correcting term
δâ serves an approximation of the approximate correcting term δa.

If the model is fitted in the above sense, then obviously it is also fitted in
terms of amplitudes or scattering matrices. Note that the calculation of the
approximate correcting term () requires solution û of the equation[

P0M + d⊥ +Qout

]
u = χH . (70)

The difference between the approximate correcting term and the original
correcting term (36) is estimated, based on the results of previous section.
In particular, the term Q∗

int can be replaced, with a minor error by P0M+d⊥.
Denoting u = (ρ0χ+u⊥) with χ := χΓH

and applying P0 = [πδ2]−1χ〉〈χ, P⊥ =
I − P0 to (70) we obtain a system of two equations for ρ0, u⊥:

P⊥d
⊥u⊥ + P⊥Qoutu⊥ + P⊥QoutχHρ0 = 0,

MχHρ0 + P0Qoutu⊥ + P0QoutχHρ0 = χ. (71)

The middle term of the above formula (67) is directly connected to the com-
ponent ρ0 of the solution of the system

〈χH ,
1

Q∗
int +Qout

χH〉 = 〈ρ0χH , χH〉 = ρ0 π δ
2. (72)

The kernel of the integral operator Qout coincides with the Green function of
the Neumann Laplacian in the outer domain, and can be represented, based
on resolvent identity, as

Qoutu =

∫
ΓH

Gout(x, y, λ)u(y)dy =

∫
ΓH

Gout(x, y,M)u(y)dy +

∫
ΓH

Mout(x, y, λ,M)u(y)dy,

with a large negative M and a continuous kernel Mout(x, y, λ,M) = (λ −
M)

∫
Ωout

Gout(x, z,M)Gout(z, y, λ)dz. One can show that near a smooth point
y ∈ ∂Ωout the Green function Gout(x, y,M) has an asymptotic expansion

Gout(x, y,M) =
1

2π|x− y|
−
√
|M |
2π

+ . . . .
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We will also use the notation

γ1 = δ−3

∫
Γ

dxdy

2π|x− y|
,

and denote the limit of Mout, see (8), at the center of the upper lid xH ≡ a

lim
x,y→a

Mout(x, y, λ,M) = C(a,M) + iπ
dE
dλ

(a) + V PMout ≡Mout(a).

Theorem 5.1 The component ρ0 of the solution of (70) is approximately
calculated, for small δ, as

ρ0 =
1− o (γ1δ

2 λ)

M + δγ1 +Moutπδ2
.

Proof We already noticed at the end of section 3 that, due to local smooth-
ness of eigenfunctions of the Laplacian, see the Remark 4 in the end of
section 3, the solution u of the above equation (70) is smooth, in particular

u ∈ W 3/2
2 (Γ) ⊂ Lip 1(Γ). More precise, due to the corresponding embedding

theorem on a small lid we have:

sup
Γ
|u⊥| = sup

Γ
|u− P0u| ≤ δ ‖ u ‖

W
3/2
2 (Γ)

≈ δλ.

Then the second equation (71) implies

Mρ0 + [πδ2]−1

∫
Γ

∫
Γ

dxdy

2π|x− y|
ρ0 +Mout(a)πδ

2 ρ0 =

1−
∫

Γ

∫
Γ

u⊥
2π|x− y|

dxdy = 1− o(γ1λδ
2). (73)

This gives the announced approximate expression for ρ0.
The end of the proof
Remark 7 Combining the above result with (72) we obtain:

〈χΓH
,

1

Q∗
int +Qout

χΓH
〉 =

1
M
πδ2

+ γ1
πδ

+Mout

[1 + 0(γ1 δ
2)] (74)

Note that, due to Lemma 4.1 the expression M
πδ2

+ γ1
πδ

+Mout can be substi-
tuted, with a minor error, by M

πδ2
+ γ1

πδ
+Mout, that is M →M. Comparing
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the obtained expression with the denominator of the additional term of the
model scattering amplitude (26), we conclude that they coincide with each
other if the inner structure is selected as prescribed in Lemma 4.1, and the
boundary parameters are chosen as

|β01|2 = πδ2, β11 = γ1 δ.

Hence the following statement is proved:

Theorem 5.2 There exist a real function with the asymptotic behavior near
the origin,

γ(δ) =
γ1

πδ

such that the scattering amplitude of the Helmholtz resonator with short thin
channel is defined by the approximate formula

a(ω, ν, λ) ≈ aout(ω, ν, λ) +
1

8π3

ψout(xΓH
, ω) ψout(xΓH

, ν)

Mout +M(πδ2)−1 + γ(δ)
, (75)

with minor error estimated as (5), on a complement of a small neighborhood
of poles of D. The corresponding Kirchhoff constant

AH =
1

Mout +M(πδ2)−1 + γ1
πδ

ψout(xΓH
). (76)

defines the model scattered wave in the outer domain.

Note, that the role of the termMint in [9] now is played by the corresponding
re-normalized term M(πδ2)−1, and the approximate scattering amplitude
is obtained as a scattering amplitude of some solvable model with “inner
structure”, defined from M(πδ2)−1 based on Lemma 4.1.

Remark 8 To construct the fitted solvable model of the Helmholtz res-
onator with thin short channel,

√
λH << 1, δ/H << 1, we have to make the

following steps:
1. Select an essential spectral interval ∆ ⊂ [0, π2/4H2, on which, we ex-

pect, the model scattering matrix should approximate the scattering matrix
of the resonator.

2. Solve the inner spectral problem in the cavity and construct the cor-
responding relative DN-map DN Γ. Transfer it to the upper lid as ND∗int =
Q∗
int.
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3. Select the rational approximation of the DN-map Q∗
int = QN

int + KN ,
such that ‖ QoutKN ‖<< 1.

4. Find the poles ofD as vector zeros of the matrix
[
LN + TV T+ − λIN

]
e =

0. Choose a neighborhood of zeros such that on the complement of it inside
the essential spectral interval the estimate () holds.

5. Construct the inner structure, selecting MΓ as prescribed by Lemma
4.1, and substituting TV T+ by

N∑
m,l=1

ϕl〉〈
∂ϕl
∂n
Qδ

Γ,Γ

∂ϕm
∂n

〉〈ϕm+ : V (λ),

with a minor error estimated, for short thin channel, as ‖ Qδ
Γ,ΓKN ‖<< 1.

6. Select the boundary parameters as prescribed in Theorem 5.2.
The constructed model is automatically fitted, because its scattering ma-

trix serves an approximation of the scattering matrix of the Helmholtz res-
onator on a complement of a neighborhood of zeros of D, which are found as
spectrum of the above spectral problem

LNe+ T+V Te = λe.

7. Find the zeros of the denominator of the additional term of the model
scattering matrix, for the fitted model,

Mout +M(πδ2)−1 + γ1(πδ)
−1 = 0,

Since the zeros are situated, for thin short channel, near the essential spectral
interval ∆ ⊂ R, Mout can be substituted by the value at the center xH ≡ a
of the upper lid, see (9)

Mout(a) = C(a,M) + iπ
∂E
∂λ

(a, a) +MV P (a, a, λ).

One may expect that the poles of the additional term of the original
scattering amplitude or, equivalently, ones of the above Kirchhoff constant,
with Mout substituted by the asymptotic (9), can be found as zeros of the
denominator of (76) which give a “first order approximation” for resonances
of the Helmholtz resonator, with short thin channel. In fact calculation of
resonances based on the above formula, as poles of the approximate ampli-
tude or poles of the Kirchhoff constant, requires more accurate investigation
of analytic properties of the amplitude in the complex plane and can be done
based on the operator version of Rouche theorem, see [13].
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6 Conclusion

Our technique was based on specific transport properties of the thin short
channel. Considering longer channel just requires taking into account oscil-
lating modes in the channel. The corresponding analysis can be also done in
explicit form. More interesting is the problem on approximate calculation of
scattering matrix of Helmholtz resonator with relatively wide opening. Re-
call, that we succeeded to simplify the basic equation (37) for thin channel
because all exponential modes in the channel which correspond to positive
cross-section eigenvalues λl,m : J ′

m(λm,l) = 0, are “filtered out” by the thin
channel, that is: they do not contribute to the transfer of Dirichlet/Neumann
data from the lower section to the upper section, because λ1

l,m δ−2 >> λ, be-
ginning from l = 1. When using direct computing we are able to relax the
above condition, see (47) neglecting only the transfer by the higher modes:

sinh−1
√
λ1
m,l − δ2λH/δ << 1 if λm,l > Λ0, beginning from some Λ0 which

is large enough. There is only a finite number of modes below that level,
which can be taken into account in explicit form, by the direct computing.
The suggested procedure is actually an extension to the case of Helmholtz
resonator of the perturbation procedure for the junction of a quantum net-
work, suggested recently in [12]. Note that in the recent preprint [14] a
computational procedure suggested for resonances in any resonator, without
additional conditions on the diameter of the opening. The described proce-
dure permits to extend analysis for Helmholtz resonator with wide opening.
Intriguing applications of this extension will be discussed in [?].
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