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1. Introduction

The distribution of individual Dirac operator eigenvalugsve become a popular tool since
their calculation[[lL] in the chiral Random Matrix Theory thgequivalent to the leading-order ex-
pression for the QCD partition function in tiseregime [B]. The analytical expressions distinguish
very clearly between different gauge theories and diffesectors of topology, as first shown in
[B].- This has by now been verified by many different groupsigslifferent versions of fermions
with different levels of chiral symmetry on the lattice. B$also become clear how to derive the
same expression in theeregime of chiral perturbations theorgXPT) [B].

Individual eigenvalue distributions provide perhaps thestrefficient tool to extract one of
the low energy constants (LEC) yiPT, the infinite-volume chiral condensaie Here we extend
this analysis to the second LEC in line, the pion decay congtg, exploiting the fact that a
nonvanishing chemical potential couples toF; to leading order in the-expansion [[5]. This
method has been first suggested for imaginary isospin clabmpatential with two different sets
of Dirac eigenvalues[J6]. The advantage over nedl]] is that the Dirac operator retains its anti-
hermiticity, allowing for unquenched simulations withaeticountering any sign-problems, and
with greatly reduced computer efforts associated with tiraputation of the lowest eigenvalues.
The proposal[[6] was based on the 2-point spectral corogldtinction computed froraxPT and
verified their prediction on quenched and unquenched leattita. This was generalised [ [8]
where all spectral correlations where computed analygidedm the shown equivalence with a
corresponding chiral Random two-Matrix Theory (chR2MT}tiwii 2. The advantage here is
that partial quenching is possible, by setting one ofgthéo zero. Hence existing configurations
with u = 0 can be used to measufg. This idea was most recently applied to unquenched chiral
fermions in [9]. Here we present first results for individatac eigenvalue distributions.

In section[R we introduce the chR2MT and its correspondig&T. Sectior{]3 presents our
results in a general setting, which is then illustratedquiatly in the simplest case, the quenched
isospin densities in sectidh 4. Sect{dn 5 gives our conmhgsand comments on other results.

2. RMT and xPT with imaginary chemical potential

We start by defining the chR2MT for imaginary chemical pdastintroduced and solved in

L2]
Nt
Pt ~ / dodW exp[—NTr ('d+ Wy)] 1 det () +mi] 2.1)
=1

The anti-hermitian Dirac matri is given in terms of two complex, rectangular random masrice
® andW of sizeN x (N+ v) with Gaussian measure:

0 i¢+iufw> | 2.2

Z(Hr) = <i¢T+iufwT 0

Herev corresponds to fixed gauge field topology in the usual wayhérfallowing we restrict our-
selves to the case of only two different chemical potentialgu; 2) = 21 2, with Ny > flavours each.
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Referring to ref. [[B] for details, we can write down the cepending eigenvalue representation:

00 N Ny No
ZaroMT = /o [ (dxidyi (xiyi)U "t [ O +mf,) |2_| (Yi2+m%2)>
-1

i fl=1 f
x On(DC})Bn({y?}) detly (2dNxiy;)] e N oo e (2.3)

wherex; andy; are real positive eigenvalues of the matrides L1 oW, respectively. The constants
c1,2 andd depend oruy » (see [B]). For later convenience we abbreviate the intebmnjoint
probability distribution function (jpdf) by ({x},{y}).

If we take the largeN limit and identify Nx; — VZx = X, Nm¢1, — VZmgg = Mg, 2N;112 —
VF,%ul2 = ﬁf, and similarly for the second ship, the partition function eq[(3.3) becomes identical
to the correspondingxPT partition function|[B]

ZpT = /dU(Nf)det[U]"exp Tr%uzF,%V[U,B][UT,B] + %VZMf(U +uh . (2.4)

FrandX have as source terms chemical potential through the chaagext =diag( 1 1n, , t21n, ),
and the diagonal mass matiik; =diag({ms1},{ms2}), respectively. For explicit results for these
partition functions we refer tq][8].

3. Resultsfor individual Dirac eigenvalue distributions

In the following we first define all density correlations, ialtlividual eigenvalues correlations
(or gap probabilities), and then express the latter in tasfrthe former. This inversion relation
is valid for any theory expressed in terms of Dirac eigereslthaving a jpdf?? ({x},{y}) that is
symmetric under exchange of &land ally; eigenvalues separately. This applies to our chR2MT
eq. (2:B), its equivalerexPT, or a Lattice QCD partition functions in terms of Diraceigalues.

All density correlation functions are defined by integrgtadl butk(l) eigenvalues of7;(%»)

N!Z o N N
NNy [1.9% [ 200,00 @D

j=1+1

Rk7|(xla"'axk7 Y1a---7YI) =

The simplest nontrivial example is the probability dendy:(x,y) for finding an eigenvalue of
21 atx and of 2, aty. If all eigenvalues of one kind are integrated out one findkithe known
quantities of the one-matrix theory at= 0 [§]. Next we define the following gap probabilities
that the interval0, 5] is occupied by eigenvalues anfs, «) by (N — k) eigenvalues o1, and that
the interval[0,t] is occupied by eigenvalues anfl,) by (N — ) eigenvalues of75:

N!Z 'S 00 t 00
Exi(st) = dx;...d dxr1...d dxs...d dyi41...d
ki (S1) (N_k)!(N_”)g/o X1 Xk/S X1 XN/O X1 ><|/t Vit .. dyn
x P({x},{y}), fork,l=0,1,....,N . (3.2)

The simplest example Eyo(s,t) to find the interval$0, s| and|0,t] empty ofZ; - and Z,-eigenvalues,
respectively. Similarly we can define the probability to fthék-th 2;-eigenvalue at valug = s,
and thd-th 2,-eigenvalue at valug =t, to be

N N\ 1 s o t ®
pki(st) =k [ —/ dxl...dxk,l/ dxk+1...de/ dyl...dy|,1/ dyii1...dyn
k I ) % Jo s 0 t

X «@(Xl,---,xkfl,xk:S>Xk+1>---aXNaY1>---aYI717YI :t7X|+17"'7yN) ) (33)
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where the eigenvalues are ordered< ... < xy andy; < ... <yn. The simplest example is
pr1(st), the distribution of each first eigenvalue. It is easy to &8 fhat all the quantities eq.
(B.3) can be obtained from eq. (3.2) by taking two derivagjve

2

0k
Here, we defingy = 0 whenever index or | is zero. Finally we give an inversion formula ex-
pressing all gap probabilities, and hence all individugeevalue distributions in terms of densities:

Exi(st) = K (pei(St) = Pra) (St) — Prrs (S 1) + Prrri+1(St)) - (3.4)

N—kN-— I I+j
Exi(st) = ij I|j' /dxl ka+|/dY1 Y R ) (X, - X Yao---5 Vi)

(3.5)
The derivation[[1)0] follows closely the = 0 case[[4]. Since itis known how to generate all higher
density correlation® from resolvents by inserting additional, auxiliary pairfsfermions and
bosons e.g. into eq[_(2.4), this relation clarifies how toegate individual eigenvalue distributions
in this setting from field theory.

4. Examples

We discuss in detail the simplest example, the probabyity(s,t). It follows from the gap
probability using eq.[(3]4):

ﬁan(s,t) = prai(st). (4.1)

We expandEqgp(s,t) to include at most 3-point density correlations as an appration,

Eoo(st) = 1— /dXRlo /dyR01 —|—/ dX/ dlel X,Y)
+§/0 dy:1dy, Ro72(Y1,Y2)+§/O dx10x%2 Ro (X1, %2)
1 s t 1 s t
——/ dX1dX2/ dyRz1(X1,%2,Y) — —/ dX/ dy1dy2Ri2(%,y1,Y2) + ... (4.2)
2 Jo 0 2Jo 0
The derivatives eliminate all integrals over one-matrirgities that only depend @ort:
t
pri(s,t) = Ryi(st) / dxRy1(X,St) — /0 dyRio(styy) + ... . (4.3)

The leading order term is obviously given by the denBity (s,t), as can be clearly seen in figs. 1
and[B. There, we display the quenched density in the caseagfiirary isospin chemical potential
H1 = —H2 = —U. In the microscopic largét limit p1.1(X,¥) = liMn_e R 1(X=X/N,y =J/N) we
obtain the following result{J€]] 8]

0 2492
PuR9) = Pao®pan (9) -~ 08 (4 (9) - gzl (12 )¢ & )

HERY) = / dtte=28*° 3, (%), (%), A OR ) = /O 1dttJV(>“<t)JV(§/t). (4.4)



Fr from Dirac eigenvalues at imaginary density G. Akemann

‘ oy
XITRRAA] ' """"""’.’.’.’.’"’ (‘h
MM“MM“W o

|

N
Oy Oy e S,

LA A LTLE
R i e
ARG

""" Sy

ey uiy,

oy,

XX
e
LR LA IX
LRELLLL
RS

L]

0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
2 4 6 8 2 4 6 8
0.1 -0.1

Figure 1: Example quenched densi®{ 1(s,t) (top left) vs individual eigenvalue distributiom 1(s,t) (top
right) atv = 0 and 41 = 0.159. The lower plots show corresponding 2D cuts at fixed?.

Here also the well known one-matrix density appears,

P1.0)(X) = P01y (X) = )—2( [J2(R) — Je1(R)I-_1(R)] = #°(%%), (4.5)
see fig.[R. Eq.[(44) was derived independently for the chR2®IT(2.B) [B] and prior to that for
exXPT eq. [2}4) using replicas and the Toda-lattice hierarffy It is displayed in figs[]1 anfl 3
left for topological chargey = 0 and 1, respectively, including 2-dimensional cuts. Beeaie
density is the expectation vallg 1(x,y) ~ ( Tro(Z1 —x) Tro(Z2—y) ), U # 0 resolves the delta
function 6(x — y) that we would obtain att = 0, times the one-matrix density ed._{4.5) that we
give for comparison.

Next we move to individual eigenvalues. A closed determimlaexpression for all higher
density correlation functions in terms of the same builditacks as in eq.[(414) was given i [8]:

K I 0y ¢ - O 1 %iq Yip —iglfzjzz
P ({X},{9}) = []% []videt H O (Kiys %) A (R Yi) — gzl (W) e ¥ | (46)
! y H (Y11, %) '%/O(yjlvf(iz)

We can insert these formulas into the expansion g} (4.8, tking the microscopic limit. The

result truncated at the given order is plotted in figs. 1[@nigi&.r The fact that the truncated sum
is an approximation is seen from the fact that the individeigenvalue density becomes negative
(or diverges when adding higher order terms). For the giaues in the figs. this happens above
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Figure 2: The one-matrix densitp; ) (X) vs. the exact distribution of the first eigenvalue for= 0 :
p1(R) = 1xe 3% (left), and forv = 1: py(R) = 18e ¥15(X) (right).

s=t =4, and we have cut the 3D plots at values belov15. Higher order terms in the expansion
eq. (3:5) will keep the individual eigenvalue distributimrbe zero for larger values saindt. From
our experience with the cage= 0 [A] we expect that this expansion converges fast. The wext t
leading order used in the figures gives already a reasonably gpproximation.
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Figure3: Same asfig. 1. fov = 1. The exact zero eigenvalues push the density away fronritjie.o
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5. Conclusions and outlook

We have shown how to derive individual eigenvalues distidins py| for two sets of real Dirac
operators with different imaginary chemical potentigls. Similar expressions have been derived
for a single Dirac operator with complex eigenvalues at reahd compared to Lattice dafa]11].
Both types ofu couple toF; and thus allow to fully determine all LECs in the leading ar@®T
Lagrangian. But only imaginamny with real Dirac eigenvalues allow to date to perform ungqineaic
or partially quenched simulations. The equivalence pPT to the chR2MT we mentioned here
for the density and partition function has been derived vecgntly for all correlatorg12].

We have given an effective expansion for the distributippsby truncating the sum over
integrated densities, as was illustrated in our examplas.pbssibility to derive exact expressions
(which is possible for real) is currently under investigatiorf [10]. Our hope is that tesults
presented here will become as useful as previouslyferO.
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