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0. INTRODUCTION

The so-called nonlinear stationary-phase-steepest-descent method for the as-

ymptotic analysis of Riemann-Hilbert factorization problems has been very suc-

cessful in providing

(i) rigorous results on long time, long range and semiclassical asymptotics for

solutions of completely integrable equations and correlation functions of exactly

solvable models,

(ii) asymptotics for orthogonal polynomials of large degree,

(iii) the eigenvalue distribution of random matrices of large dimension (and

related universality results),

(iv) proofs of important results in combinatorial probability (e.g. the limiting

distribution of the length of longest increasing subsequence of a permutation, under

uniform distribution).

Even though the stationary phase idea was first applied to a Riemann-Hilbert

problem and a nonlinear integrable equation by Its ([I], 1982) the method became

systematic and rigorous in the work of Deift and Zhou ([DZ], 1993). As a recognition
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of the fruitfulness of the method, Percy Deift was invited to give a plenary address

to the recent ICM in Madrid, on the subject of universality in mathematics and

physics. Of course, the main mathematical tool in proving universality theorems

has been the nonlinear stationary-phase-steepest-descent method.

In analogy to the linear stationary-phase and steepest-descent methods, where

one asymptotically reduces the given exponential integral to an exactly solvable

one, in the nonlinear case one asymptotically reduces the given Riemann-Hilbert

problem to an exactly solvable one.

Our aim here is to clarify the distinction between the stationary-phase idea

and the steepest-descent idea, stressing the importance of actual steepest-descent

contours in some problems. We claim that the distinction partly mirrors the self-

adjoint / non-self-adjoint dichotomy of the underlying Lax operator. To this aim we

first have to review some of the main groundbreaking ideas (due to Percy Deift and

his collaborators) appearing in the self-adjoint case; then we describe recent results

([KMM], [KR]) in the non-self-adjoint case, that we see as a natural extension. We

mostly use the defocusing / focusing nonlinear Schrödinger equation as our working

model, but we also digress to the KdV at some point.

We stress both here and in the main text that an extra feature appearing

only in the nonlinear asymptotic theory is the Lax-Levermore variational problem,

discovered in 1979, before the work of Its, Deift and Zhou, but closely related to

the so-called ”g-function” which is catalytic in the process of deforming Riemann-

Hilbert factorization problems to exactly solvable ones.

1. THE LINEAR METHOD

Suppose one considers the Cauchy problem for the linearized KdV equation:

ut + uxxx = 0. It can of course be solved via Fourier transforms. The end result

of the Fourier method is an exponential integral. To understand the long time as-

ymptotic behavior of the integral one needs to apply the stationary-phase method

(see e.g.[E]). The underlying principle, going back to Stokes and Kelvin, is that the

dominating contribution comes from the vicinity of the stationary phase points.
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Through a local change of variables at each stationary phase point and using inte-

gration by parts we can calculate each contributing integral asymptotically to all

orders with exponential error. It is essential here that the phase1 xξ − ξ3t is real

and that the stationary phase points are real.

On the other hand, suppose we have something like the Airy exponential inte-

gral

(1) Ai(z) =
1

π

∫

∞

0

cos(
s3

3
+ zs)ds,

and we are interested in z → ∞. Set s = z1/2t and x = z3/2.

(2) Ai(x2/3) =
x1/3

2π

∫

∞

−∞

exp(ix(
t3

3
+ t))dt.

The phase is h(t) = t3

3 + t and the zeros of h′(t) = (t2 + 1) are ±i. As they are not

real, and since the integrand is analytic, one must deform the integral off the real

line, along particular paths. These are referred to as steepest descent paths. They

are given by the simple characterization

(3) Imh(t) = constant.

In our particular example, the curves of steepest descent are the imaginary axis

and the two branches of a hyperbola. By deforming to one of these branches, we

finally end up with with integrals which can be analyzed directly, using the so-called

Laplace’s method (which is simpler than the stationary phase method). We thus

recover asymptotics valid to all orders.

The nonlinear method generalizes the ideas above, but also employs new ones.

2. THE NONLINEAR METHOD

(i) The Stationary Phase Idea

Consider the defocusing nonlinear Schrödinger equation

(4)
i∂tψ + ∂2

xψ − |ψ|2ψ = 0,

under ψ(x, 0) = ψ0(x),

1ξ is the spectral variable
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where the initial data function lies in, say, Schwartz space. The analog of the

Fourier transform is the scattering coefficient r(ξ) for the Dirac operator

L =

(

i∂x iψ0(x)
−iψ∗

0(x) −i∂x

)

.

Suppose we are now interested in the long time behavior of the solution to (4). The

inverse scattering problem can be posed in terms of a Riemann-Hilbert factorization

problem.

THEOREM. There exists a 2x2 matrix Q with analytic entries in the upper

and lower open half-planes, such that the normal limits Q+, Q−, as ξ approaches

the real line from above or below respectively, exist and satisfy

(5)
Q+(ξ) = Q−(ξ)

(

1 − |r(ξ)|2 −r∗(ξ)e−2iξx−4iξ2t

r(ξ)e2iξx+4iξ2t 1

)

, Imξ = 0,

and limξ→∞Q(ξ) = I.

The solution to (4) is recovered via

(6) ψ(x, t) = −2limξ→∞ξQ12(ξ).

It was first realized by Its [I, IN], that the leading order behavior of the long time

asymptotics for the solution of (4) can be described by replacing the problem (5)

by a ”local” model Riemann-Hilbert problem located in a small neighborhood of

the stationary phase point ξ0 = − x
4t satisfying Θ′(ξ0) = 0 where Θ = ξx + 2ξ2t,

or, equivalently to a problem similar to (5) but where ξ is replaced by the constant

value ξ0 (see (7) below). But no idea was given on how to show that this solution

of the full problem and of the model problem are actually close to each other. To

show how to do this, was the work of Deift and Zhou.2 The basic ideas of [DZ]

have been used in all works on the stationary-phase-steepest-descent-method since.

They include:

1. Appropriate lower/diagonal/upper factorizations of jump matrices.

2. Equivalence of the solvability of inhomogeneous matrix Riemann-Hilbert

problems to the invertibility of associated singular integral operators. This idea

2See [DZ] for a comprehensive review of the history of the problem before the use of Riemann-
Hilbert problem tecniques.
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goes at least back to Gohberg [CG]. A crucial contribution of Beals and Coifman

[BC] was to make this precise for contours with sef-intersections (which they needed

in their study of the inverse scattering of first order systems). These ideas where

further developed by Zhou [Z] who provided a very useful existence theorem for

matrix Riemann-Hilbert problems with jumps and jump contours satisfying some

special Schwarz reflection type symmetries and an integral formula expressing the

solution of the Riemann-Hilbert problem in terms of the inverse of a particular

weighted Cauchy operator depending on a given factorization of the jump matrix

and thus taking advantage of the factorization mentioned above. Perturbing Zhou’s

formula provides a nice way to show that under some conditions, small changes in

the jump data result in small changes in the solution.

3. Introduction and solution of auxiliary scalar problems.

Following analyticity and the above ideas one ends up with a problem on a

small cross centered at the stationary phase point. Using a rescaling the Riemann-

Hilbert problem is rescaled to a new problem on an infinite cross. After deforming

the components of the cross back to the real line, it is equivalent to the following

problem on the real line:

(7)
H+(ξ) = H−(ξ)exp(−iξ2σ3)

(

1 − |r(ξ0)|
2 −r∗(ξ0)

r(ξ0) 1

)

exp(iξ2σ3),

H(ξ) ∼ ξiνσ3 ,

where ν is a constant depending only on ξ0 and σ3 =

(

1 0
0 −1

)

is a Pauli matrix.

So the jump matrix

(

1 − |r(ξ)|2 −r∗(ξ)
r(ξ) 1

)

of the original problem is replaced

by its value at ξ0.

Problem (7) can be solved explicitly. Written in terms of the new unknown

H(ξ)exp(−iξ2σ3) it has a constant jump and can thus be reduced to a first order

linear matrix ODE ([I]).

(ii). The finite-gap g-function mechanism and a ”shock” phenomenon with no

linear analogue.
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An important step halfway between the leap from the ”stationary phase” idea

to the general definition of a ”steepest descent contour” is the introduction of the

so-called finite-gap g-function mechanism. The g-function was introduced in [DZ95]

in the special case of genus 0 and in [DVZ94] in the special case of genus 1 but the

full force of the finite-gap g-function idea and the connection to the Lax-Levermore

variational problem was first explored in the analysis of the KdV equation [DVZ97]

ut − 6uux + ε2uxxx = 0,

u(x, 0) = u0(x),

in the limit as ε→ 0. Assume for simplicity, that the initial data are real analytic,

positive and consist of a ”hump” of unit height.

The associated RH problem is

S+(z) = S−(z)

(

1 − |r(z)|2 −r∗(z)e
−izx−4iz3t

ε

r(z)e
izx+4iz3t

ε 1

)

, Imz = 0,

and limz→∞S(z) = (1, 1),

where r is the reflection coefficient for the Schrödinger operator with potential u0.

The solution of KdV is recovered via

u(x, t; ε) = −2iε
∂

∂x
S1

1(x, t; ε),

where S1
1 is the resdiue of the first entry of S at infinity. The reflection coefficient

r also depends on ε. In fact, the WKB approximation is

r(z) ∼ −ie
−2iρ(z)

ε χ[0,1](z)

1 − |r(z)|2 ∼ e
−2τ(z)

ε ,

where

ρ(z) = x+z +

∫

∞

x+

[z − (z2 − u0(x))
1/2]dx,

τ(z) = Re

∫

(u0(x) − z2)1/2dx

and x+(z) is the largest solution of u0(x+) = z2.

[DVZ97] introduce the following change of variables Ŝ(z) = S(z)e
ig(z)σ3

ε where

g is a scalar function defined by the following conditions.

1. g is analytic off the interval [0, 1], the normal limits g+, g− of g exist along

[0, 1] and g vanishes at infinity.
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2. ”Finite gap ansatz”. Define h(z) = g+(z) + g−(z) − 2ρ+ 4tz3 + xz. There

exists a finite set of disjoint open real intervals (”bands”) Ij ∈ [0, 1] such that

3a. For z ∈ ∪jIj , we have −τ < (g+ − g−)/2i < 0 and h′ = 0.

3b. For z ∈ [0, 1] \ ∪jIj , we have 2iτ = g+ − g− and h′ < 0.

The conditions above are meant to determine not only g but also the band-

gap structure in [0, 1]. In general (for any data u0) it is not true that the above

conditions can be satisfied. It is believed however that under the condition of

analyticity a g-function satisfying the ”finite gap ansatz” exists. (In fact [K00]

gives a proof of the ”finite gap ansatz” in the analogous problem of the continuum

Toda equations.) Assuming that there is a g-function satisfying the three conditions

above one can show that the RH problem reduces to one supported on the bands

Ij with jumps of the form

(

0 −ie−ih(z)/ε

−ieih(z)/ε 0

)

,

and in fact, because of (iib), h(z) is a real constant on each band Ij . This RH

problem can be solved explicitly via theta functions. The details in [DVZ97] involve

the so-called ”lens”-argument: auxiliary contours are introduced near pieces of the

real line (one below and one above each band/gap) and appropriate factorizations

and analytic extensions are used, very similarly to the subsection above. The

conditions for g above are chosen precisely to make the lens argument work.

As is remarked in [DVZ94] the fact that the new RH problem is on slits ”is a

new and essentially nonlinear feature of our nonlinear stationary phase method”.

Unlike [DVZ94] where it is defined explicitly via an integral formula, in [DVZ97]

the g-function is only defined implicitly via the conditions above, which may or

may not admit a solution.

(iii) The Lax-Levermore Variational Problem

The g-function satisfying conditions (i), (ii), (iia), (iib) can be written as

g(z) =

∫

log(z − η)dµ(η)
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where µ is a continuous measure supported in ∪jIj . In a sense, the reduction of

the given RH problem to an explicilty solvable one depends on the existence of a

particular measure. Conditions (i), (ii), (iia), (iib) turn out to be equivalent to a

maximization problem for logarithmic potentials under a particular external field

depending on x, t, u0(x) over positive measures with an upper constraint. This is

related to the famous Lax-Levermore Variational Problem [LL]. Even though it

appears as an afterthought in [DVZ97] (though clearly serving as inspiration), it

seems that its analysis is essential for the justification of the method (as in [K00]).

3. STEEPEST DESCENT CONTOURS

Having reviewed some essential ideas in the previous sections, we are ready to

consider the focusing NLS equation, following [KMM].

i~∂tψ +
~

2

2
∂2
xψ + |ψ|2ψ = 0,

under data ψ(x, 0) = ψ0(x).

Note that the Lax operator

L =

(

ih∂x −iψ0(x)
−iψ∗

0(x) −ih∂x

)

,

is non-self-adjoint. We shall see that the deformation of the semiclassical RH prob-

lem can be no more confined to a small neighborhood of the real axis but is instead

fully two-dimensional. A steepest descent contour needs to be discovered!3

For simplicity consider the very specific data ψ0(x) = Asechx where A > 0.

Let x−(η) < x+(η) be the two solutions of sech2(x) + η2 = 0. Also assume that

~ = A/N and consider the limitN → ∞. It is known that the reflection coefficient is

identically zero and that the eigenvalues of L lie uniformly placed on the imaginary

segment [−iA, iA]. In fact the eigenvalues are the points λj = i~(j + 1/2), j =

0, ..., N − 1 and their conjugates. The norming constants oscillate between −1 and

1.

3By the way, in the long time asymptotics for the above with ~ = 1 a collisionless shock
phenomenon is also present; for x, t in the shock region the deformed RH problem is supported
on a vertical imaginary slit. (See [K96].) But here, we rather focus on the semiclassical problem
~ → 0 which is far more complicated.
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The associated RH problem is a meromorphic problem with no jump: to find a

rational function with prescribed residues at the poles λj and their conjugates. It

can be turned into a holomorphic problem by constructing two loops, one denoted

by C say, encircling the λj and one, C∗, encircling their conjugates. We redefine

the unknown 2x2 matrix inside the loops so that the poles vanish (there is actually

a discrete infinity of choices, corresponding to an infinity of analytic interpolants

of the norming constants, see below) and thus arrive at a nontrivial jump across

the two loops, encircling the segments [0, iA] and [−iA, 0] respectively. This is a

trivial deformation, valid for any h (not necessarily small). The discrete nature of

the spectrum of L is mirrored in the discrete nature of the jump matrices: they

involve a logarithmic integral with respect to a discrete measure. We sometimes

refer to this as a discrete Riemann-Hilbert problem.

THEOREM. Let dµ = (ρ0(η) + (ρ0)∗(η∗))dη, where ρ0 = i is the asymptotic

density of eigenvalues supported on the linear segment [0, iA]. SetX(λ) = π(λ−iA).

Letting M+ and M− denote the limits of M on Σ = C ∪C∗ from left and right

respectively, we define the Riemann-Hilbert factorization problem

M+(λ) = M−(λ)J(λ),

where

J(λ) = v(λ), λ ∈ C,

= σ2v(λ
∗)∗σ2, λ ∈ C∗,

limλ→∞M(λ) = I,

and

(8)

v(λ) =

(

1 −i exp( 1
h

∫

log(λ− η)dµ(η))exp(− 1
h(2iλx+ 2iλ2t−X(λ)))

0 1

)

.

Then the solution of the initial value problem for the focusing NLS equation is

given by ψ(x, t) = 2i limλ→∞(λM12).

Note that in the statement of the theorem the measure in the logarithmic inte-

gral is now continuous. We have effectively substituted a discrete set of eigenvalues

by its continuous limiting density. This is only valid as h → 0 and the rigorous
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justification of the discrete-to-continuum passage is far from trivial, especially near

the point 0 where the loops C,C∗ hit the eigenvalue spike.

The analysis in [KMM] makes use of all the ideas described in the previous

sections (factorization, lenses, the weighted Cauchy operator, an auxiliary scalar

problem), but it also takes care of the fact that while the loops can be deformed

anywhere away from the poles as long as h is not small, they have to be eventually

located at a very specific position in order to asymptotically simplify the RH prob-

lem, as h → 0. Appropriately, the definition of a g-function has to be generalized.

Not only will it introduce the division of the loop into arcs, called ”bands” and

”gaps”, but it must implicitly select a contour. Rather than giving the complicated

set of equations and inequalities defining the g-function, we will rather focus on

the associated variational problem; it is not a maximization problem but rather a

maximin problem. Here’s the setting.

Let H = {z : Imz > 0} be the complex upper-half plane and H̄ = {z : Imz ≥

0} ∪ {∞} be the closure of H. Let also K = {z : Imz > 0} \ {z : Rez = 0, 0 <

Imz ≤ A}. In the closure of this space, K̄, we consider the points ix+ and ix−,

where 0 ≤ x < A as distinct. In other words, we cut a slit in the upper half-plane

along the segment (0, iA) and distinguish between the two sides of the slit. The

point infinity belongs to K̄, but not K. Define G(z; η) to be the Green’s function

for the upper half-plane

G(z; η) = log
|z − η∗|

|z − η|

and let dµ0(η) be the nonnegative measure −idη on the segment [0, iA] oriented

from 0 to iA. The star denotes complex conjugation. Let the ”external field” φ be

defined by

φ(z) = −

∫

G(z; η)dµ0(η) −Re(π(iA− z) + 2i(zx+ z2t)),

where, without loss of generality x > 0.
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Let M be the set of all positive Borel measures on K̄, such that both the free

energy

E(µ) =

∫ ∫

G(x, y)dµ(x)dµ(y), µ ∈ M

and
∫

φdµ are finite. Also, let

V µ(z) =

∫

G(z, x)dµ(x), µ ∈ M.

be the Green’s potential of the measure µ. The weighted energy of the field φ is

Eφ(µ) = E(µ) + 2

∫

φdµ,

for any µ ∈ M.

Now, given any curve F in K̄, the equilibrium measure λF supported in F is

defined by

Eφ(λ
F ) = minµ∈M(F )Eφ(µ),

where M(F ) is the set of measures in M which are supported in F , provided such

a measure exists.

It turns out that the finite gap ansatz is equivalent to the existence of a so-

called S-curve joining the points 0+ and 0− and lying entirely in K̄. By S-curve we

mean an oriented curve F such that the equilibrium measure λF exists, its support

consists of a finite union of analytic arcs and at any interior point of suppµ the so

called S-property is satisfied4

d

dn+
(φ+ V λ

F

) =
d

dn−

(φ+ V λ
F

),

The appropriate variational problem is: seek a ”continuum”5 C such that

(9) Eφ(λ
C) = maxF∈F Eφ(λ

F ) = maxF∈F minµ∈M(F )Eφ(µ),

where F is the set of continua lying in K̄. The existence of a nice S-curve follows from

the existence of a continuum C maximizing the equilibrium measure, in particular

the associated Euler-Lagrange equations and inequalities.

4 d

dn+
, d

dn
−

are the normal outward derivatives on each side respectively
5a compact connected set containing 0+, 0−
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Problem (9) is the non-self-adjoint analogue of the Lax-Levermore problem and

a nonlinear analogue of (3).

4. JUSTIFICATION: EXISTENCE OF THE STEEPEST DESCENT PATH

EXISTENCE THEOREM [KR]. For the external field φ, there exists a contin-

uum F ∈ F such that the equilibrium measure λF exists and

Eφ[F ](= Eφ(λ
F )) = maxF∈Fminµ∈M(F )Eφ(µ).

REGULARITY THEOREM [KR]. The continuum F is in fact an S-curve, so

long as it does not touch the spike [0, iA] at more than a finite number of points.

If F touches the spike [0, iA] at more than a finite number of points, a concep-

tual revision is required. We briefly discuss this issue in the next section.

Here are the main ideas of the proofs. Let ρ0 be the distance between compact

sets E,F in K̄ defined as

ρ0(E,F ) = maxz∈Eminζ∈Fρ0(z, ζ).

Introduce the Hausdorff metric on the set I(K̄) of closed non-empty subsets of K̄:

ρK(A,B) = sup(ρ0(A,B), ρ0(B,A)).

Compactness of F is the necessary first ingredient to prove existence of a max-

imizing contour. The second ingredient is semicontinuity of the energy functional

that takes a given continuum F to the equilibrium energy on this continuum:

E : F → Eψ[F ] = Eψ(λF ) = inf
µ∈M(F )

(E(µ) + 2

∫

ψdµ).

For regularity, the crucial step is

THEOREM [KR]. Let F be the maximizing continuum of and λF be the equi-

librium measure. Let x, t be such that F does not touch the spike [0, iA] at more

than a finite number of points. Let µ be the extension of λF to the lower complex

plane via µ(z∗) = −µ(z). Then, if V is the logarithmic potential of µ,

Re(

∫

dµ(u)

u− z
+ V ′(z))2 = Re(V ′(z))2 − 2Re

∫

V ′(z) − V ′(u)

z − u
dµ(u)

+Re[
1

z2

∫

2(u+ z)V ′(u) dµ(u)].



FROM STATIONARY PHASE TO STEEPEST DESCENT 13

PROOF: By taking variations with respect to the equilibrium measure.

It is now easy to see that the support of the equilibrium measure of the maxi-

mizing continuum is characterized by

Re

∫ z

(Rµ)
1/2dz = 0,

where Rµ(z) = (V ′(z))2 − 2

∫

suppµ

V ′(z) − V ′(u)

z − u
dµ(u)

+
1

z2
(

∫

suppµ

2(u+ z)V ′(u) dµ(u)).

The S-property follows easily and this proves the Regularity Theorem.

It is worth mentioning here the recent work of Tovbis, Venakides and Zhou

[TVZ], which examines the initial value problem for the focusing NLS (in the semi-

classical limit) under two different classes of initial data. Under one of these classes,

no eigenvalues exist, hence the eigenvalue spike is missing. In such a case our argu-

ment above would prove a regularity theorem without the extra assumption on the

maximizing contour (that it does not touch the spike [0, iA] at more than a finite

number of points).

5. CROSSING THE EIGENVALUES BARRIER AND THE QUESTION OF

SECONDARY CAUSTICS.

If F touches the spike [0, iA] at more than a finite number of points, regularity

cannot be proved as above because variations cannot be taken. In [KR] we have

included a rough idea on how to extend the above proof. A more detailed argu-

ment is forthcoming [K07]. Since a complete proof is not published yet we simply

summarize our general plan.

One wishes to somehow allow the contour F go through the spike [0, iA]. One

problem arising is that (the complexification of) the external field is not analytic

across the segment [−iA, iA]. What is true, however, is that V is analytic in a

Riemann surface consisting of infinitely many sheets, cut along the line segment

[−iA, iA]. So, the appropriate underlying space for the (doubled up) variational

problem should now be a non-compact Riemann surface, say L. Now, compactness
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is the crucial element in the proof of a maximizing continuum. But we can indeed

compactify the Riemann surface L by mapping it to a subset of the complex plane

and compactifying the complex plane. The other problem, of course, is whether

the amended variational problem (with the modified field defined on the Riemann

surface and with the possibility of F not enclosing all the original eigenvalues) is

still appropriate for the semiclassical NLS. The argument goes roughly as follows:

(i) Proof of the existence of an S-curve F in L along the lines of [KR].

(ii) Deformation of the original discrete Riemann-Hilbert problem to the set F̂

consisting of the projection of F to the complex plane. At first sight, it is clear that

F̂ may not encircle the spike [0, iA]. It is however possible to append S-loops (not

necessarily with respect to the same branch of the external field) and end up with a

sum of S-loops, which we still denote by F̂ , that does encircle the spike [0, iA]. The

original discrete Riemann-Hilbert problem can be trivially deformed to a discrete

Riemann-Hilbert on a union of S-loops. All this is possible even in the case where

F̂ self-intersects.

(iii) Deform the discrete Riemann-Hilbert problem to the continuous one with

the right band/gap structure (on F̂ ; according to the projection of the equilib-

rium measure on F ), which is then explicitly solvable via theta functions. Both

the discrete-to-continuous approximation and the opening of the lenses needed for

this deformation are justified as in [KMM] (see also the article [LM] mentioned

below for the delicate study of the Riemann-Hilbert problem near the points where

F̂ crosses the spike). The g-function is defined by the same Thouless-type for-

mula with respect to the equilibrium measure (cf. section 2(iii)). It satisfies the

same conditions as in [KMM] (measure reality and variational inequality) on bands

(where the branch of the field turns out to be irrelevant) and on gaps (where the

inequalities are satisfied according to the branch of the external field).

Once the proposed plan is implemented in detail, we will have a complete proof

that the solution of the initial value problem for the focusing NLS equation admits

a finite genus representation, asymptotically as h → 0, at least in the case of the
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simplest data u(x, 0) = Asechx. But the arguments above also hold for a large class

of ”semiclassical soliton ensembles” initial data defined precisely in section VIII of

[KR].

It is worth noting here the recent paper [LM] which also adresses the issue of

the target contour hitting the eigenvalue barrier. ([LM] does not really mention

a variational problem and prefers to consider directly the conditions (equations

and inequalities) for the g-function.) This very interesting paper does not prove

the existence of an appropriate target contour but instead contains a numerical

and theoretical discussion of the issue of the target contour hitting the eigenvalue

barrier.

In [LM] the ”band” part of the contour is defined not as the support of an

equilibrium measure but instead it is considered as the trajectory of a quadratic

differential (as in [KMM]). It is noted numerically that such a trajectory may hit

the barrier [0, iA]. It is then proposed that the inequalities defining the ”gap” part

of the target contour be amended when it passes the barrier [0, iA] and the actual

amendment is justified numerically and theoretically. As a conclusion it is claimed

that the mechanism of the second ”caustic” (a caustic appears when the topology

of F̂ changes as x, t vary) is different from the mechanism of the first caustic.

We simply note here that the extra conditions suggested in [LM] appear nat-

urally in the framework we have introduced above. The different gap inequalities

in [LM] correspond to gap inequalities in different sheets, as viewed from our per-

spective. We thus prefer to say that the mechanism for any ”caustic” (caused by

the change of the topology of F̂ as x, t vary) is essentially the same, independently

of whether the maximizing contour has crossed the spike [0, iA] or not. In any case

the real issue here is not whether we have a first or second or higher order caustic,

but whether the maximizing contour has hit the spike [0, iA]. It so happens that

for the very specific data Asechx the second caustic appears after the maximizing
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contour has crossed the spike [0, iA] once, but in general this does not have to be

the case.6

6. CONCLUSION

In the asymptotic analysis of Riemann-Hilbert problems arising from integrable

systems where the associated Lax operator is non-self-adjoint, the computation of

non-trivial steepest descent contours is essential. The two main components of a

rigorous proof of asymptotic formulae are:

(i) Proof of the existence and regularity of such steepest descent contours.

(ii) Given (i), a rigorous proof of the asymptotic validity of the deformation of

the given Riemann-Hilbert problem to one with jumps across the steepest descent

contour.

In this review paper we have presented some methods and results, contained

in [KR] and [KMM], achieving (i) and (ii) for some specific cases of the initial

value problem for the focusing integrable nonlinear Schrödinger equation in the

semiclassical limit. We expect that these methods and results may be useful in the

treatment of Riemann-Hilbert problems arising in the analysis of general complex or

normal random matrices [WZ]. Although there have been simple cases of non-self-

adjoint problems where the target contour can be explictly computed without any

recourse to a variational problem (which of course is always there; see e.g. [K96],

[KSVW], [TVZ]), we believe that global results can in general only be justified by

proving existence and regularity for a solution of a maximin variational problem in

two dimensions.
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Theory of Painlevé Equations, Lecture Notes in Math., 1191, Springer Verlag,

Berlin 1986.

[K07] S.Kamvissis, in preparation.

[K96] S.Kamvissis, Long time behavior for the focusing nonlinear Schroedinger

equation with real spectral singularities, Comm. Math. Phys. v.180, no. 2, 1996,

pp.325–341.

[KMM] S.Kamvissis, K.McLaughlin, P.Miller, Semiclassical Soliton Ensembles

for the Focusing Nonlinear Schrödinger Equation, Annals of Mathematics Studies,

v.154, Princeton University Press, 2003.

[KR] S.Kamvissis, E.Rakhmanov, Existence and Regularity for an Energy Max-

imization Problem in Two Dimensions, Jour. Math. Phys., v.46, n.8, 083505, 2005.



18 SPYRIDON KAMVISSIS

[K00] A.Kuijlaars, On the finite-gap ansatz in the continuum limit of the Toda

lattice, Duke Math. J. v.104, no. 3, 2000, pp.433–462.

[KSVW] A.Kuijlaars, H.Stahl, W.Van Assche, F.Wielonsky, Asymptotique des
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