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Abstract

The purpose of this paper is to show that, for a large class of band-dominated
operators on `∞(Z, U), with U being a complex Banach space, the injectivity of all
limit operators of A already implies their invertibility and the uniform boundedness
of their inverses. The latter property is known to be equivalent to the invertibility
at infinity of A, which, on the other hand, is often equivalent to the Fredholmness
of A. As a consequence, for operators A in the Wiener algebra, we can characterize
the essential spectrum of A on `p(Z, U), regardless of p ∈ [1,∞], as the union of
point spectra of its limit operators considered as acting on `∞(Z, U).
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1 Introduction

We study linear operators on the space Y ∞ = `∞(Z, U) of all bounded two-
sided infinite sequences with values in a complex Banach space U . If M is
a two-sided infinite band matrix, with entries mij in the space L(U) of all
bounded linear operators on U and sup ‖mij‖ < ∞, then, after identifying
elements of Y ∞ with infinite column vectors, M acts on Y ∞ as what we call
a band operator. The closure of the set of all band operators in L(Y ∞) is
denoted by BDO(Y ∞); we call its elements band-dominated operators.
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Let K(Y ∞,P) denote the closure in L(Y ∞) of the set of all operators A ∈
L(Y ∞) which are induced by a matrix M = [mij] with only finitely many
non-zero entries. It is not hard to see that K(Y ∞,P) is a closed two-sided
ideal in the Banach algebra BDO(Y ∞), and we say that a band-dominated
operator A is invertible at infinity if its coset A+K(Y ∞,P) is invertible in the
factor algebra BDO(Y ∞)/K(Y ∞,P). Clearly, the coset A + K(Y ∞,P) only
depends on the asymptotic behaviour at infinity of the matrix entries of (the
matrix that induces) A. The study of this asymptotic behaviour requires the
study of the so-called limit operators of A. The idea is to associate A with a
family, denoted by σop(A), of linear operators on Y ∞, where each member of
the family represents part of the behaviour of A at infinity. The elements of
σop(A) are called the limit operators of A. It is known [7] that, for a fairly large
class of band-dominated operators A, invertibility at infinity of A is equivalent
to what we call uniform invertibility of σop(A), which means

(C1) All limit operators of A are injective;

(C2) All limit operators of A are surjective;

(C3) The inverses of the limit operators of A are uniformly bounded.

By looking at the structure of σop(A), in particular using its compactness prop-
erties, it is now possible to reduce the set of conditions {(C1), (C2), (C3)} to an
equivalent subset. In [7] it is shown that (C3) always follows from {(C1), (C2)},
so that {(C1), (C2), (C3)} = {(C1), (C2)}. In [1] we then went on and par-
tially removed (C2) under the additional assumption that A = I + K with
an operator K whose matrix entries form a collectively compact set in L(U).
Note that all results mentioned so far are shown for operators on `∞(ZN , U)
with N ∈ N and U a complex Banach space. The aim of this paper is to show
that, under the same assumption of A = I + K as was made in [1] but now
for operators on the axis, i.e. for N = 1, condition (C2) can be fully removed
so that {(C1), (C2), (C3)} = {(C1)} then. The remaining condition (C1) is
commonly known as Favard’s condition in the literature [18,19,4].

Historic remarks. The story of limit operators and Favard’s condition starts
in spaces of functions on a continuous rather than discrete domain. The typ-
ical setting was originally that of a (ordinary or partial) differential operator
with almost periodic coefficients. First of all, Favard [3] showed that the con-
dition that was subsequently named after him guarantees the existence of
almost periodic solutions to a system of ODE’s with almost periodic coeffi-
cients and an almost periodic right-hand side. Later, Muhamadiev [10] proved
that Favard’s condition implies the invertibility of Favard’s almost periodic
differential operator considered as operator from BC1(R,Rn) to BC(R,Rn).
Extensions of Muhamadiev’s result to wider classes of almost periodic opera-
tors can be found in [11,12,18,19,4], for example. For operators A with almost
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periodic coefficients, the connection between A and its limit operators is a lot
stronger than in more general settings. In particular, all limit operators of A
are norm-limits of translates of A, including the operator A itself.

In [10], Muhamadiev went on to study matrix ordinary differential operators
on the real line with merely bounded and uniformly continuous coefficients
which lead him to define limit operators as limits of translates of the operator
A with respect to what we call P−convergence now (see §2.2). In this wider
setting he states the theorem that injectivity of all limit operators, that is
Favard’s condition, implies their invertibility as operator from BC1(R,Rn)
to BC(R,Rn). We remark that this result is very much in the spirit of our
paper; it can, in fact, via reduction to an equivalent matrix integral operator,
be shown to follow from our Proposition 4.1. (We note that Muhamadiev
provided no proof of his result in [10] so that we do not know whether our
methods of argument are a generalization of what he had in mind.) Later on,
Muhamadiev [11] and Shubin [19] studied elliptic differential operators A with
almost periodic coefficients. For infinitely smooth coefficients, Shubin provides
a proof of Muhamadiev’s result [11] that the Favard condition is equivalent
to the invertibility of A on BC∞(RN ,R). In [12], Muhamadiev showed that,
for Hölder continuous coefficients, Favard’s condition is equivalent to A being
Φ+-semi Fredholm between an appropriate pair of spaces of bounded Hölder
continuous functions. Similarly and much more recently, Volpert and Volpert
show that, for a general class of scalar elliptic partial differential operators A
on an unbounded domain but also for systems of such, the Favard condition
is equivalent to the Φ+-semi Fredholmness of A on appropriate Hölder [21,22]
or Sobolev [20,22] spaces. Lange and Rabinovich [6] state a corresponding
result about semi Fredholmness of band-dominated operators in the discrete
scalar-valued `∞(ZN ,C) setting.

In the last 10 years, limit operators of band-dominated operators on discrete
`p spaces with values in an arbitrary complex Banach space U and p ∈ (1,∞)
have been extensively studied by Rabinovich, Roch and Silbermann [15,16].
The second author [7,8] then extended some of their results to p ∈ {1,∞}.
The reformulation of the so-called ’richness’ property of a band-dominated
operator A in terms of a particular compactness property of the operator
spectrum σop(A) of A in [7] then sparked a symbiosis of the limit operator
method with the generalised collectively compact operator theory that was
introduced by the first author and Zhang in [2]. The first outcomes of this
symbiosis are [1] and the current paper.

Contents of the paper. In §2 we introduce the classes of operators that
we are interested in. We then define what a limit operator is and quote the
result that connects the set of all limit operators to invertibility at infinity.
Concluding surjectivity from injectivity whilst working with a family of op-
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erators (rather than just a single operator) is one of the main threads of the
generalised collectively compact operator theory introduced by the first au-
thor and Zhang in [2]. Here we quote a slightly weakened version of a theorem
from [2] that will do most of the work for us in §3. Roughly speaking, the
strategy to conclude surjectivity of a given operator T from its injectivity is
to embed it into a set of injective operators, B, that enjoys a type of collective
compactness condition and to approximate T by a sequence of operators, for
example periodic operators, for which injectivity does imply surjectivity, this
sequence being such that its ’limit operators’ (in a certain sense) are in the
set B.

In §3 we state and prove the main theorem of this paper. In a nutshell, the
plot of the proof is as follows. Let A be subject to (C1). Then we prove (C2)
in these three steps:

a) If B ∈ σop(A) and B has a surjective limit operator C, then B is
surjective itself.

b) Every B ∈ σop(A) has a self-similar limit operator C.

c) Self-similar limit operators (of A, including those of B) are surjective.

By a self-similar operator we mean an operator C ∈ L(Y ∞) with C ∈ σop(C).

Finally, in §4 we study a class of operators which are band-dominated on all
spaces Y p := `p(Z, U) with p ∈ [1,∞] simultaneously. For this particular class
of operators, the so-called Wiener algebra W , we demonstrate how the study
of Fredholmness and the essential spectrum of A ∈ W with respect to any of
the spaces Y p profits from our new results in Y ∞.

2 Preliminaries

Let p ∈ [1,∞] and U be a complex Banach space. By Y p := `p(Z, U) we denote
the usual `p−space of two-sided infinite sequences (..., x(−1), x(0), x(1), ...)
with values x(i) in the Banach space U . If we only write the letter Y then the
corresponding statement holds with any space Y p, p ∈ [1,∞], in place of Y .

2.1 Operators on Y and corresponding matrices

By L(Y ) we denote the set of bounded linear operators on Y . To every operator
A ∈ L(Y ) we will associate a two-sided infinite matrix [A] = [aij] in the
canonical way; that is, by the following construction. For k ∈ Z let Ek :
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U → Y and Rk : Y → U be extension and restriction operators, defined by
Eky = (..., 0, y, 0, ...), for y ∈ U , with the y standing at the kth place in the
sequence, and by Rkx = x(k), for x = (x(j))j∈ZN ∈ Y . Then the matrix entries
of [A] are defined as

aij := RiAEj ∈ L(U), i, j ∈ Z, (1)

and [A] is called the matrix representation of A. Conversely, given a matrix
M = [mij]i,j∈Z with entries in L(U), we will say that M induces the operator

(Bx)(i) =
∞∑

j=−∞
mij x(j), i ∈ Z (2)

if the sum converges in U for every i ∈ Z and every x = ((x(j))j∈Z ∈ Y and
if the resulting operator B is a bounded mapping Y → Y .

It is not hard to see that if M is an infinite matrix and B is induced, via
(2), by M then the matrix representation [B] from (1) is equal to M . It does
not work quite like that the other way round: For p = ∞, there are operators
A ∈ L(Y p) (e.g. see Example 1.26 c in [8]) for which the matrix representation
M := [A] induces an operator B that is different from A. However, for every
A ∈ L(Y p) with p ∈ [1,∞), the matrix M := [A] with entries (1) induces the
operator B = A.

We say that A ∈ L(Y ) is a band operator and write A ∈ BO(Y ) if it is induced
by a matrix [mij] with only finitely many non-zero diagonals, and we write
A ∈ BDO(Y ) and say that A is band-dominated if A can be approximated in
the operator norm by band operators.

2.2 Invertibility at infinity and limit operators

For an arbitrary set S ⊆ Z, let PS ∈ L(Y ) denote the operator of multipli-
cation by the characteristic function of S. Some frequently used special cases
are P := P{0,1,...}, Q := I − P , Pn := P{−n,...,n} and Qn := I − Pn for n ∈ N.
We then put P := {P1, P2, ...}, define

K(Y,P) := {T ∈ L(Y ) : ‖QnT‖ → 0, ‖TQn‖ → 0 as n →∞}

and say that a sequence A1, A2, ... ∈ L(Y ) is P−convergent to A ∈ L(Y ) if
‖T (An − A)‖ → 0 and ‖(An − A)T‖ → 0 as n → ∞ for every T ∈ K(Y,P).

From [8, Proposition 1.65] we know that An
P→A if and only if the sequence
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(An) is bounded and ‖Pk(An − A)‖ → 0 and ‖(An − A)Pk‖ → 0 as n → ∞
for every k ∈ N.

Let K0(Y,P) denote the set of all operators T ∈ L(Y ) which are induced by
a matrix [mij] that has only finitely many non-zero entries. Clearly, K0(Y,P)
is a dense subset of K(Y,P) since ‖T − PnTPn‖ → 0 as n → ∞ for all
T ∈ K(Y,P). The set K(Y,P) is a closed two-sided ideal in the Banach algebra
BDO(Y ). We say that an operator A ∈ BDO(Y ) is invertible at infinity if its
coset A + K(Y,P) is invertible in the factor algebra BDO(Y )/K(Y,P). The
property of invertibility at infinity is of interest for different reasons. On the
one hand, it is sufficiently close to Fredholmness to be useful for the study
of Fredholmness. On the other hand it is relevant to determining stability of
approximation methods in numerical analysis.

For the study of invertibility at infinity, we introduce so-called limit operators.
To do this, let Vk ∈ L(Y ) denote the operator of shift by k ∈ Z acting by
(Vkx)(i) = x(i− k) for every x ∈ Y and i ∈ Z. Given A ∈ L(Y ), we say that
B ∈ L(Y ) is a limit operator of A if there exists a sequence h = (h(n))n∈N ⊆ Z
with |h(n)| → ∞ and

V−h(n)AVh(n)
P→ B

as n → ∞. In this case we also write Ah for B. The set of limit operators
Ah of A with respect to all sequences h going to ±∞ is denoted by σop

± (A),
respectively. We also put σop(A) := σop

+ (A) ∪ σop
− (A) and call it the operator

spectrum of A. An operator A ∈ L(Y ) is called rich if every sequence h of
integers going to infinity has a subsequence g such that the limit operator Ag

exists. Here is the statement that connects invertibility at infinity with the
study of limit operators.

Proposition 2.1 [8, Theorem 1] A rich operator A ∈ BDO(Y ∞) with a
preadjoint (meaning that A is the adjoint of another operator that acts on
a predual space of Y ∞) is invertible at infinity if and only if the following
conditions hold:

(C1) All limit operators of A are injective;

(C2) All limit operators of A are surjective;

(C3) The inverses of the limit operators of A are uniformly bounded.

Remark 2.2 It is well-known that, for A ∈ L(X) with a Banach space X in
the case that X is the dual of another space Z, the statements
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(i) A is the adjoint of an operator B ∈ L(Z).

(ii) The adjoint A∗ maps Z, understood as a subspace of its second dual
Z∗∗ = X∗, into itself.

(iii) A is continuous in the weak∗ topology on X.

are equivalent.

The statement of Proposition 2.1 also holds with Y ∞ replaced by Y p for
p ∈ [1,∞) in which case the condition about the existence of a preadjoint
is even unnecessary. We will however focus on the case when p = ∞ because
then it is possible to slim the set of conditions {(C1), (C2), C(3)} down quite
considerably. More precisely, in Theorem 2 of [8] it was shown that (C3) always
follows from (C1)+(C2), which is why we can delete (C3) in the formulation
of Proposition 2.1. The purpose of this paper is to show that, for a large
class of operators A ∈ BDO(Y ∞), already condition (C2), and hence (C3),
follows from (C1). For such operators, even both conditions (C2) and (C3)
can be removed in Proposition 2.1. The remaining condition, (C1), is often
[18,19,5,4] referred to as Favard’s condition after Jean Aimé Favard’s work [3].

Definition 2.3 We say that an operator A ∈ L(Y ∞) is subject to Favard’s
condition, (FC), if every limit operator of A is injective on Y ∞.

2.3 Collective compactness

A family K of bounded linear operators on a Banach space Z is called collec-
tively compact if, for any sequences (Kn) ⊆ K and (zn) ⊆ Z with ‖zn‖ ≤ 1,
there is always a subsequence of (Knzn) that converges in the norm of Z. It is
immediate that every collectively compact family K is bounded and that all
of its members are compact operators.

Definition 2.4 For A ∈ BDO(Y ), let M(A) ⊆ L(U) refer to the set of all
matrix entries (1) of [A]. Now let UM(Y ) denote the set of all K ∈ BDO(Y )
for whichM(K) is collectively compact in L(U). Moreover, by UM$(Y ) denote
the set of all rich operators K ∈ UM(Y ) and put

I + UM$(Y ) := {I + K : K ∈ UM$(Y )}.

Remark 2.5 a) Rabinovich and Roch study Fredholmness and the Fredholm
index for operators in the class I + C$

E in [13], where C$
E denotes the set of

all rich band-dominated operators (on E = `p(Z, U) with a complex Banach
space U) which are induced by infinite matrices with compact entries in L(U).
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This is clearly a superclass, precisely: a proper superclass iff dim U = ∞, of
I + UM$(Y ).

b) It should be mentioned that, if A ∈ I + UM(Y ), the invertibility at
infinity of A implies its Fredholmness [8, Proposition 2.15]. Together with
Proposition 2.1 and the main result of our paper, Theorem 3.1, this shows
that, for A ∈ I +UM$(Y

∞), the Favard condition (FC) implies Fredholmness
of A.

Lemma 2.6 If U is a finite-dimensional space then

I + UM$(Y ) = UM$(Y ) = UM(Y ) = BDO(Y ).

Proof. Let U be finite-dimensional. From Corollary 3.24 in [8] we know that
then every band-dominated operator is rich. Since L(U) is finite-dimensional
and M(K) ⊆ L(U) is bounded for every K ∈ BDO(Y ), we get that M(K)
is collectively compact, i.e. K ∈ UM(Y ).

We now present our main tool from the collectively compact operator theory
developed in §4 of [2]. Precisely, we give an adapted version of Proposition
5.17 in [1] that is a bit weaker but still sufficient for our purposes here.

Proposition 2.7 Let T ∈ BDO(Y ∞) and take a sequence Tn ∈ BDO(Y ∞),
n ∈ N, such that:

(a) Tn
P→T ;

(b) Tn injective ⇒ Tn surjective, for each n ∈ N;

(c)
⋃∞

n=1M(Tn − I) is collectively compact;

(d) there exists a set B ⊂ L(Y ∞), such that, for every sequence (k(m)) ⊂ Z
and increasing sequence (n(m)) ⊂ N, there exist subsequences, denoted
again by (k(m)) and (n(m)), and S ∈ B such that

V−k(m)Tn(m)Vk(m)
P→ S ∈ B as m →∞;

(e) every S ∈ B is injective.

Then T is invertible and, for some n0 ∈ N, Tn is invertible for all n ≥ n0, and

‖T−1‖ ≤ sup
n≥n0

‖T−1
n ‖ < ∞.
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3 Main result

Theorem 3.1 If (FC) holds for A ∈ I + UM$(Y
∞) then all limit operators

of A are invertible on Y ∞ and their inverses are uniformly bounded.

The rest of this section is devoted to the proof of Theorem 3.1. Since we
know from [8, Theorem 2] that condition (C3) of Proposition 2.1 follows from
(C1) and (C2), it remains to show that (C2) follows from (C1) alias (FC) if
A ∈ I + UM$(Y

∞). We break the proof of this fact down into the following
three propositions. But first we need two lemmas.

Lemma 3.2 [8, Proposition 3.104] If A ∈ L(Y ) is rich then σop
± (A) is se-

quentially compact with respect to P−convergence.

Lemma 3.3 Let A ∈ L(Y ) and B be an arbitrary limit operator of A.

a) If B ∈ σop
± (A) then σop(B) ⊆ σop

± (A), for σop
+ and σop

− respectively.

b) If A is rich then B is rich.

c) If A ∈ UM(Y ) then B ∈ UM(Y ).

Proof. a) This is Corollary 3.97 of [8].

b) Let A ∈ L(Y ) be rich and B ∈ σop(A). From Lemma 3.3 a) and [8,
Proposition 3.94] we know that {V−kBVk : k ∈ Z} ⊆ σop(A). By Lemma 3.2,
we get that {V−kBVk} is relatively P−sequentially compact. Together with
[8, Proposition 3.102] this shows that B is rich.

c) By the definition of a limit operator, the set M(B) is contained in the
closure of M(A). Consequently, M(B) is collectively compact if M(A) is
collectively compact.

Proposition 3.4 Let A ∈ I+UM$(Y
∞) and B ∈ σop

± (A). If (FC) holds for A
and if B has one surjective limit operator, C ∈ σop

± (B) (with the same choice
of + or − as for B), then B is surjective itself.

Proof. Suppose, without loss of generality, that B ∈ σop
+ (A). Then B = Ah for

some sequence h of integers h(1), h(2), ... → +∞. By our assumption, there
exists a surjective C ∈ σop

+ (B). By Lemma 3.3 a), we have that C = Ah̃ with
some integer sequence h̃(1), h̃(2), ... → +∞, and by Lemma 3.3 b) and c) we
know that C ∈ I + UM$(Y

∞).

By passing to subsequences, if necessary, we can always arrange that h̃(n−1) <
h(n) < h̃(n) for all n ≥ 2, with h̃(n)−h(n) → +∞ and h(n)− h̃(n−1) → +∞
as n → ∞. Now, for every n ∈ N, define g+(n) := h̃(n) − h(n) > 0 and
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g−(n) := h̃(n− 1)− h(n) < 0, and put

An := Vg−(n)QCV−g−(n) + Vg+(n)PCV−g+(n)

+ V−h(n)P{h̃(n−1),...,h̃(n)−1}AVh(n).

Our plan is now to check the conditions (a)–(e) of Proposition 2.7 with B = Ah

in place of T and with B = σop(A), in order to conclude that B is surjective.

(a) It is easy to see that An
P→Ah = B since V−h(n)AVh(n)

P→Ah.

(b) Since C is invertible it is Fredholm of index zero. So also D1 := PCP +
QCQ = C−PCQ−QCP is Fredholm of index zero since PCQ and QCP are
compact for C ∈ I +UM(Y ∞) (note that all entries of C− I are compact op-
erators and that C can be norm-approximated by band operators C ′ in which
case both PC ′Q and QC ′P have only finitely many non-zero entries). We
claim that the same is true for D2 := Vg−(n)QCQV−g−(n)+Vg+(n)PCPV−g+(n)+
P{g−(n),...,g+(n)−1} and every n ∈ N. Indeed, since

ker D2 = {(..., x−2, x−1, 0, ..., 0, x0, x1, ...) : (xi) ∈ ker D1},
im D2 = {(..., x−2, x−1, yg−(n), ..., yg+(n)−1, x0, x1, ...)

: (xi) ∈ im D1, yj ∈ U}

hold with the zeros and yj’s in the positions {g−(n), ..., g+(n) − 1} of the
sequence, respectively, we get that

dim ker D2 = dim ker D1 < ∞, codim im D2 = codim im D1 < ∞

and hence D2 is also Fredholm with the same index (namely zero) as D1. But
this proves that

An = D2 + Vg−(n)QCPV−g−(n) + Vg+(n)PCQV−g+(n)

+ V−h(n)P{h̃(n−1),...,h̃(n)−1}(A− I)Vh(n)

is Fredholm of index zero since all of QCP , PCQ and P{h̃(n−1),...,h̃(n)−1}(A− I)
are compact. So each An is surjective if injective.

(c) Clearly,

∞⋃

n=1

M(An − I) ⊆ M(A− I) ∪M(C − I)

is collectively compact in L(U) since A − I ∈ UM(Y ∞) by our premise and
C − I ∈ UM(Y ∞) by Lemma 3.3 c).
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(d) Moreover, if (k(m)) ⊆ Z is arbitrary and (n(m)) ⊆ N is increasing then,
since A and C are rich, there exist subsequences, denoted again by (k(m))
and (n(m)), and an operator D such that

V−k(m)An(m)Vk(m)
P→ D.

It is an easy exercise to check that D is either a translate of B or a limit
operator of B (in particular it may be a translate or limit operator of C). In
each of these cases D is a limit operator of A, and so D ∈ B.

(e) Every D ∈ B is injective by assumption (FC).

We have seen that conditions (a)–(e) of Proposition 2.7 are satisfied with
B := σop(A) and we therefore conclude that B is surjective.

Definition 3.5 We call C ∈ L(Y ) a self-similar operator if C ∈ σop(C).

Roughly speaking, we think of self-similar operators as containing a copy of
themselves, at infinity.

Remark 3.6 A concept that is related to self-similar operators is that of a
recurrent operator. An operator C ∈ L(Y ) is called recurrent [11] if, for every
limit operator D of C, it holds that σop(D) = σop(C). It is easy to see that, if
C is recurrent, then

a) All limit operators of C are self-similar.

b) All limit operators of C are recurrent.

c) The local operator spectra σop
+ (C) and σop

− (C) coincide with σop(C).

We also remark that, in the proof of the following proposition, we even show
the slightly stronger result that every rich operator has a recurrent limit op-
erator (namely the operator denoted by B′ in the proof). It is not difficult to
see that an element σop(B) of the partially ordered set (A,⊇) in the proof
below is maximal iff B is recurrent.

Proposition 3.7 Every rich operator B ∈ L(Y ) has a self-similar limit op-
erator C.

Proof. Let

A := { σop(B) : B ∈ σop(A) }

which is a partially ordered set, equipped with the order ’⊇’. To be able to
apply Zorn’s lemma to A, we have to check that its conditions are satisfied.
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So let B be a totally ordered subset of A, i.e.

B := { σop(B) : B ∈ σ }

for a subset σ ⊆ σop(A), such that for any two B1, B2 ∈ σ, we either have
σop(B1) ⊇ σop(B2) or σop(B2) ⊇ σop(B1).

On X := σop(A) we define the following family of seminorms. Let

%2n−1(T ) := ‖PnT‖, %2n(T ) := ‖TPn‖

for n = 1, 2, ... and every T ∈ X, and denote the topology that is generated on
X by {%1, %2, ...} by T . By [8, Proposition 1.65] and since ‖T‖ ≤ ‖A‖ for every
T ∈ X, convergence in (X, T ) is equivalent to P−convergence on X. Also,
since T is generated by a countable family of seminorms, the topological space
(X, T ) is metrizable. Therefore, the P−sequential compactness mentioned in
Lemma 3.2 is in fact P−compactness, by which we mean compactness in
(X, T ). In particular, X itself and all elements of B are compact sets in (X, T ).

Now put Σ := ∩B∈σσ
op(B). We claim that Σ is nonempty. Conversely, suppose

∅ = Σ =
⋂

B∈σ

σop(B).

Then

⋃

B∈σ

(X \ σop(B)) = X \ ⋂

B∈σ

σop(B) = X \ Σ = X

is an open cover of X. Since X is compact, there is a finite subset {B1, ..., Bn}
of σ such that

X =
n⋃

i=1

(X \ σop(Bi)) = X \
n⋂

i=1

σop(Bi)

so that ∩n
i=1σ

op(Bi) = ∅. But that is impossible since {σop(B1), ..., σ
op(Bn)}

is a finite subchain of B consisting of nonempty sets that contain one another.

So Σ 6= ∅. Take a

T ∈ Σ =
⋂

B∈σ

σop(B) ⊆ σop(A).

¿From Lemma 3.3 a) we know that σop(B) ⊇ σop(T ) for every B ∈ σ. So
σop(T ) ∈ A is an upper bound on the chain B.
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Now we can apply Zorn’s lemma to A and get that our partially ordered
set (A,⊇) has a maximal element, say σop(B′) with some B′ ∈ σop(A). Now
pick any C ∈ σop(B′). From Lemma 3.3 a) we get σop(B′) ⊇ σop(C). But the
maximality of σop(B′) means that σop(B′) = σop(C). So C ∈ σop(B′) = σop(C)
is a self-similar limit operator of A.

Proposition 3.8 If C ∈ I + UM$(Y
∞) is self-similar and subject to (FC)

then C is surjective.

Proof. Since C is self-similar, there is a sequence h = (h(n))n∈Z with |h(n)| →
∞ and V−h(n)CVh(n)

P→C as n → ∞. Suppose, for simplicity of our notations,
that h(n) → +∞ and h(n) > 0 for all n ∈ N. (The argument is completely
analogous if h(n) → −∞, where we can suppose that h(n) < 0 for all n ∈ N.)

For every n ∈ N, define Cn ∈ BDO(Y ∞) by

(Cnu)(i) := (CV−αh(n)u)(β),

i = αh(n) + β, α ∈ Z, β ∈ {0, ..., h(n)− 1},

so that Cn commutes with Vh(n).

We claim that this construction is such that Proposition 2.7 applies to C (in
place of T ) with B = σop(C) and therefore proves that C is surjective. So it
remains to check that conditions (a)–(e) of Proposition 2.7 are satisfied.

(a) It holds that Cn
P→C. This can be seen as follows. Fix an arbitrary m ∈ N.

For every D ∈ L(Y ∞), it is a simple consequence of the definition of the norm
in Y ∞ that

‖D‖ = sup
i∈Z

‖P{ih(n),...,(i+1)h(n)−1} D‖ for all n ∈ N.

Therefore, for every n ∈ N, it holds that ‖Pm(C − Cn)‖ = supi∈Z γ(m,n, i)
with

γ(m,n, i) := ‖P{ih(n),...,(i+1)h(n)−1}Pm(C − Vih(n)CV−ih(n))‖, i ∈ Z.

But then it is clear that ‖Pm(C − Cn)‖ → 0 as n →∞ since γ(m,n, 0) = 0,

γ(m,n,−1) = ‖P{−m,...,−1}(C − V−h(n)CVh(n))‖ → 0 as n →∞

and γ(m,n, i) = 0 for all i ∈ Z \ {0,−1} as soon as |h(n)| > m.

13



Analogously, for every n ∈ N, we have ‖(C −Cn)Pm‖ = supi∈Z δ(m,n, i) with

δ(m,n, i) := ‖P{ih(n),...,(i+1)h(n)−1}(C − Vih(n)CV−ih(n))Pm‖, i ∈ Z.

To see that supi∈Z δ(m,n, i) → 0 as n →∞, note that δ(m,n, 0) = 0,

δ(m,n,−1) = ‖P{−h(n),...,−1}(C − V−h(n)CVh(n))Pm‖ → 0 as n →∞

and, for all i ∈ Z \ {0,−1},

δ(m,n, i) = ‖P{ih(n),...,(i+1)h(n)−1}(C − Vih(n)CV−ih(n))Pm‖
≤ 2 sup

S,T
‖PT CPS‖ → 0

as n →∞ by [8, Theorem 1.42] and C ∈ BDO(Y ∞), where the supremum in
the last expression is taken over all sets S, T ⊂ Z with dist(S, T ) ≥ h(n)−m.

(b) By Corollary 6.8 in [1] and CnVh(n) = Vh(n)Cn we get that Cn is surjective
if injective.

(c) Clearly,

∞⋃

n=1

M(Cn − I) ⊆ M(C − I)

is collectively compact in L(U) since C − I ∈ UM(Y ∞).

(d) Let (k(m)) ⊆ Z be arbitrary and (m(n)) ⊆ N be monotonically in-
creasing. Write each k(m) as α(m)h(n(m)) + β(m) with α(m) ∈ Z and
β(m) ∈ {0, ..., h(n(m))− 1}. Then

Dm := V−k(m)Cn(m)Vk(m) = V−β(m)V
α(m)
−h(n(m))Cn(m)V

α(m)
h(n(m))Vβ(m)

= V−β(m)Cn(m)Vβ(m)

holds for each m ∈ N. If (β(m))m∈N has a bounded subsequence, then it
even has a constant subsequence, of value γ ∈ Z say, and the corresponding
subsequence of (Dm) converges to V−γCVγ. Being a translate of C ∈ σop(C) =
B, this operator is also in σop(C) = B. If (β(m))m∈N goes to infinity, then,
since C is rich, it has a subsequence for which the corresponding subsequence
of (Dm) is P−convergent to a limit operator of C, clearly also being an element
of B.

(e) All operators in B = σop(C) are injective by our assumption that (FC)
holds for C.
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4 The essential spectrum of operators in the Wiener algebra

Our main result from §3 is only valid in Y ∞. By this we mean that there
are examples of band-dominated operators all limit operators of which are
injective on Y p without all of them being surjective. But in this section we
study a class of operators, the so-called Wiener algebra, which are bounded
on all spaces Y p with p ∈ [1,∞] and for which it is possible to profit from our
Y ∞ results in the general Y p setting.

Let p ∈ [1,∞] and recall that an operator A ∈ L(Y ) is called a band operator
if it is induced by a banded matrix M . From the boundedness of A we get
that every diagonal dk of M is a bounded sequence of elements in L(U). We
then put

‖A‖W :=
+∞∑

k=−∞
‖dk‖∞ =

+∞∑

k=−∞
sup
j∈Z

‖aj+k,j‖L(U)

and denote byW the closure of BO(Y ) in the norm ‖.‖W . The setW , equipped
with the norm ‖.‖W , turns out to be a Banach algebra and is called the Wiener
algebra.

It is easy to see that ‖A‖L(Y ) ≤ ‖A‖W for all band operators A, so that the
closure of BO(Y ) in the ‖.‖W norm, i.e. W , is contained in the closure of
BO(Y ) in the operator norm, i.e. BDO(Y ). Not only are operators A ∈ W
bounded and band-dominated on all Y p, p ∈ [1,∞] simultaneously, one can
also show that if A is invertible on one of the spaces Y , its inverse A−1 is
automatically in W again and therefore acts as the inverse of A on all spaces
Y . Another important result is that all limit operators of A ∈ W , with respect
to any of the spaces Y , are also contained in W so that σop(A) is contained
in W and does not depend on the space Y under consideration.

The following two results follow immediately from Corollary 6.43 and 6.44 in
[1] and our Theorem 3.1. For illustrations of these results in the particular
case of a discrete Schrödinger operator and for a class of integral operators on
the axis, see the final two chapters of [1].

Proposition 4.1 Suppose A ∈ I + UM$(Y ) is in the Wiener algebra W and
A, if considered on Y ∞, has a preadjoint (acting on a predual space of Y ∞).
Then the following statements are equivalent:
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(FC) All limit operators of A are injective on Y ∞.

(i) All limit operators of A are invertible on one of the spaces Y .

(ii) All limit operators of A are invertible on all the spaces Y and

sup
p∈[1,∞]

sup
B∈σop(A)

‖B−1‖L(Y p) < ∞.

(iii) A is invertible at infinity on one of the spaces Y .

(iv) A is invertible at infinity on all the spaces Y .

(v) A is Fredholm on one of the spaces Y .

(vi) A is Fredholm on all the spaces Y .

Further, on every space Y it holds that

specess(A) =
⋃

B∈σop(A)

spec (B) =
⋃

B∈σop(A)

spec∞point(B). (3)

In equality (3) we denote by

spec (B) = {λ ∈ C : λI −B is not invertible on Y }

the (invertibility) spectrum of B, by

specess(A) = {λ ∈ C : λI − A is not Fredholm on Y }

the essential spectrum of A, and by

spec∞point(B) = {λ ∈ C : λI −B is not injective on Y ∞}

the point spectrum of B on Y ∞.

Remark 4.2 a) In [13], the Fredholm index of A (see our Remark 2.5 a for
the class of operators studied in [13]) is shown to be subject to

ind A = ind(PB+P + Q) + ind(QB−Q + P ) (4)

for an arbitrary choice of operators B± ∈ σop
± (A), respectively. The arguments

there are made for operators on `p(Z, U) with p ∈ (1,∞) but inspection of the
proofs shows that the result carries over to p ∈ [1,∞]. The other condition
in [13] is that the Banach space U has to have what Rabinovich and Roch
call the symmetric approximation property (sap). This means that there is
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a sequence Π1, Π2, ... of finite rank projections on U such that Πn → I and
Π∗

n → I∗ pointwise on U and its dual space U∗, respectively. Note that [13]
extends results, in particular formula (4), from [14,17], where band-dominated
operators on `p(Z,C) are studied with p = 2 and p ∈ (1,∞), respectively.

b) In [9], Fredholmness and index of operators on `p(ZN , U) are studied
for (almost) arbitrary Banach spaces U and arbitrary operators A ∈ W . In
particular, it is shown that if A ∈ W is Fredholm on one of the spaces `p(ZN , U)
with p ∈ [1,∞], then it is Fredholm on all of these spaces and its index does
not depend on p. The key observation here is that A has a Fredholm regularizer
in the Wiener algebra that acts as its regularizer on all spaces `p(ZN , U).

In the particularly simple case of a finite-dimensional space U we know, by
Lemma 2.6, that I+UM$(Y )∩W = W and that the predual of Y ∞ = `∞(Z, U)
exists and is isomorphic to `1(Z, U∗) and the preadjoint operator of A ∈ L(Y ∞)
always exists and is induced by [a∗ji] on `1(Z, U∗). Consequently, the conditions
of Proposition 4.1 simplify, and we can even make a statement on the Fredholm
index.

Corollary 4.3 Suppose A ∈ W and U is finite-dimensional. Then statements
(FC) and (i)–(vi) of Proposition 4.1 are all equivalent. Moreover, if A is sub-
ject to all these equivalent statements then the Fredholm index of A is the same
on each space Y and is given by (4). Further, on every space Y , (3) holds.
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