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ABSTRACT. We �nd a condition for weights on the edges of a graph which insures that the Ihara zeta function has a 3-term determinant
formula. Then we investigate the locations of poles of abelian graph coverings and compare the results with random covers. We discover
that the zeta function of the random cover satis�es an approximate Riemann hypothesis while that of the abelian cover does not.

1. INTRODUCTION

Acknowledgements: 1 2.
The idea of weights associated to an edge of a graph is a natural one in applications such as
� electrical networks: resistance, capacitance in a wire corresponding to an edge;
� random walks: probability to move along a given edge;
� quantum graphs: each edge is an interval with a given length and a Schrödinger equation (see [5]).

We considered the Ihara zeta function � .u; X; �/ of a (�nite) weighted graph X with weight � in our paper [8]. In Section
2 of the present paper, the �rst object is to see whether there is a condition for edge weights of a graph which will allow us to
prove a weighted analog of the Ihara three term determinant formula for the zeta function. We will �nd such a condition. We
require �.e�1/ D 2��.e/; where e�1 denotes the edge in the opposite direction from directed edge e. This condition allows us
to prove the weighted analog of the Ihara determinant formula. See Theorem 1. The theorem involves an adjacency matrix that
is a function of the complex variable u. One might ask whether graphs arising in nature satisfy the condition �.e�1/ D 2��.e/,
however.
At the end of Section 2, we will �nd an analog of the prime number theorem for graphs with positive integer edge weights

satisfying the perhaps more natural condition that �.e�1/ D �.e/.
In Section 3, we consider abelian unweighted graph coverings. An abelian unweighted graph covering Y over X means

that the covering is normal with abelian Galois group. For an d-sheeted covering to be normal, there must be d covering
isomorphisms (forming the Galois group) preserving the covering projection from Y down to X: Section 3 begins with the
observation that, for abelian graph coverings, the situation is similar to the case of weighted graphs satisfying the condition
�.e�1/ D 2��.e/: In the two cases, one has the same sort of formula for the reciprocal of zeta as det.I �W /, whereW is given
either by De�nition 6 or De�nition 13. Moreover, the proof of the Ihara formula for the Artin-Ihara L-function corresponding to
a character of an abelian Galois group is essentially the same as the proof of Theorem 1. There is some similarity in adjacency
matrices. Compare De�nition 7 with that in Theorem 4.
The main part of Section 3 gives the results of some of our experiments on the locations of poles of zeta functions of large

abelian graph coverings. The question is: Do the pole locations for these abelian covers look anything like the pole locations
for random graph coverings? For the Zm � Zn coverings of X D 2 loops with an extra vertex on 1 loop which we consider, the
graph theory analog of the Riemann hypothesis, formulated in [8] and Part III of [14], is visibly false (see Figure 7). However,
for the example of a random cover of the same base graph considered here, the Riemann hypothesis appears to be approximately
true (see Figure 9). The Riemann hypothesis for the Ihara zeta function � .u; X/ of a graph X says that if R is the closest pole
to 0 (necessarily positive) of � .u; X/; then � .u; X/ is pole-free when R < juj <

p
R:

The reciprocal of the zeta function of an unweighted graph is det.I � uW0/, where W0 is from De�nition 4. Thus our
experiments outlined above are related to experiments on the spectrum of W0 for large covers of a �xed base graph X which
have been performed by Angel, Hoory and Friedman [1] who call W0 the "non-backtracking adjacency matrix". Moreover
Angel, Hoory and Friedman have obtained a way of computing the spectrum of the analog of the W0�edge matrix for the
universal cover eX of the base graph X . They conjecture that the new (i.e., not arising from the base graph) spectrum of the
W0�edge matrix for a random d-cover should approach this region as d !1: This is related to Alon conjecture's for regular
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graphs. See Friedman [4]. They note that 1=
p
R is the spectral radius of the W0 operator for eX . Thus an approximate version

of the Riemann hypothesis stated above is a consequence of the conjecture of Angel, Hoory, and Friedman for irregular covering
graphs of a �xed base graph.
One can also ask whether the spectrum of the W0�edge matrix has anything to do with the Girko circle law (see Bai [2]).

Consider a set of random n� n real matrices with entries independent and with the standard normal distribution. Then, for � in
the set of spectra of the matrices, as n !1; the Girko circle law says that the quantity �p

n becomes uniformly distributed on
the unit disk � C. Our experiments, some of which appear in section 3 as �gures 7 and 9, do give rise to regions that appear
to be 2-dimensional, but these regions are de�nitely not the entire unit disk. Of course, we are looking at the poles of � .u; Y /
when Y is a large cover of a small �xed base graph X: One wonders what would happen if X itself were a large random graph.
Also one wonders what happens for directed graphs or for zeta functions allowing backtracking. Note also that Figure 2 in [8]
shows the poles of the Ihara zeta function for a random graph (as produced by Mathematica) and the poles are clustered near
the Riemann hypothesis circle.
One can then ask whether there are Galois covers of a �xed base graph that mimic the behavior of random covers. One

would not expect them to be abelian or even solvable covers of a �xed base graph if one expects things to be similar to the
case of regular graphs. Here we refer to the construction of Ramanujan graphs by Margulies and independently by Lubotzky,
Phillips and Sarnak [11]. The group involved in this latter paper, was the special linear group of 2�2 matrices with determinant
1 over a �nite �eld. One might then ask whether such "random" covers exhibit any properties of expanders. Finally one would
want to study the connections with quantum chaos. Is there some analog of the work on spacings of zeros of zetas for irregular
graphs? See Terras [16] for some background on arithmetical quantum chaos.
The weighted zeta functions that we consider should be compared with those investigated by Smilansky in [12]. These zeta

functions come from a similar W -matrix but this time allowing backtracking.
We wish to thank Joel Friedman, Shlomo Hoory, Uzy Smilansky, and Brian Winn for interesting discussions while we were

writing this paper.

2. WEIGHTED GRAPHS AND THEIR ZETA FUNCTIONS

Let X be a graph. We make our usual assumptions (�nite, connected, undirected, not necessarily regular or simple).
Suppose X has jV j vertices and jE j undirected edges. Orient the edges arbitrarily and obtain 2jE j oriented edges labeled

(2.1) e1; e2; � � � ; ejE j; ejE jC1 D e�11 ; :::; e2jE j D e
�1
jE j:

Assume in this section that our graph X comes with a given weight or length function �.e/ attached to directed edges e; or
equivalently to pairs of vertices. Write .X; �/ to denote the weighted graph. Viewing the function � as a length, it is natural to
use it to de�ne the length of a path or walk in X: A path C in X is a word in the directed edges: C D a1 � � � as; where a j is a
directed edge of X: We will write e 2 C if e D a j for some j .

De�nition 1. The length of a path C in X is �.C/ D
X
e2C

�.e/:

It might be natural for some applications to replace the sum in the preceding de�nition by a product. Although the product
variant �ts easily into our multivariable edge matrix theory, we will not consider this possibility here.
The Ihara zeta function for a graph X has been considered by many authors. In particular, see our paper [8] for a similar

point of view. Other references are Bass [3], Hashimoto [6], Kotani and Sunada [9], Stark and Terras [14], and [17].
�Primes� [P] in X are equivalence classes of closed backtrackless tailless primitive paths P . Let a path C have the form

C D a1a2 � � � as , where a j is an oriented edge of X . The path C is backtrackless if aiC1 6D a�1i , for all i . Tailless means that
as 6D a�11 : The equivalence class [C] is the set

(2.2) [C] D fa1a2 � � � as; a2a3 � � � asa1; ::: ; asa1 � � � as�1g :

[P] is primitive means P 6D Dt , for any integer t � 2 and path D in X . In short, a prime is an analog of a primitive closed
geodesic in a Riemannian manifold. Length is minimized.
Here rX will denote the rank of the fundamental group of X: We have rX � 1 D jE j� jV j: Then rX is the number of edges

deleted from X to form a spanning tree.
Our Usual Hypotheses.
We assume from now on that the graph X is �nite connected, with rank rX > 1, and that X has no degree 1 vertices.
If .X; �/ is a weighted graph, the Ihara zeta function of a weighted graph is de�ned as in [8].
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FIGURE 1. The edges of K 0

4 are labeled. Inverse edges are eiC5 D e
�1
i :

De�nition 2. The Ihara zeta function of a weighted graph .X; �/ is de�ned, assuming all weights �.e/ are positive, for juj
small and u =2 .�1; 0/; to be

� .u; X; �/ D
Y
[P]

�
1� u�.P/

��1
:

Here the product is over all primes [P] of X:

Let 0 < " � �.e/; for all edges e. Then one can see that the in�nite product for the weighted Ihara zeta function converges
when juj � .2 jE j/�1=": If we do not assume that all weights are positive, there is a problem proving convergence of the
in�nite product.
Clearly when � D 1, meaning the function such that �.e/ D 1 for all edges e in X , we have � .u; X; 1/ D � .u; X/; the

original Ihara zeta function. If the weights are all positive integers and � .e/ D �
�
e�1
�
, we can realize the weighted zeta of

.X; �/ as an original Ihara zeta of an unweighted in�ated graph X� . To create X� , we just add �.e/ � 1 extra vertices on
edge e of X and then view the new graph as unweighted. From the point of view of adjacency matrices, one might be tempted
instead to add �.e/� 1 edges between the starting and ending vertices of e: That would disastrously change the zeta function,
however.

Example 1. Forget our assumption that the rank rX is greater than 1 and let X D K3; a 3-cycle: Suppose that the edges are
directed counterclockwise around the cycle. We write the weights associated to the various edges as the letters of the alphabet
in order. It follows that

� .u; X; �/ D
�
1� uaCbCc

� �
1� udCeC f

�
:

In this case there are only 2 primes.

Example 2. Let X D K 0

4; the graph obtained by deleting an edge from K4; with the edges directed as in Figure 1. We write
the weights associated to the various edges as the letters of the alphabet in order.

Using formula (2.8) below and Scienti�c Workplace, one sees that for weights � D .a; b; c; d; e; f; g; h; i; j/; we have
� .u; K 0

4; �/
�1 D

det

0BBBBBBBBBBBBBB@

�1 ua 0 0 0 0 0 0 0 ua
0 �1 ub 0 0 0 0 0 0 0
0 0 �1 uc uc 0 0 0 0 0
ud 0 0 �1 0 0 0 0 0 0
0 ue 0 0 �1 ue 0 0 0 0
0 0 0 0 0 �1 0 0 u f 0
0 0 0 0 0 ug �1 0 0 ug
0 0 0 0 0 0 uh �1 0 0
0 0 0 0 ui 0 0 ui �1 0
0 0 0 u j 0 0 0 u j 0 �1

1CCCCCCCCCCCCCCA
D uaCbCcCdC jCe � uaCdC j � ugChC j � uaCbCcCd � ubCcCe C ubCcCgChC jCe

CuaCbCcCdCgChC j � u fCeCi � u fCgChCi C uaCdC fC jCeCi C u fCgChC jCeCi

CuaCbCcCdC fCeCi C ubCcC fCgChCeCi C uaCdC fCgChC jCi C uaCbCcCdC fCgChCi

�4uaCbCcCdC fCgChC jCeCi C 1:
Next consider what happens if the weights satisfy the condition that leads to an Ihara formula for zeta: �1.e�1j / D 2��1.e j /;

for all edges e j : Then � .u; K
0

4; �1/
�1 D
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D
1

ueuaubucud

0BB@
u10ue � u8ue � u6uaud C u10uaud � u4u2eubuc C u8u2eubuc

�u2u2au2dubuc C u6u2au2dubuc C ueuaubucud � u2eu2bu2cuaud
�u2au2bu2cu2due C u4u2eu2bu2cuaud C u2u2au2bu2cu2due
C2u6ueuaubucud C u8ueuaubucud � 4u10ueuaubucud

1CCA :
If instead the weights satisfy the more natural condition of the prime number theorem when the weights are positive integers:

�2.e�1j / D �2.e j /; for all edges e j ; then � .u; K
0

4; �2/
�1 D

D u2eu2au2d � 2ueubuc � 2ueuaud C u2eu2bu2c C u2au2bu2cu2d

�2uaubucud C 2u2au2dueubuc

C2u2bu2cueuaud � 4u2eu2au2bu2cu2d C 2u2euaubucud C 1:

Now recall another determinant formula for the unweighted zeta. First we make the de�nition of the adjacency matrix AX
and the QX matrix for this case.

De�nition 3. For an unweighted graph X; the adjacency matrix AX is an n � n matrix with i; j entry equal to the number
of edges from vertex i to vertex j if i 6D j and twice the number of loops at vertex i if i D j . The degree -1 matrix QX is the
diagonal matrix whose j th diagonal entry is (�1C degree of jth vertex).

The generalization of Ihara's formula (proved for irregular graphs by Hashimoto and Bass) says

(2.3) � .u; X; 1/�1 D .1� u2/rX�1 det
�
I � AXu C QXu2

�
;

where rX D jE j� jV jC1 D m�nC1 is the rank of the fundamental group of X . We gave a version of Bass's proof of Ihara's
formula in [8].
Question: Can we generalize formula (2.3) to weighted graphs?
To do this, we need to use the basic facts about the edge zeta function from [8].

De�nition 4. The edge matrix W for graph X is a 2 jE j � 2 jE j matrix of complex numbers, with a; b entry corresponding to
the oriented edges a and b: This a; b entry is the complex variable wab if edge a feeds into edge b and b 6D a�1 and the a; b
entry is 0 otherwise. De�ne the 0,1 edge matrix W0 by setting all non-0 entries of W equal to 1.

Angel, Friedman and Hoory [1] call W0 the "non-backtracking adjacency matrix." Given a path C in X , which is written as
a product of oriented edges C D a1a2 � � � as; the edge norm of C is

(2.4) NE .C/ D wa1a2wa2a3 � � �was�1aswasa1 :

De�nition 5. The edge Ihara zeta function is de�ned for suf�ciently small
��we f �� by

� E .W; X/ D
Y
[P]
.1� NE .P//�1 ;

where the product is over primes in X:

De�nition 6. If .X; �/ is a weighted graph with weight function �; de�ne the 2 jE j�2 jE j diagonal matrix R� to have diagonal
entry corresponding to oriented edge e given by u�.e/�1: If W0 is the 0,1 edge matrix from De�nition 4, the weighted graph
W�matrix W� is de�ned to be

(2.5) W� D uR�W0:

Here we assume that u is a complex variable with u =2 .�1; 0]:

Note that W1 D uW0: In [8], we wrote W1 for what we now call W0: This change of notation seems necessary, if we are to
write W� as in formula (2.5). Now plug the W� formula (2.5) into the edge zeta and you get the weighted Ihara zeta function ;
i.e.,

(2.6) � E .W�; X/ D � .u; X; �/:

Equivalently, you could specialize wab D u.�.a/C�.b//=2:
From [8], we have the simplest determinant formula for the edge zeta function

(2.7) � E .W; X/�1 D det.I �W /:

From formulas (2.5), (2.6), and (2.7), we immediately obtain the simplest determinant formula for the weighted Ihara zeta
function with W� as in De�nition 6:

(2.8) � .u; X; �/�1 D det.I �W�/
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We used formula (2.8) to compute the weighted zeta in Example 2 above.
Now the question is: how can we generalize the Ihara type formula (2.3) to weighted graphs? For this we need a restriction

on the weights. There are 2 conditions on the weights that we will assume in order to obtain an Ihara formula.

Condition 1. The weight satis�es �.e�1/ D 2� �.e/:

This condition may not appear to be so natural, but we need it to obtain a 3-term Ihara determinant formula for the zeta
function. If in addition, we want to show that the in�nite product de�ning zeta converges, we must avoid having negative
weights and thus must assume another condition.

Condition 2. The weight satis�es 0 < �.e/ < 2:

Note that if we want �.e�1/ D 2 � �.e/ D �.e/; then we need �.e/ D 1; for all edges, the case of the original Ihara zeta
function.
To give an Ihara 3-term determinant formula for our weighted graph, we need to de�ne a version of the adjacency matrix

which depends on the variable u:

De�nition 7. The adjacency matrix A� for the weighted graph .X; �/ is de�ned as the jV j � jV j matrix with a; b entry

.A�/a;b D
X
e

a!b

u�.e/�1

where the sum is over edges e starting at vertex a and ending at vertex b.

Assuming �.e�1/ D 2 � �.e/; this adjacency matrix is only symmetric if �.e/ D 1; for all edges e. In this case, it is the
usual adjacency matrix. The adjacency matrix is Hermitian if juj D 1; again assuming �.e�1/ D 2� �.e/:

Example 3. K 0

4 D K4 minus an edge; with weights �.e j / D j
5 D 2� �.e

�1
j /; j D 1; 2; 3; 4; 5.

Number the vertices starting at the leftmost and proceeding clockwise in Figure 1. Then the adjacency matrix is

A� D
1
u

0BBB@
0 u

1
5 0 u

6
5

u
9
5 0 u

2
5 u

0 u
8
5 0 u

3
5

u
4
5 u u

7
5 0

1CCCA :
It follows that

� .u; K
0

4; �/
�1 D .1� u2/ .u � 1/ .u C 1/ .2u3 C u C 1/

�
2u3 C u � 1

�
:

The shock is that, despite the fractional weights, we once more have the reciprocal of a polynomial. The reader should then
attempt to check that the paths in the graph have integer lengths. One wonders what the factorization means in the context of
Part II of [14].
Next we change the weight on the �rst edge.

Example 4. K 0

4 D K4 minus an edge; with the weights of the previous example except that �.e1/ D
2
5 D 2� �.e

�1
1 /:

Now
� .u; K

0

4; �/
�1 D .1� u2/

�
2u6 � u4 C 4u8 � 2u

11
5 � u

19
5 � u

21
5 � 2u

29
5 C 1

�
:

The inverse zeta is no longer a polynomial. It has a positive real root at approximately u D 0:604 07.

Example 5. K 0

4 D K4 minus an edge; with the weights �.e1/ D 1
2 ; �.e2/ D 1; �.e3/ D 5

4 ; �.e4/ D
5
4 ; �.e5/ D

3
4 ; and

�.e�1i / D 2� �.ei /; i D 1; 2; :::; 5:
Then

� .u; K
0

4; �/ D � .u; K
0

4; 1/ D .1� u
2/ .u � 1/

�
2u2 C u C 1

� �
u2 C 1

� �
2u3 C u2 � 1

�
:

This is also a surprise at �rst. The weighted zeta equals the unweighted zeta. Since �.e/C �.e�1/ D 2; it suf�ces to check
that �.P/ D the number of edges in P; for closed paths P generating the fundamental group of K 0

4. Thus it suf�ces to check
this for P D e1e�15 e4 and for P D e2e3e5, using the labeling in Figure 1. Alternatively, we can use the (multi-) path zeta
function of [14] and [8]. It requires specializing the z-variables as in formula (18) on page 181 of Part II of [14] or formula
(4.1) on page 187 of [8]. Then one specializes the w-variables as in De�nition 6. The resulting 4� 4 matrix for our example
is not the same as the matrix for the unweighted graph, but it is similar to that matrix.
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Example 6. One can similarly consider the weighted graph consisting of 2 loops on a single vertex with weights a on loop 1,
b on loop 2 and 2� a; 2� b on the inverse edges, respectively. Then it is easily seen that

� .u; K
0

4; �/
�1 D .1� u2/

�
3u2 C 1�

�
ua C u2�a C ub C u2�b

��
:

If we set a D x; b D 1, for 0 < x < 2, we �nd that the smallest positive root of the inverse zeta approaches 0 as x ! 0.

Note that ��
d.uA�/
du

�
uD1

�
v;w

D
X
e

v!w

�.e/:

Here the sum is over the directed edges e with initial vertex v and terminal vertex w. This is the usual adjacency matrix of a
weighted graph.

Next we imitate the Bass proof of the Ihara 3 term determinant formula given in [8]. As in that paper, set J D
�

0 IjE j
IjE j 0

�
:

Then de�ne the jV j � 2 jE j start matrix S and the jV j � 2 jE j terminal matrix T by setting

sve D
�
1; if v is starting vertex of edge e;
0; otherwise,

and

tve D
�
1; if v is terminal vertex of edge e;
0; otherwise.

The matrix Q is as before in De�nition 3. The matrices R� and W� are from De�nition 6. The weighted adjacency matrix A�
is from De�nition 7.

Proposition 1. (Some Matrix Identities) Using the preceding de�nitions, the following formulas hold. We write tM for the
transpose of the matrix M. We always assume the weight � satis�es Conditions 1 and 2. This means �.e�1/ D 2 � �.e/ and
all weights are positive.
1) W� D uR�W0:
2) A� D S R� tT :
3) S J D T; T J D S; Q C IjV j D S t S D T tT :
4) W� C uR� J D uR� tT S:
5).R� J /2 D I:

Proof. 1) One sees easily from the de�nitions that

.W�/e; f D u�.e/ .W0/e; f D .uR�W0/e; f :

2) Consider
.SR� tT /a;b D

X
e
sa;eu�.e/�1tb;e:

The right hand side is a sum over edges e such that a is the initial vertex and b is the terminal vertex of e, which is the a; b entry
of A� in De�nition 7.
3) See [8] or part II of [14]. Note that we are using the labeling in formula (2.1).
4) Multiply the analogous formula for unweighted graphs on p. 186 of [8] by uR� :
5) Since we have assumed �.e�1/ D 2� �.e/; R� has the form�

U 0
0 U�1

�
:

It is then easy to check the formula. �

Now we can prove the Ihara determinant formula for weighted graphs.

Theorem 1. A Weighted Graph Version of Ihara's Theorem. With De�nition 7 of the adjacency matrix A� of a weighted
graph and assuming that the weight � satis�es conditions 1 and 2 (i.e., �.e�1/ D 2 � �.e/ and all weights are positive), we
have

� .u; X; �/�1 D .1� u2/r�1 det
�
I � A�u C Qu2

�
:
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Proof. We follow the method of Bass as developed in Part II of [14], proceeding in a similar way to the case of abelian groups
when all irreducible group representations are one-dimensional. In the following identity all block matrices are .jV j C 2 jE j/�
.jV j C 2 jE j/; where the 1st block is jV j � jV j : Use the preceding proposition to see that�

IjV j 0
R� tT I2jE j

��
.1� u2/IjV j uS

0 I2jE j �W�

�
(2.9)

D

�
IjV j � uA� C u2Q uS

0 I2jE j C uR� J

��
IjV j 0

R� tT � u t S I2jE j

�
:

Then we have an identity for 2m � 2m matrices

(2.10) I2jE j C uR� J D
�

IjE j uU
uU�1 IjE j

�
D

�
IjE j 0
uU�1 IjE j

��
IjE j uU
0

�
1� u2

�
IjE j

�
:

Take the determinant of formula (2.9) to complete the proof using formula (2.10) and the fact that jE j � jV j D r � 1. �

Remark 1. Given a graph X with positive integer weights � satisfying � .e/ D �
�
e�1
�
; de�ne ��.m/ to be the number of

primes [P] in X such that �.P/ D m: Assume that the rank of the fundamental group r is greater than 1. Assume the weights
are all positive integers such that � .e/ D �

�
e�1
�
. The number R is the closest pole of � .u; X; �/ to the origin. If 1 is the

g:c:d: of the lengths of primes in X and 1 divides m, the prime number theorem says

(2.11) ��.m/ �
1

m
R�m; as m !1:

To see why this is true, recall that the unweighted graph X� , is obtained from X by adding �.e/ � 1 extra vertices on each
edge e of X: There is a 1-1 correspondence between primes [P] in X and primes ['.P/] in X� : The length of the prime '.P/
in the unweighted graph is the same as �.P/: The zeta function � .u; X�; 1/ is the same as � .u; X; �/ : Moreover the number
��.m/ of primes [P] in X such that �.P/ D m is the same as the number �1.m/ of primes ['.P/] in X� of ordinary length
m: Note also that the greatest common divisor of lengths of primes in X is the same as the g:c:d: of lengths of primes in X� .
And, �nally, R, the closest pole of � .u; X; �/ to the origin is the same as that for � .u; X�; 1/: The prime number theorem for
the weighted graph X follows from that for X� proved in [8], pages 181-182.
Note that the prime equivalence class [P] from formula (2.2) in the weighted graph X has fewer elements in general than

the equivalence class ['.P/] in the unweighted graph X� : Thus the generating function formula from u ddu log � .u; X; �/ has a
slight difference from the unweighted formula. See formula (2.13) in [8], page 182.
This leaves us with many questions. Is there a prime number theorem for graphs with arbitrary positive weights satisfying

condition 1? We leave this question for a future work.

3. ZETA FUNCTIONS OF ABELIAN COVERINGS OF UNWEIGHTED GRAPHS

Here we consider normal graph coverings with abelian Galois group. The general theory is worked out in Part II of [14], .
See also [17].
From now on we consider only unweighted graphs X and Y: However, we will �nd that many of the methods of the

preceding section still apply and lead to analogs of Proposition 1 and Theorem 1.
Consider an unrami�ed �nite covering graph Y of X . If our graphs had no multiple edges or loops, this would simply mean

that there is a covering map � : Y �! X such that � is an onto graph map and for each x 2 X and each y 2 ��1.x/; the set
of points adjacent to y in Y is mapped by � 1-1, onto the set of points adjacent to x in X . However, to make the fundamental
theorems of Galois theory work in general, we need a more precise de�nition.
Each edge of X is arbitrarily assigned a direction. A covering map � not only takes vertices of Y to vertices of X but also

takes edges of Y to edges of X . Directions are then assigned to edges of Y so that � gives a direction preserving map of edges.
Further it is required that � gives an isomorphism between neighborhoods of Y and neighborhoods of X . This is necessary
to handle loops in X . For instance in Figure 2, �circular neighborhoods� of a selected vertex of X and the three vertices of
Y projecting down to it are shown. Within the neighborhood of the vertex on X , a loop yields both an �outbound� edge and
�inbound� edge in the neighborhood. Thus in each of the three neighborhoods of the lifted vertex in Y , there should be both
outbound and inbound edges projecting to the loop.
If Y has d sheets, then there are at most d distinct covering automorphisms.

De�nition 8. A normal d-sheeted (unrami�ed) graph covering Y of X is an d-sheeted graph covering with d covering auto-
morphisms � : Y �! Y: The Galois group G D Gal.Y=X/ is the set of all these � 0s:
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FIGURE 2. A 3-sheeted covering. The fuzzy area in X is a neighborhood of a selected vertex. The 3 fuzzies
in Y are all of its inverse images under the projection � .

Example 7. The cube is a quadratic cover of the tetrahedron. See Figure 3. The dashed lines represent a spanning tree in
the tetrahedron. The cube has 2 copies of this tree forming the 2 sheets of the covering. This is a Galois covering with Galois
group of order 2.

In general one obtains d-sheeted unrami�ed normal covers Y of X by taking d copies of the spanning tree for XI the vertices
of Y are labeled .x; � /; x 2 X; � 2 Gal.Y=X/: An element � 2 Gal.Y=X/ acts on vertices of Y via �.x; � / D .x; �� /: And

� .path from .a; �/ to .b; � //
is the path from .a; ��/ to .b; �� /. A permutation representation of the Galois group Gal.Y=X/ tells us how to lift edges of
X to Y . Of course we only need to think about the edges of X left out of a spanning tree (i.e., the edges corresponding to
generators of the fundamental group of X ).
In Part II of [14] we show that there are analogs of all the basic theorems of Galois theory. In particular, there is a 1-1

correspondence between subgroups H of Gal.Y=X/ and intermediate covers eX to Y=X . Of course, the concept of intermediate
cover needs a careful de�nition. For example, given H a subgroup of Gal.Y=X/, the points of the top graph Y have the form
.x; � /; x 2 X; � 2 Gal.Y=X/: The points of the intermediate graph eX have the form .x; H�/; x 2 X; H� 2 HnG: There is
an edge between .x; H�/ and .u; H�/ in eX iff there are h; h0 in H such that .x; h�/ and .u; h0�/ have an edge between them
in Y .
There are also analogs of the facts about the splitting of prime ideals in extensions of algebraic number �elds.

De�nition 9. Let Y=X be a d-sheeted unrami�ed �nite normal cover. Suppose that the projection map is � : Y �! X and
that [D] is a prime in Y: Then for some f � 1; �.D/ D C f ; where [C] is a prime of X. We say [D] is a prime of Y over the
prime [C] of X. We call f D f .Y=X; D/ D the residual degree of D with respect to Y=X. And we set g D g.Y=X; D/=the
number of primes [D] in Y over [C] in X. In this paper, e D e.Y=X; D/ D rami�cation index D 1.

As in number theory, if Y=X is a normal covering, we have the formula

e f g D d:

Example 8. Splitting of Primes in the Cube/K4: Look at Figures 4 and 5.
In Figure 4, there are two prime cycles R0 and R00 in the cube over the prime cycle R in the tetrahedron. In this case

f D 1; g D 2; e D 1.
In Figure 5, there is only one prime cycle P 0 in the cube over the prime cycle P in the tetrahedron. For this case, f D 2;

since P 0 is the lift of P2 and g D 1. It is always true that the rami�cation index e D 1.
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FIGURE 3. The cube is a quadratic covering of the tetrahedron. A spanning tree for the tetrahedron is
indicated with dashed lines. Two copies of this tree are seen in the cube.

FIGURE 4. Picture of a prime which splits completely; i.e., f D 1; g D 2; e D 1. A path R of length 4 is
shown in the tetrahedron. There are 2 prime cycles R0; R00 in the cube above R; each with the same length
as R.

The graph theory Chebotarev density theorem (see Theorem 3 below) says that the density of primes of X with f D 1 is 12
while that with f D 2 is also 12 .

De�nition 10. Let C be a path in X that starts at vertex a of X: Given � 2 Gal.Y=X/ the path C lifts to a unique path eC in
Y of the same length as C starting at .a; �/I suppose the lift ends at .a; � /: If D represents a prime of Y over C that starts at
.a; �/ and has the residual degree f , then D is the unique lifting of C f to Y . The Frobenius automorphism of the prime [D]
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FIGURE 5. Picture of splitting of prime with f D 2; g D 1; e D 1. There is 1 prime cycle P 0 in the cube
above P in K4 and P 0 is the lift of P2:

is the Galois group element taking sheet � to sheet � I i.e.,

(3.1) [Y=X; D] D ���1 2 Gal.Y=X/:

For any path C, in X, starting at vertex a; the normalized Frobenius automorphism is �.C/ D � , where C lifts to a unique
path eC in Y of the same length as C starting at .a; 1/ and ending at .a; � /: Here 1 denotes the identity in Gal.Y=X/:
Example 9. Frobenius Automorphisms for the Primes in the Last Example.
Consider again the cube over the tetrahedron. Computing the Frobenius of either of the primes in the cube in Figure 4 yields

the trivial element of the Galois group, while the Frobenius of the prime in Figure 4 is the non-trivial element of the Galois
group.

The proof of the following proposition is not hard. See Proposition 2 in Part II of [14].

Proposition 2. Some Properties of the Frobenius Automorphism.
Suppose Y=X is a normal graph covering. Then we have the following facts.
1) The Frobenius is independent of the choice of D in the equivalence class [D].
2) If � 2 Gal.Y=X/; then [Y=X; � � D] D � [Y=X; D]��1:

Suppose Y=X is normal with abelian Galois group G: Then any irreducible representation � of G is a character (i.e., a
one-dimensional representation); i.e., if T is the multiplicative group of complex numbers of absolute value 1, � : G ! T
is a group homomorphism. Let bG be the set of all these characters. Then ��bG�� D jGj : See [15] for more information on
representations of �nite groups.

De�nition 11. Assume that Y=X is a normal graph covering with abelian Galois group G: The Artin L-function for � 2 bG
and u 2 C with juj suf�ciently small is

L.u; �; Y=X/ D
Y

[C] prime
in X

�
1� � .[Y=X; D]/ u�.C/

��1
;

where we recall (3.1) de�ning the Frobenius. The product is over primes [C] of X; with [D] any prime of Y over [C].

The following two de�nitions give an analog of De�nition 6.

De�nition 12. R� is the diagonal 2m � 2m matrix with diagonal entry for oriented edge e given by �.�.e//:

De�nition 13. W� D uR�W0; where W0 is the 0,1 edge matrix from De�nition 4.

Theorem 2. Properties of the Artin L-Function for Abelian Coverings.
Assume Y=X is normal with abelian Galois group G:
1) If � D 1, the trivial character, then the L-function is the ordinary Ihara zeta function:

L.u; 1; Y=X/ D � .u; X/:

2) If Y=X is normal with abelian Galois group G; the Ihara zeta function of Y factors as a product of Artin L-functions:

� .u; Y / D
Y
�2bG L.u; �/:
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Here the product is over all � 2 bG:
3) L.u; �; Y=X/�1 D det.I �W�/:

Before stating the Chebotarev density theorem for abelian covers, we need a de�nition. Here we are imitating the discussion
Stark gives of the Chebotarev theorem in number �elds in [13].

De�nition 14. If R denotes the closest pole (necessarily real) of � .u; X/ to the origin and S is a set of primes in X, de�ne the
analytic density �.S/ to be

�.S/ D lim
u!R�

0BB@
X
[C]2S

u�.C/X
[C]
u�.C/

1CCA D lim
u!R�

0BB@
X
[C]2S

u�.C/

log � .u; X/

1CCA

D lim
u!R�

0BB@
X
[C]2S

u�.C/

� log .R � u/

1CCA :
Here the sums are over primes [C] in X and the limit is taken over real values of u less than R:

Theorem 3. Graph Theory Chebotarev Density Theorem for Abelian Coverings.
Suppose the graph X is not a cycle graph. If Y=X is abelian and g is a �xed element in the Galois group G D G.Y=X/

� f [C] prime of X j �.C/ D g g D
1
jGj
:

Here �.C/ is the normalized Frobenius for C from De�nition 10.

The proofs of these things (for general, not necessarily abelian, covers) can be found in [17] and Part II of [14]. You can
�nd analogs of all the properties of the usual Artin L-functions listed in Lang [10]. For example, one has the usual induction
property for the induced representation of Gal.Y=X/ from a representation of a subgroup. It is this property which is essential
for the proof of Theorem 2.
We de�ne some matrices associated to character � of G, where Y=X is a normal covering with abelian Galois group G.

De�nition 15. For � ; � 2 G and vertices a; b of X; de�ne the A.� ; � / matrix to be the jX j � jX j matrix given by setting the
entry A.� ; � /a;b D the number of directed edges in Y from .a; � / to .b; � /: Here every undirected edge of Y has been given
both directions.

One sees easily that

(3.2) A.� ; � / D A.1; ��1�/:

Thanks to formula (3.2), we may de�ne the jX j � jX j matrix A.� / by

(3.3) A.� / D A.1; � /:

De�nition 16. If Y=X is a normal covering with abelian Galois group G; � 2 bG and A.� / is given by De�nition 15 along
with formulas (3.2) and (3.3), de�ne the � modi�ed adjacency matrix A� to be the jX j � jX j matrix:

A� D
X
�2G

�.�/A.� /:

Theorem 4. Diagonalization of the Adjacency Matrix of an Abelian Normal Cover. Suppose that Y=X is normal with abelian
Galois group G. Let bG be the complete set of characters of G. Then, the adjacency matrix of Y is similar to a block diagonal
matrix with diagonal entries A� ; as � runs through bG:
Proof. Here we use facts from Terras [15]. The adjacency operator on Y may be viewed as a coming from the induced
representation I nd Gfeg1: To see this, list the vertices of Y as .x; � /; x 2 X; � 2 G: This decomposes AY into jX j � jX j blocks,
with blocks given by De�nition 15. Now formula (3.2) says that A.� ; � / D A.��1�/; ; for � ; � 2 G. This means � 2 G is
acting on the function A : G ! R via �.�/A.� / D A.��1�/; for � ; � 2 G: By de�nition, � is the left regular representation
of G: This is equivalent to the representation I nd Gfeg1 on G induced up from the trivial representation on the subgroup feg,
where e is the identity of G.
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A basic fact from representation theory (see p. 256 of [15]) says that when G is abelian we have the decomposition:

(3.4) I nd Gfeg1 �D
X
�2bG

��:

Here the symbol �D means that the 2 representations are equivalent; i.e., one is obtained from the other by uniform change of
basis. The direct sum on the right is just the diagonal matrix formed from the � 2 bG: It follows from formula (3.4) that AY is
similar to a diagonal matrix with entries A� corresponding to � 2 bG: �
Now we have an L-function analog of formula (2.3).

Theorem 5. Ihara Theorem for Vertex Artin L-Function.
Assume Y=X normal with abelian Galois group G: For � 2 bG; we have

L.u; �; Y=X/�1 D .1� u2/r�1 det.I � A� u C Q u2/:
Here A� is the � modi�ed adjacency matrix, Q is the diagonal degree -1 matrix, r is the rank of the fundamental group of X.

Proof. The Bass proof works just as in the weighted graph case of the previous section. See Part II of [14] or [17]. �

Example 10. The Cube over the Tetrahedron. For our example in Figure 3, the Galois group G.Y=X/ D f1; � g: We write
a0 D .a; 1/ and a00 D .a; � /; for a 2 X: The representations of the Galois group are bG D f1; �g; where �.�/ D �1.
Then the matrices are

A.1/ D

0BB@
0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

1CCA and A.� / D

0BB@
0 0 1 1
0 0 0 0
1 0 0 1
1 0 1 0

1CCA :
So

A1 D

0BB@
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1CCA D the adjacency matrix of X
and

A� D

0BB@
0 1 �1 �1
1 0 1 1
�1 1 0 �1
�1 1 �1 0

1CCA :
It follows that

� Y .u/ D L.u; �/� X .u/;
L.u; �/�1 D .1� u2/.1C u/.1C 2u/.1� u C 2u2/3;
� X .u/�1 D .1� u2/2.1� u/.1� 2u/.1C u C 2u2/3:

You can view these formulas as providing a factorization of an 8� 8 determinant as a product of two 4� 4 determinants.
In a subsequent paper we will use graph coverings of directed graphs to explain the factorization of � K4.u/

�1; which does
not cover anything in the usual sense of the word �cover.� See Horton [7] for more information on Ihara zeta functions of
directed graphs. Irregular examples involving much larger determinants can also be worked out. See the end of Section 3 of
Stark and Terras [14].
Next consider some larger examples and the distributions of roots of the Ihara zeta functions involved.

Example 11. Zm � Zn�Cover of 2-Loops Plus Vertex.

Note that if g:c:d:.m; n/ D 1, then Zm � Zn is cyclic by the Chinese remainder theorem. Our �rst example is a .Zm � Zn/-
cover of the graph which consists of 2 loops with an extra vertex on 1 loop. Figure 6 shows the case m D n D 3.
We compute the edge L-functions associated to the characters �r;s.x; y/ D exp

�
2� i

� r x
m C

sy
n
��
: Look at the base graph in

Figure 6. We lift edge a up a unit in the x-coordinate; i.e., the normalized Frobenius �.a/ D .1; 0/; and we lift edge b up a
unit in the y-coordinate; i.e., �.b/ D .0; 1/: Figure 7 shows the poles of the Ihara zeta function for the .Z63 � Z64/- cover of
the base graph in Figure 6. The Riemann hypothesis is visibly very false.
For our next example, we consider a random cover of the same base graph.

Example 12. Random Cover of 2 Loops with an Extra Vertex on 1 Loop.
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FIGURE 6. The top graph is a Z23- cover of 2 loops with an extra vertex on one loop. The spanning tree below
is a dashed line. The sheets above are drawn in the same way. It appears to be a torus graph with some extra
decoration.

To produce �gures analogous to Figure 7 for a random cover of the base graph consisting of 2 loops with an extra vertex
on one of them, we can use the formula for the edge matrix W0 of the covering graph in terms of the start matrix S and the
terminal matrix T from Proposition 1 above. It is also convenient to write S D .MN /; T D .NM/ where M and N have
jE.Y /j columns. It follows that

(3.5) W0 D
� tNM tNN � I
tMM � I tMN

�
:

Now arrange the columns of M so that the columns corresponding to lifts of a given edge of the base graph are listed in
order of the sheet on which the lift starts. And the lifts of a given vertex of the base graph are also listed together in the order
of the sheets where they live. Then if d is the number of sheets of our cover,

M D

�
Id Id 0
0 0 Id

�
and N D

�
A 0 Id
0 B 0

�
;

where A and B are permutation matrices. Suppose the number of sheets of the cover is d D 3 and the lift of edge a corresponds
to the permutation .12/ while the lift of edge b corresponds to the permutation .13/ in the symmetric group S3 of permutations
of the 3 sheets. Then we get the graph in Figure 8.
We used Matlab to plot the reciprocals of the eigenvalues of W0 for covers in which A and B are random permutation

matrices (found using the command randperm in Matlab). When d D 700, we obtain Figure 9. If we compare this with the
picture found by Angel, Friedman, and Hoory [1] for random covers of the base graph K 04; which is K4 � edge; remembering
that they are plotting the reciprocals of the poles of the Ihara zeta function of the covering graph, we see that there is much
similarity, though their R is 2=3, while ours is approximately :4694:
When we compare poles in the last 2 examples, we �nd some similarities. Both regions look 2 dimensional. Neither looks

uniformly distributed on the unit circle. The region inside the green circle of radius
p
R is what we call the "non-Riemann

Hypothesis region" - except for R (and possibly �R). There is not much there for the random cover. The worst exceptional
(i.e., non-Riemann hypothesis and not from the base graph) poles in Figure 9 are the four mysterious real poles near the circle
of radius

p
R: They appear in Figure 9 but sometimes, in similar experiments, we see only the left two exceptional real poles,

sometimes only the two on the right, and sometimes no exceptional real poles.
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FIGURE 7. The points are the poles of the Ihara zeta function for a Z63 �Z64- cover of 2 loops plus a vertex
on 1 loop. The circles are centered at the origin and have radii 1pq ;

p
R; 1pp ; where q D 3; p D 1; and the

closest pole to the origin R is approximately 0:4694: The Riemann hypothesis is very false as there are many
poles well inside the circle of radius

p
R:

So one could conjecture that the Riemann hypothesis is approximately true for a large random cover. However the abelian
cover has lots of bad poles. By a theorem of Kotani and Sunada [9], the non-real poles of the Ihara zeta function must lie
between circles of radius p�1=2 and q�1=2; where p C 1 D minimum degree and q C 1 D maximum degree.
Question: Let X be your favorite irregular base graph. Is there any family of groups Gn; with jGnj ! 1; as n ! 1;

with Galois coverings Yn=X having Galois group Gn such that the zeta functions � .Yn; u/ satisfy the Riemann hypothesis; i.e.,
all poles u 6D R satisfy juj �

p
R? The graphs Yn could perhaps be viewed as "Ramanujan covers" in the spirit of Lubotzky,

Phillips, and Sarnak [11].
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FIGURE 8. The random 3-cover of 2 loops with and extra vertex with the lift of a corresponding to the
permutation .12/ and the lift of b corresponding to the permutation .13/. The dashed line in the base graph
is the spanning tree and the dashed lines in the cover are the sheets of the cover (from top to bottom in the
order: sheet 2, sheet 1, sheet 3).
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FIGURE 9. The points are poles of the Ihara zeta function of a random 700 cover of the graph consisting of 2
loops with an extra vertex on one of the loops. The stars are the poles which are also poles of the zeta function
of the base graph. The circles are centered at the origin and have radii 1pq ;

p
R; 1pp ;where q D 3; p D 1; and

the closest pole to the origin R is approximately 0:4694: The Riemann hypothesis looks approximately true
as very few poles u 6D R are inside the circle of radius

p
R and the poles inside this circle are very close to

the circle except for 4 real poles. The new (i.e., not from the base graph) real non-Riemann hypothesis poles
seem to appear sporadically. Sometimes they are only on the left, sometimes only on the right, sometimes
missing altogether.
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