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ABSTRACT. Homogenization of a spectral problem in a bounded domain with
a high contrast in both stiffness and density is considered. For a special critical
scaling, two-scale asymptotic expansions for eigenvalues and eigenfunctions are
constructed. Two-scale limit equations are derived and relate to certain non-
standard self-adjoint operators. In particular they explicitly display the first
two terms in the asymptotic expansion for the eigenvalues, with a surprising
bound for the error of order £%/4 proved.
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1. INTRODUCTION

Homogenization for problems with physical properties which are not only highly
oscillatory but also highly heterogeneous has long been documented to display un-
usual effects, for example the memory effects observed by E. Ya. Khruslov [9,[13,14].
Of particular interest in this context are the double-porosity models where the pa-
rameter of high-contrast § is critically scaled again the periodicity size e, § ~ &2,
e.g. [2,/4]. Those have been treated both by a high-contrast version of the classi-
cal method of asymptotic expansions, e.g. [16,17, 7, 12] and using the techniques
of two-scale convergence, e.g. [19] 20, 5]. In particular, for spectral problems in
bounded [19] and unbounded [20] periodic domains V.V. Zhikov studied the spec-
tral convergence, introduced two-scale limit operator, developed the techniques of
two-scale resolvent convergence and two-scale compactness. In [12] the spectral
convergence of eigenvalues in the gaps of Floquet-Bloch spectrum due to defects in
double-porosity type media were studied, and [5] supplemented this by the analysis
of eigenfunction convergence based on an analysis of a uniform exponential decay.

In this work we study spectral problems of double-porosity type in a bounded
domain ) where the high contrast might occur not only in the “stiffness” coefficient
but also in the “density”, and argue that this leads to some interesting new effects.
Namely, referring to the next section for precise technical formulations, for the
spectral problem

(1) — div (ae () Vue) = Npe (z) ue,

with Dirichlet boundary conditions on the exterior boundary, most generally, both
ae and p. are e-periodic, a. = p. = 1 in the connected matrix and a. ~ €%, p. ~
¢” in the disconnected inclusions. (Outside homogenization, the above resembles
problems of vibrations with high contrasts in both density and stiffness, e.g. [3].)
The double-porosity corresponds to a = 2 and 8 = 0. For 8 # 0, it is not hard to
see that it is & = 8 + 2 when the spectral problems at the macro and micro-scales
are coupled in a non-trivial way. To explore this, we choose § = —1 and a = 1
1
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FIGURE 1. The geometry and the periodicity cell

and show that this leads to some unusually coupled two-scale limit behaviors of the
eigenfunctions and the eigenvalues.

Namely, although the limit behavior of the eigenfunctions is still somewhat sim-
ilar to that of double porosity, i.e. the two-scale limit is a function of only slow
variable x in the matrix and a function of both x and the fast variable y in the
inclusions, the limit equations themselves are quite different. We show that there
exist asymptotic series of eigenvalues A\° ~ Ag+¢eA; with Ag being any eigenvalue of
a non-standard self-adjoint “microscopic” inclusion problem, Theorem [3.1, whose
eigenfunctions are directly related to the two-scale limit wq(z,y) in the matrix. In
fact, Ao is either a solution of 3(Ag) = |@1]Ao, where B(A) is a function introduced
by Zhikov [19], or is an eigenvalue of the Dirichlet Laplacian in the inclusion Q¢ with
a zero mean eigenfunction. In the matrix, u. ~ v%(z), where v° is an eigenfunction
of the homogenized operator in €2, whose eigenvalue v determines the second term
A1 in the asymptotics of A%, see (57). This is first derived via formal asymptotic
expansions, but then we prove a non-standard error bound:

|)\E — )\0 - €>\1| S 085/4,

see Theorems [4.6 & [4.7l The proof employs a combination of a high contrast
boundary layer analysis with maximum principle and estimates in Hilbert spaces
with e-dependent weights. We finally briefly discuss further refinement of the results
via the technique of two-scale convergence. Namely, some version of the compact-
ness result holds, cf. [19], indicating at the presence of gaps in the spectrum for
small enough ¢, see Theorem [5.1!

The paper is organized as follows. The next section formulates the problem and
introduces necessary notation, Section 3 executes formal asymptotic expansion and
derives associated homogenized equations. Section 4 proves the error bounds and
Section 5 discusses the two-scale convergence approach. Some technical details are
assembled in the appendices.

2. PROBLEM STATEMENT AND NOTATIONS

We consider a model of eigenvibrations for a body occupying a bounded domain
Qin R™ (n =2,3,...) containing a periodic array of small inclusions, see Figure[l.
The size of inclusions is controlled by a small positive parameter €, ¢ — 0. First we
introduce necessary notation.

Let @ = [0,1]™ be a reference periodicity cell in R™. Let Qvo be a periodic
set of “inclusions”, i.e. @0 +m = @0, VYm € Z", and Qg = Qvo N @ is a reference
inclusion lying inside @ with C?-smooth boundary T, see Figure[1l Let Q1 = Q\Qo,
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@1 = R”\@O, I = 8@0 = 5@1. Introducing y = x/¢ we refer to y as to a fast
variable, as opposes to the slow variable x. In the z-variable the periodicity cell is
e@Q =[0,e)". If y € Q; then z = ey € €@, 7 = 0,1. We denote Qf := QN £Qo,
Q5 = QNeQ; = Q\Q5, I'° := eI’ N Q, see Figure 1. The trace on T'* of function
J Q5 — R" is denoted by flj- Let n, be the outer unit normal to Qo on its
boundary I' and let n, denote the similar normal on I'¢.

Let stiffness a. and density p. be as follows

1, zeqs 1, zeqr
aa(x):{s xEQ% and pa($)={€1 er%

with a small positive e.
We study the asymptotic behaviour of self-adjoint spectral problem

(2) / ac () Vu Vo da — /\s/ pe () ucpdr =0, Vo e Hy(Q)
Q Q

as e — 0. If T and 09 are smooth enough then variational problem (2) can be
equivalently represented in a classical formulation

(3) — div(ae () Vue) = XNpe(x)us, x €K,

(4) uclog = 0,

implying that at the interfaces the transmission conditions are satisfied
ou ou

5 - ‘ , He| _  GUe|

(5) Ue 1 e o Ongh ong lo

3. FORMAL ASYMPTOTIC EXPANSIONS

We seek formal asymptotic expansions for the eigenvalues A* and eigenfunctions
u. in the form
(6) N~ XoFed e+,
vo(x,f)Jrsvl (Z‘,E)+€202(I,£)+..., x € Qf,
(M) uw) e e/ e/
wo (x, 7) + ew; (x,f> + 2w, (x, 7) +..., z€Qg.
€ € €

Here all the functions v;(z,y), w;(z,y), j > 0, are required to be periodic in the
“fast” variable y; vg and wy are not simultaneously identically zero

(8) vg 4+ wi # 0.

In a standard way, the ansatz (6), (7) is then formally substituted into (3)—(5).
In particular, from (3), for (z,y) € Q x @1, we obtain

(9) —Ayvo = 0,
821)0
1 “Ay =
( O) yvl axjay]7
82’[]1
11 -A = 2 Ao + Ao,
(11) yU2 92,0y, + AzvVo + AgVo

(with Ay and A, denoting the Laplace operators in y and x, respectively, and
summation henceforth implied with respect to repeated indices), and for (x,y) €
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Q x Qp we have

(12) —Aywy = Aowo,
(13) “Ayw; = 2 O + Mwo + dowi,
D0y,
(14) —Ayjwy = 2 Py 4+ Agwo + Aawg + A\wy + Aows.
: 0x;0y;

Further, the first of conditions transforms to

15 (z, = w;(z, ‘ , Q, j=01....
(15) v;(2,y) Jer w;(,y) Jer T € J
Similarly, the other transmission condition (5) yield

81}0
16 — = 0
( ) 8ny yel ’
(17) ovy _ _% Owyg ’

8ny yel 8nx yel (97?,y yel
(18) % — _% uwn ‘ dwo

8ny yel o 3nx yel 3ny yel 8713; yEF.
The above has employed the identity

ou x ou ou x
19 Z) = e 2 - -z
(19) oo (02) = g+ ), v

where % =Ny - Vy, % =Ny - Vg, with V,, and V, standing for gradients in y
and x, respectively.
Finally, (4) suggests

= =0.
€N

20 =
( ) vo 0 €N

(The boundary layer problem does not generally permit satisfying (4) by v; and w;
for j > 1, as also clarified later.)

Combining (9) and (16), together with the periodicity conditions in y, implies
that vy is a constant with respect to y, i.e.

vo(z,y) = °(2).
Then, (10) and (17) form the following boundary value problem for v;
oy oo

(21) —Ayvi(z,y) =0 in QxQq, Tny ser = o

8w0

yel  Ony ‘yer'
The latter is solvable if and only if
8w0
22 —dy =0.
(22) ' on, W
Considering next (12) and gives

=0%(z).

(23) — Aywo = >\0w0 in Qx QOa wo(xvy)’yer -

Since

/ % dy = Aywo dy = —)\0/ wo dy,
r any Qo Qo
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condition is equivalent to
(24) )\0<w0> = 07
where

(W= [ )y

We notice that (23)—(24) together with (8) constitutes restrictions on possible
values of \g. Those are described by Theorem 3.1 below. Before, let us consider an
auxiliary Dirichlet problem
(25) ~Ayp=AP¢ in Qy ¢ =0.

r

Let {)\JD }321 be eigenvalues for (25), labelled in the ascending order counting for the
multiplicities, and let {¢; };";1 be the corresponding eigenfunctions, orthonormal in

LQ(QO)7 i.e.
¢k dy = Ok,
Qo
where d,;, is Kronecker’s delta. Denote by op the spectrum of (25): op = Ujoil )\JD.
We additionally introduce the following auxiliary problem:

(26) —Ayn=2Xm in Qo, n(y)’ =1
yel

Notice that (26) is solvable if and only if A\g & op or Ay = )\? with all the associated
eigenfunctions ¢; having zero mean, (¢;) = (', In the former case 7 is determined
uniquely and (23) implies wo(z,y) = v°(z)n(y). In the latter case 1 is determined
up to an arbitrary eigenfunction ¢; associated with )\JD , however (n) is determined
uniquely.

By direct inspection, (23), (24) has a non-trivial solution (v°,wy), i.e. with (8)
holding, if and only if \g is an eigenvalue of following problem:

(27) —Ay¢=Xx¢ in Qo, ¢(y) = constant, Ao(¢) =0.
yel

Theorem 3.1. The problem is equivalent to an eigenvalue problem for a self-
adjoint operator in La(Qo) with a compact resolvent. Therefore the spectrum of
(27) is a countable set of real non-negative eigenvalues (of finite multiplicity) with
the only accumulation point at +oo, with the eigenfunctions complete in La(Qo)
and those corresponding to different A\g mutually orthogonal.

The spectrum consists of all the eigenvalues AP of problem with a zero mean
etgenfunction and all the solutions of the equation

o~ (9))°
28 B(Ag) == A =A A L1 =0
(28) (Ao) 0o{n) = Ao | Qo + OZAD—)\O
j=1"17
(which are hence all real non-negative). In the summation is with respect to
only those )\]D for which there exists an eigenfunction with a non-zero mean.
The associated eigenfunctions ¢ are either proportional to n as in (26) or are
eigenfunctions of with zero mean.

We remark that the case of eigenvalues with zero mean is known to be not a “generic” case,
i.e. unstable via a small perturbation of the shape of Qq, see e.g. discussion in [10] and further
references therein.
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Proof. We claim that corresponds to a self-adjoint operator associated with
the (symmetric, closed, densely defined, bounded from below) Dirichlet form

(29) a(C,h) = V(- -Vh dy
Qo
with domain

(30) D(a) :={h € H*(Qo) : h‘yef = constant}.

To see this, in the weak formulation of the eigenvalue problem associated with

(20)(30)
31 VC-Vhdy = A hdy,  Yhe D(a),
(31) / ¢-Vh dy O/Qf ’ € Do)

we first set h to be an arbitrary function from C§°(Q)o) which implies —A,¢ = Ao(¢ in
Qo, and then set h = 1 yielding \o(¢) = 0. Further, since the resolvent is obviously
compact, each eigenvalue has a finite multiplicity, the set of all eigenfunctions ( is
complete in La(Qp) and those corresponding to different Ay are mutually orthogonal.

Obviously, the spectrum of (27) includes those and only those eigenvalues of
(25) which have an eigenfunction ¢; with zero mean. In this case corresponding
eigenfunctions of are given by (; = C¢;, C # 0. If )\;»3 does not have a zero-

mean eigenfunction, then the solvability of (27) requires ¢ . 0 implying ¢ = 0.
€

Considering other possibilities, fix Ay outside op and let n be the unique solution
of (26). Then )\ is an eigenvalue of if and only if

(32) Ao(m) =0,

with corresponding eigenfunction given by ((y) = Cn(y), C # 0.
Via the spectral decomposition, the solution to (26) is found to be, cf. [19]:

(33) 1) =142 720,
j=1"9 0
Substituting further into (32) yields (28). O
The formula (28) can be transformed to read
(34) B(Xo) = B(Xo) = [Q1[Ao =0,
where function B(A) has been introduced by Zhikov [19]:
oo 2
(3) B =2+ 352

see Figure[2] This implies that g is either a solution to the nonlinear equation

(36) BA) = Q1A
as visualized on Figure[2] or is an eigenvalue of (25) with a zero mean eigenfunction.
Remark 1. If Qo is a ball of radius 0 < a < 1/2, i.e Qo = B, = {y : ly| < a} +vo,

then we have an explicit representation for B(N). Indeed, for \g & op the solution
of is radially symmetric and (placing the origin in the ball’s centre) reads

2—n 2—n -1

n(y) = "7 Tazz %)) (1ol Tasz (%))
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FIGURE 2. The limit eigenvalues \g = p;

where JWT_z(|y|) is Bessel function. Further, we have

on
B(Xo) = Xo(n) = —/ —dy =
(Xo) = Ao(m) 5. Oy
= —ém (1 —n/2 40\ s (Aé/2a)/JnT_z()\é/2a)) .
Using (35), (33) we obtain
1
BN = M1 = |Ba]) - -IT| (1 = /24 N2 (NV20) [ T (Al/za)> :
In particular, for n = 3 we have,

B(Xo) = Ao(n) = 4ma (1 - a)\é/2 cotan ()\(l)/za)) )
BN) = A1 — 4wa®/3) + 4rma (1 — a\/? cotan (Al/za)) .

We next explore in detail the further steps in the method of asymptotic expan-
sions, to determine v°, etc. Let us consider a K-dimensional eigenspace (K > 1) for
a given eigenvalue Ag of (27), and let (3, ..., x be associated linearly independent
eigenfunctions. Then, and imply

K
(37) wo(x,y) =Y cr(x)Ck(y).
k=1
Following Theorem [3.1 we distinguish two cases:
(a) Ao € op. In this case and (23) suggest

(38) wo(z,y) = v°(z)n(y),

and (8) implies v° # 0.
(b) Ao € op. The latter means \g = )\f for some j. This includes two further
possibilities:
(1) The eigenspace of (25) has an eigenfunction ¢} with a non-zero mean.
Since the solvability conditions for (23) include

(39) @) (g5) = 0,

necessarily v° = 0. Moreover, with Kp denoting the multiplicity of )\j-D
as of the eigenvalue of the Dirichlet problem (25), necessarily Kp > 2:
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if Kp =1 then wy = C(z)¢; and thus (24) implies C(z) = 0 and wy =
0 contradicting to (8). Hence wy is given by (37) with K = Kp — 1,
with (g, k = 1,..., K being linearly independent eigenfunctions of (25)
with zero mean (such K eigenfunctions exist).

(ii) All of the eigenfunctions corresponding )\f have a zero mean. In this
case wy is again given by (37), with K = Kp if (n) # 0 i.e. B(XAg) #0
and K = Kp + 1 if B(Ag) = 0 with {x,+1 = n where n(y) is any
solution of (26).

3.1. Case (a): Ao € op. In this case g are solutions of (36). There is a countable
set of Ao = p;, j = 1,2,... as Figure 2 illustrates. Note that this includes Ao = 0.
Function g blows up at the points )\jD , which are eigenvalues of having an
eigenvalue with a non-zero mean, monotonically increasing between such points.
It also directly follows from (35) that B(A) > [Q1|A for A € (0,AP), implying
AP <y < AP Let )\ satisfying (36) be fixed.
We consider problem (21) taking into account (38), i.e.
Ovy o’ 40 on

40) — A =0 in Q I lyer
( ) y’l)1<337y) m x Ql’ 8ny yel anr yel 8le yEl_'7

where 7n(y) solves (26) and is given by (33). Hence vy is a solution to a problem
depending linearly on v° and V,v°, implying

O

(41) o, y) = C@N ) + 5

N;(y) +vi (),

with an arbitrary function vi(x). The choice of v does not affect the subsequent
constructions, so we set for simplicity v; = 0. In (41) functions N; and N are
solutions to the problems

. ON,;
(42) AyN;j(y) =0 in Qn, 8n; yer = —n;(y),
and

. ON on
(43) AyN(y) =0 in Qu, Tny yer Tny yer

Solvability of (43) requires

an
Ly =0,
/pany y

which is equivalent to (32) and is hence already assured. Since the solutions of (42)
and (43) are unique up to an arbitrary constant, we fix those by choosing

Nj(y)dy = | N(y)dy=0.
Q1 Q1

We next consider the problem for w;, which from and (15) combined with
(38) reads

ovY On
44 —Ayw; — Awy = A\’ 42— in QX Qo,
(44) ywn = Aowr = v+ 25 0
oo
45 = 0N VN _
( ) w yel v (y) yel * al‘j J ) yel
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Since the problem depends linearly on v%, A;v° and %’ the solution admits repre-
J

sentation

oo
(46) wi(@,y) = 5= (2)M;(y) + v*(2)P(y) + Mo’ (2)R(y),

J
where functions M, P and R are solutions to the problems
In :

(47) - Ay./\/lj - )\0./\/1]' = 287%(?/) m QQ, Mj‘l“ = Nj I"
(48) “AP-XNP=0 in Qo P‘F:NF7
and
(49) ~AR-NR=1(y) in Qo R‘F —0.

Since by the assumption \g & o p, all the problems (47) — (49) are uniquely solvable.
The problem for v, is in turn given by (11) and (18), whose solvability condition
hence reads

821}1 (9’1}1 8w1 aw()
T d = - d 5
(50) /1 (A vo + Agvo + 23xj3yj> Y /F ( o, + on, + . Y

with functions v, wy and wy given by (41), (46) and (38) respectively.
Appendix A provides a detailed calculation showing that the above yields the
following equations for v°:

(51) — divA"™v,° = p(A)® in Q,
52 0’ -
(52) Y lag
Here Abom — (A;‘gm) i is the classical homogenized matrix for periodic perfo-
g k=1
rated domains, see e.g. [11]
ON,
(53) A = Qi+ [ G dys
Q1 9Yj
(54) vw) =+ do(|Qul + [ Pay).
Qo
where
(55) C ::/ n?dy > 0.
Qo

Note that the problem (51)—(52) involves v = v(\1) as a spectral parameter.
The spectrum of (51)—(52) consists of a countable set of eigenvalues

(56) O<iv << - <y, <. oo — 400.

Corresponding eigenfunctions v, form an orthonormal basis in Lo (),

0,0
/ Up U AT = S,
Q

Fixing an eigenvalue v of (51), (52)) with corresponding eigenfunction v° of unit
norm in Lo (), according to (54) we find

(57) A =Ct (V—AO(Q1+/QU7>dy)>.
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The following diagram summarizes the algorithm for constructing the first terms
of the asymptotic expansions (for the case \g & op)

&7
— A1
N, B ghom vt | & vy (6 00,08
_ 1 2.
N B g B U290 v R
s wo

We can additionally construct we from (14) and (15), whose unique solution exists
for any choice of Ay. For purposes of the justification of the first two terms in the
asymptotics (the next section) it is sufficient to set A2 = 0 and fix the corresponding
solution ws.

This completes constructing a formal asymptotic approximation, which we now
summarize. We introduce an approximate eigenvalue

(58) Ao = Ao + e,

and corresponding approximate eigenfunction

v0(x) + eny (33, E) + %vy (m, E) , x € Qf,
(59) We(z) = T x 9 T
wo (:c, g> + cwy (x, g> + e*wsq (;v, E) , €.

The essence of the above formal asymptotic construction is that the action of
differential operator A° on W, defined by

(60) AW, = div (a. VW) + AcpWe

produces a small right-hand side in both Qf and 2§, and on the interface I'* in the
following sense.

Lemma 3.2. (i) I%ax| div (ac VW) + Acp-We| < Ce.
1
(i1) max| div (acVW.) + Acp.W.| < Ce%
Q5

oW, oW,

_ < 2.
on |, e on Ce

(i4) max | ae <

1
Proof. (i) Since the function W, is two-scale by the construction, in Q5

diV (angE) + Aaps WE =
2

0
0x;0y;

= (572Ay +e'2 + Az + o+ 6)\1) (@°(z) + evi(x,y) + °va(x, Y)ly=2 =

(921}1

-1 0
{5 yv1(x,y) g ( yU2 9 j9 ;

+ A0 + /\ovo) +

(61)

82
+ &' (2836 :,;Z + Agur + A’ + /\0v1) + %(Agv2 + Arvr + Xov2) + 63)\11)2}
30Yj

z

y=1

Since v is a solution to (40), the coefficient of e~! vanishes. The same is with
the coefficient of ¥ since vq satisfies (11). Functions v°, v; and vq are solutions of
elliptic problems with smooth enough coefficients to guarantee belonging solutions
to C2. Thus, maxima for coefficients of €', 2 and &2 in (61) exist.
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(#4) Similarly, in 2§
div (a-VW2) + Acp W =

2

_ 0 _
= (e Ay +2——FeA.+e N+ )\1) (wo(,y) + ew: (x,y) + e wa(x,y))|y—z =
Ox;0y; :

+ dowr + Alwo) +

_ 0w
= {E I(Ay’u}o + )\owo) =+ EO (Aywl + anja;j

62
+et (Aywz + 2317'715; + Azwo + Aows + A1w1> +
30Y;

2 O*w, 3
+ € 2 + Agwi + Mws | + e Agws
0x;0y;

y=2%

Since wo(z,y) = v°(z)n(y) is chosen according to (26), the coefficient of ! van-

ishes. The coefficient of ¢¥ vanishes due to (44). Further, wy satisfies (14) with
A2 = 0 and thus the coefficient of ! is zero as well. Since w; and wy are solutions
of elliptic problems with smooth enough coefficients, the maxima of the coefficients

of €2 and &3 exist.
(#4i) Using (19), we obtain

aaWE _aawa _ i_}rsi (wo(z,y) + ewr (z )—1—5211) (z,9)) -
e on . 5 on 1— 8ny O o\T, Y 1T,y 2(T,Y zels
yel’
() ) et + )] -
8ny ong Zg?
_ (0w 0w o pet (Qwry Owo O Oy +
~° \Ony, " Ony,  On, ) leer” Ony = One  Ony  Ong ) lzE”
Owy  Owi  Ove 30wz
62 +é&? ( + - ) - te g
(62) ony " Ong  Ong ) lzer Ong |2l

The coefficients of €¥ and e! vanish because of (21) and respectively. The rest
of the coefficients are smooth enough to guarantee that their maxima for x € I'*
and y € I exist. O

3.2. Case (b): Ay = )\jD. For simplicity, we consider here only the case of eigen-
values of multiplicity K = 1 with zero mean eigenfunction (¢ = ¢;), assuming
additionally Ag is not a solution of (34). All other degenerate cases, see page [7,
could be considered similarly.

In this case we can introduce a refined approximation for the eigenfunction

i ) en (:z:7 g) + %0y (1:, E) , x € Qf,
T () e (05 P (0,2), wens,
where
(64) wo(@,y) = c(x)d(y)-

Lemma 3.3. Let c € C3(Q), then there exist smooth functions vi,w1,vs, ws and a
constant A1 such that A, = )\]D + &A1 and W7 defined by (63) satisfy

(1) Wi(z) € C(Q),
(i)  max| div(a. VW) + Acp W7 < Ce,
1

(iii)  max| div(a.VWZ) + A.p.WZ| < Ce?,
Q5



12 N.O. BABYCH, I.V. KAMOTSKI AND V.P. SMYSHLYAEV

oW
on

_ow

a < C&2.
0 ° on

(iv) max | a.

1

Proof. See Appendix B. a

4. JUSTIFICATION OF ASYMPTOTICS

4.1. Operator formulation. We use a standard notation for Lebesgue and Sobolev
spaces: L%(Q) is a p-weighted L?-space of square-integrable functions in Q. Notation
(-, ) is used for a scalar product in a Hilbert space H.

Let £° = L2 (Q) and H* be H{(€2) Sobolev space with a scalar product

(u, v) e :/ae(m)Vu-Vvdm—i—/ pe(T)uv de.
Q Q

Following a standard procedure, see e.g. [11], we introduce a bounded operator
B. : L% — LF such that

(65) (Bsfa U)HE = (f7 U)[,Ea Vv € HE.
In other words B. f = u., where u. is the solution of the problem
(66) — div(a:Vue) + peue = pof, xz€Q,
(67) u5|aQ = 07

B Oue | Oue
(68) el = Yely Ongl1 E@nm 0

Note that operator B; is positive, self-adjoint and compact for any fixed £ > 0 (since
its image is in H*). Eigenvalue problem (2) is equivalent to

(69) Beue = (A + 1)_1uE in LE.
Hence the spectrum of the problem consists of a countable set of eigenvalues
D<A <A< <A <o — o0,

with the only accumulation point at +00. Moreover, the set of corresponding eigen-
functions is complete in L°.

4.2. Case (a). In this Section we justify the leading terms of asymptotic expansions
constructed above in case Ao & op and thus v* # 0, see Section 3.1. Let Ao be a
solution to equation (36). All the functions (n, N;, N, M, P, R, wo, w1, v1 and ws,
vy) are as defined in Section[3.1. We also fix A according to (57). The approximate
eigenvalue A, and eigenfunction W, are given by (58) and respectively.
Notice that although W. € H!(f) since Ws‘l = WE‘O, it does not satisfy the

zero Dirichlet boundary conditions on 0f2. To fix this we introduce the following
boundary-layer corrector to our approximation.

Lemma 4.1. There exists a corrector V, solving the problem

(70) —div(a.VV) + p Ve =0 in Q,
oV oV,
(71) Veloa = —Weloa, Ve = Ve R wal M-l I

such that U. = W, + V. € H}(2)  and max|V.| < Ce.
Q
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Proof. Clearly such solution of (70), (71) does exist. On each of the subsets Q5 and
QF the coefficients of (70) are smooth. Then the function V; can reach its positive
maximum or negative minimum only at the boundaries I'* or 92. Let us prove
that this cannot be I'. Suppose to the contrary the existence of x, € I'® such that
max V| = |Vz(x4)|. The strong maximum principle yields that there is no more

point inside 2§ or Qf where the maximum is reached. Without loss of generality
we assume V¢ (x,) > V.(z) for any x € Q\I'® and V.(x.) > 0 (otherwise the point
would be a positive maximum for —V. and we would then consider —V_). Then by
the virtue of Hopf’s Lemma [8, p.330] applied in the relevant component of Q2§ we
have

Ve

an |, (z.) > 0.
From transmission conditions (71) we have that the normal derivative on the Qf
side of domain is also positive. Therefore the value of V. increases from the point
x4 inside Qf in the n-direction and hence z. is not a point of maximum of V; in
Q5. The contradiction proves that |V| reaches it’s maximum at 9. Then, from
boundary conditions (71)),

x x
max |V.| = max |V.| = max |W,| < e max ’vl (x, 7) + cvg (:v, 7> ‘ +
Q o0 o9 a0 € €

x x
€ max ‘wl (x, 7) + ewo (33, 7>‘ < Ce.
0 € €
Obviously U, = W+ V. satisfies zero boundary condition on 92 and thus belongs
to Hg(92). O
Lemma 4.2. The constructed corrector V. satisfies the estimate ||V.||ze < Ce3/4.

Proof. Let x € C*°(R) and x(t) =0, t < 1 and x(t) =1, t > 2. Let us define a
family of cut-off functions:

Xe(z) = x (6_1/2 dist (x,@Q)) , x el

Then y. : Q — R satisfies the properties

o x.(x) =0 if dist (z,00) < e'/?

o x.(2) = 1if dist (x,00Q) > 2/

e |Vx:| < Ce™? and |supp V.| < Ce'/?,
where “supp” denotes a function support, and |supp -| is the measure of the corre-
sponding support. Multiplying (70) by x2V. and integrating by parts, we obtain

(72) / a:VV - V(X2Ve) da +/ pex2V2dz = 0.
Q Q

Then using the identity
V- VOEV:) = [V(xVE) P = V2 Vel
we get from (72)

(73) A%meWW+A%ﬁWM=A%wwm%a
implying

(74) /mﬁwms/%ﬁwm%m
Q Q
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Lemma [4.1] provides the estimate V2 < Ce2. Moreover, |supp V.| < Ce'/? and
|Vxe|?> < Ce™!. Therefore estimate (74) yields

(75) Vel = [ podZdo < e

Q
Similarly we estimate
(76) 0= XxVelfze = [ pelt = xo?V2do < e

Q
since |supp (1 — x.)| < Ce'/? and |p.| < Ce~'. Combining (75) and (76)), we obtain
IVallee = (1 = Xxe)Ve + xeVellge < C¥/2 O
Lemma 4.3. If ¢ € H}(Q) then

5 \1/2

(77 ([ o)™ < Cllolhee.

Proof. Extend function ¢ by zero to whole of R™. Then (77) follows upon rescaling
y = x /¢ from the standard trace estimates applied to each connected component of
Qo (which are shifts of Q). O

Lemma 4.4. The corrected approximation U, satisfies the estimate
IB.U. — (Ae + 1) 7 UL e < ||B-Us — (Ae + 1) MU e < C¥/4

Proof. For an arbitrary ¢ € H® consider
|(BeUe — (Ae + 1) Ue, @) e | = [Ae + 1171 (Ue = (Ae 4+ 1)BUs, @) pe | <
< Cl(Uesp)ne — (Ae + 1)(BUs, o) ne| = Cl(Ue, p)re — (Ae + 1)(Ue, )| =

=C /aEVUEVgodr—As/psUgtpdx <
Q Q

U U

“on |, " on
Denote the right-hand side of (78) by F. (U, ¢). Substituting U. = W, + V. and
taking into account and (71),

(Aa + 1)/ pVepdx
Q
By Lemma[4.2 and obvious inequality [|¢||ze < |||,

(79) Fe(Ue, ) < Fe(Wey ) + Ce*plla¢e.
According to Lemma [3.2] (i) and (%),

(18 <C +C

ol daw.

/ (div (acVU:) + AcpUs) pdx
QEUQS

Ire 0 1

Fe(Ue, ) < Fe(We, 0) +C S Fe(We, ) + ClVellee [l -

oW, oW,
FWey0) < Celplina +C [ |a-5| = a5 jpla
Due to Lemmas (3.2 (4i7) and [4.3]the latter yields
1/2
80 R(Vay) < Cellles + 02 [ loP )" < Cellolpe

Using (80), in yields
(BUe = (Ae + 1) Uz, @)e | < C*[ep]|e
for all ¢ € H. Hence, |B.U. — (A. + 1) U || < Ce3/4, O
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Lemma 4.5. ||U.||z- > Ce™1/2,
Proof. By the triangle inequality we have
(81) 1Uellne = [[Ucllee = [[Wellze = [IVellze-

We consider

2
||We||2£a =1 / ‘wg (m, E) + ewy (m, E) + 2w, (a:, E)‘ dx+
Jag g g g

+/QS
(82) :5*1/05

Extending 1 : Q9 — R by zero onto entire periodicity cell @), by the mean value
property we obtain

0 z |2 2 L
(83) v (z)n <7)‘ dr —  C,:={(n") !v (:E){ dr as e€—0,
Qs € Q
where (n?) is the mean value of function n? over @, namely
o) = [ s = [ wP)dy o,
Q Qo

Since also v°(z) # 0, C, is positive. Therefore (83) and (82) yield

2
vo(x) + v (x, g) + %, (:B7 g)‘ dz =

) s

Q

02 (x)n (%) ’2 dx+0(1), e—0.

€
0

(84) IWellge = C2e 2 4 o(e/?), &—0.
Due to Lemma/4.2land (84), it follows from (81) that ||U.||z: > C/2e=1/240(e=1/2)
as e — 0. g

Theorem 4.6. Let \g be a solution to (36) such that Ay # )\jD and N1 is defined
according to (57). Then

1. For sufficiently small € > 0 there exists an eigenvalue \° of such that
(85) IA° — Ao — eAy| < 14,

with constant Cy independent of e.
2. Let W, be defined by and W. = |W||z2W.. Then there exist constants
c;(e) such that

(6) [We =" e

JjeJe

e < 0265/4,

where Jo = {j : [\ — Ao — 1] < Ce®/*}, and A5, u$ are eigenvalues and (L°-
normalized) eigenfunctions of (2), and the constants C and Cy are independent of
€.

Proof. Application of classical lemma on “approximate eigenvalues”, e.g. [18], with
U: = ||Ue Hzgl U, as a test function and A = A9+ &)1 as an approximate eigenvalue,
ensures, via Lemmas [4.4 & [4.5, the existence of an eigenvalue p. of operator B.
such that

(87) [(Ac + 1)1 = pe| < CEY2,

and delivers the estimate analogous to (86) with u§ being eigenfunctions of B. and

VIZ replaced by U.. It suffices to notice that the eigenfunctions of the problem (2)
and of operator B. coincide, their eigenvalues are related via u-! = A\* +1 and that
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Lf norm of the difference between ﬁs and WN/E can be estimated via the right hand

side of (86) (see Lemmas[4.2] and [4.5). O

Remark 2. Notice that (86) implies weaker but more transparent interpretations
on the approzximate eigenfunctions. For example, introducing

UO (Z‘) ) RS Qla
(88) u(z,y) = {
wo (z,9), v € Qo,

we claim that
x
(89) e (2, 2) = 32 ditepes
Jj€Je

with appropriate dj(e). Note that |lu(-, 2)||z2() > Co > 0. Then (89) follows
from (86) by splitting its left hand side into the parts corresponding to Q5 and
QF, removing the weight, retaining only the main-order terms and then adding the
inequalities up.

< 053/4
L2(9) ~ ’

We also remark that, in principle, the result (86) on the convergence of eigenfunc-
tions could be further sharpened, e.g. using the technique of two-scale convergence,
cf. Section [5below and [5].

4.3. Case (b). In this section we assume that Ao = )\jD for some j, its multiplicity

is equal to 1 and the corresponding eigenfunction ¢ has zero mean, i.e. (¢) = 0, see
Section [3.2.

Theorem 4.7. Let ¢ € C3(2), ¢ = 0 on 9Q, Ao be not a solution to and
A1 be defined according to (B.17). Then there exist eg > 0 and constants C,C1
independent of € (but dependent on ¢) such that for any 0 < e < &g,

1. There exists an eigenvalue \° of (2) such that

(90) NS — Ao —eXy| < Ce¥/4,

2. Let W2 be defined by (63) and 17[76; = |WZ||z2W7. Then there exist constants
c;(e) such that

(91) Wz =3 st

FISDE

< 0185/4,
L&

where J. = {j : [\ — Ao — eA1] < Ce®/4y, and A5, u5(w) are eigenvalues and (L°-
normalized) eigenfunctions of (2).

Proof. Proof of this theorem literally follows the proof of Theorem[4.6]with reference
to Lemma [3.3] O

A direct analogue of Remark 2| also holds.

5. ON THE EIGENFUNCTION CONVERGENCE

In this section we give a brief sketch of further refinement of the presented results
using the technique of two-scale convergence, [15, 1, 19].

First, the inclusions intersecting or touching the boundary are “excluded”, e.g.
by re-defining a. and p. there as in the matrix phase (a.(z) = p-(z) = 1). Denoting
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now via € — 0 an appropriate subsequence in ¢, without relabelling, let u. and \*
be eigenfunctions and eigenvalues of the original problem, with normalization

(92) / VuZ +e? | Vi =1
i 25

The boundedness of u. in L2?(f2) is then implied by (92) e.g. via the uniform
positivity of the double-porosity operator whose form is given by the left hand

side of (92), [19, Thm 8.1]. This implies that, up to a subsequence, u. EN u(z,y)

and eVu, = Vyu(z,y), where u € L*(Q,H},,) and 2 denotes weak two-scale
convergence. Additionally, since (92) implies ¢|Vuc|[z2(0s) — 0, [19, Thm 4.1]
assures that the two-scale limit is independent of y in the matrix, i.e. is exactly in

the form (88)). Further, by [19, Thm 4.2], v° € H}(2) and

(93) 0V 2 01(y) (Vo' () + p(,y)),

where p € L(Q, Vpor) with 65 and 61 (y) denoting the characteristic functions of 2§
and @1, respectively, and V,.+ denoting the space of potential vector fields on Q1,
i.e. with respect to the Lebesgue measure supported on Qq, cf. [19, §3.2].

Let A\ — X\g and (A° — A\g)/e — Ay. Selecting then in (2) appropriate oscillating
test functions ¢ = ¢. one can pass to the limit recovering the weak forms of the
equations derived in Section 3l For example, selecting ¢.(x) = ey(z)b(z/¢c), ¢ €

C5°(9), bly) € C35,(Q) vields

// (Vo0 (z)+p(z,y)-V 4Oy )qlz(x)dyalxqt/Q o Vywo(z,y)-Vyby)y(z)dyde =

(94) ~ / /Q (e )y

This can be seen to be a weak form of (23) and (21). Selecting further ¢.(z) = ¥ (x)
can be seen, after some careful technical analysis, to recover (51), (52)) and (54).
The above implies that as long as (v°)? +w32 # 0, Ao, A1, v and wg can only be
those constructed in Section[3l This does not however rule out the possibility that
vY and wq are both trivial (equivalently, the two-scale limit u(x,y) is identically
zero). Therefore additional two-scale compactness type arguments are required, cf.
[19, Lemma 8.2]. In fact, following literally the argument of Zhikov one observes

that the two-scale compactness of the eigenfunctions does hold, i.e. wu. 2 u(zx,y),
where = denotes strong two-scale convergence, in particular there is a convergence
of norms:

(95) llue —u(z,2/e)||L2(0) — 0 as € — 0.

However, this in turn does not rule out the possibility of ||uc|| — 0 with the nor-
malization (92), which requires a separate analysis.

We announce here a partial result with this effect, postponing detailed discussions
for future.

Theorem 5.1. Let \g be not an eigenvalue of the Dirichlet problem in Qq, i.e.

Ao ;é)\jD,jZ 1, see (25). Then
(i) In the above setting, necessarily, S(Xo) > |Q1|Xo, i.e. there are gaps de-
veloped for small enough € in the spectrum, containing in the limit at least

{A:8(0) <[Qu]A}
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(i) If B(Xo) = |Q1|ro, necessarily u(x,y) Z 0. Consequently, A1 can only be
one of those described by (57). The eigenfunctions converge strongly, in
particular (95) holds. For fized Ao and A1, for small enough e the multiplic-
ity of the eigenvalues X\¢ near A = \g + e\ coincides with the multiplicity

of v as an eigenvalue of (51), (52).

We remark that the above statement does not provide a full analogue of Hausdorff
convergence of the spectra as in the double porosity case [19, Thm 8.1]. It does
ensure however the existence of the gaps (on Figure [2, ()\]D,ujﬂ), j > 1) and of
the spectrum accumulation near the left ends p;, j > 1, of the “bands” [u;, /\jD].
However it does not clarify whether the “rests” of the bands, (uj,)\f ] could be
accumulation points. We conjecture that they could. For a chosen Ag = p; there
exist infinitely many A\ = )\gn) according to (57), (56), and )\gn) — 400 as n — 00.
On any band, for any small enough & there exists a finite but infinitely increasing
number N(g) of eigenvalues according to (85). The issue is hence, in a sense,
whether e)\ﬁn) may become of order one for large n (n ~ N(¢g)). For AY” ~ ek
according to v ~ 71 and hence, formally, the solutions v° of the homogenized
equation (51) becomes oscillatory on the scale z/¢'/2. One can attempt deriving
asymptotic expansions similarly to those in Section 3, involving this new scale. A
preliminary analysis has shown that those have formal solutions near every point
inside the band. More detailed analysis is beyond the scope of the present work.

APPENDIX A. DERIVATION OF THE LIMIT EQUATION FOR vyg.

81)1 /81}1 / 821}1
- dy = — | —n;dy = dy,
T 6‘nm Y r 833]- i Q1 Gacjayj Y

(50) transforms to

821}1 ow, Jwy
A, \ dy — -1 dy.
(Azvo + Aovo)|Q1] "‘/Q1 90y, Y /F (8ny + 3nx) v

Taking into account (41) and (38) this becomes

Since

821]0 (9Nk
Ay A dy =
(Azvo + Aovo)|Q1] + 92,021 Jo, 0y, Y
(9’[)() ON awl
Al S d d

Since n(y) =1 on T,

(A.2) / nn; dy = / n;dy = 0.
r r

We introduce homogenized matrix Ahom = (Ahom);’ w1 by (53). According to (46)

we have

ow, oo OR
A. —dy = — M, dy —dy+ A — dy.
(4.3) r Ony Y Ox; Jr 8ny v /8ny y+ A r Ony Y
Substituting (A.2) — (A.3) into (A.1) yields
(A.4) — div A"V ,00 = v\ + K ov" in Q,

J ax]
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with aR op
V(Al):/\0|Q1|7)\1/Faidy /Fﬁnydy
and
ON oM ;
A5 /c-:/ N ay f/ i dy.
(4.5) ! Q1 dy; r Ony

Lemma A.1. v(\1) depends on Ay with a non-zero linear coefficient.

Proof. We estimate the linear coefficient
OR

T 6ny

Ci=—

dy.

Note that

77 2
- A - A1 = ,

0
where G@) and G%D have been used. Thus

oP
r Ony,

with positive constant C (depending on the choice of )\0). |

Corollary 1. (i) If Ao = 0 then n(y) =1 and hence C = |Qo|.
(1) According to (48) we also have the representation

(A.6) V() :CA1+/\0(|Q1|+/Q Pdy).

Lemma A.2. AllK; defined by equal zero.

I/()\l) :C)\1+)\0|Q1| — dy

Proof. First we prove an auxiliary identity, namely

OM; on
A. Iy — —— | dy = 0.
(A7) /F(any77 Mjany) y=0
Notice for this that the left-hand side is
/(AMn M;An) dy = /Q”d—— %dy
0 ! 0 8yﬁ Qo ayj 7

where equations (47) and (26) have been used. Since n(y) =1on T

o’ / 2
dy = nnldy:/n-dy:O,
/Qo dy; r’ r’
which finishes the proof of (A.7).
Then consider M
— [ Nn;dy — / J
/ ! r ony

which, according to (42) and (A.7), yields

(A.8) ic—/N de/Mj8 dy.

ony

Since N and N; are both harmonic in Qo,

ON
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Using and (43) we obtain

(A.10) /M] an, dy = / Nja
Substitution of (A.9) and (A.10) into (A.8) proves the lemma. ]

Finally we come to the formulation of homogenized problem for the function vy,
which comes from (A.4) and boundary condition (4), resulting in (5I)-(52]).

APPENDIX B. PROOF OF LEMMA [3.3]

We look for vy, w1, v9,ws in the form

(B.1) vi(z,y) = c(2)Vi(y),

(B.2) wny) = c@Wily) + 2D 20,
®.3) (i) = claaly) + P ),
(B.4) wali ) = clWaly) + 2D 20y,

where ¢ is an arbitrary smooth function in 2 and V;, W;, Zi(k),Pk, i1=12, k=
1,..,n, are functions to be found.
Applying differential operator .A° given by (60) to (63) in 25 we obtain

div (aSVWE*) + AepWE =

=AYV 4+ €% [ cAVa(y) + e AyPi(y) + 2% +
Oxk oYk

82
(B.5) + & ( 2,0y, + Azvr + onl) + 52(Aac1}2 + A1v1 + Aov2) + 63)\11)2}
0Y;j

y=2
Applying next A° to in Qf we obtain
div (a5VW:) + AEpEWE* =

:{50( [(Ay +20)W1 + M) + = de Y +)\o)Z<k)+26¢ )+

*w
' ((Ay + Xo)wa + 28%_8;]_ + Azwo + /\1w1> +
9% ws :
(B.6) + & ( 97,0y, -+ Agwi + /\1w2) +€3Amw2}

y==2
Evaluating the jumps of conormal derivatives on ['*, we obtain
owy oW o (0 OV
1_50(8ny 8"y> seret

Qe
on on oSk
o fows o | oc [z P
te (C{ on, 8ny} * oan { oy T Bn, TV ) et
9 (Ows  Owi  Ovs
(B-7) te (any + Ong 8n1)

On the other hand function W/ is required to be continuous, i.e we have

(B.S) W1=V1 on F,

0

Qe

3 Owa
re T €
xEF anz

zele’
yerl
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(B.9) z®M =0 on T,
(B.10) Wy =V on T,
(B.11) Z2(k) =P, on I.

Equating to zero the term of order e~! in (B.5) and the term of order €% in (B.7),
we obtain problem for V;:
oV 09

(B.12) AV =0 in Qi a5 =

= T
On,  Ony on

A solution to this problem exists since (¢) = 0 and we can present it as:

(B.13) Vi=V+A4,

where < 171 >=0 and A is a constant which will be determined later.
Equating to zero the term of order €° in (B.6), and using (B.8), (B.9) we obtain

problems for Z{k)

(B.14) (A, + )2 = 72%5 in Q, 2®=0 on T,
k
which admits an explicit solution
k
(B.15) 2{7(y) = —yo(y),
and for W,
(B].G) (Ay + )\0)W1 = —)\1(]5 in Qo, Wl = Vl on TI.
A solution to the latter exists if and only if
0 ~
®1)  n= [vigtay=- [ [WiPay=- [ [V9iPay,
r Ny Q1 Q1
and we can present it in the following way:
(B.18) Wi =W, + A,

where Wl solves problem (B.16) with V; replaced by 171 (a solution exists for the
same reason), and 7 solves (26) (a solution exists since (¢) = 0). Notice that

0
Ao(n) = —/FaTndy;éO,
y

otherwise Ag would be a solution of (36) which contradicts to the assumptions of
this section.

Equating to zero the term of order €% in and the term of order ¢! in (B.7),
we obtain problems for Vs and Pj. For Vy we have:

. Ve  OWy

B.19 AV =0 — =

( ) uV2 i G, on,  Ony
A solution to this problem exists if and only if

Wy W
r 8ny T 3ny

on TI.

B.2 = Al —
(B.20) 0 dy + /F on, dy,

and consequently

(B.21) A= o)™
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The problem for Py, has the form:

oy op, 09zM
B.22 A =—-2— — = — T.
( ) +Pr(y) o in Q, o, on, niyV; on
Solvability condition for this problem has the form
v, oz
B.23 2/ —dy :/ — V| dy.
( ) Q1 ayk r 6ny '
The left hand side of (B.23) can be transformed as follows,
(B.24) / 2% dy = —2/ ni V1 dy.
Q1 ayk r

On the other hand, for the right hand side of ,

YA 0
/ 3 L — V| dy = / (-Z/k¢ - nkV1> dy =
T ny T 8ny

(B.25) = / (—ykavl — nkV1> dy = —2/ ni V1 dy.
r ony, r

Here we used (B.15), (B.22) and the integration by parts. Comparing (B.24) and

(B.25) we see that solvability condition (B.23) is satisfied. Finally W, and ZQ(k) are
arbitrary smooth functions satisfying (B.10) and (B.11). O
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