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Abstra
t This arti
le 
on
erns the following question arising in 
omputational evolutionary biology.For a given sub
lass of phylogeneti
 networks, what is the maximum value of 0 � p � 1 su
h that forevery input set T of rooted triplets, there exists some network N (T ) from the sub
lass su
h that at leastpjT j of the triplets are 
onsistent with N (T )? Here we prove that the set 
ontaining all triplets (the fulltriplet set) in some sense de�nes p, and moreover that any network N a
hieving fra
tion p0 for the fulltriplet set 
an be 
onverted in polynomial time into an isomorphi
 network N 0(T ) a
hieving fra
tion� p0 for an arbitrary triplet set T . We demonstrate the power of this result for the �eld of phylogeneti
sby giving worst-
ase optimal algorithms for level-1 phylogeneti
 networks (a mu
h-studied extensionof phylogeneti
 trees), improving 
onsiderably upon the 5=12 fra
tion obtained re
ently by Jansson,Nguyen and Sung in [12℄. For level-2 phylogeneti
 networks we show that p � 0:61. We note that allthe results in this arti
le also apply to weighted triplet sets.
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21 Introdu
tionOne of the most 
ommonly en
ountered problems in 
omputational evolutionary biology is to plau-sibly infer the evolutionary history of a set of spe
ies, often abstra
tly modelled as a tree, usingobtained biologi
al data. Existing algorithms for dire
tly 
onstru
ting su
h a tree do not s
ale well(in terms of running time) and this has given rise to supertree methods: �rst infer trees for smallsubsets of the spe
ies and then puzzle them together into a bigger tree su
h that in some well-de�ned sense the information in the subset trees is preserved [3℄. In the fundamental 
ase wherethe subsets in question ea
h 
ontain exa
tly three spe
ies - subsets of two or fewer spe
ies 
annot
onvey information - we speak of rooted triplet methods.In re
ent years improved understanding of the 
omplex me
hanisms driving evolution has stim-ulated interest in re
onstru
ting evolutionary networks [7℄[14℄[16℄[19℄. Su
h stru
tures are moregeneral than trees and allow us to 
apture the phenomenon of reti
ulate evolution i.e. non tree-likeevolution. A natural abstra
tion of reti
ulate evolution, used already in several papers, is to permitre
ombination verti
es, verti
es with indegree greater than one. Informally a level-k phylogeneti
network is an evolutionary network in whi
h ea
h bi
onne
ted 
omponent 
ontains at most k su
hre
ombination verti
es. Phylogeneti
 trees form the base: they are level-0 networks. The higher thelevel of a network, the more intri
ate the pattern of reti
ulate evolution that it 
an a

ommodate.Note that phylogeneti
 networks 
an also be useful for visualising two or more 
ompeting hypothe-ses about tree-like evolution.Various authors have already studied the problem of 
onstru
ting phylogeneti
 trees (and moregenerally networks) whi
h are 
onsistent with an input set of rooted triplets. Aho et al [1℄ showeda simple polynomial-time algorithm whi
h, given a set of rooted triplets, �nds a phylogeneti
 tree
onsistent with all the triplets, or shows that no su
h tree exists. For the equivalent problem inlevel-1 and level-2 networks the problem be
omes NP-hard [10℄[12℄, although the problem be
omespolynomial-time solveable if the input triplets are dense i.e. if there is at least one triplet in theinput for ea
h subset of three spe
ies [10℄[13℄.Several authors have 
onsidered algorithmi
 strategies of use when the algorithms from [1℄ and[13℄ fail to �nd a tree or network. G�asienie
 et al [9℄ gave a polynomial-time algorithm whi
halways �nds a tree 
onsistent with at least 1/3 of the (weighted) input triplets, and furthermoreshowed that 1/3 is best possible when all possible triplets on n spe
ies (the full triplet set) are givenas input. On the negative side, [4℄[11℄[20℄ showed that it is NP-hard to �nd a tree 
onsistent with amaximum number of input triplets. In the 
ontext of level-1 networks, [12℄ gave a polynomial-timealgorithm whi
h produ
es a level-1 network 
onsistent with at least 5=12 � 0:4166 of the inputtriplets. They also des
ribed an upper-bound, whi
h is a fun
tion of the number of distin
t spe
iesn in the input, on the per
entage of input triplets that 
an be 
onsistent with a level-1 network.As in [9℄ this upper bound is tight in the sense that it is the best possible for the full triplet set onn spe
ies. They 
omputed a value of n for whi
h their upper bound equals approximately 0:4883,showing that in general a fra
tion better than this is not possible. The apparent 
onvergen
e ofthis bound from above to 0:4880::: begs the question, however, whether a fra
tion better than 5=12is possible for level-1 networks, and whether the full triplet set is in general always the worst-
ases
enario for su
h fra
tions.In this paper we answer these questions in the aÆrmative, and in fa
t we give a mu
h stronger re-sult. In parti
ular, we develop a probabilisti
 argument that (as far as su
h fra
tions are 
on
erned)



3the full triplet set is indeed always the worst possible 
ase, irrespe
tive of the type of network beingstudied (Proposition 1, Corollary 1). Furthermore, by using a generi
, derandomized polynomial-time (re)labelling pro
edure we 
an 
onvert a network N whi
h a
hieves a fra
tion p0 for the fulltriplet set into an isomorphi
 network N 0(T ) that a
hieves a fra
tion � p0 for a given input tripletset T (Theorem 1). In this way we 
an easily use the full triplet set to generate, for any networkstru
ture, a lower bound on the fra
tion that 
an be a
hieved for arbitrary triplet sets within su
ha network stru
ture. The derandomization we give is fully general and leads immediately to a sim-ple extension of the 1/3 result from [9℄. For level-1 networks we use the derandomization to givea polynomial-time algorithm whi
h a
hieves a fra
tion exa
tly equal to the level-1 upper-boundidenti�ed in [12℄, and whi
h is thus worst-
ase optimal for level-1 networks. We also demonstratehow the derandomization 
an be optimized if we have more information about the stru
ture of N .Spe
i�
ally, we show an alternative worst-
ase optimal level-1 algorithm with an optimized runningtime of O(jT jn2) where jT j is the number of triplets in the input (Theorem 2). We formally provethat this a
hieves a fra
tion of at least 0.48 for all n. Finally, we demonstrate the 
exibility of ourte
hnique by proving that for level-2 networks (see [10℄) we 
an, for any triplet set T , �nd in poly-nomial time a level-2 network 
onsistent with at least a fra
tion 0.61 of the triplets in T (Theorem 3).We emphasize that in this arti
le we are optimizing (and thus de�ning worst-
ase optimality)with respe
t to jT j, the number of triplets in the input, not Opt(T ), the size of the optimal so-lution for that spe
i�
 T . The latter formulation we 
all the MAX variant of the problem. Thefa
t that Opt(T ) is always bounded above by jT j implies that an algorithm that obtains a fra
tionp0 of the input T is trivially also a p0-approximation for the 
orresponding MAX problem. Betterapproximation fa
tors for the MAX problem might, however, be possible. We dis
uss this furtherin Se
tion 7.The results in this arti
le are given in terms of unweighted triplet sets. A natural extension, espe-
ially in phylogeneti
s, is to atta
h a weight to ea
h triplet t 2 T i.e. a value w(t) 2 Q �0 denotingthe relative importan
e of (or 
on�den
e in) t. In this weighted version of the problem fra
tionsare de�ned relative to the total weight of T (de�ned as the sum of the weights of all triplets in T ),not to jT j. It is easy to verify that all the results in this arti
le also hold for the weighted versionof the problem.2 De�nitionsA phylogeneti
 network (network for short) N on spe
ies set X is de�ned as a pair (N; 
) whereN is the network topology (topology for short) and 
 is a labelling of the topology. The topology isa dire
ted a
y
li
 graph in whi
h exa
tly one vertex has indegree 0 and outdegree 2 (the root) andall other verti
es have either indegree 1 and outdegree 2 (split verti
es), indegree 2 and outdegree 1(re
ombination verti
es) or indegree 1 and outdegree 0 (leaves). A labelling is a bije
tive mappingfrom the leaf set of N (denoted LN ) to X. Let n = jXj = jLN j.A dire
ted a
y
li
 graph is 
onne
ted (also 
alled \weakly 
onne
ted") if there is an undire
tedpath between any two verti
es and bi
onne
ted if it 
ontains no vertex whose removal dis
onne
tsthe graph. A bi
onne
ted 
omponent of a network is a maximal bi
onne
ted subgraph.De�nition 1. A network is said to be a level-k network if ea
h bi
onne
ted 
omponent 
ontainsat most k 2 N re
ombination verti
es.We de�ne phylogeneti
 trees to be the 
lass of level-0 networks.
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Figure 1. One of the three possible triplets on the set of spe
ies fx; y; zg. Note that, as with all �gures in this arti
le,all ar
s are assumed to be dire
ted downwards, away from the root.The unique rooted triplet (triplet for short) on a spe
ies set fx; y; zg � X in whi
h the lowest
ommon an
estor of x and y is a proper des
endant of the lowest 
ommon an
estor of x and z isdenoted by xyjz (whi
h is identi
al to yxjz). For any set T of triplets de�ne X(T ) as the union ofthe spe
ies sets of all triplets in T .De�nition 2. A triplet xyjz is 
onsistent with a network N (inter
hangeably: N is 
onsistent withxyjz) if N 
ontains a subdivision of xyjz, i.e. if N 
ontains verti
es u 6= v and pairwise internallyvertex-disjoint paths u! x, u! y, v ! u and v ! z4.By extension, a set of triplets T is 
onsistent with a network N (inter
hangeably: N is 
onsistentwith T ) i�, for all t 2 T , t is 
onsistent with N .Lemma 1. Given a phylogeneti
 network N with n+ = jV (N )j verti
es, and a triplet t, it ispossible to determine in time O(n4+) whether t is 
onsistent with N .Proof. See Appendix. ut
3 Labelling a network topologySuppose we are given a topology N with n leaves, and a set T of m triplets where LN =fl1; l2; : : : ; lng and X = X(T ) = fx1; x2; : : : ; xng. The spe
i�
 goal of this se
tion is to 
reate alabelling 
 su
h that the number of triplets from T 
onsistent with (N; 
), is maximized.Let f(N; 
; T ) denote the fra
tion of T that is 
onsistent with (N; 
).Consider the spe
ial set T1(n), the full triplet set, of all the possible 3�n3� triplets with leaveslabelled from fx1; x2; : : : ; xng. Observe that for this triplet set the number of triplets 
onsistentwith a phylogeneti
 network (N; 
) does not depend on the labelling 
. We may thus de�ne #N =f(N; 
; T1(n)) = f(N;T1(n)) by 
onsidering any arbitrary, �xed labelling 
.We will argue that the triplet set T1(n) is the worst-
ase input for maximizing f(N; 
; T ) forany �xed topology N on n leaves. In parti
ular we prove the following:Proposition 1. For any topology N with n leaves and any set of triplets T , if the labelling 
 is
hosen uniformly at random, then the quantity f(N; 
; T ) is a random variable with expe
ted valueE(f(N; 
; T )) = #N .Proof. Consider �rst the full triplet set T1(n) = ft1; t2; : : : ; t3(n3)g and an arbitrary �xed labelling
0. By labelling N we �x the position of ea
h of the triplets in N . Formally, a position of a triplett = xyjz (with respe
t to 
0) is a triplet p = 
�10 (t) = 
�10 (x)
�10 (y)j
�10 (z) on the leaves of N . Wemay list possible positions for a triplet in N as those 
orresponding to t1; t2; : : : ; t3(n3) in (N; 
0).Sin
e a #N fra
tion of t1; t2; : : : ; t3(n3) is 
onsistent with (N; 
0), a #N fra
tion of these positions4 Where it is 
lear from the 
ontext, as in this 
ase, we may refer to a leaf by the spe
ies that it is mapped to.



5makes the triplet 
onsistent. Now 
onsider a single triplet t 2 T and a labelling 
 that is 
hosenrandomly from the set � of n! possible bije
tions from LN to X. Observe, that for ea
h ti 2 T1(n),exa
tly 2 � (n � 3)! labellings 
 2 � make triplet t have the same position in (N; 
) as ti has in(N; 
0) (the fa
tor of 2 
omes from the fa
t that we think of xyjz and yxjz as being the sametriplet). Any single labelling o

urs with probability 1n! , hen
e triplet t takes any single positionwith probability 2�(n�3)!n! = 13�(n3) .Sin
e for an arbitrary t 2 T ea
h of the 3 � �n3� positions have the same probability and #N ofthem make t 
onsistent, the probability of t being 
onsistent with (N; 
) is #N . The expe
tationis thus that a fra
tion #N of the triplets in T are 
onsistent with (N; 
). utFrom the expe
ted value of a random variable we may 
on
lude the existen
e of a realizationthat attains at least this value.Corollary 1. For any topology N and any set of triplets T there exists a labelling 
0 su
h thatf(N; 
0; T ) � #N .We may deterministi
ally �nd su
h a 
0 by derandomizing using the method of 
onditionalexpe
tations. Spe
i�
ally, we will iteratively use a pro
edure that 
omputes the expe
ted fra
tionof 
onsistent triplets assuming that labels of 
ertain leaves are already �xed, and that the labellingis 
hosen uniformly at random for the remaining leaves. In order to 
ompute this expe
tation, wewill 
al
ulate, for ea
h triplet t 2 T , the probability that su
h a random labelling 
 will make t
onsistent with (N; 
). To 
al
ulate this probability we will 
onsider all the possible positions oftriplet t in the topology N and 
he
k if this position is still available for t, given the already 
hosenlabels. Among these available positions we will 
ount those that make a triplet 
onsistent. Observe,that ea
h of the positions available for t has the same probability of being 
hosen for t, hen
e theprobability of t being 
onsistent with (N; 
) is just the fra
tion of 
onsistent positions among thoseavailable for t. To speed up the algorithm, part of the 
omputation will be done in a prepro
essingphase. In this prepro
essing we will 
ompute, for every position p in N , whether p is a position thatmakes a triplet 
onsistent. For ea
h position we use Lemma 1 to test if this position is a 
onsistentone. The overall algorithm is thus as follows:1. Prepro
essing: 
ompute whi
h positions in N make a triplet 
onsistent.2. �  set of all possible labellings.3. while there is a leaf l whose label is not yet �xed, do:{ for every spe
ies x that is not yet used� let �x be the set of labellings from � where l is labelled by x� 
ompute E(f(N; 
x; T )), where 
x is 
hosen randomly from �x, by the above des
ribedpro
edure{ �  �x s.t. x = argmaxxE(f(N; 
x; T ))4. return 
0  the only element of � .The resulting 
0 �xes labels for all the leaves, hen
e it is no longer a random labelling, but just afun
tion. It remains only to analyse the quality of 
0 and the running time of the derandomization.Theorem 1. For any topology N and any triplet set T on n leaves, a labelling 
0 su
h thatf(N; 
0; T ) � #N 
an be found in time O(n4+ � n3), where n+ = jV (N)j.Proof. We will argue that, for the 
0 produ
ed by the above algorithm, f(N; 
0; T ) � #N . ByProposition 1 the initial random labelling 
 has the property E(f(N; 
; T )) = #N . It remains toshow that this expe
tation is not de
reasing when labels of leaves get �xed during the algorithm.



6Consider a single update �  �x of the range of the random labelling. By the 
hoi
e of the leafl to get a �xed label we 
hoose a partition of � into blo
ks �x. The expe
tation E(f(N; 
; T )) isan average of f(N; 
; T ) over � , and at least one of the blo
ks �x of the partition has this averageat least as big as the total average. Hen
e, by the 
hoi
e of �x with the highest expe
tation off(N; 
x; T ), we get E(f(N; 
x; T )) � E(f(N; 
; T )).We estimate the running time of this derandomization as follows. By Lemma 1, the prepro
essingphase takes O(n4+ �n3) time. In the main 
al
ulation part we need to �x every leaf, and we try everyavailable spe
ies on it, whi
h gives O(n2) tries. Ea
h time we need to 
al
ulate the expe
ted fra
tionof 
onsistent triplets. The easy way to do so is to try every single triplet on every single position,whi
h takes O(jT j � n3) time. We may save time by grouping those triplets that do not have anyleaf �xed yet: they have the same probability of being 
onsistent with (N; 
). This group of tripletsmay be served in O(n3) time, and for ea
h of the other triplets it suÆ
es to enumerate the possible�xings of at most 2 leaves, whi
h takes in total O(n2 � jT j) time. Con
luding, the derandomizationtime is dominated by the prepro
essing phase and takes at most O(n4+ � n3) time. ut
3.1 Consequen
es of Theorem 1The above theorem gives a new perspe
tive on the problem of approximately 
onstru
ting phylo-geneti
 networks. From the algorithm of G�asienie
 et al. [9℄ we 
an always 
onstru
t a phylogeneti
tree that is 
onsistent with at least 1=3 of the the input triplets. In fa
t, the trees 
onstru
ted bythis algorithm are very spe
i�
 - they are always 
aterpillars. (A 
aterpillar is a phylogeneti
 treesu
h that, after removal of leaves, only a dire
ted path remains.) Theorem 1 implies that not only
aterpillars, but all possible tree topologies have the property, that given any set of triplets wemay �nd in polynomial time a proper assignment of spe
ies into leaves with the guarantee that theresulting phylogeneti
 tree is 
onsistent with at least a third of the input triplets.The generality of Theorem 1 makes it meaningful not only for trees, but also for any other sub-
lass of phylogeneti
 networks (e.g. for level-k networks). Let us assume that we have fo
ussed ourattention on a 
ertain sub
lass of networks. Consider the task of designing an algorithm that for agiven triplet set 
onstru
ts a network from the sub
lass 
onsistent with at least a 
ertain fra
tion ofthe given triplets. A worst-
ase approa
h as des
ribed in this se
tion will never give us a guaranteebetter than the maximum value of #N ranging over all topologies N in the sub
lass. Therefore,if we intend to obtain networks 
onsistent with a big fra
tion of triplets and if our 
riteria is tomaximize this fra
tion in the worst 
ase, then our task redu
es to �nding topologies within thesub
lass that are good for the full triplet set. Theorem 1 potentially has a further use as a me
h-anism for 
omparing the quality of phylogeneti
 networks generated by other methods, be
ause itprovides lower bounds for the fra
tion of T that a given topology and/or sub
lass of topologies
an be 
onsistent with. (Although a fundamental problem in phylogeneti
s [2℄ [5℄ [6℄ [17℄ [15℄ thes
ien
e of network 
omparison is still very mu
h in its infan
y.)For level-0 networks (i.e. phylogeneti
 trees) the problem of �nding optimal topologies for thefull triplet set is simple: any tree is 
onsistent with exa
tly 1=3 of the full triplet set. For level-1phylogeneti
 networks a topology that is optimal for the full triplet set was 
onstru
ted in [12℄.We may use this network and Theorem 1 to obtain an algorithm that works for any triplet set and
reates a network that is 
onsistent with the biggest possible fra
tion of triplets in the worst 
ase(see Se
tion 4 for more details). For level-2 networks we do not yet know the optimal stru
ture ofa topology for the full triplet set, but we will show in Se
tion 5 that we 
an 
onstru
t a networkthat has a guarantee of being 
onsistent with at least a fra
tion 0:61 of the input triplets.



74 Appli
ation to level-1 phylogeneti
 networks4.1 A worst-
ase optimal polynomial-time algorithm for level-1 networksIn [12℄ it was shown how to 
onstru
t a spe
ial level-1 topology C(n), whi
h we 
all a galled
aterpillar5, su
h that #C(n) � #N for all level-1 topologies N on n leaves. The existen
e ofC(n), whi
h has a highly regular stru
ture, was proven by showing that any other topology N 
anbe transformed into C(n) by lo
al rearrangements that never de
rease the number of triplets theasso
iated network is 
onsistent with. It was shown that #C(n) = S(n)=3�n3�, where S(0) = S(1) =S(2) = 0 and, for n > 2,
S(n) = max1�a�n��a3�+ 2�a2�(n� a) + a�n� a2 �+ S(n� a)�: (1)

C(2)

C(6)

C(17)

Figure 2. This is galled 
aterpillar C(17). It 
ontains two galls and ends with a tail of two leaves. C(17) 
ontains 11leaves in the top gall be
ause Equation 1 is maximised for a = 11.In Figure 2 an example of a galled 
aterpillar is shown. All galled 
aterpillars on n � 3 leaves
onsist of one or more galls 
hained together in linear fashion and terminating in a tail of one ortwo leaves. Observe that the re
ursive stru
ture of C(n) mirrors dire
tly the re
ursive de�nition ofS(n) in the sense that the value of a 
hosen at re
ursion level k is equal to the number of leavesfound in the kth gall, 
ounting downwards from the root. In the de�nition of C(n) it is not spe
i�edhow the a leaves at a given re
ursion level are distributed within the gall, but it is easy to verifythat pla
ing them all on one side of the gall (as shown in the �gure) is suÆ
ient.Lemma 2. Let T be a set of input triplets labelled by n spe
ies. Then in time O(n7) it is possibleto 
onstru
t a level-1 network N , isomorphi
 to the galled 
aterpillar C(n), 
onsistent with at leasta fra
tion S(n)=3�n3� of T .Proof. First we 
onstru
t the level-1 topology C(n). Using dynami
 programming to 
ompute allvalues of S(n0) for 0 � n0 � n we 
an do this in time O(n2). Note that C(n) 
ontains in totalO(n) verti
es. It remains only to 
hoose an appropriate labelling of the leaves of C(n), and this isa
hieved by substituting C(n) for N in Theorem 1; this dominates the running time. ut5 In [12℄ this is 
alled a 
aterpillar network.



8 Note that, be
ause C(n) a
hieves the best possible fra
tion for the input T1(n), the fra
tiona
hieved by Lemma 2 is worst-
ase optimal for all n. Empiri
al experiments suggest that the fun
-tion S(n)=3�n3� is stri
tly de
reasing and approa
hes a horizontal asymptope of 0:4880::: from above;for values of n = 101; 102; 103; 104 the respe
tive ratios are 0:511:::; 0:490:::; 0:4882:::; 0:4880:::. It isdiÆ
ult to formally prove 
onvergen
e to 0.4880... so we prove a slightly weaker lower bound of 0.48on this fun
tion. From this it follows that in all 
ases the algorithm des
ribed in Lemma 2 is guar-anteed to produ
e a network 
onsistent with at least a fra
tion 0:48 of T , improving 
onsiderablyon the 5=12 � 0:4166 fra
tion a
hieved in [12℄.Lemma 3. S(n)=3�n3� > 0:48 for all n � 0.Proof. This 
an easily be 
omputationally veri�ed for n < 116, we have done this with a 
omputerprogram written in Java [21℄. To prove it for n � 116, assume by indu
tion that the 
laim is truefor all n0 < n. Instead of 
hoosing the value of a that maximises S(n) we 
laim that setting a equalto z = b2n=3
 is suÆ
ient for our purposes. We thus need to prove the following inequality:�z3�+ 2�z2�(n� z) + z�n�z2 �+ S(n� z)3�n3� > 48=100:
Combined with the fa
t that, by indu
tion, S(n�z)=3�n�z3 � > 48=100, it is suÆ
ient to prove that:�z3�+ 2�z2�(n� z) + z�n�z2 �+ 144=100�n�z3 �3�n3� > 48=100
Using Mathemati
a we rearrange the previous inequality to:b2n=3
�22 + 9n+ 33n2 � 6(7 + 18n)b2n=3
+ 86b2n=3
2�n(2� 3n+ n2) < 0
Taking (2n=3)�1 as a lower bound on b2n=3
, and 2n=3 as an upper bound, it 
an be easily veri�edthat the above inequality is satis�ed for n � 116. ut
4.2 Optimising the derandomization when the underlying stru
ture is alreadyknownThe derandomization presented in Theorem 1 essentially works by exhaustive sear
h. If we knowmore about the stru
ture of the topology that we are labelling, the derandomization 
an be mademu
h faster. We 
ontinue with level-1 networks to demonstrate this.Lemma 4. The running time named in Lemma 2 
an be improved to O(jT jn2) by 
ustomizing thederandomization pro
edure.Proof. We begin by 
onstru
ting in time O(n2) the topology C(n) (see Lemma 2). Let r be thenumber of re
ombination verti
es in C(n). We partition the leaves of C(n) into (r + 1) blo
ks. Letd0 be the number of leaves in blo
k 0 i.e. between the root and the �rst re
ombination vertex. Letdr be the number of leaves in blo
k r i.e. beneath the last re
ombination vertex (this value will byde�nition be either 1 or 2). For 0 < i < r let di be the number of leaves in blo
k i i.e. beneath the ithre
ombination vertex (numbering downwards from the root) but above the (i+1)th re
ombinationvertex. Let d+i refer toPj>i di. We impose an ordering <
 on the leaves, de�ned as follows. For two



9leaves l1; l2 in the same blo
k, l1 is earlier in the ordering (i.e. l1 <
 l2) i� l1 is 
loser to the rootof C(n) then l2 (in terms of shortest dire
ted path.) For two leaves in di�erent blo
ks, for exampleblo
ks b and b0, the leaf in blo
k min(b; b0) is earlier in the ordering. Note that if blo
k r 
ontains2 leaves then these leaves are a
tually indistinguishable under <
 (see Figure 2); to ensure that <
is a total ordering we in this 
ase impose an arbitrary ordering on those two leaves. This does not
ause problems with the rest of the analysis.We will 
onsider the leaves of C(n) in the order spe
i�ed by <
. Assume that the labelling ofthe �rst (k � 1) leaves has been determined. To 
al
ulate the labelling of the kth leaf we 
hoosea label whi
h maximises the expe
ted number of triplets satis�ed, assuming the labelling of theremaining n � k leaves is 
hosen uniformly at random. For ea
h possible labelling of the kth leaf,and for ea
h triplet t in the input, we thus need to 
al
ulate the probability P (t) that t is 
onsistentwith the network if the remaining n � k leaves are labelled uniformly at random. The derandom-ization des
ribed in Se
tion 3 essentially 
omputes this probability by exhaustively trying all waysof mapping the unassigned spe
ies from t into the unlabelled leaves. We 
an do this mu
h faster byobserving that in this 
ase there are essentially only 6 di�erent 
lasses of triplets. Let I be the setof spe
ies used to label the �rst k leaves. Let O = X n I be the not yet assigned spe
ies. All tripletsare thus of the form OOjI; IIjO; IOjI;OIjO;OOjO or IIjI. We assume that the kth leaf is inblo
k i. Let l refer to the number of unlabelled leaves in blo
k i. Let 
 be the partially 
omplete la-belling (at any iteration only de�ned on the range I). We now 
onsider ea
h 
lass of triplets in turn.Case OOjI: P (t) will always be 1, irrespe
tive of how the remaining n� k leaves are labelled.Case IIjO: Let t = xyjz. If x and y are not mapped to the same blo
k, P (t) is zero. Other-wise, t is 
onsistent with the network i� z is not mapped to the l unassigned leaves remaining inthat blo
k. So in this 
ase P (t) = 1� l=(n� k).Case IOjI: Let t = xyjz where x and z are the I spe
ies. P (t) is 0 if 
�1(x) <
 
�1(z), and1 otherwise.Case OIjO: Let t = xyjz where y is the I spe
ies. Consider a labelling 
1 obtained by extending
 uniformly at random, as des
ribed. If any of the following three 
onditions are true the triplett is not 
onsistent with the network: (1) If x and y are not mapped to the same blo
k; (2) if
�11 (z) <
 
�11 (x); (3) if z and x are mapped to the same blo
k with 
�11 (x) <
 
�11 (z). Thus,P (t) = ld+i =(n� k)(n� k � 1).Case OOjO: Let t = xyjz. Again, assume that labelling 
1 has been obtained by extending 
uniformly at random. Let s = (n � k � 3)!. There are in total 2s�n�k3 � 
hoi
es for 
1 of the form
�11 (z) <
 
�11 (y) <
 
�11 (x) or 
�11 (z) <
 
�11 (x) <
 
�11 (y) whi
h make t 
onsistent with thenetwork. The only other types of labelling 
1 whi
h make t 
onsistent with the network are ofthe form 
�11 (y) <
 
�11 (x) <
 
�11 (z) or 
�11 (x) <
 
�11 (y) <
 
�11 (z). In all these 
ases x and yhave to be mapped to the same blo
k, and z has to be mapped to a lower blo
k. The 
ase whenx and y are both mapped to blo
k i 
ontributes 2s� l2�d+i . The 
ase when x and y are mappedtogether to some blo
k below blo
k i 
ontributes 2sPj>i �dj2 �d+j . Given that there are in total(n� k)! = (n� k)(n� k � 1)(n� k � 2)s 
hoi
es for 
1, we have that:
P (t) = 2�n�k3 �+ 2� l2�d+i + 2Pj>i �dj2 �d+j(n� k)(n� k � 1)(n� k � 2)
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Case IIjI: Let t = xyjz. P (t) will in this 
ase be 1 or 0 be
ause spe
ies x; y; z have already beenassigned to leaves. The remainder of the analysis is essentially the same as in 
ase OOjO: P (t) = 1i� (1) 
�1(z) <
 
�1(y) <
 
�1(x) or (2) 
�1(z) <
 
�1(x) <
 
�1(y) or (3) 
�1(y) <
 
�1(x) <

�1(z) or 
�1(x) <
 
�1(y) <
 
�1(z) with x and y mapped to the same blo
k and z to a lowerblo
k.The running time of the derandomization 
an be analysed as follows. We begin with a prepro-
essing phase. Firstly we 
ompute a look-up table for the values S(n0) for 0 � n0 � n. As in Lemma2 this takes time O(n2). From this data we 
onstru
t in time O(n) a look-up table for the valuesdi; d+i and the fun
tion (used in 
ase OOjO) f(i) = 2Pj>i �dj2 �d+j . Total prepro
essing time is thusO(n2). In the algorithm itself we maintain and update a re
ord, for ea
h spe
ies x, of whether it isin I or O and (where relevant) the lo
ation of 
�1(x) in the <
 ordering, and whi
h blo
k it hasbeen mapped to. This is all 
omputable in time O(1). The algorithm needs n iterations to �x nleaves, and within ea
h iteration � n spe
ies 
andidates for the kth leaf have to be tried. For ea
hspe
ies we try in the kth leaf we need to 
ompute the 
onditional expe
tation by iterating overall the jT j triplets; this takes O(jT j) time be
ause the probabilities for the six triplet 
ases are all
omputable in O(1) time (thanks to the pre-
omputation of the f(:) fun
tion.) The total runningtime is thus O(jT jn2). utBy 
ombining all three lemmas from this se
tion we obtain the following theorem:Theorem 2. Let T be a set of input triplets labelled by n spe
ies. In time O(jT jn2) it is possibleto 
onstru
t a level-1 network N 
onsistent with at least a fra
tion S(n)=3�n3� > 0:48 of T , and thisis worst-
ase optimal.
5 A lower bound for level-2 networksTheorem 3. Let T be a set of input triplets labelled by n spe
ies. It is possible to �nd in polynomialtime a level-2 network N (T ) su
h that N (T ) is 
onsistent with at least a fra
tion 0.61 of T .Proof. We prove this by indu
tion. For n < 16813 we use a 
omputational proof. For n � 16813we use Mathemati
a to show that, assuming the indu
tion base, a fra
tion 0.61 
an be a
hievedby repeatedly 
haining together a very basi
 type of level-2 network into some kind of \level-2
aterpillar"; the details are deferred to the appendix. ut
6 The 
omplexity of optimisationGiven a topology N and a set of triplets T , the te
hniques des
ribed in this arti
le guarantee to�nd a labelling 
 su
h that f(N; 
; T ) � #N . It is natural to explore the 
omplexity of �nding,in polynomial time, (approximations to) an optimal labelling of N for a parti
ular triplet set T .The observation below rules out (under standard 
omplexity-theoreti
 assumptions) the existen
eof a Polynomial-Time Approximation S
heme (PTAS) for this problem. Se
ondly we observe thata PTAS for the problem MAX-LEVEL-0 (whi
h 
arries the name MCTT in [20℄) 
an also be ruledout. We dis
uss the 
onsequen
es of this in the next se
tion.Problem: MAX-LEVEL-0-LABELLINGInput: A level-0 topology N (i.e. a topology of a phylogeneti
 tree) and a set T of rooted triplets.



11Output: The maximum value of s su
h that there exists a labelling 
 of N making (N; 
) 
onsis-tent with at least s triplets from T .Problem: MAX-LEVEL-0Input: A set T of rooted triplets.Output: The maximum value of s su
h that there exists a level-0 network N (i.e. a phylogeneti
tree) 
onsistent with at least s triplets from T .Observation 1 MAX-LEVEL-0 and MAX-LEVEL-0-LABELLING are both APX-
omplete.Proof. See Appendix. ut7 Con
lusions and open questionsWith Theorem 1 we have des
ribed a method whi
h shows how, in polynomial time, good solutionsfor the full triplet set 
an be 
onverted into equally good, or better, solutions for more generaltriplet sets. Where best-possible solutions are known for the full triplet set, this leads to worst-
aseoptimal algorithms, as demonstrated by Theorem 2. An obvious next step is to use this methodto generate algorithms (where possible worst-
ase optimal) for wider sub
lasses of phylogeneti
networks. Finding the/an \optimal form" of level-2 networks for the full triplet set remains afas
inating open problem.From a biologi
al perspe
tive (and from the perspe
tive of understanding the relevan
e of tripletmethods) it is also important to atta
h meaning to the networks that the te
hniques des
ribed inthis paper produ
e. For example, we have shown how, for level-1 networks, we 
an always �nd anetwork isomorphi
 to a galled 
aterpillar whi
h is 
onsistent with at least a fra
tion 0.48 of theinput. If we do this, does the lo
ation of the spe
ies within this galled 
aterpillar 
ommuni
ate anybiologi
al information? Also, what does it say about the relevan
e of triplet methods, and espe
iallythe level-k hierar
hy, if we know a priori that a large fra
tion (already for level 2 more than 0.61)of the input 
an be made 
onsistent with some network from the sub
lass? And, as dis
ussed inSe
tion 3.1, how far 
an the te
hniques des
ribed in this paper be used as a quality measure fornetworks produ
ed by other algorithms?As mentioned in the introdu
tion, an algorithm guaranteed to �nd a network 
onsistent with afra
tion p0 of the input trivially be
omes a p0-approximation for the MAX variant of the problem(where we optimise not with respe
t to jT j but with respe
t to the size of the optimal solutionfor T .) In fa
t, the best-known approximation fa
tor for MAX-LEVEL-0 is 1/3, a trivial extensionof the fa
t that p = 1=3 for trees [9℄. On the other hand, the APX-hardness of this problemimplies that an approximation fa
tor arbitrarily 
lose to 1 will not be possible. It remains thus aninteresting open problem to determine whether better approximation fa
tors 
an be obtained for thelatter problem via some di�erent approa
h. For example, an empiri
al study in [20℄ suggests that,for MAX-LEVEL-0, approximation fa
tors in the region of 0:833 might be possible. Alternatively,there 
ould be some 
omplexity theoreti
 reason why approximation fa
tors better than p (wherep is optimal in our formulation) are not possible. Under strong 
omplexity-theoreti
 assumptionsthe best approximation fa
tor possible for MAX-3-SAT, for example, uses a trivial upper bound ofall the 
lauses in the input, analogous perhaps to using jT j as an upper bound.8 A
knowledgementsWe thank Leo van Iersel for his assistan
e with the O(n4+) triplet 
onsisten
y-
he
king algorithmand Jesper Jansson for very helpful 
omments.
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13A AppendixIn this se
tion we give the full proofs for Lemma 1 from Se
tion 2, Theorem 3 from Se
tion 5 andObservation 1 from Se
tion 6.Lemma 1. Given a phylogeneti
 network N with n+ = jV (N )j verti
es, and a triplet t, it ispossible to determine in time O(n4+) whether t is 
onsistent with N .
Proof. We let t = xyjz and for simpli
ity identify x; y; z with the leaves of N where the respe
tivespe
ies are found. Let r be the root of N . We 
laim that t is 
onsistent with N i� there exists avertex u 62 fx; y; z; rg in N su
h that the following three paths exist in N and are mutually disjointin terms of their internal verti
es: r ! z; u! x; u! y.()) Clearly, if t is 
onsistent with N then by De�nition 2 the path v ! z exists. If v = r weare done, otherwise the path r ! z 
an be 
reated by 
ombining v ! z with any path r ! v.(() Suppose that the three paths exist. Consider any path P from r to u. Given that N is adire
ted a
y
li
 graph su
h a path 
annot interse
t with the internal verti
es of the paths u ! xand u ! y. If P does not interse
t with the internal verti
es of the path r ! z we are done.Otherwise let v be the last vertex from P that interse
ts with a vertex from r ! z, and let v ! ube the subpath of P starting from v. It follows that the paths u ! x; u ! y; v ! u; v ! z existand are mutually disjoint on their internal verti
es.If we already knew u, we 
ould use the algorithm in [8℄ (Thm. 3) to determine whether thereexist three (internally vertex) disjoint paths r ! z; u! x; u! y in N . To be spe
i�
, the algorithmfrom [8℄ shows how (in this 
ase) the problem 
an be redu
ed to sear
hing for a path between twoverti
es in a state-spa
e graph G0 
ontaining O(n3+) verti
es. The graph G0 is a
yli
, and the fa
tthat every vertex in N has outdegree � 2 implies that G0 has a linear number of edges. So path-�nding 
an also be done in O(n3+) time, giving an overall running time of O(n3+) if we know u.However, we have to guess u by trying all n+ possibilities for it, giving a running time of O(n4+)for the entire algorithm. ut

Figure 3. We 
onstru
t the network LB2(n) by repeatedly 
haining the stru
ture on the left, a simple level-2 network(see [10℄), together to obtain an overall topology resembling the stru
ture on the right.
Theorem 3. Let T be a set of input triplets labelled by n spe
ies. It is possible to �nd in polynomialtime a level-2 network N (T ) su
h that N (T ) is 
onsistent with at least a fra
tion 0.61 of T .



14Proof. We prove the theorem by showing how to 
onstru
t a topology, whi
h we 
all LB2(n),
onsistent with at least 0.61 of the triplets in T1(n). Using Theorem 1 LB2(n) 
an then be labelledto obtain the network N (T ). We show by indu
tion how LB2(n) 
an be 
onstru
ted. We taken < 16813 as the indu
tion base; for these values of n we refer to a simple 
omputational proofwritten in Java [21℄. We now prove the result for n � 16813. Let us assume by indu
tion that, forany n0 < n, there exists some topology LB2(n0) su
h that #LB2(n0) � 0:61. If we let t(n0) equalthe number of triplets in T1(n0) 
onsistent with LB2(n0), we have that t(n0)=3�n03 � � 0:61 and thusthat t(n0) � 1:83�n03 �. Consider the stru
ture in Figure 3. For S 2 fA;B;C;D;Eg, we de�ne theoperation hanging l leaves from side S as repla
ing the edge S with a dire
ted path 
ontaining linternal verti
es, and then atta
hing a leaf to ea
h internal vertex. We 
onstru
t LB2(n) as follows.We 
reate a 
opy of the stru
ture from the �gure and hang 
 = b0:385n
 leaves from side C,d = b0:07n
 from side D and e = b0:26n
 from side E. We let f = b0:285n
 and add the edge(F; r), where r is the root of the network LB2(f). Finally we hang a = n � (
+ d+ e+ f) leavesfrom side A; it might be that a = 0. (The only reason we hang leaves from side A is to 
ompensatefor the possibility that 
 + d + e + f does not exa
tly equal n.) This 
ompletes the 
onstru
tionof LB2(n); note that as in Se
tion 4 the network is 
onstru
ted by re
ursively 
haining the samebasi
 stru
ture together.We 
an use Mathemati
a to show that LB2(n) is 
onsistent with at least 0:61 of the tripletsin T1(n). In parti
ular, by expli
itly 
ounting the triplets 
onsistent with LB2(n) we derive aninequality expressed in terms of n; 
; d; e; f; t(f), whi
h Mathemati
a then simpli�es to a 
ubi
inequality in n that holds for all n � 16813. (To simplify the inequality we take x � 1 as alower bound on bx
 and assume that no leaves are hung from side A). The Mathemati
a s
ript isreprodu
ed in Figure 4, and 
an be downloaded from [21℄. Finally, we 
omment that the networks
omputationally 
onstru
ted for n < 16813 are, essentially, built in the same way as the networksdes
ribed above. The only di�eren
e is that, to absorb ina

ura
ies arising from the 
oor fun
tion,we try several possibilities for how many leaves should be hung from ea
h side; for side C, forexample, we try also (
� 1) and (
+ 1) leaves. utObservation 1. MAX-LEVEL-0 and MAX-LEVEL-0-LABELLING are both APX-
omplete.
Proof. By Theorem 1 we may label any tree topology to make it 
onsistent with 1/3 of the giventriplets. Therefore, both problems are in the 
lass APX. To prove APX-hardness we use a redu
tionproposed by Wu [20℄ and we show that it is a
tually an L-redu
tion from the MAXIMUM SUBDAGproblem. Both L-redu
tions and the MAXIMUM SUBDAG problem were studied by Papadimitiouand Yannakakis [18℄. They proved that the MAXIMUM SUBDAG problem is APX-
omplete.In the MAXIMUM SUBDAG problem we are given a dire
ted graph G = (V;A), and the goalis to �nd a maximal 
ardinality subset of ar
s A0 � A su
h that G0 = (V;A0) is a
y
li
.In the redu
tion of Wu one 
onstru
ts an instan
e of the MAX-LEVEL-0 problem as follows.Given a dire
ted graph G = (V;A), let x =2 V , 
onsider the set of triplets T 
ontaining a singletriplet tuv = uxjv for every ar
 (u; v) 2 A, where X = X(T ) = V [ fxg. To argue that it is anL-redu
tion it remains to prove the following two 
laims.1) If there exists a subset of ar
s A0 � A su
h that G0 = (V;A0) is a
y
li
 and jA0j = k, thenthere exists a phylogeneti
 tree 
onsistent with at least k triplets from T . To prove this 
laim, we
onsider a topologi
al sorting of verti
es in graph G0. We 
onstru
t the phylogeneti
 tree to be a
aterpillar with the leaves labeled (top down) by su
h sorted verti
es, the lowest leaf is labelled byx. It remains to observe that for any ar
 (u; v) 2 A0 the 
orresponding triplet tuv is 
onsistent withthe obtained phylogeneti
 tree.
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a s
ript used in the proof of Theorem 3.2) Given a phylogeneti
 tree B 
onsistent with l triplets from T , we may 
onstru
t in polynomialtime a subset of ar
s A0 � A su
h that G0 = (V;A0) is a
y
li
 and jA0j = l. In fa
t we will show thatit suÆ
es to take A0 
onsisting of the ar
s (u; v) su
h that the 
orresponding triplet tuv is 
onsistentwith B. We only need to argue that for su
h a 
hoi
e of A0 the resulting graph G0 = (V;A0) is a
y
li
.Consider the path in the tree B from the root node to the leaf labeled by the spe
ial spe
ies x.For any vertex v 2 A, the spe
ies v has an internal node on this path where he bran
hed out ofthe evolution of x, namely the Lowest Common An
estor of u and x (LCA(u; x)). Observe, thatthe position of LCA(u; x) indu
es a partial ordering >B on A. Re
all, that if a triplet tuv = uxjvis 
onsistent with B, then LCA(u; x) is a proper an
estor of LCA(v; x). Therefore, the 
onsistenttriplets from T indu
e another partial ordering that may be extended to >B. This implies that forA0 
ontaining the ar
s (u; v) su
h that a triplet tuv is 
onsistent with B the graph G0 = (V;A0) isa
y
li
.With the above 
onstru
tion we have shown that the existen
e of an �-approximation algorithmfor the MAX-LEVEL-0 problem implies existen
e of an �-approximation algorithm for the MAX-IMUM SUBDAG problem. In parti
ular, existen
e of a Polynomial-Time Approximation S
heme(PTAS) for MAX-LEVEL-0 would imply existen
e of PTAS for MAXIMUM SUBDAG, whi
h isunlikely due to the result of Papadimitiou and Yannakakis [18℄.In the redu
tion we might have assumed a parti
ular topology for the tree. Namely, we mighthave assumed, that the topology needs to be a 
aterpillar. Therefore, the problem MAX-LEVEL-0-LABELLING is also APX-hard. ut


