Worst-case optimal approximation algorithms for maximizing
triplet consistency within phylogenetic networks*

Jaroslaw Byrka'2, Katharina T. Huber?, Steven Kelk!,

! Centrum voor Wiskunde en Informatica,
Kruislaan 413, NL-1098 SJ Amsterdam, Netherlands
{J.Byrka,S.M.Kelk}Qcwi.nl
2 Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3 School of Computing Sciences, University of East Anglia,
Norwich, NR4 7TJ, United Kingdom
katharina.huber@cmp.uea.ac.uk

Abstract This article concerns the following question arising in computational evolutionary biology.
For a given subclass of phylogenetic networks, what is the maximum value of 0 < p < 1 such that for
every input set T of rooted triplets, there exists some network A/(T) from the subclass such that at least
p|T| of the triplets are consistent with A/(T")? Here we prove that the set containing all triplets (the full
triplet set) in some sense defines p, and moreover that any network N achieving fraction p' for the full
triplet set can be converted in polynomial time into an isomorphic network N’ (T) achieving fraction
> p' for an arbitrary triplet set T. We demonstrate the power of this result for the field of phylogenetics
by giving worst-case optimal algorithms for level-1 phylogenetic networks (a much-studied extension
of phylogenetic trees), improving considerably upon the 5/12 fraction obtained recently by Jansson,
Nguyen and Sung in [12]. For level-2 phylogenetic networks we show that p > 0.61. We note that all
the results in this article also apply to weighted triplet sets.

* This research has been partly funded by the Dutch BSIK/BRICKS project, and by the EU Marie Curie Research
Training Network ADONET, Contract No MRTN-CT-2003-504438.

1 Introduction

One of the most commonly encountered problems in computational evolutionary biology is to plau-
sibly infer the evolutionary history of a set of species, often abstractly modelled as a tree, using
obtained biological data. Existing algorithms for directly constructing such a tree do not scale well
(in terms of running time) and this has given rise to supertree methods: first infer trees for small
subsets of the species and then puzzle them together into a bigger tree such that in some well-
defined sense the information in the subset trees is preserved [3]. In the fundamental case where
the subsets in question each contain exactly three species - subsets of two or fewer species cannot
convey information - we speak of rooted triplet methods.

In recent years improved understanding of the complex mechanisms driving evolution has stim-
ulated interest in reconstructing evolutionary networks [7][14][16][19]. Such structures are more
general than trees and allow us to capture the phenomenon of reticulate evolution i.e. non tree-like
evolution. A natural abstraction of reticulate evolution, used already in several papers, is to permit
recombination vertices, vertices with indegree greater than one. Informally a level-k phylogenetic
network is an evolutionary network in which each biconnected component contains at most k£ such
recombination vertices. Phylogenetic trees form the base: they are level-0 networks. The higher the
level of a network, the more intricate the pattern of reticulate evolution that it can accommodate.
Note that phylogenetic networks can also be useful for visualising two or more competing hypothe-
ses about tree-like evolution.

Various authors have already studied the problem of constructing phylogenetic trees (and more
generally networks) which are consistent with an input set of rooted triplets. Aho et al [1] showed
a simple polynomial-time algorithm which, given a set of rooted triplets, finds a phylogenetic tree
consistent with all the triplets, or shows that no such tree exists. For the equivalent problem in
level-1 and level-2 networks the problem becomes NP-hard [10][12], although the problem becomes
polynomial-time solveable if the input triplets are dense i.e. if there is at least one triplet in the
input for each subset of three species [10][13].

Several authors have considered algorithmic strategies of use when the algorithms from [1] and
[13] fail to find a tree or network. Gasieniec et al [9] gave a polynomial-time algorithm which
always finds a tree consistent with at least 1/3 of the (weighted) input triplets, and furthermore
showed that 1/3 is best possible when all possible triplets on n species (the full triplet set) are given
as input. On the negative side, [4][11][20] showed that it is NP-hard to find a tree consistent with a
maximum number of input triplets. In the context of level-1 networks, [12] gave a polynomial-time
algorithm which produces a level-1 network consistent with at least 5/12 ~ 0.4166 of the input
triplets. They also described an upper-bound, which is a function of the number of distinct species
n in the input, on the percentage of input triplets that can be consistent with a level-1 network.
As in [9] this upper bound is tight in the sense that it is the best possible for the full triplet set on
n species. They computed a value of n for which their upper bound equals approximately 0.4883,
showing that in general a fraction better than this is not possible. The apparent convergence of
this bound from above to 0.4880... begs the question, however, whether a fraction better than 5/12
is possible for level-1 networks, and whether the full triplet set is in general always the worst-case
scenario for such fractions.

In this paper we answer these questions in the affirmative, and in fact we give a much stronger re-
sult. In particular, we develop a probabilistic argument that (as far as such fractions are concerned)

the full triplet set is indeed always the worst possible case, irrespective of the type of network being
studied (Proposition 1, Corollary 1). Furthermore, by using a generic, derandomized polynomial-
time (re)labelling procedure we can convert a network N which achieves a fraction p’ for the full
triplet set into an isomorphic network A/(T') that achieves a fraction > p’ for a given input triplet
set T' (Theorem 1). In this way we can easily use the full triplet set to generate, for any network
structure, a lower bound on the fraction that can be achieved for arbitrary triplet sets within such
a network structure. The derandomization we give is fully general and leads immediately to a sim-
ple extension of the 1/3 result from [9]. For level-1 networks we use the derandomization to give
a polynomial-time algorithm which achieves a fraction ezactly equal to the level-1 upper-bound
identified in [12], and which is thus worst-case optimal for level-1 networks. We also demonstrate
how the derandomization can be optimized if we have more information about the structure of N
Specifically, we show an alternative worst-case optimal level-1 algorithm with an optimized running
time of O(|T|n?) where |T| is the number of triplets in the input (Theorem 2). We formally prove
that this achieves a fraction of at least 0.48 for all n. Finally, we demonstrate the flexibility of our
technique by proving that for level-2 networks (see [10]) we can, for any triplet set 7', find in poly-
nomial time a level-2 network consistent with at least a fraction 0.61 of the triplets in 7' (Theorem 3).

We emphasize that in this article we are optimizing (and thus defining worst-case optimality)
with respect to |T|, the number of triplets in the input, not Opt(T), the size of the optimal so-
lution for that specific T. The latter formulation we call the MAX variant of the problem. The
fact that Opt(T) is always bounded above by |T'| implies that an algorithm that obtains a fraction
p’ of the input T is trivially also a p’-approximation for the corresponding MAX problem. Better
approximation factors for the MAX problem might, however, be possible. We discuss this further
in Section 7.

The results in this article are given in terms of unweighted triplet sets. A natural extension, espe-
cially in phylogenetics, is to attach a weight to each triplet ¢ € T i.e. a value w(t) € Q>¢ denoting
the relative importance of (or confidence in) ¢. In this weighted version of the problem fractions
are defined relative to the total weight of T (defined as the sum of the weights of all triplets in T),
not to |T'|. It is easy to verify that all the results in this article also hold for the weighted version
of the problem.

2 Definitions

A phylogenetic network (network for short) N on species set X is defined as a pair (N,v) where
N is the network topology (topology for short) and + is a labelling of the topology. The topology is
a directed acyclic graph in which exactly one vertex has indegree 0 and outdegree 2 (the root) and
all other vertices have either indegree 1 and outdegree 2 (split vertices), indegree 2 and outdegree 1
(recombination vertices) or indegree 1 and outdegree 0 (leaves). A labelling is a bijective mapping
from the leaf set of N (denoted L) to X. Let n = |X| = |LV].

A directed acyclic graph is connected (also called “weakly connected”) if there is an undirected
path between any two vertices and biconnected if it contains no vertex whose removal disconnects
the graph. A biconnected component of a network is a maximal biconnected subgraph.

Definition 1. A network is said to be a level-k network if each biconnected component contains
at most k € N recombination vertices.

We define phylogenetic trees to be the class of level-0 networks.

X y z

Figure 1. One of the three possible triplets on the set of species {z,y, z}. Note that, as with all figures in this article,
all arcs are assumed to be directed downwards, away from the root.

The unique rooted triplet (triplet for short) on a species set {z,y,z} C X in which the lowest
common ancestor of z and y is a proper descendant of the lowest common ancestor of z and z is
denoted by zy|z (which is identical to yx|z). For any set T of triplets define X (7") as the union of
the species sets of all triplets in 7.

Definition 2. A triplet zy|z is consistent with a network N (interchangeably: N is consistent with
xy|z) if N contains a subdivision of zy|z, i.e. if N' contains vertices u # v and pairwise internally
vertex-disjoint paths u — x, u =y, v — u and v — 2*.

By extension, a set of triplets T' is consistent with a network N (interchangeably: A/ is consistent
with T') iff, for all t € T, t is consistent with N

Lemma 1. Given a phylogenetic network N with ny = |V(N)| vertices, and a triplet t, it is
possible to determine in time O(ni) whether t is consistent with N .

Proof. See Appendix. O

3 Labelling a network topology

Suppose we are given a topology N with n leaves, and a set T of m triplets where LV =
{li,lg,...,1p} and X = X(T') = {z1,22,...,zn}. The specific goal of this section is to create a
labelling v such that the number of triplets from T' consistent with (NN,), is maximized.

Let f(N,~,T) denote the fraction of T' that is consistent with (N,).

Consider the special set Ty (n), the full triplet set, of all the possible 3(731) triplets with leaves
labelled from {z1,x3,...,2z,}. Observe that for this triplet set the number of triplets consistent
with a phylogenetic network (NV,~) does not depend on the labelling v. We may thus define #N =
f(N,v,Ti(n)) = f(N,Ti(n)) by considering any arbitrary, fixed labelling ~.

We will argue that the triplet set 77(n) is the worst-case input for maximizing f(N,~,T) for
any fixed topology N on n leaves. In particular we prove the following:

Proposition 1. For any topology N with n leaves and any set of triplets T, if the labelling v is
chosen uniformly at random, then the quantity f(N,~,T) is a random variable with expected value

Proof. Consider first the full triplet set T1(n) = {t1,t2,... ,t3(n)} and an arbitrary fixed labelling
3

~o- By labelling N we fix the position of each of the triplets in N. Formally, a position of a triplet

t = xy|z (with respect to 79) is a triplet p = v5 ' (£) = 75 ' ()7 '(¥)|7, ' (2) on the leaves of N. We

may list possible positions for a triplet in N as those corresponding to t1,to, ..., t3(n) in (N,v).
3

Since a #N fraction of ty,19,. .., t3(731) is consistent with (N,vy), a #N fraction of these positions

4 Where it is clear from the context, as in this case, we may refer to a leaf by the species that it is mapped to.

makes the triplet consistent. Now consider a single triplet £ € T" and a labelling « that is chosen
randomly from the set I" of n! possible bijections from LV to X. Observe, that for each t; € T1(n),
exactly 2 - (n — 3)! labellings v € I' make triplet ¢ have the same position in (N,v) as ¢; has in
(N,7v0) (the factor of 2 comes from the fact that we think of zy|z and yz|z as being the same

triplet). Any single labelling occurs with probability %, hence triplet ¢ takes any single position
2:(n-3)! _ 1
n! - 3.(7)"

with probability

3
Since for an arbitrary ¢t € T each of the 3 - (g) positions have the same probability and #N of
them make ¢ consistent, the probability of ¢ being consistent with (N,~) is #N. The expectation
is thus that a fraction #N of the triplets in T are consistent with (N, 7). O

From the expected value of a random variable we may conclude the existence of a realization
that attains at least this value.

Corollary 1. For any topology N and any set of triplets T there exists a labelling vy such that
f(N,7%,T) > #N.

We may deterministically find such a g by derandomizing using the method of conditional
expectations. Specifically, we will iteratively use a procedure that computes the expected fraction
of consistent triplets assuming that labels of certain leaves are already fixed, and that the labelling
is chosen uniformly at random for the remaining leaves. In order to compute this expectation, we
will calculate, for each triplet ¢ € T', the probability that such a random labelling v will make ¢
consistent with (N,). To calculate this probability we will consider all the possible positions of
triplet ¢ in the topology N and check if this position is still available for ¢, given the already chosen
labels. Among these available positions we will count those that make a triplet consistent. Observe,
that each of the positions available for ¢ has the same probability of being chosen for ¢, hence the
probability of ¢ being consistent with (NN,) is just the fraction of consistent positions among those
available for ¢t. To speed up the algorithm, part of the computation will be done in a preprocessing
phase. In this preprocessing we will compute, for every position p in IV, whether p is a position that
makes a triplet consistent. For each position we use Lemma 1 to test if this position is a consistent
one. The overall algorithm is thus as follows:

1. Preprocessing: compute which positions in V make a triplet consistent.
2. I' + set of all possible labellings.
3. while there is a leaf [whose label is not yet fixed, do:
— for every species x that is not yet used
e let I, be the set of labellings from I" where [is labelled by x
e compute E(f(N,~.,T)), where ~y, is chosen randomly from I',, by the above described
procedure
— I' < Iy st ¢ = argmaz, E(f(N, v, T))
4. return vy < the only element of I".

The resulting ~yq fixes labels for all the leaves, hence it is no longer a random labelling, but just a
function. It remains only to analyse the quality of g and the running time of the derandomization.

Theorem 1. For any topology N and any triplet set T on n leaves, a labelling vy such that
f(N,7,T) > #N can be found in time O(nt - n3), where n™ = |[V(N)|.

Proof. We will argue that, for the 7y produced by the above algorithm, f(N,vo,7T) > #N. By
Proposition 1 the initial random labelling ~ has the property E(f(N,v,T)) = #N. It remains to
show that this expectation is not decreasing when labels of leaves get fixed during the algorithm.

Consider a single update I' < I}, of the range of the random labelling. By the choice of the leaf
[to get a fixed label we choose a partition of I" into blocks I;. The expectation E(f(N,~,T)) is
an average of f(N,~,T) over I', and at least one of the blocks I, of the partition has this average
at least as big as the total average. Hence, by the choice of I, with the highest expectation of
(N, 7. T), we get E(f(N, 70, T)) > E(f(N,7,T)).

We estimate the running time of this derandomization as follows. By Lemma 1, the preprocessing
phase takes O(ni -n?) time. In the main calculation part we need to fix every leaf, and we try every
available species on it, which gives O(n?) tries. Each time we need to calculate the expected fraction
of consistent triplets. The easy way to do so is to try every single triplet on every single position,
which takes O(|T| - n?) time. We may save time by grouping those triplets that do not have any
leaf fixed yet: they have the same probability of being consistent with (N,). This group of triplets
may be served in O(n?) time, and for each of the other triplets it suffices to enumerate the possible
fixings of at most 2 leaves, which takes in total O(n? - |T|) time. Concluding, the derandomization
time is dominated by the preprocessing phase and takes at most O(ni -n?) time. O

3.1 Consequences of Theorem 1

The above theorem gives a new perspective on the problem of approximately constructing phylo-
genetic networks. From the algorithm of Gasieniec et al. [9] we can always construct a phylogenetic
tree that is consistent with at least 1/3 of the the input triplets. In fact, the trees constructed by
this algorithm are very specific - they are always caterpillars. (A caterpillar is a phylogenetic tree
such that, after removal of leaves, only a directed path remains.) Theorem 1 implies that not only
caterpillars, but all possible tree topologies have the property, that given any set of triplets we
may find in polynomial time a proper assignment of species into leaves with the guarantee that the
resulting phylogenetic tree is consistent with at least a third of the input triplets.

The generality of Theorem 1 makes it meaningful not only for trees, but also for any other sub-
class of phylogenetic networks (e.g. for level-k networks). Let us assume that we have focussed our
attention on a certain subclass of networks. Consider the task of designing an algorithm that for a
given triplet set constructs a network from the subclass consistent with at least a certain fraction of
the given triplets. A worst-case approach as described in this section will never give us a guarantee
better than the maximum value of #N ranging over all topologies N in the subclass. Therefore,
if we intend to obtain networks consistent with a big fraction of triplets and if our criteria is to
maximize this fraction in the worst case, then our task reduces to finding topologies within the
subclass that are good for the full triplet set. Theorem 1 potentially has a further use as a mech-
anism for comparing the quality of phylogenetic networks generated by other methods, because it
provides lower bounds for the fraction of T' that a given topology and/or subclass of topologies
can be consistent with. (Although a fundamental problem in phylogenetics [2] [5] [6] [17] [15] the
science of network comparison is still very much in its infancy.)

For level-0 networks (i.e. phylogenetic trees) the problem of finding optimal topologies for the
full triplet set is simple: any tree is consistent with exactly 1/3 of the full triplet set. For level-1
phylogenetic networks a topology that is optimal for the full triplet set was constructed in [12].
We may use this network and Theorem 1 to obtain an algorithm that works for any triplet set and
creates a network that is consistent with the biggest possible fraction of triplets in the worst case
(see Section 4 for more details). For level-2 networks we do not yet know the optimal structure of
a topology for the full triplet set, but we will show in Section 5 that we can construct a network
that has a guarantee of being consistent with at least a fraction 0.61 of the input triplets.

4 Application to level-1 phylogenetic networks

4.1 A worst-case optimal polynomial-time algorithm for level-1 networks

In [12] it was shown how to construct a special level-1 topology C(n), which we call a galled
caterpillar®, such that #C(n) > #N for all level-1 topologies N on n leaves. The existence of
C(n), which has a highly regular structure, was proven by showing that any other topology N can
be transformed into C(n) by local rearrangements that never decrease the number of triplets the
associated network is consistent with. It was shown that #C(n) = S(n)/3(%), where S(0) = S(1) =
S(2) =0 and, for n > 2,

S(n) = max1<a<n{ (g) +2 (;) (n—a)+ a<”) “) +S(n— a)}. (1)

............. .
i’ :
p T : ;

: 1 C(17)
o) |
H

A T

Figure 2. This is galled caterpillar C(17). It contains two galls and ends with a tail of two leaves. C'(17) contains 11
leaves in the top gall because Equation 1 is maximised for a = 11.

In Figure 2 an example of a galled caterpillar is shown. All galled caterpillars on n > 3 leaves
consist of one or more galls chained together in linear fashion and terminating in a tail of one or
two leaves. Observe that the recursive structure of C(n) mirrors directly the recursive definition of
S(n) in the sense that the value of a chosen at recursion level k is equal to the number of leaves
found in the kth gall, counting downwards from the root. In the definition of C(n) it is not specified
how the a leaves at a given recursion level are distributed within the gall, but it is easy to verify
that placing them all on one side of the gall (as shown in the figure) is sufficient.

Lemma 2. Let T be a set of input triplets labelled by n species. Then in time O(n") it is possible
to construct a level-1 network N, isomorphic to the galled caterpillar C(n), consistent with at least
a fraction S(n)/3(3) of T.

Proof. First we construct the level-1 topology C(n). Using dynamic programming to compute all
values of S(n') for 0 < n’ < n we can do this in time O(n?). Note that C(n) contains in total
O(n) vertices. It remains only to choose an appropriate labelling of the leaves of C'(n), and this is
achieved by substituting C(n) for N in Theorem 1; this dominates the running time. 0

5 In [12] this is called a caterpillar network.

Note that, because C(n) achieves the best possible fraction for the input T (n), the fraction
achieved by Lemma 2 is worst-case optimal for all n. Empirical experiments suggest that the func-
tion S(n)/?)(g) is strictly decreasing and approaches a horizontal asymptope of 0.4880... from above;
for values of n = 10,102,103, 10 the respective ratios are 0.511...,0.490...,0.4882...,0.4880.... It is
difficult to formally prove convergence to 0.4880... so we prove a slightly weaker lower bound of 0.48
on this function. From this it follows that in all cases the algorithm described in Lemma 2 is guar-
anteed to produce a network consistent with at least a fraction 0.48 of T', improving considerably
on the 5/12 ~ 0.4166 fraction achieved in [12].

Lemma 3. S(n)/3(%) > 0.48 for alln > 0.

Proof. This can easily be computationally verified for n < 116, we have done this with a computer
program written in Java [21]. To prove it for n > 116, assume by induction that the claim is true
for all n’ < n. Instead of choosing the value of a that maximises S(n) we claim that setting a equal
to z = |2n/3] is sufficient for our purposes. We thus need to prove the following inequality:

(5) +2()(n—2) +2(",7) + S(n - 2)
3(3)

Combined with the fact that, by induction, S(n—z)/3 ("gz) > 48/100, it is sufficient to prove that:

> 48/100.

(5) +2() (n = 2) +2(",7) +144/100(";7)
3(5)

Using Mathematica we rearrange the previous inequality to:

> 48/100

|2n/3] <22 +9n + 33n2 — 6(7 + 18n)[2n/3] + 86 L2n/3j2>

<0

n(2 — 3n + n?)
Taking (2n/3) —1 as a lower bound on |2n/3], and 2n/3 as an upper bound, it can be easily verified
that the above inequality is satisfied for n > 116. O

4.2 Optimising the derandomization when the underlying structure is already
known

The derandomization presented in Theorem 1 essentially works by exhaustive search. If we know
more about the structure of the topology that we are labelling, the derandomization can be made
much faster. We continue with level-1 networks to demonstrate this.

Lemma 4. The running time named in Lemma 2 can be improved to O(|T|n?) by customizing the
derandomization procedure.

Proof. We begin by constructing in time O(n?) the topology C(n) (see Lemma 2). Let r be the
number of recombination vertices in C(n). We partition the leaves of C(n) into (r + 1) blocks. Let
dop be the number of leaves in block 0 i.e. between the root and the first recombination vertex. Let
d, be the number of leaves in block r i.e. beneath the last recombination vertex (this value will by
definition be either 1 or 2). For 0 < ¢ < r let d; be the number of leaves in block ¢ i.e. beneath the ith
recombination vertex (numbering downwards from the root) but above the (7 + 1)th recombination

vertex. Let df refer to > i d;. We impose an ordering <. on the leaves, defined as follows. For two

leaves I1, 1y in the same block, Iy is earlier in the ordering (i.e. I3 <. l2) iff I; is closer to the root
of C(n) then Iy (in terms of shortest directed path.) For two leaves in different blocks, for example
blocks b and b', the leaf in block min(b,d') is earlier in the ordering. Note that if block r contains
2 leaves then these leaves are actually indistinguishable under <. (see Figure 2); to ensure that <.
is a total ordering we in this case impose an arbitrary ordering on those two leaves. This does not
cause problems with the rest of the analysis.

We will consider the leaves of C(n) in the order specified by <.. Assume that the labelling of
the first (kK — 1) leaves has been determined. To calculate the labelling of the kth leaf we choose
a label which maximises the expected number of triplets satisfied, assuming the labelling of the
remaining n — k leaves is chosen uniformly at random. For each possible labelling of the kth leaf,
and for each triplet ¢ in the input, we thus need to calculate the probability P(t) that ¢ is consistent
with the network if the remaining n — k leaves are labelled uniformly at random. The derandom-
ization described in Section 3 essentially computes this probability by exhaustively trying all ways
of mapping the unassigned species from ¢ into the unlabelled leaves. We can do this much faster by
observing that in this case there are essentially only 6 different classes of triplets. Let I be the set
of species used to label the first &k leaves. Let O = X \ I be the not yet assigned species. All triplets
are thus of the form OO|I, II|0,10|1,0I|0,00|0 or II|I. We assume that the kth leaf is in
block i. Let [refer to the number of unlabelled leaves in block i. Let v be the partially complete la-
belling (at any iteration only defined on the range I'). We now consider each class of triplets in turn.

Case OO|I: P(t) will always be 1, irrespective of how the remaining n — k leaves are labelled.

Case II|0: Let t = zy|z. If x and y are not mapped to the same block, P(t) is zero. Other-
wise, t is consistent with the network iff z is not mapped to the | unassigned leaves remaining in
that block. So in this case P(t) =1 —1/(n — k).

Case IO|I: Let t = xy|z where x and z are the I species. P(t) is 0 if v !(z) <. v !(2), and
1 otherwise.

Case OI|0: Let t = zy|z where y is the I species. Consider a labelling 7, obtained by extending
~ uniformly at random, as described. If any of the following three conditions are true the triplet
t is not consistent with the network: (1) If z and y are not mapped to the same block; (2) if
v (2) <e 1 Hx); (3) if 2 and z are mapped to the same block with v, *(z) <. 7; *(2). Thus,
P(t) =1d /(n—k)(n—k —1).

Case OO|O: Let t = xy|z. Again, assume that labelling v; has been obtained by extending ~y
uniformly at random. Let s = (n — k — 3)!. There are in total 23("?“) choices for ;1 of the form
Y1 (2) <e 1Y) <e M) or 47 H(2) <e 1 M(x) <e 97 '(y) which make ¢ consistent with the
network. The only other types of labelling v; which make ¢ consistent with the network are of
the form v, *(y) < v, () <e 1 1(2) or 47 H(x) <c v (y) <e v; '(2). In all these cases = and y
have to be mapped to the same block, and z has to be mapped to a lower block. The case when

z and y are both mapped to block 7 contributes 23(5) d;’. The case when 2 and y are mapped

together to some block below block ¢ contributes 2s Zj>i (‘12])d;r Given that there are in total
(n—k)!'=(n—k)(n—k—1)(n—k— 2)s choices for 1, we have that:

2("3") +2()df +2%,0: ()df
(n—k)(n—k—1)(n—k—2)

P(t) =

10

Case II|I: Let t = zy|z. P(t) will in this case be 1 or 0 because species z,y, z have already been
assigned to leaves. The remainder of the analysis is essentially the same as in case OO|O: P(t) =1
iff (1) v 1(2) <cv My) <ev H@) or (2) v 1(2) <e v H(z) <cv) or 3) v H(y) <cv (@) <
7~ H(z) or v~ H(z) <c v 1(y) <c v1(2) with = and y mapped to the same block and z to a lower
block.

The running time of the derandomization can be analysed as follows. We begin with a prepro-
cessing phase. Firstly we compute a look-up table for the values S(n’) for 0 < n’ < n. As in Lemma
2 this takes time O(n?). From this data we construct in time O(n) a look-up table for the values
d;,d; and the function (used in case O0|0) f(i) = 2 D i (’121)dj+ Total preprocessing time is thus
O(n?). In the algorithm itself we maintain and update a record, for each species z, of whether it is
in I or O and (where relevant) the location of y~!(z) in the <. ordering, and which block it has
been mapped to. This is all computable in time O(1). The algorithm needs n iterations to fix n
leaves, and within each iteration < n species candidates for the kth leaf have to be tried. For each
species we try in the kth leaf we need to compute the conditional expectation by iterating over
all the |T'| triplets; this takes O(|T'|) time because the probabilities for the six triplet cases are all
computable in O(1) time (thanks to the pre-computation of the f(.) function.) The total running
time is thus O(|T|n?). O

By combining all three lemmas from this section we obtain the following theorem:

Theorem 2. Let T be a set of input triplets labelled by n species. In time O(|T|n?) it is possible
to construct a level-1 network N consistent with at least a fraction S(n)/?)(g) > 0.48 of T', and this
is worst-case optimal.

5 A lower bound for level-2 networks

Theorem 3. Let T be a set of input triplets labelled by n species. It is possible to find in polynomial
time a level-2 network N (T') such that N'(T) is consistent with at least a fraction 0.61 of T.

Proof. We prove this by induction. For n < 16813 we use a computational proof. For n > 16813
we use Mathematica to show that, assuming the induction base, a fraction 0.61 can be achieved
by repeatedly chaining together a very basic type of level-2 network into some kind of “level-2
caterpillar”; the details are deferred to the appendix. O

6 The complexity of optimisation

Given a topology N and a set of triplets T, the techniques described in this article guarantee to
find a labelling v such that f(N,v,T) > #N. It is natural to explore the complexity of finding,
in polynomial time, (approximations to) an optimal labelling of N for a particular triplet set T
The observation below rules out (under standard complexity-theoretic assumptions) the existence
of a Polynomial-Time Approzimation Scheme (PTAS) for this problem. Secondly we observe that
a PTAS for the problem MAX-LEVEL-0 (which carries the name MCTT in [20]) can also be ruled
out. We discuss the consequences of this in the next section.

Problem: MAX-LEVEL-0-LABELLING
Input: A level-0 topology N (i.e. a topology of a phylogenetic tree) and a set T of rooted triplets.

11

Output: The maximum value of s such that there exists a labelling v of N making (NN, ~y) consis-
tent with at least s triplets from T'.

Problem: MAX-LEVEL-0

Input: A set T of rooted triplets.

Output: The maximum value of s such that there exists a level-0 network A (i.e. a phylogenetic
tree) consistent with at least s triplets from 7'

Observation 1 MAX-LEVEL-0 and MAX-LEVEL-0-LABELLING are both APX-complete.

Proof. See Appendix. O

7 Conclusions and open questions

With Theorem 1 we have described a method which shows how, in polynomial time, good solutions
for the full triplet set can be converted into equally good, or better, solutions for more general
triplet sets. Where best-possible solutions are known for the full triplet set, this leads to worst-case
optimal algorithms, as demonstrated by Theorem 2. An obvious next step is to use this method
to generate algorithms (where possible worst-case optimal) for wider subclasses of phylogenetic
networks. Finding the/an “optimal form” of level-2 networks for the full triplet set remains a
fascinating open problem.

From a biological perspective (and from the perspective of understanding the relevance of triplet
methods) it is also important to attach meaning to the networks that the techniques described in
this paper produce. For example, we have shown how, for level-1 networks, we can always find a
network isomorphic to a galled caterpillar which is consistent with at least a fraction 0.48 of the
input. If we do this, does the location of the species within this galled caterpillar communicate any
biological information? Also, what does it say about the relevance of triplet methods, and especially
the level-k hierarchy, if we know a priori that a large fraction (already for level 2 more than 0.61)
of the input can be made consistent with some network from the subclass? And, as discussed in
Section 3.1, how far can the techniques described in this paper be used as a quality measure for
networks produced by other algorithms?

As mentioned in the introduction, an algorithm guaranteed to find a network consistent with a
fraction p’ of the input trivially becomes a p’-approximation for the MAX variant of the problem
(where we optimise not with respect to |T'| but with respect to the size of the optimal solution
for T'.) In fact, the best-known approximation factor for MAX-LEVEL-0 is 1/3, a trivial extension
of the fact that p = 1/3 for trees [9]. On the other hand, the APX-hardness of this problem
implies that an approximation factor arbitrarily close to 1 will not be possible. It remains thus an
interesting open problem to determine whether better approximation factors can be obtained for the
latter problem via some different approach. For example, an empirical study in [20] suggests that,
for MAX-LEVEL-0, approximation factors in the region of 0.833 might be possible. Alternatively,
there could be some complexity theoretic reason why approximation factors better than p (where
p is optimal in our formulation) are not possible. Under strong complexity-theoretic assumptions
the best approximation factor possible for MAX-3-SAT, for example, uses a trivial upper bound of
all the clauses in the input, analogous perhaps to using |T'| as an upper bound.

8 Acknowledgements

We thank Leo van lersel for his assistance with the O(nj_) triplet consistency-checking algorithm
and Jesper Jansson for very helpful comments.

12

References

1. A.V. Aho, Y. Sagiv, T.G. Szymanski and J.D. Ullman, Inferring a tree from lowest common ancestors with an
application to the optimization of relational expressions, SIAM Journal on Computing 10(3), pp. 405-421 (1981).

2. M. Baroni, C. Semple, and M. Steel, A framework for representing reticulate evolution, Annals of Combinatorics
8(4), pp. 391-408 (2004).

3. O. Bininda-Emonds, Phylogenetic supertrees: combining information to reveal the tree of life, Computational
Biology Series 4, Kluwer (2004).

4. D. Bryant, Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic analysis,
Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1997).

5. G. Cardona, F. Rossello and G. Valiente, Tripartitions do not always discriminate phylogenetic networks,
arXiv:0707.2376v1 [g-bio.PE] (2007).

6. I. Cassens, P.Mardulyn and M.C.Milinkovitch, Evaluating intraspecific “network” construction methods using
simulated sequence data: Do existing algorithms outperform the global maximum parsimony approach?, System-
atic Biology 54, pp. 363-372 (2005).

7. W.F. Doolittle, Phylogenetic classification and the universal tree, Nature 284, pp. 2124-2128 (1999).

8. S. Fortune, J. Hopcroft and J. Wyllie, The directed subgraph homeomorphism problem, Theoretical Computer
Science 10, pp. 111-121 (1980).

9. L. Gasieniec, J. Jansson, A. Lingas and A. Ostlin, On the complexity of constructing evolutionary trees, Journal
of Combinatorial Optimization 3, pp. 183-197 (1999).

10. L. van Iersel, J. Keijsper, S. Kelk and L. Stougie, Constructing level-2 phylogenetic networks from triplets,
arXiv:0707.2890v1 [g-bio.PE] (2007).

11. J. Jansson, On the complexity of inferring rooted evolutionary trees, in Proceedings of the Brazilian Symposium
on Graphs, Algorithms, and Combinatorics (GRACO 2001), Electron. Notes Discrete Math. 7, Elsevier, pp.
121-125 (2001).

12. J. Jansson, N. Nguyen and W. Sung, Algorithms for combining rooted triplets into a galled phylogenetic network,
SIAM Journal on Computing 35(5), pp. 1098-1121 (2006).

13. J. Jansson and W. Sung, Inferring a level-1 phylogenetic network from a dense set of rooted triplets, Theoretical
Computer Science 363, pp. 60-68 (2006).

14. V. Kunin, L. Goldovsky, N. Darzentas and C. A. Ouzounis, The net of life: Reconstructing the microbial phylo-
genetic network, Genome Research 15, pp. 954-959 (2005).

15. C. R. Linder and L. H. Rieseberg, Reconstructing patterns of reticulate evolution in plants, American Journal
of Botany 91, pp. 17001708 (2004).

16. W. Martin. Mosaic bacterial chromosomes: a challenge on route to a tree of genomes, BioEssays 21, pp. 99 (1999).

17. L. Nakhleh, J. Sun, T. Warnow, C.R. Linder, B.M.E. Moret and A. Tholse, Towards the development of compu-
tational tools for evaluating phylogenetic network reconstruction methods, Pacific Symposium on Biocomputing
8, pp. 315-326 (2003).

18. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes, Journal of Com-
puter and System Sciences 43, pp. 425-440 (1991).

19. M. C. Rivera and J. A. Lake, The ring of life provides evidence for a genome fusion origin of eukaryotes, Nature
43, pp. 152-155 (2004).

20. B. Wu, Constructing the maximum consensus tree from rooted triples, Journal of Combinatorial Optimization
8, pp. 29-39 (2004).

21. http://homepages.cwi.nl/~kelk/tripletverify/

13
A Appendix

In this section we give the full proofs for Lemma 1 from Section 2, Theorem 3 from Section 5 and
Observation 1 from Section 6.

Lemma 1. Given a phylogenetic network N with ny. = |V(N)| vertices, and a triplet t, it is
possible to determine in time O(ni) whether t is consistent with N .

Proof. We let t = xy|z and for simplicity identify z,y, 2 with the leaves of N’ where the respective
species are found. Let r be the root of A/. We claim that ¢ is consistent with A iff there exists a
vertex u & {z,y, z,7} in N such that the following three paths exist in A and are mutually disjoint
in terms of their internal vertices: r — z,u — z,u — y.

(=) Clearly, if ¢ is consistent with A/ then by Definition 2 the path v — 2 exists. If v = r we
are done, otherwise the path » — 2z can be created by combining v — z with any path r — v.

(<) Suppose that the three paths exist. Consider any path P from r to u. Given that N is a
directed acyclic graph such a path cannot intersect with the internal vertices of the paths u — x
and v — y. If P does not intersect with the internal vertices of the path r — z we are done.
Otherwise let v be the last vertex from P that intersects with a vertex from r — z, and let v — u
be the subpath of P starting from v. It follows that the paths v — z,u — y,v — u,v — 2z exist
and are mutually disjoint on their internal vertices.

If we already knew u, we could use the algorithm in [8] (Thm. 3) to determine whether there
exist three (internally vertex) disjoint paths r — z,u — z,u — y in . To be specific, the algorithm
from [8] shows how (in this case) the problem can be reduced to searching for a path between two
vertices in a state-space graph G’ containing O(ni) vertices. The graph G’ is acylic, and the fact
that every vertex in N has outdegree < 2 implies that G’ has a linear number of edges. So path-
finding can also be done in O(ni) time, giving an overall running time of O(ni) if we know w.
However, we have to guess u by trying all n possibilities for it, giving a running time of O(ni)
for the entire algorithm. O

;
5

Figure 3. We construct the network LB;(n) by repeatedly chaining the structure on the left, a simple level-2 network
(see [10]), together to obtain an overall topology resembling the structure on the right.

Theorem 3. Let T be a set of input triplets labelled by n species. It is possible to find in polynomial
time a level-2 network N'(T) such that N'(T) is consistent with at least a fraction 0.61 of T

14

Proof. We prove the theorem by showing how to construct a topology, which we call LBy(n),
consistent with at least 0.61 of the triplets in 7 (n). Using Theorem 1 LBy(n) can then be labelled
to obtain the network N(T'). We show by induction how LBs(n) can be constructed. We take
n < 16813 as the induction base; for these values of n we refer to a simple computational proof
written in Java [21]. We now prove the result for n > 16813. Let us assume by induction that, for
any n’ < m, there exists some topology LBa(n') such that #LBs(n') > 0.61. If we let t(n') equal
the number of triplets in T (n') consistent with LBa(n’), we have that t(n’)/3(%’) > 0.61 and thus

that t(n') > 1.83(%1). Consider the structure in Figure 3. For S € {A, B,C, D, E}, we define the
operation hanging I leaves from side S as replacing the edge S with a directed path containing [
internal vertices, and then attaching a leaf to each internal vertex. We construct LBz (n) as follows.
We create a copy of the structure from the figure and hang ¢ = |0.385n| leaves from side C,
d = 0.07n] from side D and e = |0.26n| from side E. We let f = [0.285n| and add the edge
(F,r), where r is the root of the network LBs(f). Finally we hang a = n — (¢ +d + e + f) leaves
from side A; it might be that a = 0. (The only reason we hang leaves from side A is to compensate
for the possibility that ¢ + d 4+ e + f does not exactly equal n.) This completes the construction
of LBs(n); note that as in Section 4 the network is constructed by recursively chaining the same
basic structure together.

We can use Mathematica to show that LBs(n) is consistent with at least 0.61 of the triplets
in Ti(n). In particular, by explicitly counting the triplets consistent with LBs(n) we derive an
inequality expressed in terms of n,c,d, e, f,t(f), which Mathematica then simplifies to a cubic
inequality in n that holds for all n > 16813. (To simplify the inequality we take z — 1 as a
lower bound on |z| and assume that no leaves are hung from side A). The Mathematica script is
reproduced in Figure 4, and can be downloaded from [21]. Finally, we comment that the networks
computationally constructed for n < 16813 are, essentially, built in the same way as the networks
described above. The only difference is that, to absorb inaccuracies arising from the floor function,
we try several possibilities for how many leaves should be hung from each side; for side C, for
example, we try also (¢ — 1) and (¢ + 1) leaves. O

Observation 1. MAX-LEVEL-0 and MAX-LEVEL-0-LABELLING are both APX-complete.

Proof. By Theorem 1 we may label any tree topology to make it consistent with 1/3 of the given
triplets. Therefore, both problems are in the class APX. To prove APX-hardness we use a reduction
proposed by Wu [20] and we show that it is actually an L-reduction from the MAXIMUM SUBDAG
problem. Both L-reductions and the MAXIMUM SUBDAG problem were studied by Papadimitiou
and Yannakakis [18]. They proved that the MAXIMUM SUBDAG problem is APX-complete.

In the MAXIMUM SUBDAG problem we are given a directed graph G = (V, A), and the goal
is to find a maximal cardinality subset of arcs A’ C A such that G' = (V, 4’) is acyclic.

In the reduction of Wu one constructs an instance of the MAX-LEVEL-0 problem as follows.
Given a directed graph G = (V, A), let ¢ V, consider the set of triplets T' containing a single
triplet t,, = uz|v for every arc (u,v) € A, where X = X(T) = V U {z}. To argue that it is an
L-reduction it remains to prove the following two claims.

1) If there exists a subset of arcs A’ C A such that G' = (V, A’) is acyclic and |A'| = k, then
there exists a phylogenetic tree consistent with at least k triplets from 7. To prove this claim, we
consider a topological sorting of vertices in graph G’. We construct the phylogenetic tree to be a
caterpillar with the leaves labeled (top down) by such sorted vertices, the lowest leaf is labelled by
x. It remains to observe that for any arc (u,v) € A’ the corresponding triplet t,, is consistent with
the obtained phylogenetic tree.

15

c[n] = ((385/1000) *xn) -1

d[n] = ((70/1000) *xn) -1

e[n] = ((260/1000) *xn) -1

f[n] = ((285/1000) xn) -1

t [n] = (3% (610/1000) %Bi nom al [f [n], 3])
Sinplify[

(Binom al [c[n], 3] +Binom al [d[n], 3] +Binomial [e[n], 3] +t [n] + (Binom al [c[n], 2] *xd[N]) +
(Bi nom al [c[n], 2] xe[n]) + (Bi nom al [c[n], 2] «f [n]) + (C[n] *d[n] xe[n]) +
(c[n] =d[n] *f [n]) + (Binom al [c[n], 2] xe[n]) + (c[n]*e[n] x=d[n]) +
(c[n] *e[n] =f [n]) + (Binom al [c[n], 2] *f [Nn]) + (c[n] =f [N] »xd[n]) +
(c[n]*=f [n]*e[n]) + (Binom al [d[n], 2] xc[n]) + (Bi nom al [d[n], 2] xe[n]) +
(Binom al [d[n], 2] xf [n]) + (d[n] =f [n] xc[n]) + (Binom al [d[n], 2] *f [n]) +
(d[n] =f [n] xe[n]) + (Binom al [e[n], 2] xc[n]) + (Bi nom al [e[n], 2] *xd[n]) +
(Bi nom al [e[n], 2] *f [n]) + (e[n] *f [n]*c[n]) + (e[n] =f [N] »d[n]) +
(Bi nom al [e[n], 2] *f [n]) + (Bi nom al [f [n], 2] *xc[n]) + (Bi nom al [f [n], 2] *xd[Nn]) +
(Bi nom al [f [n], 2] xe[n])) / (3%xBinomal [n, 3]) > (610/1000)]

-147 984000000 + 94041640000 n - 16470260400 n?2 + 979319 n3
n (2 -3n+ n2)

>0

-147 984 000 000+ 94 041 640 000 n- 16 470 260 400 r? + 979 319 n®
n (2 -3n+ nz)

Reduce[>0, n, Integers]

nelntegers& . (n<-11]|n=16813)

Figure 4. The Mathematica script used in the proof of Theorem 3.

2) Given a phylogenetic tree B consistent with [triplets from 7', we may construct in polynomial
time a subset of arcs A’ C A such that G' = (V, A’) is acyclic and |A’| = [. In fact we will show that
it suffices to take A’ consisting of the arcs (u,v) such that the corresponding triplet ¢, is consistent
with B. We only need to argue that for such a choice of A’ the resulting graph G’ = (V, A’) is acyclic.
Consider the path in the tree B from the root node to the leaf labeled by the special species =x.
For any vertex v € A, the species v has an internal node on this path where he branched out of
the evolution of z, namely the Lowest Common Ancestor of v and z (LCA(u,x)). Observe, that
the position of LC'A(u,z) induces a partial ordering >5 on A. Recall, that if a triplet t,, = uz|v
is consistent with B, then LC'A(u, x) is a proper ancestor of LC A(v,x). Therefore, the consistent
triplets from T induce another partial ordering that may be extended to >g. This implies that for
A’ containing the arcs (u,v) such that a triplet ¢,, is consistent with B the graph G' = (V. A') is
acyclic.

With the above construction we have shown that the existence of an e-approximation algorithm
for the MAX-LEVEL-0 problem implies existence of an e-approximation algorithm for the MAX-
IMUM SUBDAG problem. In particular, existence of a Polynomial-Time Approximation Scheme
(PTAS) for MAX-LEVEL-0 would imply existence of PTAS for MAXIMUM SUBDAG, which is
unlikely due to the result of Papadimitiou and Yannakakis [18].

In the reduction we might have assumed a particular topology for the tree. Namely, we might
have assumed, that the topology needs to be a caterpillar. Therefore, the problem MAX-LEVEL-
0-LABELLING is also APX-hard. O

