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Abstrat This artile onerns the following question arising in omputational evolutionary biology.For a given sublass of phylogeneti networks, what is the maximum value of 0 � p � 1 suh that forevery input set T of rooted triplets, there exists some network N (T ) from the sublass suh that at leastpjT j of the triplets are onsistent with N (T )? Here we prove that the set ontaining all triplets (the fulltriplet set) in some sense de�nes p, and moreover that any network N ahieving fration p0 for the fulltriplet set an be onverted in polynomial time into an isomorphi network N 0(T ) ahieving fration� p0 for an arbitrary triplet set T . We demonstrate the power of this result for the �eld of phylogenetisby giving worst-ase optimal algorithms for level-1 phylogeneti networks (a muh-studied extensionof phylogeneti trees), improving onsiderably upon the 5=12 fration obtained reently by Jansson,Nguyen and Sung in [12℄. For level-2 phylogeneti networks we show that p � 0:61. We note that allthe results in this artile also apply to weighted triplet sets.
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21 IntrodutionOne of the most ommonly enountered problems in omputational evolutionary biology is to plau-sibly infer the evolutionary history of a set of speies, often abstratly modelled as a tree, usingobtained biologial data. Existing algorithms for diretly onstruting suh a tree do not sale well(in terms of running time) and this has given rise to supertree methods: �rst infer trees for smallsubsets of the speies and then puzzle them together into a bigger tree suh that in some well-de�ned sense the information in the subset trees is preserved [3℄. In the fundamental ase wherethe subsets in question eah ontain exatly three speies - subsets of two or fewer speies annotonvey information - we speak of rooted triplet methods.In reent years improved understanding of the omplex mehanisms driving evolution has stim-ulated interest in reonstruting evolutionary networks [7℄[14℄[16℄[19℄. Suh strutures are moregeneral than trees and allow us to apture the phenomenon of retiulate evolution i.e. non tree-likeevolution. A natural abstration of retiulate evolution, used already in several papers, is to permitreombination verties, verties with indegree greater than one. Informally a level-k phylogenetinetwork is an evolutionary network in whih eah bionneted omponent ontains at most k suhreombination verties. Phylogeneti trees form the base: they are level-0 networks. The higher thelevel of a network, the more intriate the pattern of retiulate evolution that it an aommodate.Note that phylogeneti networks an also be useful for visualising two or more ompeting hypothe-ses about tree-like evolution.Various authors have already studied the problem of onstruting phylogeneti trees (and moregenerally networks) whih are onsistent with an input set of rooted triplets. Aho et al [1℄ showeda simple polynomial-time algorithm whih, given a set of rooted triplets, �nds a phylogeneti treeonsistent with all the triplets, or shows that no suh tree exists. For the equivalent problem inlevel-1 and level-2 networks the problem beomes NP-hard [10℄[12℄, although the problem beomespolynomial-time solveable if the input triplets are dense i.e. if there is at least one triplet in theinput for eah subset of three speies [10℄[13℄.Several authors have onsidered algorithmi strategies of use when the algorithms from [1℄ and[13℄ fail to �nd a tree or network. G�asienie et al [9℄ gave a polynomial-time algorithm whihalways �nds a tree onsistent with at least 1/3 of the (weighted) input triplets, and furthermoreshowed that 1/3 is best possible when all possible triplets on n speies (the full triplet set) are givenas input. On the negative side, [4℄[11℄[20℄ showed that it is NP-hard to �nd a tree onsistent with amaximum number of input triplets. In the ontext of level-1 networks, [12℄ gave a polynomial-timealgorithm whih produes a level-1 network onsistent with at least 5=12 � 0:4166 of the inputtriplets. They also desribed an upper-bound, whih is a funtion of the number of distint speiesn in the input, on the perentage of input triplets that an be onsistent with a level-1 network.As in [9℄ this upper bound is tight in the sense that it is the best possible for the full triplet set onn speies. They omputed a value of n for whih their upper bound equals approximately 0:4883,showing that in general a fration better than this is not possible. The apparent onvergene ofthis bound from above to 0:4880::: begs the question, however, whether a fration better than 5=12is possible for level-1 networks, and whether the full triplet set is in general always the worst-asesenario for suh frations.In this paper we answer these questions in the aÆrmative, and in fat we give a muh stronger re-sult. In partiular, we develop a probabilisti argument that (as far as suh frations are onerned)



3the full triplet set is indeed always the worst possible ase, irrespetive of the type of network beingstudied (Proposition 1, Corollary 1). Furthermore, by using a generi, derandomized polynomial-time (re)labelling proedure we an onvert a network N whih ahieves a fration p0 for the fulltriplet set into an isomorphi network N 0(T ) that ahieves a fration � p0 for a given input tripletset T (Theorem 1). In this way we an easily use the full triplet set to generate, for any networkstruture, a lower bound on the fration that an be ahieved for arbitrary triplet sets within suha network struture. The derandomization we give is fully general and leads immediately to a sim-ple extension of the 1/3 result from [9℄. For level-1 networks we use the derandomization to givea polynomial-time algorithm whih ahieves a fration exatly equal to the level-1 upper-boundidenti�ed in [12℄, and whih is thus worst-ase optimal for level-1 networks. We also demonstratehow the derandomization an be optimized if we have more information about the struture of N .Spei�ally, we show an alternative worst-ase optimal level-1 algorithm with an optimized runningtime of O(jT jn2) where jT j is the number of triplets in the input (Theorem 2). We formally provethat this ahieves a fration of at least 0.48 for all n. Finally, we demonstrate the exibility of ourtehnique by proving that for level-2 networks (see [10℄) we an, for any triplet set T , �nd in poly-nomial time a level-2 network onsistent with at least a fration 0.61 of the triplets in T (Theorem 3).We emphasize that in this artile we are optimizing (and thus de�ning worst-ase optimality)with respet to jT j, the number of triplets in the input, not Opt(T ), the size of the optimal so-lution for that spei� T . The latter formulation we all the MAX variant of the problem. Thefat that Opt(T ) is always bounded above by jT j implies that an algorithm that obtains a frationp0 of the input T is trivially also a p0-approximation for the orresponding MAX problem. Betterapproximation fators for the MAX problem might, however, be possible. We disuss this furtherin Setion 7.The results in this artile are given in terms of unweighted triplet sets. A natural extension, espe-ially in phylogenetis, is to attah a weight to eah triplet t 2 T i.e. a value w(t) 2 Q �0 denotingthe relative importane of (or on�dene in) t. In this weighted version of the problem frationsare de�ned relative to the total weight of T (de�ned as the sum of the weights of all triplets in T ),not to jT j. It is easy to verify that all the results in this artile also hold for the weighted versionof the problem.2 De�nitionsA phylogeneti network (network for short) N on speies set X is de�ned as a pair (N; ) whereN is the network topology (topology for short) and  is a labelling of the topology. The topology isa direted ayli graph in whih exatly one vertex has indegree 0 and outdegree 2 (the root) andall other verties have either indegree 1 and outdegree 2 (split verties), indegree 2 and outdegree 1(reombination verties) or indegree 1 and outdegree 0 (leaves). A labelling is a bijetive mappingfrom the leaf set of N (denoted LN ) to X. Let n = jXj = jLN j.A direted ayli graph is onneted (also alled \weakly onneted") if there is an undiretedpath between any two verties and bionneted if it ontains no vertex whose removal disonnetsthe graph. A bionneted omponent of a network is a maximal bionneted subgraph.De�nition 1. A network is said to be a level-k network if eah bionneted omponent ontainsat most k 2 N reombination verties.We de�ne phylogeneti trees to be the lass of level-0 networks.
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Figure 1. One of the three possible triplets on the set of speies fx; y; zg. Note that, as with all �gures in this artile,all ars are assumed to be direted downwards, away from the root.The unique rooted triplet (triplet for short) on a speies set fx; y; zg � X in whih the lowestommon anestor of x and y is a proper desendant of the lowest ommon anestor of x and z isdenoted by xyjz (whih is idential to yxjz). For any set T of triplets de�ne X(T ) as the union ofthe speies sets of all triplets in T .De�nition 2. A triplet xyjz is onsistent with a network N (interhangeably: N is onsistent withxyjz) if N ontains a subdivision of xyjz, i.e. if N ontains verties u 6= v and pairwise internallyvertex-disjoint paths u! x, u! y, v ! u and v ! z4.By extension, a set of triplets T is onsistent with a network N (interhangeably: N is onsistentwith T ) i�, for all t 2 T , t is onsistent with N .Lemma 1. Given a phylogeneti network N with n+ = jV (N )j verties, and a triplet t, it ispossible to determine in time O(n4+) whether t is onsistent with N .Proof. See Appendix. ut
3 Labelling a network topologySuppose we are given a topology N with n leaves, and a set T of m triplets where LN =fl1; l2; : : : ; lng and X = X(T ) = fx1; x2; : : : ; xng. The spei� goal of this setion is to reate alabelling  suh that the number of triplets from T onsistent with (N; ), is maximized.Let f(N; ; T ) denote the fration of T that is onsistent with (N; ).Consider the speial set T1(n), the full triplet set, of all the possible 3�n3� triplets with leaveslabelled from fx1; x2; : : : ; xng. Observe that for this triplet set the number of triplets onsistentwith a phylogeneti network (N; ) does not depend on the labelling . We may thus de�ne #N =f(N; ; T1(n)) = f(N;T1(n)) by onsidering any arbitrary, �xed labelling .We will argue that the triplet set T1(n) is the worst-ase input for maximizing f(N; ; T ) forany �xed topology N on n leaves. In partiular we prove the following:Proposition 1. For any topology N with n leaves and any set of triplets T , if the labelling  ishosen uniformly at random, then the quantity f(N; ; T ) is a random variable with expeted valueE(f(N; ; T )) = #N .Proof. Consider �rst the full triplet set T1(n) = ft1; t2; : : : ; t3(n3)g and an arbitrary �xed labelling0. By labelling N we �x the position of eah of the triplets in N . Formally, a position of a triplett = xyjz (with respet to 0) is a triplet p = �10 (t) = �10 (x)�10 (y)j�10 (z) on the leaves of N . Wemay list possible positions for a triplet in N as those orresponding to t1; t2; : : : ; t3(n3) in (N; 0).Sine a #N fration of t1; t2; : : : ; t3(n3) is onsistent with (N; 0), a #N fration of these positions4 Where it is lear from the ontext, as in this ase, we may refer to a leaf by the speies that it is mapped to.



5makes the triplet onsistent. Now onsider a single triplet t 2 T and a labelling  that is hosenrandomly from the set � of n! possible bijetions from LN to X. Observe, that for eah ti 2 T1(n),exatly 2 � (n � 3)! labellings  2 � make triplet t have the same position in (N; ) as ti has in(N; 0) (the fator of 2 omes from the fat that we think of xyjz and yxjz as being the sametriplet). Any single labelling ours with probability 1n! , hene triplet t takes any single positionwith probability 2�(n�3)!n! = 13�(n3) .Sine for an arbitrary t 2 T eah of the 3 � �n3� positions have the same probability and #N ofthem make t onsistent, the probability of t being onsistent with (N; ) is #N . The expetationis thus that a fration #N of the triplets in T are onsistent with (N; ). utFrom the expeted value of a random variable we may onlude the existene of a realizationthat attains at least this value.Corollary 1. For any topology N and any set of triplets T there exists a labelling 0 suh thatf(N; 0; T ) � #N .We may deterministially �nd suh a 0 by derandomizing using the method of onditionalexpetations. Spei�ally, we will iteratively use a proedure that omputes the expeted frationof onsistent triplets assuming that labels of ertain leaves are already �xed, and that the labellingis hosen uniformly at random for the remaining leaves. In order to ompute this expetation, wewill alulate, for eah triplet t 2 T , the probability that suh a random labelling  will make tonsistent with (N; ). To alulate this probability we will onsider all the possible positions oftriplet t in the topology N and hek if this position is still available for t, given the already hosenlabels. Among these available positions we will ount those that make a triplet onsistent. Observe,that eah of the positions available for t has the same probability of being hosen for t, hene theprobability of t being onsistent with (N; ) is just the fration of onsistent positions among thoseavailable for t. To speed up the algorithm, part of the omputation will be done in a preproessingphase. In this preproessing we will ompute, for every position p in N , whether p is a position thatmakes a triplet onsistent. For eah position we use Lemma 1 to test if this position is a onsistentone. The overall algorithm is thus as follows:1. Preproessing: ompute whih positions in N make a triplet onsistent.2. �  set of all possible labellings.3. while there is a leaf l whose label is not yet �xed, do:{ for every speies x that is not yet used� let �x be the set of labellings from � where l is labelled by x� ompute E(f(N; x; T )), where x is hosen randomly from �x, by the above desribedproedure{ �  �x s.t. x = argmaxxE(f(N; x; T ))4. return 0  the only element of � .The resulting 0 �xes labels for all the leaves, hene it is no longer a random labelling, but just afuntion. It remains only to analyse the quality of 0 and the running time of the derandomization.Theorem 1. For any topology N and any triplet set T on n leaves, a labelling 0 suh thatf(N; 0; T ) � #N an be found in time O(n4+ � n3), where n+ = jV (N)j.Proof. We will argue that, for the 0 produed by the above algorithm, f(N; 0; T ) � #N . ByProposition 1 the initial random labelling  has the property E(f(N; ; T )) = #N . It remains toshow that this expetation is not dereasing when labels of leaves get �xed during the algorithm.



6Consider a single update �  �x of the range of the random labelling. By the hoie of the leafl to get a �xed label we hoose a partition of � into bloks �x. The expetation E(f(N; ; T )) isan average of f(N; ; T ) over � , and at least one of the bloks �x of the partition has this averageat least as big as the total average. Hene, by the hoie of �x with the highest expetation off(N; x; T ), we get E(f(N; x; T )) � E(f(N; ; T )).We estimate the running time of this derandomization as follows. By Lemma 1, the preproessingphase takes O(n4+ �n3) time. In the main alulation part we need to �x every leaf, and we try everyavailable speies on it, whih gives O(n2) tries. Eah time we need to alulate the expeted frationof onsistent triplets. The easy way to do so is to try every single triplet on every single position,whih takes O(jT j � n3) time. We may save time by grouping those triplets that do not have anyleaf �xed yet: they have the same probability of being onsistent with (N; ). This group of tripletsmay be served in O(n3) time, and for eah of the other triplets it suÆes to enumerate the possible�xings of at most 2 leaves, whih takes in total O(n2 � jT j) time. Conluding, the derandomizationtime is dominated by the preproessing phase and takes at most O(n4+ � n3) time. ut
3.1 Consequenes of Theorem 1The above theorem gives a new perspetive on the problem of approximately onstruting phylo-geneti networks. From the algorithm of G�asienie et al. [9℄ we an always onstrut a phylogenetitree that is onsistent with at least 1=3 of the the input triplets. In fat, the trees onstruted bythis algorithm are very spei� - they are always aterpillars. (A aterpillar is a phylogeneti treesuh that, after removal of leaves, only a direted path remains.) Theorem 1 implies that not onlyaterpillars, but all possible tree topologies have the property, that given any set of triplets wemay �nd in polynomial time a proper assignment of speies into leaves with the guarantee that theresulting phylogeneti tree is onsistent with at least a third of the input triplets.The generality of Theorem 1 makes it meaningful not only for trees, but also for any other sub-lass of phylogeneti networks (e.g. for level-k networks). Let us assume that we have foussed ourattention on a ertain sublass of networks. Consider the task of designing an algorithm that for agiven triplet set onstruts a network from the sublass onsistent with at least a ertain fration ofthe given triplets. A worst-ase approah as desribed in this setion will never give us a guaranteebetter than the maximum value of #N ranging over all topologies N in the sublass. Therefore,if we intend to obtain networks onsistent with a big fration of triplets and if our riteria is tomaximize this fration in the worst ase, then our task redues to �nding topologies within thesublass that are good for the full triplet set. Theorem 1 potentially has a further use as a meh-anism for omparing the quality of phylogeneti networks generated by other methods, beause itprovides lower bounds for the fration of T that a given topology and/or sublass of topologiesan be onsistent with. (Although a fundamental problem in phylogenetis [2℄ [5℄ [6℄ [17℄ [15℄ thesiene of network omparison is still very muh in its infany.)For level-0 networks (i.e. phylogeneti trees) the problem of �nding optimal topologies for thefull triplet set is simple: any tree is onsistent with exatly 1=3 of the full triplet set. For level-1phylogeneti networks a topology that is optimal for the full triplet set was onstruted in [12℄.We may use this network and Theorem 1 to obtain an algorithm that works for any triplet set andreates a network that is onsistent with the biggest possible fration of triplets in the worst ase(see Setion 4 for more details). For level-2 networks we do not yet know the optimal struture ofa topology for the full triplet set, but we will show in Setion 5 that we an onstrut a networkthat has a guarantee of being onsistent with at least a fration 0:61 of the input triplets.



74 Appliation to level-1 phylogeneti networks4.1 A worst-ase optimal polynomial-time algorithm for level-1 networksIn [12℄ it was shown how to onstrut a speial level-1 topology C(n), whih we all a galledaterpillar5, suh that #C(n) � #N for all level-1 topologies N on n leaves. The existene ofC(n), whih has a highly regular struture, was proven by showing that any other topology N anbe transformed into C(n) by loal rearrangements that never derease the number of triplets theassoiated network is onsistent with. It was shown that #C(n) = S(n)=3�n3�, where S(0) = S(1) =S(2) = 0 and, for n > 2,
S(n) = max1�a�n��a3�+ 2�a2�(n� a) + a�n� a2 �+ S(n� a)�: (1)

C(2)

C(6)

C(17)

Figure 2. This is galled aterpillar C(17). It ontains two galls and ends with a tail of two leaves. C(17) ontains 11leaves in the top gall beause Equation 1 is maximised for a = 11.In Figure 2 an example of a galled aterpillar is shown. All galled aterpillars on n � 3 leavesonsist of one or more galls hained together in linear fashion and terminating in a tail of one ortwo leaves. Observe that the reursive struture of C(n) mirrors diretly the reursive de�nition ofS(n) in the sense that the value of a hosen at reursion level k is equal to the number of leavesfound in the kth gall, ounting downwards from the root. In the de�nition of C(n) it is not spei�edhow the a leaves at a given reursion level are distributed within the gall, but it is easy to verifythat plaing them all on one side of the gall (as shown in the �gure) is suÆient.Lemma 2. Let T be a set of input triplets labelled by n speies. Then in time O(n7) it is possibleto onstrut a level-1 network N , isomorphi to the galled aterpillar C(n), onsistent with at leasta fration S(n)=3�n3� of T .Proof. First we onstrut the level-1 topology C(n). Using dynami programming to ompute allvalues of S(n0) for 0 � n0 � n we an do this in time O(n2). Note that C(n) ontains in totalO(n) verties. It remains only to hoose an appropriate labelling of the leaves of C(n), and this isahieved by substituting C(n) for N in Theorem 1; this dominates the running time. ut5 In [12℄ this is alled a aterpillar network.



8 Note that, beause C(n) ahieves the best possible fration for the input T1(n), the frationahieved by Lemma 2 is worst-ase optimal for all n. Empirial experiments suggest that the fun-tion S(n)=3�n3� is stritly dereasing and approahes a horizontal asymptope of 0:4880::: from above;for values of n = 101; 102; 103; 104 the respetive ratios are 0:511:::; 0:490:::; 0:4882:::; 0:4880:::. It isdiÆult to formally prove onvergene to 0.4880... so we prove a slightly weaker lower bound of 0.48on this funtion. From this it follows that in all ases the algorithm desribed in Lemma 2 is guar-anteed to produe a network onsistent with at least a fration 0:48 of T , improving onsiderablyon the 5=12 � 0:4166 fration ahieved in [12℄.Lemma 3. S(n)=3�n3� > 0:48 for all n � 0.Proof. This an easily be omputationally veri�ed for n < 116, we have done this with a omputerprogram written in Java [21℄. To prove it for n � 116, assume by indution that the laim is truefor all n0 < n. Instead of hoosing the value of a that maximises S(n) we laim that setting a equalto z = b2n=3 is suÆient for our purposes. We thus need to prove the following inequality:�z3�+ 2�z2�(n� z) + z�n�z2 �+ S(n� z)3�n3� > 48=100:
Combined with the fat that, by indution, S(n�z)=3�n�z3 � > 48=100, it is suÆient to prove that:�z3�+ 2�z2�(n� z) + z�n�z2 �+ 144=100�n�z3 �3�n3� > 48=100
Using Mathematia we rearrange the previous inequality to:b2n=3�22 + 9n+ 33n2 � 6(7 + 18n)b2n=3+ 86b2n=32�n(2� 3n+ n2) < 0
Taking (2n=3)�1 as a lower bound on b2n=3, and 2n=3 as an upper bound, it an be easily veri�edthat the above inequality is satis�ed for n � 116. ut
4.2 Optimising the derandomization when the underlying struture is alreadyknownThe derandomization presented in Theorem 1 essentially works by exhaustive searh. If we knowmore about the struture of the topology that we are labelling, the derandomization an be mademuh faster. We ontinue with level-1 networks to demonstrate this.Lemma 4. The running time named in Lemma 2 an be improved to O(jT jn2) by ustomizing thederandomization proedure.Proof. We begin by onstruting in time O(n2) the topology C(n) (see Lemma 2). Let r be thenumber of reombination verties in C(n). We partition the leaves of C(n) into (r + 1) bloks. Letd0 be the number of leaves in blok 0 i.e. between the root and the �rst reombination vertex. Letdr be the number of leaves in blok r i.e. beneath the last reombination vertex (this value will byde�nition be either 1 or 2). For 0 < i < r let di be the number of leaves in blok i i.e. beneath the ithreombination vertex (numbering downwards from the root) but above the (i+1)th reombinationvertex. Let d+i refer toPj>i di. We impose an ordering < on the leaves, de�ned as follows. For two



9leaves l1; l2 in the same blok, l1 is earlier in the ordering (i.e. l1 < l2) i� l1 is loser to the rootof C(n) then l2 (in terms of shortest direted path.) For two leaves in di�erent bloks, for examplebloks b and b0, the leaf in blok min(b; b0) is earlier in the ordering. Note that if blok r ontains2 leaves then these leaves are atually indistinguishable under < (see Figure 2); to ensure that <is a total ordering we in this ase impose an arbitrary ordering on those two leaves. This does notause problems with the rest of the analysis.We will onsider the leaves of C(n) in the order spei�ed by <. Assume that the labelling ofthe �rst (k � 1) leaves has been determined. To alulate the labelling of the kth leaf we hoosea label whih maximises the expeted number of triplets satis�ed, assuming the labelling of theremaining n � k leaves is hosen uniformly at random. For eah possible labelling of the kth leaf,and for eah triplet t in the input, we thus need to alulate the probability P (t) that t is onsistentwith the network if the remaining n � k leaves are labelled uniformly at random. The derandom-ization desribed in Setion 3 essentially omputes this probability by exhaustively trying all waysof mapping the unassigned speies from t into the unlabelled leaves. We an do this muh faster byobserving that in this ase there are essentially only 6 di�erent lasses of triplets. Let I be the setof speies used to label the �rst k leaves. Let O = X n I be the not yet assigned speies. All tripletsare thus of the form OOjI; IIjO; IOjI;OIjO;OOjO or IIjI. We assume that the kth leaf is inblok i. Let l refer to the number of unlabelled leaves in blok i. Let  be the partially omplete la-belling (at any iteration only de�ned on the range I). We now onsider eah lass of triplets in turn.Case OOjI: P (t) will always be 1, irrespetive of how the remaining n� k leaves are labelled.Case IIjO: Let t = xyjz. If x and y are not mapped to the same blok, P (t) is zero. Other-wise, t is onsistent with the network i� z is not mapped to the l unassigned leaves remaining inthat blok. So in this ase P (t) = 1� l=(n� k).Case IOjI: Let t = xyjz where x and z are the I speies. P (t) is 0 if �1(x) < �1(z), and1 otherwise.Case OIjO: Let t = xyjz where y is the I speies. Consider a labelling 1 obtained by extending uniformly at random, as desribed. If any of the following three onditions are true the triplett is not onsistent with the network: (1) If x and y are not mapped to the same blok; (2) if�11 (z) < �11 (x); (3) if z and x are mapped to the same blok with �11 (x) < �11 (z). Thus,P (t) = ld+i =(n� k)(n� k � 1).Case OOjO: Let t = xyjz. Again, assume that labelling 1 has been obtained by extending uniformly at random. Let s = (n � k � 3)!. There are in total 2s�n�k3 � hoies for 1 of the form�11 (z) < �11 (y) < �11 (x) or �11 (z) < �11 (x) < �11 (y) whih make t onsistent with thenetwork. The only other types of labelling 1 whih make t onsistent with the network are ofthe form �11 (y) < �11 (x) < �11 (z) or �11 (x) < �11 (y) < �11 (z). In all these ases x and yhave to be mapped to the same blok, and z has to be mapped to a lower blok. The ase whenx and y are both mapped to blok i ontributes 2s� l2�d+i . The ase when x and y are mappedtogether to some blok below blok i ontributes 2sPj>i �dj2 �d+j . Given that there are in total(n� k)! = (n� k)(n� k � 1)(n� k � 2)s hoies for 1, we have that:
P (t) = 2�n�k3 �+ 2� l2�d+i + 2Pj>i �dj2 �d+j(n� k)(n� k � 1)(n� k � 2)
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Case IIjI: Let t = xyjz. P (t) will in this ase be 1 or 0 beause speies x; y; z have already beenassigned to leaves. The remainder of the analysis is essentially the same as in ase OOjO: P (t) = 1i� (1) �1(z) < �1(y) < �1(x) or (2) �1(z) < �1(x) < �1(y) or (3) �1(y) < �1(x) <�1(z) or �1(x) < �1(y) < �1(z) with x and y mapped to the same blok and z to a lowerblok.The running time of the derandomization an be analysed as follows. We begin with a prepro-essing phase. Firstly we ompute a look-up table for the values S(n0) for 0 � n0 � n. As in Lemma2 this takes time O(n2). From this data we onstrut in time O(n) a look-up table for the valuesdi; d+i and the funtion (used in ase OOjO) f(i) = 2Pj>i �dj2 �d+j . Total preproessing time is thusO(n2). In the algorithm itself we maintain and update a reord, for eah speies x, of whether it isin I or O and (where relevant) the loation of �1(x) in the < ordering, and whih blok it hasbeen mapped to. This is all omputable in time O(1). The algorithm needs n iterations to �x nleaves, and within eah iteration � n speies andidates for the kth leaf have to be tried. For eahspeies we try in the kth leaf we need to ompute the onditional expetation by iterating overall the jT j triplets; this takes O(jT j) time beause the probabilities for the six triplet ases are allomputable in O(1) time (thanks to the pre-omputation of the f(:) funtion.) The total runningtime is thus O(jT jn2). utBy ombining all three lemmas from this setion we obtain the following theorem:Theorem 2. Let T be a set of input triplets labelled by n speies. In time O(jT jn2) it is possibleto onstrut a level-1 network N onsistent with at least a fration S(n)=3�n3� > 0:48 of T , and thisis worst-ase optimal.
5 A lower bound for level-2 networksTheorem 3. Let T be a set of input triplets labelled by n speies. It is possible to �nd in polynomialtime a level-2 network N (T ) suh that N (T ) is onsistent with at least a fration 0.61 of T .Proof. We prove this by indution. For n < 16813 we use a omputational proof. For n � 16813we use Mathematia to show that, assuming the indution base, a fration 0.61 an be ahievedby repeatedly haining together a very basi type of level-2 network into some kind of \level-2aterpillar"; the details are deferred to the appendix. ut
6 The omplexity of optimisationGiven a topology N and a set of triplets T , the tehniques desribed in this artile guarantee to�nd a labelling  suh that f(N; ; T ) � #N . It is natural to explore the omplexity of �nding,in polynomial time, (approximations to) an optimal labelling of N for a partiular triplet set T .The observation below rules out (under standard omplexity-theoreti assumptions) the existeneof a Polynomial-Time Approximation Sheme (PTAS) for this problem. Seondly we observe thata PTAS for the problem MAX-LEVEL-0 (whih arries the name MCTT in [20℄) an also be ruledout. We disuss the onsequenes of this in the next setion.Problem: MAX-LEVEL-0-LABELLINGInput: A level-0 topology N (i.e. a topology of a phylogeneti tree) and a set T of rooted triplets.



11Output: The maximum value of s suh that there exists a labelling  of N making (N; ) onsis-tent with at least s triplets from T .Problem: MAX-LEVEL-0Input: A set T of rooted triplets.Output: The maximum value of s suh that there exists a level-0 network N (i.e. a phylogenetitree) onsistent with at least s triplets from T .Observation 1 MAX-LEVEL-0 and MAX-LEVEL-0-LABELLING are both APX-omplete.Proof. See Appendix. ut7 Conlusions and open questionsWith Theorem 1 we have desribed a method whih shows how, in polynomial time, good solutionsfor the full triplet set an be onverted into equally good, or better, solutions for more generaltriplet sets. Where best-possible solutions are known for the full triplet set, this leads to worst-aseoptimal algorithms, as demonstrated by Theorem 2. An obvious next step is to use this methodto generate algorithms (where possible worst-ase optimal) for wider sublasses of phylogenetinetworks. Finding the/an \optimal form" of level-2 networks for the full triplet set remains afasinating open problem.From a biologial perspetive (and from the perspetive of understanding the relevane of tripletmethods) it is also important to attah meaning to the networks that the tehniques desribed inthis paper produe. For example, we have shown how, for level-1 networks, we an always �nd anetwork isomorphi to a galled aterpillar whih is onsistent with at least a fration 0.48 of theinput. If we do this, does the loation of the speies within this galled aterpillar ommuniate anybiologial information? Also, what does it say about the relevane of triplet methods, and espeiallythe level-k hierarhy, if we know a priori that a large fration (already for level 2 more than 0.61)of the input an be made onsistent with some network from the sublass? And, as disussed inSetion 3.1, how far an the tehniques desribed in this paper be used as a quality measure fornetworks produed by other algorithms?As mentioned in the introdution, an algorithm guaranteed to �nd a network onsistent with afration p0 of the input trivially beomes a p0-approximation for the MAX variant of the problem(where we optimise not with respet to jT j but with respet to the size of the optimal solutionfor T .) In fat, the best-known approximation fator for MAX-LEVEL-0 is 1/3, a trivial extensionof the fat that p = 1=3 for trees [9℄. On the other hand, the APX-hardness of this problemimplies that an approximation fator arbitrarily lose to 1 will not be possible. It remains thus aninteresting open problem to determine whether better approximation fators an be obtained for thelatter problem via some di�erent approah. For example, an empirial study in [20℄ suggests that,for MAX-LEVEL-0, approximation fators in the region of 0:833 might be possible. Alternatively,there ould be some omplexity theoreti reason why approximation fators better than p (wherep is optimal in our formulation) are not possible. Under strong omplexity-theoreti assumptionsthe best approximation fator possible for MAX-3-SAT, for example, uses a trivial upper bound ofall the lauses in the input, analogous perhaps to using jT j as an upper bound.8 AknowledgementsWe thank Leo van Iersel for his assistane with the O(n4+) triplet onsisteny-heking algorithmand Jesper Jansson for very helpful omments.
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13A AppendixIn this setion we give the full proofs for Lemma 1 from Setion 2, Theorem 3 from Setion 5 andObservation 1 from Setion 6.Lemma 1. Given a phylogeneti network N with n+ = jV (N )j verties, and a triplet t, it ispossible to determine in time O(n4+) whether t is onsistent with N .
Proof. We let t = xyjz and for simpliity identify x; y; z with the leaves of N where the respetivespeies are found. Let r be the root of N . We laim that t is onsistent with N i� there exists avertex u 62 fx; y; z; rg in N suh that the following three paths exist in N and are mutually disjointin terms of their internal verties: r ! z; u! x; u! y.()) Clearly, if t is onsistent with N then by De�nition 2 the path v ! z exists. If v = r weare done, otherwise the path r ! z an be reated by ombining v ! z with any path r ! v.(() Suppose that the three paths exist. Consider any path P from r to u. Given that N is adireted ayli graph suh a path annot interset with the internal verties of the paths u ! xand u ! y. If P does not interset with the internal verties of the path r ! z we are done.Otherwise let v be the last vertex from P that intersets with a vertex from r ! z, and let v ! ube the subpath of P starting from v. It follows that the paths u ! x; u ! y; v ! u; v ! z existand are mutually disjoint on their internal verties.If we already knew u, we ould use the algorithm in [8℄ (Thm. 3) to determine whether thereexist three (internally vertex) disjoint paths r ! z; u! x; u! y in N . To be spei�, the algorithmfrom [8℄ shows how (in this ase) the problem an be redued to searhing for a path between twoverties in a state-spae graph G0 ontaining O(n3+) verties. The graph G0 is ayli, and the fatthat every vertex in N has outdegree � 2 implies that G0 has a linear number of edges. So path-�nding an also be done in O(n3+) time, giving an overall running time of O(n3+) if we know u.However, we have to guess u by trying all n+ possibilities for it, giving a running time of O(n4+)for the entire algorithm. ut

Figure 3. We onstrut the network LB2(n) by repeatedly haining the struture on the left, a simple level-2 network(see [10℄), together to obtain an overall topology resembling the struture on the right.
Theorem 3. Let T be a set of input triplets labelled by n speies. It is possible to �nd in polynomialtime a level-2 network N (T ) suh that N (T ) is onsistent with at least a fration 0.61 of T .



14Proof. We prove the theorem by showing how to onstrut a topology, whih we all LB2(n),onsistent with at least 0.61 of the triplets in T1(n). Using Theorem 1 LB2(n) an then be labelledto obtain the network N (T ). We show by indution how LB2(n) an be onstruted. We taken < 16813 as the indution base; for these values of n we refer to a simple omputational proofwritten in Java [21℄. We now prove the result for n � 16813. Let us assume by indution that, forany n0 < n, there exists some topology LB2(n0) suh that #LB2(n0) � 0:61. If we let t(n0) equalthe number of triplets in T1(n0) onsistent with LB2(n0), we have that t(n0)=3�n03 � � 0:61 and thusthat t(n0) � 1:83�n03 �. Consider the struture in Figure 3. For S 2 fA;B;C;D;Eg, we de�ne theoperation hanging l leaves from side S as replaing the edge S with a direted path ontaining linternal verties, and then attahing a leaf to eah internal vertex. We onstrut LB2(n) as follows.We reate a opy of the struture from the �gure and hang  = b0:385n leaves from side C,d = b0:07n from side D and e = b0:26n from side E. We let f = b0:285n and add the edge(F; r), where r is the root of the network LB2(f). Finally we hang a = n � (+ d+ e+ f) leavesfrom side A; it might be that a = 0. (The only reason we hang leaves from side A is to ompensatefor the possibility that  + d + e + f does not exatly equal n.) This ompletes the onstrutionof LB2(n); note that as in Setion 4 the network is onstruted by reursively haining the samebasi struture together.We an use Mathematia to show that LB2(n) is onsistent with at least 0:61 of the tripletsin T1(n). In partiular, by expliitly ounting the triplets onsistent with LB2(n) we derive aninequality expressed in terms of n; ; d; e; f; t(f), whih Mathematia then simpli�es to a ubiinequality in n that holds for all n � 16813. (To simplify the inequality we take x � 1 as alower bound on bx and assume that no leaves are hung from side A). The Mathematia sript isreprodued in Figure 4, and an be downloaded from [21℄. Finally, we omment that the networksomputationally onstruted for n < 16813 are, essentially, built in the same way as the networksdesribed above. The only di�erene is that, to absorb inauraies arising from the oor funtion,we try several possibilities for how many leaves should be hung from eah side; for side C, forexample, we try also (� 1) and (+ 1) leaves. utObservation 1. MAX-LEVEL-0 and MAX-LEVEL-0-LABELLING are both APX-omplete.
Proof. By Theorem 1 we may label any tree topology to make it onsistent with 1/3 of the giventriplets. Therefore, both problems are in the lass APX. To prove APX-hardness we use a redutionproposed by Wu [20℄ and we show that it is atually an L-redution from the MAXIMUM SUBDAGproblem. Both L-redutions and the MAXIMUM SUBDAG problem were studied by Papadimitiouand Yannakakis [18℄. They proved that the MAXIMUM SUBDAG problem is APX-omplete.In the MAXIMUM SUBDAG problem we are given a direted graph G = (V;A), and the goalis to �nd a maximal ardinality subset of ars A0 � A suh that G0 = (V;A0) is ayli.In the redution of Wu one onstruts an instane of the MAX-LEVEL-0 problem as follows.Given a direted graph G = (V;A), let x =2 V , onsider the set of triplets T ontaining a singletriplet tuv = uxjv for every ar (u; v) 2 A, where X = X(T ) = V [ fxg. To argue that it is anL-redution it remains to prove the following two laims.1) If there exists a subset of ars A0 � A suh that G0 = (V;A0) is ayli and jA0j = k, thenthere exists a phylogeneti tree onsistent with at least k triplets from T . To prove this laim, weonsider a topologial sorting of verties in graph G0. We onstrut the phylogeneti tree to be aaterpillar with the leaves labeled (top down) by suh sorted verties, the lowest leaf is labelled byx. It remains to observe that for any ar (u; v) 2 A0 the orresponding triplet tuv is onsistent withthe obtained phylogeneti tree.
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n Î Integers && Hn £ -1 ÈÈ n ³ 16813LFigure 4. The Mathematia sript used in the proof of Theorem 3.2) Given a phylogeneti tree B onsistent with l triplets from T , we may onstrut in polynomialtime a subset of ars A0 � A suh that G0 = (V;A0) is ayli and jA0j = l. In fat we will show thatit suÆes to take A0 onsisting of the ars (u; v) suh that the orresponding triplet tuv is onsistentwith B. We only need to argue that for suh a hoie of A0 the resulting graph G0 = (V;A0) is ayli.Consider the path in the tree B from the root node to the leaf labeled by the speial speies x.For any vertex v 2 A, the speies v has an internal node on this path where he branhed out ofthe evolution of x, namely the Lowest Common Anestor of u and x (LCA(u; x)). Observe, thatthe position of LCA(u; x) indues a partial ordering >B on A. Reall, that if a triplet tuv = uxjvis onsistent with B, then LCA(u; x) is a proper anestor of LCA(v; x). Therefore, the onsistenttriplets from T indue another partial ordering that may be extended to >B. This implies that forA0 ontaining the ars (u; v) suh that a triplet tuv is onsistent with B the graph G0 = (V;A0) isayli.With the above onstrution we have shown that the existene of an �-approximation algorithmfor the MAX-LEVEL-0 problem implies existene of an �-approximation algorithm for the MAX-IMUM SUBDAG problem. In partiular, existene of a Polynomial-Time Approximation Sheme(PTAS) for MAX-LEVEL-0 would imply existene of PTAS for MAXIMUM SUBDAG, whih isunlikely due to the result of Papadimitiou and Yannakakis [18℄.In the redution we might have assumed a partiular topology for the tree. Namely, we mighthave assumed, that the topology needs to be a aterpillar. Therefore, the problem MAX-LEVEL-0-LABELLING is also APX-hard. ut


