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Abstract. Homogenization of a spectral problem in a bounded domain with
a high contrast in both stiffness and density is considered. For a special critical
scaling, two-scale asymptotic expansions for eigenvalues and eigenfunctions are

constructed. Two-scale limit equations are derived and relate to certain non-
standard self-adjoint operators. In particular they explicitly display the first
two terms in the asymptotic expansion for the eigenvalues, with a surprising

bound for the error of order ε5/4 proved.
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1. Introduction

Homogenization for problems with physical properties which are not only highly
oscillatory but also highly heterogeneous has long been documented to display un-
usual effects, for example the memory effects observed by E. Ya. Khruslov [9, 13, 14].
Of particular interest in this context are the double-porosity models where the pa-
rameter of high-contrast δ is critically scaled again the periodicity size ε, δ ∼ ε2,
e.g. [2, 4]. Those have been treated both by a high-contrast version of the classi-
cal method of asymptotic expansions, e.g. [16, 17, 7, 12] and using the techniques
of two-scale convergence, e.g. [19, 20, 5]. In particular, for spectral problems in
bounded [19] and unbounded [20] periodic domains V.V. Zhikov studied the spec-
tral convergence, introduced two-scale limit operator, developed the techniques of
two-scale resolvent convergence and two-scale compactness. In [12] the spectral
convergence of eigenvalues in the gaps of Floquet-Bloch spectrum due to defects in
double-porosity type media were studied, and [5] supplemented this by the analysis
of eigenfunction convergence based on an analysis of a uniform exponential decay.

In this work we study spectral problems of double-porosity type in a bounded
domain Ω where the high contrast might occur not only in the “stiffness” coefficient
but also in the “density”, and argue that this leads to some interesting new effects.
Namely, referring to the next section for precise technical formulations, for the
spectral problem

(1) − div (aε (x)∇uε) = λερε (x)uε,

with Dirichlet boundary conditions on the exterior boundary, most generally, both
aε and ρε are ε-periodic, aε = ρε = 1 in the connected matrix and aε ∼ εα, ρε ∼
εβ in the disconnected inclusions. (Outside homogenization, the above resembles
problems of vibrations with high contrasts in both density and stiffness, e.g. [3].)
The double-porosity corresponds to α = 2 and β = 0. For β 6= 0, it is not hard to
see that it is α = β + 2 when the spectral problems at the macro and micro-scales
are coupled in a non-trivial way. To explore this, we choose β = −1 and α = 1
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Figure 1. The geometry and the periodicity cell

and show that this leads to some unusually coupled two-scale limit behaviors of the
eigenfunctions and the eigenvalues.

Namely, although the limit behavior of the eigenfunctions is still somewhat sim-
ilar to that of double porosity, i.e. the two-scale limit is a function of only slow
variable x in the matrix and a function of both x and the fast variable y in the
inclusions, the limit equations themselves are quite different. We show that there
exist asymptotic series of eigenvalues λε ∼ λ0 + ελ1 with λ0 being any eigenvalue of
a non-standard self-adjoint “microscopic” inclusion problem, Theorem 3.1, whose
eigenfunctions are directly related to the two-scale limit w0(x, y) in the matrix. In
fact, λ0 is either a solution of β(λ0) = |Q1|λ0, where β(λ) is a function introduced
by Zhikov [19], or is an eigenvalue of the Dirichlet Laplacian in the inclusion Q0 with
a zero mean eigenfunction. In the matrix, uε ∼ v0(x), where v0 is an eigenfunction
of the homogenized operator in Ω, whose eigenvalue ν determines the second term
λ1 in the asymptotics of λε, see (57). This is first derived via formal asymptotic
expansions, but then we prove a non-standard error bound:

|λε − λ0 − ελ1| ≤ Cε5/4,

see Theorems 4.6 & 4.7. The proof employs a combination of a high contrast
boundary layer analysis with maximum principle and estimates in Hilbert spaces
with ε-dependent weights. We finally briefly discuss further refinement of the results
via the technique of two-scale convergence. Namely, some version of the compact-
ness result holds, cf. [19], indicating at the presence of gaps in the spectrum for
small enough ε, see Theorem 5.1.

The paper is organized as follows. The next section formulates the problem and
introduces necessary notation, Section 3 executes formal asymptotic expansion and
derives associated homogenized equations. Section 4 proves the error bounds and
Section 5 discusses the two-scale convergence approach. Some technical details are
assembled in the appendices.

2. Problem statement and notations

We consider a model of eigenvibrations for a body occupying a bounded domain
Ω in R

n (n = 2, 3, . . . ) containing a periodic array of small inclusions, see Figure 1.
The size of inclusions is controlled by a small positive parameter ε, ε→ 0. First we
introduce necessary notation.

Let Q = [0, 1]n be a reference periodicity cell in R
n. Let Q̃0 be a periodic

set of “inclusions”, i.e. Q̃0 + m = Q̃0, ∀m ∈ Z
n, and Q0 = Q̃0 ∩ Q is a reference

inclusion lying inside Q with C2-smooth boundary Γ, see Figure 1. Let Q1 = Q\Q0,



HOMOGENIZATION WITH DOUBLY HIGH CONTRASTS 3

Q̃1 = R
n\Q̃0, Γ̃ = ∂Q̃0 = ∂Q̃1. Introducing y = x/ε we refer to y as to a fast

variable, as opposes to the slow variable x. In the x-variable the periodicity cell is
εQ = [0, ε)n. If y ∈ Qj then x = εy ∈ εQj , j = 0, 1. We denote Ωε

0 := Ω ∩ εQ̃0,

Ωε
1 := Ω ∩ εQ̃1 = Ω\Ωε

0, Γε := εΓ̃ ∩ Ω, see Figure 1. The trace on Γε of function
f : Ωε

j → R
n is denoted by f |j . Let ny be the outer unit normal to Q0 on its

boundary Γ and let nx denote the similar normal on Γε.
Let stiffness aε and density ρε be as follows

aε (x) =

{
1, x ∈ Ωε

1

ε, x ∈ Ωε
0

and ρε (x) =

{
1, x ∈ Ωε

1

ε−1, x ∈ Ωε
0

with a small positive ε.
We study the asymptotic behaviour of self-adjoint spectral problem

(2)

∫

Ω

aε (x)∇uε∇φdx− λε

∫

Ω

ρε (x)uεφdx = 0, ∀φ ∈ H1
0 (Ω)

as ε → 0. If Γ and ∂Ω are smooth enough then variational problem (2) can be
equivalently represented in a classical formulation

− div (aε (x)∇uε) = λερε (x)uε, x ∈ Ω,(3)

uε|∂Ω = 0,(4)

implying that at the interfaces the transmission conditions are satisfied

(5) uε

∣∣∣
1

= uε

∣∣∣
0
,

∂uε

∂nx

∣∣∣
1

= ε
∂uε

∂nx

∣∣∣
0
.

3. Formal asymptotic expansions

We seek formal asymptotic expansions for the eigenvalues λε and eigenfunctions
uε in the form

λε ∼ λ0 + ελ1 + ε2λ2 + . . . ,(6)

uε(x) ∼





v0

(
x,
x

ε

)
+ εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)
+ . . . , x ∈ Ωε

1,

w0

(
x,
x

ε

)
+ εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)
+ . . . , x ∈ Ωε

0.
(7)

Here all the functions vj(x, y), wj(x, y), j ≥ 0, are required to be periodic in the
“fast” variable y; v0 and w0 are not simultaneously identically zero

(8) v2
0 + w2

0 6≡ 0.

In a standard way, the ansatz (6), (7) is then formally substituted into (3)–(5).
In particular, from (3), for (x, y) ∈ Ω ×Q1, we obtain

− ∆yv0 = 0,(9)

−∆yv1 = 2
∂2v0
∂xj∂yj

,(10)

−∆yv2 = 2
∂2v1
∂xj∂yj

+ ∆xv0 + λ0v0,(11)

(with ∆y and ∆x denoting the Laplace operators in y and x, respectively, and
summation henceforth implied with respect to repeated indices), and for (x, y) ∈
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Ω ×Q0 we have

− ∆yw0 = λ0w0,(12)

−∆yw1 = 2
∂2w0

∂xj∂yj
+ λ1w0 + λ0w1,(13)

−∆yw2 = 2
∂2w1

∂xj∂yj
+ ∆xw0 + λ2w0 + λ1w1 + λ0w2.(14)

Further, the first of conditions (5) transforms to

(15) vj(x, y)
∣∣∣
y∈Γ

= wj(x, y)
∣∣∣
y∈Γ

, x ∈ Ω, j = 0, 1 . . . .

Similarly, the other transmission condition (5) yield

∂v0
∂ny

∣∣∣
y∈Γ

= 0,(16)

∂v1
∂ny

∣∣∣
y∈Γ

= −
∂v0
∂nx

∣∣∣
y∈Γ

+
∂w0

∂ny

∣∣∣
y∈Γ

,(17)

∂v2
∂ny

∣∣∣
y∈Γ

= −
∂v1
∂nx

∣∣∣
y∈Γ

+
∂w1

∂ny

∣∣∣
y∈Γ

+
∂w0

∂nx

∣∣∣
y∈Γ

.(18)

The above has employed the identity

(19)
∂u

∂nx

(
x,
x

ε

)
= ε−1 ∂u

∂ny
(x, y) +

∂u

∂nx
(x, y), y =

x

ε
,

where ∂
∂ny

:= ny · ∇y, ∂
∂nx

:= ny · ∇x, with ∇y and ∇x standing for gradients in y

and x, respectively.
Finally, (4) suggests

(20) v0

∣∣∣
x∈∂Ω

= w0

∣∣∣
x∈∂Ω

= 0.

(The boundary layer problem does not generally permit satisfying (4) by vj and wj

for j ≥ 1, as also clarified later.)
Combining (9) and (16), together with the periodicity conditions in y, implies

that v0 is a constant with respect to y, i.e.

v0(x, y) ≡ v0(x).

Then, (10) and (17) form the following boundary value problem for v1

− ∆yv1(x, y) = 0 in Ω ×Q1,
∂v1
∂ny

∣∣∣
y∈Γ

= −
∂v0

∂nx

∣∣∣
y∈Γ

+
∂w0

∂ny

∣∣∣
y∈Γ

.(21)

The latter is solvable if and only if

(22)

∫

Γ

∂w0

∂ny
dy = 0.

Considering next (12) and (15) gives

(23) − ∆yw0 = λ0w0 in Ω ×Q0, w0(x, y)
∣∣∣
y∈Γ

= v0(x).

Since ∫

Γ

∂w0

∂ny
dy =

∫

Q0

∆yw0 dy = −λ0

∫

Q0

w0 dy,
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condition (22) is equivalent to

(24) λ0〈w0〉 = 0,

where

〈u〉 :=

∫

Q0

u(y) dy.

We notice that (23)–(24) together with (8) constitutes restrictions on possible
values of λ0. Those are described by Theorem 3.1 below. Before, let us consider an
auxiliary Dirichlet problem

(25) − ∆yφ = λDφ in Q0, φ
∣∣∣
Γ

= 0.

Let {λD
j }∞j=1 be eigenvalues for (25), labelled in the ascending order counting for the

multiplicities, and let {φj}∞j=1 be the corresponding eigenfunctions, orthonormal in
L2(Q0), i.e. ∫

Q0

φjφk dy = δjk,

where δjk is Kronecker’s delta. Denote by σD the spectrum of (25): σD =
⋃∞

j=1 λ
D
j .

We additionally introduce the following auxiliary problem:

(26) − ∆yη = λ0η in Q0, η(y)
∣∣∣
y∈Γ

= 1.

Notice that (26) is solvable if and only if λ0 6∈ σD or λ0 = λD
j with all the associated

eigenfunctions φj having zero mean, 〈φj〉 = 01. In the former case η is determined
uniquely and (23) implies w0(x, y) = v0(x)η(y). In the latter case η is determined
up to an arbitrary eigenfunction φj associated with λD

j , however 〈η〉 is determined
uniquely.

By direct inspection, (23), (24) has a non-trivial solution (v0, w0), i.e. with (8)
holding, if and only if λ0 is an eigenvalue of following problem:

(27) − ∆yζ = λ0ζ in Q0, ζ(y)
∣∣∣
y∈Γ

= constant, λ0〈ζ〉 = 0.

Theorem 3.1. The problem (27) is equivalent to an eigenvalue problem for a self-
adjoint operator in L2(Q0) with a compact resolvent. Therefore the spectrum of
(27) is a countable set of real non-negative eigenvalues (of finite multiplicity) with
the only accumulation point at +∞, with the eigenfunctions complete in L2(Q0)
and those corresponding to different λ0 mutually orthogonal.

The spectrum consists of all the eigenvalues λD of problem (25) with a zero mean
eigenfunction and all the solutions of the equation

(28) B(λ0) := λ0〈η〉 = λ0


|Q0| + λ0

∞∑

j=1

〈φj〉
2

λD
j − λ0


 = 0

(which are hence all real non-negative). In (28) the summation is with respect to
only those λD

j for which there exists an eigenfunction with a non-zero mean.
The associated eigenfunctions ζ are either proportional to η as in (26) or are

eigenfunctions of (25) with zero mean.

1We remark that the case of eigenvalues with zero mean is known to be not a “generic” case,
i.e. unstable via a small perturbation of the shape of Q0, see e.g. discussion in [10] and further
references therein.
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Proof. We claim that (27) corresponds to a self-adjoint operator associated with
the (symmetric, closed, densely defined, bounded from below) Dirichlet form

(29) α(ζ, h) :=

∫

Q0

∇ζ · ∇h dy

with domain

(30) D(α) := {h ∈ H1(Q0) : h
∣∣∣
y∈Γ

= constant}.

To see this, in the weak formulation of the eigenvalue problem associated with
(29)–(30)

(31)

∫

Q0

∇ζ · ∇h dy = λ0

∫

Q0

ζ h dy, ∀h ∈ D(α),

we first set h to be an arbitrary function from C∞
0 (Q0) which implies −∆yζ = λ0ζ in

Q0, and then set h ≡ 1 yielding λ0〈ζ〉 = 0. Further, since the resolvent is obviously
compact, each eigenvalue has a finite multiplicity, the set of all eigenfunctions ζ is
complete in L2(Q0) and those corresponding to different λ0 are mutually orthogonal.

Obviously, the spectrum of (27) includes those and only those eigenvalues of
(25) which have an eigenfunction φj with zero mean. In this case corresponding
eigenfunctions of (27) are given by ζj = Cφj , C 6= 0. If λD

j does not have a zero-

mean eigenfunction, then the solvability of (27) requires ζ
∣∣∣
y∈Γ

= 0 implying ζ ≡ 0.

Considering other possibilities, fix λ0 outside σD and let η be the unique solution
of (26). Then λ0 is an eigenvalue of (27) if and only if

(32) λ0〈η〉 = 0,

with corresponding eigenfunction given by ζ(y) = Cη(y), C 6= 0.
Via the spectral decomposition, the solution to (26) is found to be, cf. [19]:

(33) η(y) = 1 + λ0

∞∑

j=1

〈φj〉

λD
j − λ0

φj(y).

Substituting (33) further into (32) yields (28). �

The formula (28) can be transformed to read

(34) B(λ0) = β(λ0) − |Q1|λ0 = 0,

where function β(λ) has been introduced by Zhikov [19]:

(35) β(λ) = λ+ λ2
∞∑

j=1

〈φj〉2

λD
j − λ

,

see Figure 2. This implies that λ0 is either a solution to the nonlinear equation

(36) β(λ) = |Q1|λ,

as visualized on Figure 2, or is an eigenvalue of (25) with a zero mean eigenfunction.

Remark 1. If Q0 is a ball of radius 0 < a < 1/2, i.e Q0 = Ba = {y : |y| < a}+y0,
then we have an explicit representation for β(λ). Indeed, for λ0 6∈ σD the solution
of (26) is radially symmetric and (placing the origin in the ball’s centre) reads

η(y) = |y|
2−n

2 Jn−2

2

(λ
1/2
0 |y|)

(
|a|

2−n
2 Jn−2

2

(λ
1/2
0 a)

)−1

,
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Figure 2. The limit eigenvalues λ0 = µj

where Jn−2

2

(|y|) is Bessel function. Further, we have

B(λ0) = λ0〈η〉 = −

∫

∂Ba

∂η

∂ny
dy =

= −
1

a
|Γ|
(
1 − n/2 + aλ

1/2
0 J ′

n−2

2

(λ
1/2
0 a)/Jn−2

2

(λ
1/2
0 a)

)
.

Using (35), (33) we obtain

β(λ) = λ(1 − |Ba|) −
1

a
|Γ|
(
1 − n/2 + aλ1/2J ′

n−2

2

(λ1/2a)/Jn−2

2

(λ1/2a)
)
.

In particular, for n = 3 we have,

B(λ0) = λ0〈η〉 = 4πa
(
1 − aλ

1/2
0 cotan (λ

1/2
0 a)

)
,

β(λ) = λ(1 − 4πa3/3) + 4πa
(
1 − aλ1/2 cotan (λ1/2a)

)
.

We next explore in detail the further steps in the method of asymptotic expan-
sions, to determine v0, etc. Let us consider a K-dimensional eigenspace (K ≥ 1) for
a given eigenvalue λ0 of (27), and let ζ1, . . . , ζK be associated linearly independent
eigenfunctions. Then, (23) and (24) imply

(37) w0(x, y) =

K∑

k=1

ck(x)ζk(y).

Following Theorem 3.1 we distinguish two cases:

(a) λ0 6∈ σD. In this case (26) and (23) suggest

(38) w0(x, y) = v0(x)η(y),

and (8) implies v0 6≡ 0.
(b) λ0 ∈ σD. The latter means λ0 = λD

j for some j. This includes two further
possibilities:
(i) The eigenspace of (25) has an eigenfunction φ∗j with a non-zero mean.

Since the solvability conditions for (23) include

(39) v0(x)〈φ∗j 〉 = 0,

necessarily v0 ≡ 0. Moreover, with KD denoting the multiplicity of λD
j

as of the eigenvalue of the Dirichlet problem (25), necessarily KD ≥ 2:
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if KD = 1 then w0 = C(x)φ∗j and thus (24) implies C(x) ≡ 0 and w0 ≡
0 contradicting to (8). Hence w0 is given by (37) with K = KD − 1,
with ζk, k = 1, ...,K being linearly independent eigenfunctions of (25)
with zero mean (such K eigenfunctions exist).

(ii) All of the eigenfunctions corresponding λD
j have a zero mean. In this

case w0 is again given by (37), with K = KD if 〈η〉 6= 0 i.e. B(λ0) 6= 0
and K = KD + 1 if B(λ0) = 0 with ζKD+1 = η where η(y) is any
solution of (26).

3.1. Case (a): λ0 6∈ σD. In this case λ0 are solutions of (36). There is a countable
set of λ0 = µj , j = 1, 2, . . . as Figure 2 illustrates. Note that this includes λ0 = 0.
Function β blows up at the points λD

j , which are eigenvalues of (25) having an
eigenvalue with a non-zero mean, monotonically increasing between such points.
It also directly follows from (35) that β(λ) > |Q1|λ for λ ∈ (0, λD

1 ), implying
λD

1 < µ2 < λD
2 . Let λ0 satisfying (36) be fixed.

We consider problem (21) taking into account (38), i.e.

(40) − ∆yv1(x, y) = 0 in Ω ×Q1,
∂v1
∂ny

∣∣∣
y∈Γ

= −
∂v0

∂nx

∣∣∣
y∈Γ

+ v0(x)
∂η

∂ny

∣∣∣
y∈Γ

,

where η(y) solves (26) and is given by (33). Hence v1 is a solution to a problem
depending linearly on v0 and ∇xv

0, implying

(41) v1(x, y) = v0(x)N (y) +
∂v0

∂xj
Nj(y) + v∗1(x),

with an arbitrary function v∗1(x). The choice of v∗1 does not affect the subsequent
constructions, so we set for simplicity v∗1 ≡ 0. In (41) functions Nj and N are
solutions to the problems

(42) ∆yNj(y) = 0 in Q1,
∂Nj

∂ny

∣∣∣
y∈Γ

= −nj(y),

and

(43) ∆yN (y) = 0 in Q1,
∂N

∂ny

∣∣∣
y∈Γ

=
∂η

∂ny

∣∣∣
y∈Γ

.

Solvability of (43) requires ∫

Γ

∂η

∂ny
dy = 0,

which is equivalent to (32) and is hence already assured. Since the solutions of (42)
and (43) are unique up to an arbitrary constant, we fix those by choosing

∫

Q1

Nj(y) dy =

∫

Q1

N (y) dy = 0.

We next consider the problem for w1, which from (13) and (15) combined with
(38) reads

−∆yw1 − λ0w1 = λ1v
0η + 2

∂v0

∂xj

∂η

∂yj
in Ω ×Q0,(44)

w1

∣∣∣
y∈Γ

= v0N (y)
∣∣∣
y∈Γ

+
∂v0

∂xj
Nj(y)

∣∣∣
y∈Γ

.(45)
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Since the problem depends linearly on v0, λ1v
0 and ∂v0

∂xj
, the solution admits repre-

sentation

(46) w1(x, y) =
∂v0

∂xj
(x)Mj(y) + v0(x)P(y) + λ1v

0(x)R(y),

where functions Mj , P and R are solutions to the problems

(47) − ∆yMj − λ0Mj = 2
∂η

∂yj
(y) in Q0, Mj

∣∣∣
Γ

= Nj

∣∣∣
Γ
,

(48) − ∆yP − λ0P = 0 in Q0, P
∣∣∣
Γ

= N
∣∣∣
Γ
,

and

(49) − ∆yR− λ0R = η(y) in Q0, R
∣∣∣
Γ

= 0.

Since by the assumption λ0 6∈ σD, all the problems (47) – (49) are uniquely solvable.
The problem for v2 is in turn given by (11) and (18), whose solvability condition

hence reads

(50)

∫

Q1

(
∆xv0 + λ0v0 + 2

∂2v1
∂xj∂yj

)
dy =

∫

Γ

(
−
∂v1
∂nx

+
∂w1

∂ny
+
∂w0

∂nx

)
dy,

with functions v1, w1 and w0 given by (41), (46) and (38) respectively.
Appendix A provides a detailed calculation showing that the above yields the

following equations for v0:

− divAhom∇xv
0 = ν(λ1)v

0 in Ω,(51)

v0
∣∣∣
∂Ω

= 0.(52)

Here Ahom =
(
Ahom

jk

)n

j,k=1
is the classical homogenized matrix for periodic perfo-

rated domains, see e.g. [11]

(53) Ahom
jk = |Q1|δjk +

∫

Q1

∂Nk

∂yj
dy;

(54) ν(λ1) = Cλ1 + λ0

(
|Q1| +

∫

Q0

P dy
)
,

where

(55) C :=

∫

Q0

η2dy > 0.

Note that the problem (51)–(52) involves ν = ν(λ1) as a spectral parameter.
The spectrum of (51)–(52) consists of a countable set of eigenvalues

(56) 0 < ν1 < ν2 ≤ · · · ≤ νn ≤ · · · → +∞.

Corresponding eigenfunctions vn form an orthonormal basis in L2(Ω),
∫

Ω

v0
nv

0
m dx = δnm.

Fixing an eigenvalue ν of (51), (52) with corresponding eigenfunction v0 of unit
norm in L2(Ω), according to (54) we find

(57) λ1 = C−1

(
ν − λ0

(
|Q1| +

∫

Q0

P dy
))

.
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The following diagram summarizes the algorithm for constructing the first terms
of the asymptotic expansions (for the case λ0 6∈ σD)

Nj
(53)
→ Ahom (51)

→ ν, v0

λ0
(26)
→ η

(43)
→ N

}
(57)
→ λ1
(41)
→ v1
(47)−(49)

→ M,P,R
(38)
→ w0





(46)
→ w1

(11),(18)
→ v2.

We can additionally construct w2 from (14) and (15), whose unique solution exists
for any choice of λ2. For purposes of the justification of the first two terms in the
asymptotics (the next section) it is sufficient to set λ2 = 0 and fix the corresponding
solution w2.

This completes constructing a formal asymptotic approximation, which we now
summarize. We introduce an approximate eigenvalue

(58) Λε = λ0 + ελ1,

and corresponding approximate eigenfunction

(59) Wε(x) =





v0(x) + εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)
, x ∈ Ωε

1,

w0

(
x,
x

ε

)
+ εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)
, x ∈ Ωε

0.

The essence of the above formal asymptotic construction is that the action of
differential operator Aε on Wε defined by

(60) AεWε := div (aε∇Wε) + ΛερεWε

produces a small right-hand side in both Ωε
1 and Ωε

0, and on the interface Γε in the
following sense.

Lemma 3.2. (i) max
Ω̄ε

1

| div (aε∇Wε) + ΛερεWε| ≤ Cε.

(ii) max
Ω̄ε

0

| div (aε∇Wε) + ΛερεWε| ≤ Cε2.

(iii) max
Γε

∣∣∣∣aε
∂Wε

∂n

∣∣∣∣
0

− aε
∂Wε

∂n

∣∣∣∣
1

∣∣∣∣ ≤ Cε2.

Proof. (i) Since the function Wε is two-scale by the construction, in Ωε
1

div (aε∇Wε) + ΛερεWε =

=

(
ε
−2∆y + ε

−12
∂2

∂xj∂yj
+ ∆x + λ0 + ελ1

)
(v0(x) + εv1(x, y) + ε

2
v2(x, y))|y= x

ε
=

=

{
ε
−1∆yv1(x, y) + ε

0

(
∆yv2 + 2

∂2v1

∂xj∂yj
+ ∆xv

0 + λ0v
0

)
+

+ ε
1

(
2

∂2v2

∂xj∂yj
+ ∆xv1 + λ1v

0 + λ0v1

)
+ ε

2(∆xv2 + λ1v1 + λ0v2) + ε
3
λ1v2

}∣∣∣∣
y= x

ε

.

(61)

Since v1 is a solution to (40), the coefficient of ε−1 vanishes. The same is with
the coefficient of ε0 since v2 satisfies (11). Functions v0, v1 and v2 are solutions of
elliptic problems with smooth enough coefficients to guarantee belonging solutions
to C2. Thus, maxima for coefficients of ε1, ε2 and ε3 in (61) exist.
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(ii) Similarly, in Ωε
0

div (aε∇Wε) + ΛερεWε =

=

(
ε
−1∆y + 2

∂2

∂xj∂yj
+ ε∆x + ε

−1
λ0 + λ1

)
(w0(x, y) + εw1(x, y) + ε

2
w2(x, y))|y= x

ε
=

=

{
ε
−1(∆yw0 + λ0w0) + ε

0

(
∆yw1 + 2

∂2w0

∂xj∂yj
+ λ0w1 + λ1w0

)
+

+ ε
1

(
∆yw2 + 2

∂2w1

∂xj∂yj
+ ∆xw0 + λ0w2 + λ1w1

)
+

+ ε
2

(
2

∂2w2

∂xj∂yj
+ ∆xw1 + λ1w2

)
+ ε

3∆xw2

}∣∣∣∣
y= x

ε

.

Since w0(x, y) = v0(x)η(y) is chosen according to (26), the coefficient of ε−1 van-
ishes. The coefficient of ε0 vanishes due to (44). Further, w2 satisfies (14) with
λ2 = 0 and thus the coefficient of ε1 is zero as well. Since w1 and w2 are solutions
of elliptic problems with smooth enough coefficients, the maxima of the coefficients
of ε2 and ε3 exist.

(iii) Using (19), we obtain

aε
∂Wε

∂n

∣∣∣∣
0

− aε
∂Wε

∂n

∣∣∣∣
1

=

(
∂

∂ny
+ ε

∂

∂nx

)
(w0(x, y) + εw1(x, y) + ε

2
w2(x, y))

∣∣∣
x∈Γε

y∈Γ

−

−

(
ε
−1 ∂

∂ny
+

∂

∂nx

)
(v0(x) + εv1(x, y) + ε

2
v2(x, y))

∣∣∣
x∈Γε

y∈Γ

=

= ε
0

(
∂w0

∂ny
−

∂v1

∂ny
−

∂v0

∂nx

) ∣∣∣
x∈Γε

y∈Γ

+ ε
1

(
∂w1

∂ny
+

∂w0

∂nx
−

∂v2

∂ny
−

∂v1

∂nx

) ∣∣∣
x∈Γε

y∈Γ

+

+ ε
2

(
∂w2

∂ny
+

∂w1

∂nx
−

∂v2

∂nx

) ∣∣∣
x∈Γε

y∈Γ

+ ε
3 ∂w2

∂nx

∣∣∣
x∈Γε

y∈Γ

.(62)

The coefficients of ε0 and ε1 vanish because of (21) and (18) respectively. The rest
of the coefficients are smooth enough to guarantee that their maxima for x ∈ Γε

and y ∈ Γ exist. �

3.2. Case (b): λ0 = λD
j . For simplicity, we consider here only the case of eigen-

values of multiplicity K = 1 with zero mean eigenfunction (φ = φj), assuming
additionally λ0 is not a solution of (34). All other degenerate cases, see page 7,
could be considered similarly.

In this case we can introduce a refined approximation for the eigenfunction

(63) W ∗
ε (x) =





εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)
, x ∈ Ωε

1,

w0

(
x,
x

ε

)
+ εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)
, x ∈ Ωε

0.

where

(64) w0(x, y) = c(x)φ(y).

Lemma 3.3. Let c ∈ C3(Ω), then there exist smooth functions v1, w1, v2, w2 and a
constant λ1 such that Λε = λD

j + ελ1 and W ∗
ε defined by (63) satisfy

(i) W ∗
ε (x) ∈ C(Ω),

(ii) max
Ω̄ε

1

| div (aε∇W
∗
ε ) + ΛερεW

∗
ε | ≤ Cε,

(iii) max
Ω̄ε

0

| div (aε∇W
∗
ε ) + ΛερεW

∗
ε | ≤ Cε2,
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(iv) max
Γε

∣∣∣∣aε
∂W ∗

ε

∂n

∣∣∣∣
0

− aε
∂W ∗

ε

∂n

∣∣∣∣
1

∣∣∣∣ ≤ Cε2.

Proof. See Appendix B. �

4. Justification of asymptotics

4.1. Operator formulation. We use a standard notation for Lebesgue and Sobolev
spaces: L2

p(Ω) is a p-weighted L2-space of square-integrable functions in Ω. Notation
(·, ·)H is used for a scalar product in a Hilbert space H.

Let Lε = L2
ρε

(Ω) and Hε be H1
0 (Ω) Sobolev space with a scalar product

(u, v)Hε =

∫

Ω

aε(x)∇u · ∇v dx+

∫

Ω

ρε(x)uv dx.

Following a standard procedure, see e.g. [11], we introduce a bounded operator
Bε : Lε → Lε such that

(65) (Bεf, v)Hε = (f, v)Lε , ∀v ∈ Hε.

In other words Bεf = uε, where uε is the solution of the problem

− div (aε∇uε) + ρεuε = ρεf, x ∈ Ω,(66)

uε|∂Ω = 0,(67)

(68) uε

∣∣∣
1

= uε

∣∣∣
0
,

∂uε

∂nx

∣∣∣
1

= ε
∂uε

∂nx

∣∣∣
0
.

Note that operator Bε is positive, self-adjoint and compact for any fixed ε > 0 (since
its image is in Hε). Eigenvalue problem (2) is equivalent to

(69) Bεuε = (λε + 1)−1uε in Lε.

Hence the spectrum of the problem consists of a countable set of eigenvalues

0 < λε
1 < λε

2 ≤ · · · ≤ λε
k ≤ · · · → +∞,

with the only accumulation point at +∞. Moreover, the set of corresponding eigen-
functions is complete in Lε.

4.2. Case (a). In this Section we justify the leading terms of asymptotic expansions
constructed above in case λ0 6∈ σD and thus v0 6≡ 0, see Section 3.1. Let λ0 be a
solution to equation (36). All the functions (η, Nj , N , M, P, R, w0, w1, v1 and w2,
v2) are as defined in Section 3.1. We also fix λ1 according to (57). The approximate
eigenvalue Λε and eigenfunction Wε are given by (58) and (59) respectively.

Notice that although Wε ∈ H1(Ω) since Wε

∣∣∣
1

= Wε

∣∣∣
0
, it does not satisfy the

zero Dirichlet boundary conditions on ∂Ω. To fix this we introduce the following
boundary-layer corrector to our approximation.

Lemma 4.1. There exists a corrector Vε solving the problem

−div(aε∇Vε) + ρεVε = 0 in Ω,(70)

Vε|∂Ω = −Wε|∂Ω, Vε

∣∣∣
1

= Vε

∣∣∣
0
,

∂Vε

∂n

∣∣∣
1

= ε
∂Vε

∂n

∣∣∣
0
,(71)

such that Uε = Wε + Vε ∈ H1
0 (Ω) and max

Ω̄
|Vε| ≤ Cε.
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Proof. Clearly such solution of (70), (71) does exist. On each of the subsets Ωε
1 and

Ωε
0 the coefficients of (70) are smooth. Then the function Vε can reach its positive

maximum or negative minimum only at the boundaries Γε or ∂Ω. Let us prove
that this cannot be Γε. Suppose to the contrary the existence of x∗ ∈ Γε such that
max

Ω̄
|Vε| = |Vε(x∗)|. The strong maximum principle yields that there is no more

point inside Ωε
1 or Ωε

0 where the maximum is reached. Without loss of generality
we assume Vε(x∗) > Vε(x) for any x ∈ Ω\Γε and Vε(x∗) ≥ 0 (otherwise the point
would be a positive maximum for −Vε and we would then consider −Vε). Then by
the virtue of Hopf’s Lemma [8, p.330] applied in the relevant component of Ωε

0 we
have

∂Vε

∂n

∣∣∣∣
0

(x∗) > 0.

From transmission conditions (71) we have that the normal derivative on the Ωε
1

side of domain is also positive. Therefore the value of Vε increases from the point
x∗ inside Ωε

1 in the n-direction and hence x∗ is not a point of maximum of Vε in
Ωε

1. The contradiction proves that |Vε| reaches it’s maximum at ∂Ω. Then, from
boundary conditions (71),

max
Ω̄

|Vε| = max
∂Ω

|Vε| = max
∂Ω

|Wε| ≤ εmax
∂Ω

∣∣∣v1
(
x,
x

ε

)
+ εv2

(
x,
x

ε

)∣∣∣+

εmax
∂Ω

∣∣∣w1

(
x,
x

ε

)
+ εw2

(
x,
x

ε

)∣∣∣ ≤ Cε.

Obviously Uε = Wε+Vε satisfies zero boundary condition on ∂Ω and thus belongs
to H1

0 (Ω). �

Lemma 4.2. The constructed corrector Vε satisfies the estimate ‖Vε‖Lε ≤ Cε3/4.

Proof. Let χ ∈ C∞(R) and χ(t) = 0, t < 1 and χ(t) = 1, t > 2. Let us define a
family of cut-off functions:

χε(x) = χ
(
ε−1/2 dist (x, ∂Ω)

)
, x ∈ Ω.

Then χε : Ω → R satisfies the properties

• χε(x) = 0 if dist (x, ∂Ω) ≤ ε1/2,
• χε(x) = 1 if dist (x, ∂Ω) ≥ 2ε1/2,
• |∇χε| ≤ Cε−1/2 and |supp∇χε| ≤ Cε1/2,

where “supp” denotes a function support, and |supp ·| is the measure of the corre-
sponding support. Multiplying (70) by χ2

εVε and integrating by parts, we obtain

(72)

∫

Ω

aε∇Vε · ∇(χ2
εVε) dx+

∫

Ω

ρεχ
2
εV

2
ε dx = 0.

Then using the identity

∇Vε · ∇(χ2
εVε) = |∇(χεVε)|

2 − V 2
ε |∇χε|

2,

we get from (72)

(73)

∫

Ω

aε|∇(χεVε)|
2 dx+

∫

Ω

ρεχ
2
εV

2
ε dx =

∫

Ω

aεV
2
ε |∇χε|

2 dx,

implying

(74)

∫

Ω

ρεχ
2
εV

2
ε dx ≤

∫

Ω

aεV
2
ε |∇χε|

2 dx.
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Lemma 4.1 provides the estimate V 2
ε ≤ Cε2. Moreover, |supp∇χε| ≤ Cε1/2 and

|∇χε|
2 ≤ Cε−1. Therefore estimate (74) yields

(75) ‖χεVε‖
2
Lε =

∫

Ω

ρεχ
2
εV

2
ε dx ≤ Cε3/2.

Similarly we estimate

(76) ‖(1 − χε)Vε‖
2
Lε =

∫

Ω

ρε(1 − χε)
2V 2

ε dx ≤ Cε3/2,

since |supp (1 − χε)| ≤ Cε1/2 and |ρε| ≤ Cε−1. Combining (75) and (76), we obtain
‖Vε‖Lε = ‖(1 − χε)Vε + χεVε‖Lε ≤ Cε3/4. �

Lemma 4.3. If ϕ ∈ H1
0 (Ω) then

(77)
(∫

Γε

|ϕ|2 dx
)1/2

≤ C‖ϕ‖Hε .

Proof. Extend function ϕ by zero to whole of R
n. Then (77) follows upon rescaling

y = x/ε from the standard trace estimates applied to each connected component of

Q̃0 (which are shifts of Q0). �

Lemma 4.4. The corrected approximation Uε satisfies the estimate

‖BεUε − (Λε + 1)−1Uε‖Lε ≤ ‖BεUε − (Λε + 1)−1Uε‖Hε ≤ Cε3/4.

Proof. For an arbitrary ϕ ∈ Hε consider

|(BεUε − (Λε + 1)−1
Uε, ϕ)Hε | = |Λε + 1|−1|(Uε − (Λε + 1)BεUε, ϕ)Hε | ≤

≤ C|(Uε, ϕ)Hε − (Λε + 1)(BεUε, ϕ)Hε | = C|(Uε, ϕ)Hε − (Λε + 1)(Uε, ϕ)Lε | =

= C

∣∣∣∣
∫

Ω

aε∇Uε∇ϕ dx − Λε

∫

Ω

ρεUεϕ dx

∣∣∣∣ ≤

≤ C

∣∣∣∣∣

∫

Ωε
0
∪Ωε

1

( div (aε∇Uε) + ΛερεUε) ϕ dx

∣∣∣∣∣+ C

∫

Γε

∣∣∣∣aε
∂Uε

∂n

∣∣∣∣
0

− aε
∂Uε

∂n

∣∣∣∣
1

∣∣∣∣ |ϕ| dx.(78)

Denote the right-hand side of (78) by Fε(Uε, ϕ). Substituting Uε = Wε + Vε and
taking into account (70) and (71),

Fε(Uε, ϕ) ≤ Fε(Wε, ϕ) + C

∣∣∣∣(Λε + 1)

∫

Ω

ρεVεϕdx

∣∣∣∣ ≤ Fε(Wε, ϕ) + C‖Vε‖Lε‖ϕ‖Lε .

By Lemma 4.2 and obvious inequality ‖ϕ‖Lε ≤ ‖ϕ‖Hε ,

(79) Fε(Uε, ϕ) ≤ Fε(Wε, ϕ) + Cε3/4‖ϕ‖Hε .

According to Lemma 3.2 (i) and (ii),

Fε(Wε, ϕ) ≤ Cε‖ϕ‖L2(Ω) + C

∫

Γε

∣∣∣∣aε
∂Wε

∂n

∣∣∣∣
0

− aε
∂Wε

∂n

∣∣∣∣
1

∣∣∣∣ |ϕ| dx.

Due to Lemmas 3.2 (iii) and 4.3 the latter yields

(80) Fε(Wε, ϕ) ≤ Cε‖ϕ‖Lε + Cε3/2
(∫

Γε

|ϕ|2 dx
)1/2

≤ Cε‖ϕ‖Hε .

Using (80), (79) in (78) yields

|(BεUε − (Λε + 1)−1Uε, ϕ)Hε | ≤ Cε3/4‖ϕ‖Hε

for all ϕ ∈ Hε. Hence, ‖BεUε − (Λε + 1)−1Uε‖Hε ≤ Cε3/4. �
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Lemma 4.5. ‖Uε‖Lε ≥ Cε−1/2.

Proof. By the triangle inequality we have

(81) ‖Uε‖Hε ≥ ‖Uε‖Lε ≥ ‖Wε‖Lε − ‖Vε‖Lε .

We consider

‖Wε‖
2
Lε = ε

−1

∫

Ωε
0

∣∣∣w0

(
x,

x

ε

)
+ εw1

(
x,

x

ε

)
+ ε

2
w2

(
x,

x

ε

)∣∣∣
2

dx+

+

∫

Ωε
0

∣∣∣v0(x) + εv1

(
x,

x

ε

)
+ ε

2
v2

(
x,

x

ε

)∣∣∣
2

dx =

= ε
−1

∫

Ωε
0

∣∣∣w0

(
x,

x

ε

)∣∣∣
2

dx + O(1) = ε
−1

∫

Ωε
0

∣∣∣v0(x)η
(x

ε

)∣∣∣
2

dx + O(1), ε → 0.(82)

Extending η : Q0 → R by zero onto entire periodicity cell Q, by the mean value
property we obtain

(83)

∫

Ωε
0

∣∣∣v0(x)η
(x
ε

)∣∣∣
2

dx → C∗ := 〈η2〉

∫

Ω

∣∣v0(x)
∣∣2 dx as ε→ 0,

where 〈η2〉 is the mean value of function η2 over Q, namely

〈η2〉 =

∫

Q

η2(y) dy =

∫

Q0

η2(y) dy > 0.

Since also v0(x) 6≡ 0, C∗ is positive. Therefore (83) and (82) yield

(84) ‖Wε‖Lε = C
1/2
∗ ε−1/2 + o(ε−1/2), ε→ 0.

Due to Lemma 4.2 and (84), it follows from (81) that ‖Uε‖Lε ≥ C
1/2
∗ ε−1/2+o(ε−1/2)

as ε→ 0. �

Theorem 4.6. Let λ0 be a solution to (36) such that λ0 6= λD
j and λ1 is defined

according to (57). Then
1. For sufficiently small ε > 0 there exists an eigenvalue λε of (2) such that

(85) |λε − λ0 − ελ1| ≤ C1ε
5/4,

with constant C1 independent of ε.

2. Let Wε be defined by (59) and W̃ε = ‖Wε‖
−1
LεWε. Then there exist constants

cj(ε) such that

(86)
∥∥∥W̃ε −

∑

j∈Jε

cj(ε)u
ε
j

∥∥∥
Lε
< C2ε

5/4,

where Jε = {j : |λε
j − λ0 − ελ1| < Cε5/4}, and λε

j , u
ε
j are eigenvalues and (Lε-

normalized) eigenfunctions of (2), and the constants C and C2 are independent of
ε.

Proof. Application of classical lemma on “approximate eigenvalues”, e.g. [18], with

Ũε = ‖Uε‖
−1
LεUε as a test function and Λε = λ0 + ελ1 as an approximate eigenvalue,

ensures, via Lemmas 4.4 & 4.5, the existence of an eigenvalue µε of operator Bε

such that

(87) |(Λε + 1)−1 − µε| ≤ Cε5/4,

and delivers the estimate analogous to (86) with uε
j being eigenfunctions of Bε and

W̃ε replaced by Ũε. It suffices to notice that the eigenfunctions of the problem (2)
and of operator Bε coincide, their eigenvalues are related via µ−1

ε = λε +1 and that
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Lε norm of the difference between Ũε and W̃ε can be estimated via the right hand
side of (86) (see Lemmas 4.2 and 4.5). �

Remark 2. Notice that (86) implies weaker but more transparent interpretations
on the approximate eigenfunctions. For example, introducing

(88) u(x, y) =

{
v0 (x) , y ∈ Q1,

w0 (x, y) , y ∈ Q0,

we claim that

(89)
∥∥∥u
(
x,
x

ε

)
−
∑

j∈Jε

dj(ε)u
ε
j

∥∥∥
L2(Ω)

≤ Cε3/4,

with appropriate dj(ε). Note that ‖u(·, ·

ε )‖L2(Ω) ≥ C0 > 0. Then (89) follows
from (86) by splitting its left hand side into the parts corresponding to Ωε

1 and
Ωε

0, removing the weight, retaining only the main-order terms and then adding the
inequalities up.

We also remark that, in principle, the result (86) on the convergence of eigenfunc-
tions could be further sharpened, e.g. using the technique of two-scale convergence,
cf. Section 5 below and [5].

4.3. Case (b). In this section we assume that λ0 = λD
j for some j, its multiplicity

is equal to 1 and the corresponding eigenfunction φ has zero mean, i.e. 〈φ〉 = 0, see
Section 3.2.

Theorem 4.7. Let c ∈ C3(Ω), c = 0 on ∂Ω, λ0 be not a solution to (36) and
λ1 be defined according to (B.17). Then there exist ε0 > 0 and constants C,C1

independent of ε (but dependent on c) such that for any 0 < ε ≤ ε0,
1. There exists an eigenvalue λε of (2) such that

(90) |λε − λ0 − ελ1| ≤ Cε5/4.

2. Let W ∗
ε be defined by (63) and W̃ ∗

ε = ‖W ∗
ε ‖

−1
LεW ∗

ε . Then there exist constants
cj(ε) such that

(91)
∥∥∥W̃ ∗

ε −
∑

j∈Jε

cj(ε)u
ε
j

∥∥∥
Lε
< C1ε

5/4,

where Jε = {j : |λε
j − λ0 − ελ1| < Cε5/4}, and λε

j , u
ε
j(x) are eigenvalues and (Lε-

normalized) eigenfunctions of (2).

Proof. Proof of this theorem literally follows the proof of Theorem 4.6 with reference
to Lemma 3.3. �

A direct analogue of Remark 2 also holds.

5. On the eigenfunction convergence

In this section we give a brief sketch of further refinement of the presented results
using the technique of two-scale convergence, [15, 1, 19].

First, the inclusions intersecting or touching the boundary are “excluded”, e.g.
by re-defining aε and ρε there as in the matrix phase (aε(x) = ρε(x) = 1). Denoting
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now via ε → 0 an appropriate subsequence in ε, without relabelling, let uε and λε

be eigenfunctions and eigenvalues of the original problem, with normalization

(92)

∫

Ωε
1

∇u2
ε + ε2

∫

Ωε
0

∇u2
ε = 1.

The boundedness of uε in L2(Ω) is then implied by (92) e.g. via the uniform
positivity of the double-porosity operator whose form is given by the left hand

side of (92), [19, Thm 8.1]. This implies that, up to a subsequence, uε
2
⇀ u(x, y)

and ε∇uε
2
⇀ ∇yu(x, y), where u ∈ L2(Ω,H1

per) and
2
⇀ denotes weak two-scale

convergence. Additionally, since (92) implies ε‖∇uε‖L2(Ωε
1
) → 0, [19, Thm 4.1]

assures that the two-scale limit is independent of y in the matrix, i.e. is exactly in
the form (88). Further, by [19, Thm 4.2], v0 ∈ H1

0 (Ω) and

(93) θε
1∇uε

2
⇀ θ1(y)(∇v

0(x) + p(x, y)),

where p ∈ L2(Ω, Vpot) with θε
1 and θ1(y) denoting the characteristic functions of Ωε

1

and Q1, respectively, and Vpot denoting the space of potential vector fields on Q1,
i.e. with respect to the Lebesgue measure supported on Q1, cf. [19, §3.2].

Let λε → λ0 and (λε − λ0)/ε→ λ1. Selecting then in (2) appropriate oscillating
test functions φ = φε one can pass to the limit recovering the weak forms of the
equations derived in Section 3. For example, selecting φε(x) = εψ(x)b(x/ε), ψ ∈
C∞

0 (Ω), b(y) ∈ C∞
per(Q) yields

∫

Ω

∫

Q1

(∇v0(x)+p(x, y)) ·∇yb(y)ψ(x)dydx+

∫

Ω

∫

Q0

∇yw0(x, y) ·∇yb(y)ψ(x)dydx =

(94) = λ0

∫

Ω

∫

Q0

w0(x, y)b(y)ψ(x)dydx.

This can be seen to be a weak form of (23) and (21). Selecting further φε(x) = ψ(x)
can be seen, after some careful technical analysis, to recover (51), (52) and (54).

The above implies that as long as (v0)2 +w2
0 6≡ 0, λ0, λ1, v

0 and w0 can only be
those constructed in Section 3. This does not however rule out the possibility that
v0 and w0 are both trivial (equivalently, the two-scale limit u(x, y) is identically
zero). Therefore additional two-scale compactness type arguments are required, cf.
[19, Lemma 8.2]. In fact, following literally the argument of Zhikov one observes

that the two-scale compactness of the eigenfunctions does hold, i.e. uε
2
→ u(x, y),

where
2
→ denotes strong two-scale convergence, in particular there is a convergence

of norms:

(95) ‖uε − u(x, x/ε)‖L2(Ω) → 0 as ε→ 0.

However, this in turn does not rule out the possibility of ‖uε‖ → 0 with the nor-
malization (92), which requires a separate analysis.

We announce here a partial result with this effect, postponing detailed discussions
for future.

Theorem 5.1. Let λ0 be not an eigenvalue of the Dirichlet problem in Q0, i.e.
λ0 6= λD

j , j ≥ 1, see (25). Then

(i) In the above setting, necessarily, β(λ0) ≥ |Q1|λ0, i.e. there are gaps de-
veloped for small enough ε in the spectrum, containing in the limit at least
{λ : β(λ) < |Q1|λ}.
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(ii) If β(λ0) = |Q1|λ0, necessarily u(x, y) 6≡ 0. Consequently, λ1 can only be
one of those described by (57). The eigenfunctions converge strongly, in
particular (95) holds. For fixed λ0 and λ1, for small enough ε the multiplic-
ity of the eigenvalues λε near Λε = λ0 + ελ1 coincides with the multiplicity
of ν as an eigenvalue of (51), (52).

We remark that the above statement does not provide a full analogue of Hausdorff
convergence of the spectra as in the double porosity case [19, Thm 8.1]. It does
ensure however the existence of the gaps (on Figure 2, (λD

j , µj+1), j ≥ 1) and of

the spectrum accumulation near the left ends µj , j ≥ 1, of the “bands” [µj , λ
D
j ].

However it does not clarify whether the “rests” of the bands, (µj , λ
D
j ] could be

accumulation points. We conjecture that they could. For a chosen λ0 = µj there

exist infinitely many λ1 = λ
(n)
1 according to (57), (56), and λ

(n)
1 → +∞ as n→ ∞.

On any band, for any small enough ε there exists a finite but infinitely increasing
number N(ε) of eigenvalues according to (85). The issue is hence, in a sense,

whether ελ
(n)
1 may become of order one for large n (n ∼ N(ε)). For λ

(n)
1 ∼ ε−1,

according to (57) ν ∼ ε−1, and hence, formally, the solutions v0 of the homogenized
equation (51) becomes oscillatory on the scale x/ε1/2. One can attempt deriving
asymptotic expansions similarly to those in Section 3, involving this new scale. A
preliminary analysis has shown that those have formal solutions near every point
inside the band. More detailed analysis is beyond the scope of the present work.

Appendix A. Derivation of the limit equation for v0.

Since

−

∫

Γ

∂v1
∂nx

dy = −

∫

Γ

∂v1
∂xj

nj dy =

∫

Q1

∂2v1
∂xj∂yj

dy,

(50) transforms to

(∆xv0 + λ0v0)|Q1| +

∫

Q1

∂2v1
∂xj∂yj

dy =

∫

Γ

(
∂w1

∂ny
+
∂w0

∂nx

)
dy.

Taking into account (41) and (38) this becomes

(∆xv0 + λ0v0)|Q1| +
∂2v0
∂xj∂xk

∫

Q1

∂Nk

∂yj
dy =

=
∂v0
∂xj

(
−

∫

Q1

∂N

∂yj
dy +

∫

Γ

ηnj dy
)

+

∫

Γ

∂w1

∂ny
dy.(A.1)

Since η(y) = 1 on Γ,

(A.2)

∫

Γ

ηnj dy =

∫

Γ

nj dy = 0.

We introduce homogenized matrix Ahom = (Ahom
jk )n

j,k=1 by (53). According to (46)
we have

(A.3)

∫

Γ

∂w1

∂ny
dy =

∂v0

∂xj

∫

Γ

∂Mj

∂ny
dy + v0

∫

Γ

∂P

∂ny
dy + λ1v

0

∫

Γ

∂R

∂ny
dy.

Substituting (A.2) – (A.3) into (A.1) yields

(A.4) − divAhom∇xv
0 = ν(λ1)v

0 + Kj
∂v0

∂xj
in Ω,
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with

ν(λ1) = λ0|Q1| − λ1

∫

Γ

∂R

∂ny
dy −

∫

Γ

∂P

∂ny
dy

and

(A.5) Kj =

∫

Q1

∂N

∂yj
dy −

∫

Γ

∂Mj

∂ny
dy.

Lemma A.1. ν(λ1) depends on λ1 with a non-zero linear coefficient.

Proof. We estimate the linear coefficient

C := −

∫

Γ

∂R

∂ny
dy.

Note that

C =

∫

Γ

(
R
∂η

∂ny
− η

∂R

∂ny

)
dy =

∫

Q0

(R∆yη − η∆yR) dy =

∫

Q0

η2 dy > 0,

where (49) and (26) have been used. Thus

ν(λ1) = Cλ1 + λ0|Q1| −

∫

Γ

∂P

∂ny
dy

with positive constant C (depending on the choice of λ0). �

Corollary 1. (i) If λ0 = 0 then η(y) ≡ 1 and hence C = |Q0|.
(ii) According to (48) we also have the representation

(A.6) ν(λ1) = Cλ1 + λ0

(
|Q1| +

∫

Q0

P dy
)
.

Lemma A.2. All Kj defined by (A.5) equal zero.

Proof. First we prove an auxiliary identity, namely

(A.7)

∫

Γ

(
∂Mj

∂ny
η −Mj

∂η

∂ny

)
dy = 0.

Notice for this that the left-hand side is∫

Q0

(∆Mjη −Mj∆η) dy = −

∫

Q0

2
∂η

∂yj
η dy = −

∫

Q0

∂η2

∂yj
dy,

where equations (47) and (26) have been used. Since η(y) = 1 on Γ,
∫

Q0

∂η2

∂yj
dy =

∫

Γ

η2nj dy =

∫

Γ

nj dy = 0,

which finishes the proof of (A.7).
Then consider

Kj = −

∫

Γ

Nnj dy −

∫

Γ

∂Mj

∂ny
η dy,

which, according to (42) and (A.7), yields

(A.8) Kj =

∫

Γ

N
∂Nj

∂ny
dy −

∫

Γ

Mj
∂η

∂ny
dy.

Since N and Nj are both harmonic in Q0,

(A.9)

∫

Γ

N
∂Nj

∂ny
dy =

∫

Γ

Nj
∂N

∂ny
dy.
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Using (47) and (43) we obtain

(A.10)

∫

Γ

Mj
∂η

∂ny
dy =

∫

Γ

Nj
∂N

∂ny
dy.

Substitution of (A.9) and (A.10) into (A.8) proves the lemma. �

Finally we come to the formulation of homogenized problem for the function v0,
which comes from (A.4) and boundary condition (4), resulting in (51)-(52).

Appendix B. Proof of Lemma 3.3

We look for v1, w1, v2, w2 in the form

(B.1) v1(x, y) = c(x)V1(y),

(B.2) w1(x, y) = c(x)W1(y) +
∂c(x)

∂xk
Z

(k)
1 (y),

(B.3) v2(x, y) = c(x)V2(y) +
∂c(x)

∂xk
Pk(y),

(B.4) w2(x, y) = c(x)W2(y) +
∂c(x)

∂xk
Z

(k)
2 (y),

where c is an arbitrary smooth function in Ω and Vi,Wi,Z
(k)
i ,Pk, i = 1, 2 , k =

1, .., n, are functions to be found.
Applying differential operator Aε given by (60) to (63) in Ωε

1 we obtain

div (aε∇W
∗
ε ) + ΛερεW

∗
ε =

=

{
ε
−1

c∆yV1 + ε
0

(
c∆yV2(y) +

∂c

∂xk

{
∆yPk(y) + 2

∂V1

∂yk

})
+

+ ε
1

(
2

∂2v2

∂xj∂yj
+ ∆xv1 + λ0v1

)
+ ε

2(∆xv2 + λ1v1 + λ0v2) + ε
3
λ1v2

}∣∣∣∣
y= x

ε

.(B.5)

Applying next Aε to (63) in Ωε
0 we obtain

div (aε∇W
∗
ε ) + ΛερεW

∗
ε =

=

{
ε
0

(
c [(∆y + λ0)W1 + λ1φ] +

∂c

∂xk
[(∆y + λ0)Z

(k)
1 + 2

∂φ

∂yk
]

)
+

+ ε
1

(
(∆y + λ0)w2 + 2

∂2w1

∂xj∂yj
+ ∆xw0 + λ1w1

)
+

+ ε
2

(
2

∂2w2

∂xj∂yj
+ ∆xw1 + λ1w2

)
+ ε

3∆xw2

}∣∣∣∣
y= x

ε

(B.6)

Evaluating the jumps of conormal derivatives on Γε, we obtain

aε
∂W ∗

ε

∂n

∣∣∣∣
0

− aε
∂W ∗

ε

∂n

∣∣∣∣
1

= ε
0
c

(
∂φ

∂ny
−

∂V1

∂ny

) ∣∣∣
x∈Γε

y∈Γ

+

+ ε
1

(
c

{
∂W1

∂ny
−

∂V2

∂ny

}
+

∂c

∂xk

{
∂Z

(k)
1

∂ny
+ nkφ −

∂Pk

∂ny
− nkV1

}) ∣∣∣
x∈Γε

y∈Γ

+

+ ε
2

(
∂w2

∂ny
+

∂w1

∂nx
−

∂v2

∂nx

) ∣∣∣
x∈Γε

y∈Γ

+ ε
3 ∂w2

∂nx

∣∣∣
x∈Γε

y∈Γ

.(B.7)

On the other hand function W ∗
ε is required to be continuous, i.e we have

(B.8) W1 = V1 on Γ,
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(B.9) Z
(k)
1 = 0 on Γ,

(B.10) W2 = V2 on Γ,

(B.11) Z
(k)
2 = Pk on Γ.

Equating to zero the term of order ε−1 in (B.5) and the term of order ε0 in (B.7),
we obtain problem for V1:

(B.12) ∆yV1 = 0 in Q1,
∂V1

∂ny
=

∂φ

∂ny
on Γ.

A solution to this problem exists since 〈φ〉 = 0 and we can present it as:

(B.13) V1 = Ṽ1 + Ã,

where < Ṽ1 >= 0 and Ã is a constant which will be determined later.
Equating to zero the term of order ε0 in (B.6), and using (B.8), (B.9) we obtain

problems for Z
(k)
1

(B.14) (∆y + λ0)Z
(k)
1 = −2

∂φ

∂yk
in Q0, Z

(k)
1 = 0 on Γ,

which admits an explicit solution

(B.15) Z
(k)
1 (y) = −ykφ(y),

and for W1

(B.16) (∆y + λ0)W1 = −λ1φ in Q0, W1 = V1 on Γ.

A solution to the latter exists if and only if

(B.17) λ1 =

∫

Γ

V1
∂φ

∂ny
dy = −

∫

Q1

|∇V1|
2dy = −

∫

Q1

|∇Ṽ1|
2dy,

and we can present it in the following way:

(B.18) W1 = W̃1 + Ãη,

where W̃1 solves problem (B.16) with V1 replaced by Ṽ1 (a solution exists for the
same reason), and η solves (26) (a solution exists since 〈φ〉 = 0). Notice that

λ0〈η〉 = −

∫

Γ

∂η

∂ny
dy 6= 0,

otherwise λ0 would be a solution of (36) which contradicts to the assumptions of
this section.

Equating to zero the term of order ε0 in (B.5) and the term of order ε1 in (B.7),
we obtain problems for V2 and Pk. For V2 we have:

(B.19) ∆yV2 = 0 in Q1,
∂V2

∂ny
=
∂W1

∂ny
on Γ.

A solution to this problem exists if and only if

(B.20) 0 =

∫

Γ

∂W1

∂ny
dy =

∫

Γ

∂W̃1

∂ny
dy + Ã

∫

Γ

∂η

∂ny
dy,

and consequently

(B.21) Ã = (λ0〈η〉)
−1

∫

Γ

∂W̃1

∂ny
dy.
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The problem for Pk has the form:

(B.22) ∆yPk(y) = −2
∂V1

∂yk
in Q1,

∂Pk

∂ny
=
∂Z

(k)
1

∂ny
− nkV1 on Γ.

Solvability condition for this problem has the form

(B.23) 2

∫

Q1

∂V1

∂yk
dy =

∫

Γ

(
∂Z

(k)
1

∂ny
− nkV1

)
dy.

The left hand side of (B.23) can be transformed as follows,

(B.24)

∫

Q1

2
∂V1

∂yk
dy = −2

∫

Γ

nkV1 dy.

On the other hand, for the right hand side of (B.23),

∫

Γ

(
∂Z

(k)
1

∂ny
− nkV1

)
dy =

∫

Γ

(
−yk

∂φ

∂ny
− nkV1

)
dy =

(B.25) =

∫

Γ

(
−yk

∂V1

∂ny
− nkV1

)
dy = −2

∫

Γ

nkV1 dy.

Here we used (B.15), (B.22) and the integration by parts. Comparing (B.24) and

(B.25) we see that solvability condition (B.23) is satisfied. Finally W2 and Z
(k)
2 are

arbitrary smooth functions satisfying (B.10) and (B.11). �
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