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Abstract

Three quantitative features of string theory on AdS5×X5, for any (quasi)regular Sasaki-

Einstein X5, are recovered exactly from an expansion of field theory at strong coupling

around configurations in the moduli space of vacua. These configurations can be thought

of as a generalized matrix model of (local) commuting matrices. First, we reproduce

the spectrum of scalar Kaluza-Klein modes on X5. Secondly, we recover the precise

spectrum of BMN string states, including a nontrivial dependence on the volume of X5.

Finally, we show how the radial direction in global AdS5 emerges universally in these

theories by exhibiting states dual to AdS giant gravitons.
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1 Introduction

The AdS/CFT correspondence [1] provides, in principle, a nonperturbative approach to

quantum gravity in asymptotically Anti-de Sitter space. A traditionally thorny issue in

quantum gravity is the emergence of spacetime and gravitons in a semiclassical limit. In

AdS/CFT, addressing this question requires us to directly tackle the dual strongly coupled

conformal field theory, in the large N limit. This is a different sort to problem to much

work that has been done in AdS/CFT, in which protected quantities, or integrable sectors

of the theory, are computed at weak and strong coupling and compared directly.

A program aimed at understanding the emergence of semiclassical quantum gravity

from field theory was initiated in [2]. The starting point is a guess concerning the effective,

semiclassical, degrees of freedom which characterize the ground state and dominate the low

energy physics of the strongly coupled theory, together with a proposal for their dynamics.

We will review aspects of this proposal below. Using this effective low energy theory,

various non protected quantities were computed and successfully compared with the dual

string theory [3, 4, 5]. Furthermore, the proposal was extended from the original case of

N = 4 Super Yang-Mills theory to orbifolds of this theory in [6, 7].

It was recently argued [8] that the original proposal, which was for the N = 4 theory, can

be generalized to a large class of conformal field theories with only N = 1 supersymmetry.

In particular to the theories arising on N D3 branes at the tip of a Calabi-Yau cone. This

is a substantial generalization, as there are many such theories. In fact, these theories are

in one to one correspondence with the space of five dimensional Sasaki-Einstein metrics [9].

In this paper we will use and extend the recent proposal [8] to derive various quantities

in the strongly coupled N = 1 theories. These will be non-BPS quantities and they will

reproduce in detail the dual, spacetime, AdS gravity results. We start in sections 3 and

4 by obtaining the ground state of the effective theory and showing that it describes the

emergence of the dual Sasaki-Einstein geometry. In sections 5, 6 and 7 we study fluctuations

about the ground state, reproducing the spacetime spectrum of scalar Kaluza-Klein har-

monics and of BMN string states. Finally, in section 8 we show, by considering excitations

dual to giant gravitons, that the radial direction of AdS5 emerges universally, i.e. orthog-

onally to and independently of the internal Sasaki-Einstein manifold. In the concluding

discussion we emphasize the many computations that remain to be done in order to flesh

out this framework in detail.
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2 Summary of the computational framework

The upshot of the detailed arguments in [8] will now be summarized, together with some

new statements which we will expand upon in later sections. The objective is to describe

the low energy physics of the strongly coupled superconformal theories arising on N D3

branes at the tip of a Calabi-Yau cone. The field theory is on a spatial S3 and hence dual

to global AdS5 space.

• The degrees of freedom which dominate the large N low energy dynamics are configu-

rations of scalar fields that explore the moduli space of vacua of the field theory. The

scalar fields are uniform on the S3, that is, only the s-wave modes are excited. Locally

on the moduli space this is very similar to N = 4 SYM, where the configurations are

given by six commuting N×N matrices. Thus in the first instance we have integrated

out the higher harmonics on the spatial S3, all the gauge fields and fermions, and all

the (generalized) off diagonal modes.

• The N eigenvalues of these matrices, {xi}, are valued on a Calabi-Yau cone over a

Sasaki-Einstein manifold X5. This would be the moduli space of the theory on R
3.

Placing the theory on S3 lifts the moduli space. Firstly because of the conformal

coupling mass term. Secondly because there is an enhanced symmetry U(1)2 →
U(2) when two eigenvalues coincide, the measure terms arising from this degeneration

induces a repulsion between eigenvalues. The competition between these two effects

is captured by the Hamiltonian

H =
∑

i

[

− 1

2µ2
∇i · (µ2∇i) +Ki

]

. (1)

This expression is a sum of single particle Hamiltonians, labeled by the subscript i,

except for the measure factor µ2 which depends on the locations of all the eigenvalues.

Here K is the Kähler potential of the Calabi-Yau.

• The measure factor µ2 requires an inspired guess. In the N = 4 theory we have

access to a weakly coupled regime in which the measure factor can be directly de-

termined [2]. This is also possible in the case of orbifolded theories [6, 7]. One can

then use nonrenormalization theorems for the BPS sector of the theory to argue that

the expression remains valid at strong coupling. The conjectured form we use here,

generalizing a property of the measure in the N = 4 case, is that

µ2 = e−
P

i6=j sij , (2)
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where sij is the Green’s function of a sixth order differential operator on the Calabi-

Yau cone

−∇6s(x, x′) = 64π3δ(6)(x, x′) . (3)

As we will discuss below, this expression has the virtue of automatically localizing the

large N eigenvalue distribution on a hypersurface in the Calabi-Yau cone and thus

leading to an emergent geometry.

• Given the Hamiltonian (1), one can find the ground state. We do this in section 3

below. The answer is simply

ψ0 = e−
P

i Ki . (4)

In section 4 below we show that in this state in the large N limit the eigenvalues form

an X5 at fixed radius r in the cone, which we compute. This is to be interpreted as

the X5 of the dual geometry, which has emerged from the matrix quantum mechanics.

• Given the ground state (4), one can find the spectrum of low lying excitations. There

are three types of excitations to consider. The first are those given by operators made

from the six matrices that appear in the matrix quantum mechanics. The energies of

these states are given by the spectrum of the Hamiltonian (1). An important set of

eigenstates, that we will consider, are of the form

ψ = ψ0Trf(x) , (5)

where f(x) is some function of the six matrices that has polynomial growth.

Secondly, there are excitations of the off diagonal modes of the six matrices, which

commute in the ground state. These require additional input. It was argued in [8]

that the physics of off diagonal modes connecting nearby eigenvalues is the same as

that of the N = 4 theory, with an effective, N = 4 coupling geff.. In particular, this

implies that the energy of the mode connecting nearby eigenvalues xi and xj is [2, 3]

Eij =

√

1 +
g2
eff.

2π2
|xi − xj|2 , (6)

where the distance is given by the metric on the Calabi-Yau cone. We require moreover

that g2
eff.N is large in the sense of ’t Hooft.

Thirdly, there are excitations of the fields that have been set to zero in the quantum

mechanics: the higher harmonics of fields on S3, the gauge fields and the fermions.

These modes remain largely unexplored, although see [4, 10].
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With this framework, the strategy for computing quantities is as follows. Firstly we

compute the ground state wavefunction of the Hamiltonian. We can then compute the

energies of excitations about the ground state. These will not in general be BPS. We show

that the spectrum of various excitations matches that computed in supergravity and string

theory, providing evidence for the calculational recipe just presented.

3 The ground state wavefunction

The eigenvalue dynamics takes place on the six dimensional cone over a five dimensional

compact manifold X5

ds26 = dr2 + r2ds25 . (7)

Denote the coordinates on the five dimensional manifold by θ. As we have mentioned, an

important ingredient for writing down the Hamiltonian for these eigenvalues is the Green’s

function on the cone satisfying

−∇6
6s(r, r

′, θ, θ′) = −
(

1

r5
d

dr
r5
d

dr
+

1

r2
∇2

5

)3

s(r, r′, θ, θ′) = 64π3δ(6)(r, r′, θ, θ′) . (8)

This Green’s function appears in the measure that is necessary to write the Hamiltonian as

a differential operator. See equations (1) and (2) above. We will now motivate the use of

this Green’s function.

In the case of N = 4 SYM the measure arising in going to an eigenvalue description can

be calculated, and is given by a generalized Vandermonde determinant

µ2 =
∏

i<j

|~xi − ~xj |2 , (9)

where we use vector notation to indicate a point in R
6 (which is the cone over S5). We

notice that this function is factorized over pairs of eigenvalues, and that if we take (minus

one times) the logarithm of |~xi − ~xj |2, then it satisfies the differential equation (8).

A similar calculation was done for abelian orbifolds by a group Γ of N = 4 SYM, and

the corresponding measure was also factorized [6, 7]. It was found that

µ2 =
∏

i<j

∏

γ∈Γ

|~xi − γ(~xj)|2 . (10)

That is, in the logarithm of the measure, we need to take a sum over images to obtain the

correct answer. Because we are summing over images, the measure function obtained this

way naturally satisfies the Green’s function equation (8) for X5 = S5/Γ.
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These measures were calculated by doing a one loop calculation in the gauge theory:

the volume of the gauge orbit of the configurations. If we take a general conformal field

theory, the field theories will usually not have a weak coupling description. This is because

the fundamental fields have large anomalous dimensions. We need some substitute for the

one loop calculation that preserves the spirit of the problem.

In [8] it was argued that the measure in the general case should also be pairwise factorized

and that in the limit of coinciding points, the degeneration should be identical to the case

of N = 4 SYM. This was argued by an effective field theory reasoning and is true exactly

in the case of the orbifold measure. This suggests that the singularity in the logarithm

of the measure should be reproduced for all cases. Choosing the Green’s function above

guarantees this behavior. In principle, there could be other choices.

In the theories that admitted a Gaussian fixed point, the origin of the measure was the

volume of a gauge orbit. One might have anticipated that this is the correct property to

generalize. However, there can be many different theories in the UV that can give rise to

the same conformal fixed point. This observation is due to Seiberg [11], and the different

theories are related by Seiberg dualities. If we examine various examples of these theories,

we find that generically the dimension of the manifold associated to a single gauge orbit

changes between different dual theories and this would indicate that the measure factor

changes its scaling properties. However, we expect that the effective dynamics should not

change at all. Considering that theories at strong coupling could behave very differently

than at weak coupling, calculating the effective measure by just measuring the volume

of the gauge orbit is suspect. Instead, it seems more natural that whatever the effective

dynamics is, it should depend only on properties of the moduli space of vacua, as these

are automatically invariant under Seiberg dualities. Solving a differential equation on the

moduli space has this property.

In the end, we have to make a guess. The one we have made, equation (2), seems the

simplest guess for the measure term that matches all known cases. Our final justification

will perforce come a posteriori, after we have shown that this measure gives many desirable

features, especially at the level of calculability of various properties of the strong coupling

dynamics.

Given the Hamiltonian, we now want to find wave functions that solve it. In particular,

to determine the ground state of the Hamiltonian, we will need to know how the Green’s

function scales under r, r′ → αr, αr′. In appendix A we show that the Green’s function
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obeys a logarithmic scaling

s(αr, αr′, θ, θ′) = s(r, r′, θ, θ′) − π3 logα

Vol(X5)
. (11)

It is interesting to note that the appearance of a nontrivial scaling is intimately tied up

with the need to regularize the Green’s function. In this sense, the scaling symmetry might

be called ‘anomalous’.

We now assume that X5 is a Sasaki-Einstein manifold (see e.g. [9, 12, 13]) so that the

six dimensional cone is Calabi-Yau. Let {zai , z̄āi } be the complex coordinates of the ith

eigenvalue on the cone, a, ā = 1..3. Let K be the Kähler potential of the Calabi-Yau.

The conjectured Hamiltonian [8] is

H =
∑

i

(

−g
ab̄(zi, z̄i)

2µ2

[

∇za
i

(

µ2∇z̄b̄
i

)

+ ∇z̄b̄
i

(

µ2∇za
i

)

]

+K(zi, z̄i)

)

, (12)

where the measure factor is

µ2 = e−
P

i6=j sij . (13)

Here sij = s(zi, z̄i, zj , z̄j) is the Green’s function. We have suppressed the a index in places.

The ground state wavefunction for the Hamiltonian (12) will now be shown to be

ψ0 = e−
P

i Ki , (14)

where Ki = K(zi, z̄i). Acting on this state with the Hamiltonian (12) gives

Hψ0 =
∑

j



Kj + 3 −
gab̄j
2

[

(∇za
j
Kj)∇z̄b̄

j

+ (∇z̄b̄
j

Kj)∇za
j

]

(Kj + 2
∑

k 6=j
skj)



ψ0 . (15)

Now, for an arbitrary Calabi-Yau cone with metric (7) we have that

K =
r2

2
. (16)

This can be derived from a short argument starting with the observation that the Kähler

form is homogeneous with degree two in r, see e.g. [14]. It follows that the vector appearing

in (15) is the Euler vector of the cone

gab̄j

[

(∇za
j
Kj)∇z̄b̄

j

+ (∇
z̄b̄
j

Kj)∇za
j

]

= r
∂

∂r
. (17)

The scaling (11) then implies that

∑

i

ri
∂

∂ri

∑

j 6=i
sij = −N(N − 1)

2

π3

Vol(X5)
. (18)
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Putting the above statements together we obtain

Hψ0 =

(

3N +
N(N − 1)

2

π3

Vol(X5)

)

ψ0 ≡ E0ψ0 . (19)

Thus ψ0 is an eigenstate as claimed. The lack of dependence on the angular coordinates θ

suggests that it is the ground state. The two key ingredients here were the relation between

the Kähler potential and the Euler vector (17), and the scaling behaviour of the Green’s

function (11). Any scaling function would have given the same results.

4 The emergent geometry

In the large N limit, the ground state wavefunction (14) describes an emergent semiclassical

geometry [2]. This occurs because a specific configuration of eigenvalues dominates the

matrix integral.

The probability of the eigenvalues being in some particular distribution is given by

the square of the wavefunction multiplied by the measure factor (13) needed to make the

Hamiltonian (12) self-adjoint. That is

µ2|ψ0|2 = e−
P

i r
2
i −

P

j 6=i sij ≡ e−S . (20)

In the large N limit, we expect a particular configuration to dominate. This will be given

by minimizing the effective action

S =

∫

d6xρ(x)r2x +

∫

d6xd6yρ(x)ρ(y)s(x, y) , (21)

where we have introduced the large N eigenvalue density, ρ(x), which satisfies

∫

d6xρ(x) = N . (22)

The notation we are using here is that x runs over the six coordinates on the cone, which

we denote rx and θx.

The saddle point equations are

rx = −
∫

drydθyr
5
y

√

g5(θy)ρ(ry, θy)
∂s(rx, ry, θx, θy)

∂rx
, (23)

0 =

∫

drydθyr
5
y

√

g5(θy)ρ(ry, θy)
∂s(rx, ry, θx, θy)

∂θx
, (24)

where we have explicitly separated the dependence on the r and θ coordinates.
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With the Green’s function discussed above, one can prove that the density of eigenvalues

is not smooth. This is a generalization of an argument found in [2]. The basic idea is that

we can also write the saddle point equations as

K(x) +

∫

d6yρ(y)s(y, x) = C , (25)

where C is a Lagrange multiplier enforcing the constraint in equation (22) and K is the

Kähler potential. From here, if ρ is smooth, the operation of differentiating with respect

to x commutes with the integral. We can act with the Laplacian associated to the metric

(7) three times on both sides of the equation. On the left hand side we find that ∇2K is

constant, and further applications of ∇2 give zero. Inside the integral, we would act three

times with ∇2 on the Green’s function, and then we would use the defining equation of

the Green’s function itself to find that ρ = 0. This is incompatible with the constraint, so

the assumption that ρ has smooth support is wrong. The simplest solution that one could

imagine with singular support will have some δ function distribution in it.

Using the formulae in Appendix A for s, equations (92) - (94), and the fact that
∫

dθ
√
g5Θν(θ) = 0 for ν > 0, i.e. that the higher harmonics on X5 integrate to zero,

it is straightforward to see that if ρ(r, θ) has no θ dependence, then all the θx dependence

drops out of the equations of motion once the θy integrals are done. Solving the saddle point

equations reduces to a purely radial problem. Moreover, since we know that the density of

eigenvalues has singular support, we can make a simple guess to solve the problem.

The eigenvalues are found to fill out an X5:

ρ(x) =
Nδ(rx − r)

r5xVol(X5)
, (26)

at the constant radius

r =

√

N

2

√

π3

Vol(X5)
. (27)

This expression reduces to the previously known S5 of radius r =
√

N/2 when the cone

is over a sphere, as Vol(S5) = π3. It is a solution to the equations of motion for all base

manifolds X5, it does not depend on the manifold being homogeneous. Thus we see that

part of the AdS5 ×X5 geometry has emerged from the eigenvalue quantum mechanics. We

obtain X5 together with its Sasaki-Einstein metric, because of the requirement that the

metric on the conical target space of the eigenvalues is Calabi-Yau [8].

This X5 eigenvalue distribution is to be understood as the large N ground state of

the theory, where quantum mechanical measure effects have repelled the eigenvalues away

from their classical origin at r = 0. It is a self consistent starting point for studying the
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low energy dynamics. All off diagonal fluctuations are massive [2, 3] as are all the higher

harmonics on S3 (this second point follows from the analysis in [15, 10]). In the remainder

of this paper we study three particular excitations about this ground state. We will see

that they reproduce quantitative features of strings and D branes in the dual spacetime.

5 The spectrum of scalar Kaluza-Klein harmonics

5.1 The spectrum for N = 4

In the N = 4 SYM theory, the spectrum of gravity multiplets can be deduced from the

half BPS states. The half BPS primary fields corresponding to single graviton states are

given by single-trace operators of the form Trzn, with z = x1 + ix2. These are holomorphic

highest weight states of SO(6), for a symmetric traceless tensor representation of SO(6).

In the commuting matrix model of strong coupling, as we reviewed in section 2 above,

the wave functions of these states are conjectured to be

ψ = ψ0Trzn , (28)

where ψ0 is the ground state wave function of the matrix model. In the N = 4 matrix

model, on R
6, the SO(6) symmetry is manifestly part of the dynamics, and ψ0 is an SO(6)

singlet. It is natural to expect that the wave functions of other states that are not half BPS

with respect to the same half of the supersymmetries as zn are given by

ψ = ci1...inTr(xi1 . . . xin)ψ0 , (29)

where ci1...in is symmetric and traceless.

Since the matrices commute, the trace is just a sum over eigenvalues, and we find

ourselves with a one-particle wave function problem. The resulting symmetric traceless

polynomials of six variables are characterized by the property that

∇2(ci1...inx
i1 . . . xin) ∼ ci1i1i3...inx

i3 . . . xin = 0 , (30)

this is, they are harmonic functions on R
6.

These states have energy n, and thus the dual operators have dimension n. We can re-

cover this result by considering the one-particle wave function problem for a six-dimensional

harmonic oscillator

H = −1

2
∇2 +

1

2
~x2 . (31)
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This Hamiltonian differs from the full multi matrix model Hamiltonian (12) for the N = 4

problem by the absence of the measure, which mixes the eigenvalues. We show in Appendix

B, for the general conifold, that the measure may be neglected for these states to leading

order at large N . Thus in this limit it is sufficient to investigate the spectrum of (31). The

absence of mixing between eigenvalues allows us to focus on a single eigenvalue, hence we

have dropped the i index in (31).

We take our wave function to be

ψ = e−~x
2/2ci1...inx

i1 . . . xin . (32)

When we calculate ∇2ψ, there are three types of terms that appear. The terms with two

derivatives acting on the exponential are cancelled by the term 1
2x

2 in the Hamiltonian.

The terms with two derivatives acting on the polynomial vanish because of equation (30).

We are left with terms with one derivative acting on the exponential and one derivative

acting on the polynomial. If we write the Laplacian in spherical coordinates, we find that

these terms give

ci1...ine
−r2/2

(

1

2r5
d

dr

(

r6xi1 . . . xin
)

+
r

2

d

dr

(

xi1 . . . xin
)

)

. (33)

Now, xi = rf i(θ), for some f i(θ), so we need to evaluate

1

2r5
d

dr
rn+6 +

r

2

d

dr
rn = (n+ 3)rn . (34)

Via this exercise, we find that the wavefunction written down in equation (32) is an eigen-

function of the one particle Hamiltonian (31), and that its energy is n units greater than

the energy of the vacuum state. The same value of n is the dimension of the corresponding

operator in the conformal field theory. This calculation provides a link between the energy

of a state in the harmonic oscillator problem, and the dimension of the corresponding state

in supergravity. We should also notice that what matters for this computation is that the

polynomial we considered was a homogeneous function (it is a scaling function under the

vector r∂r), and that the energy obtained is exactly this scaling dimension.

In the case of N = 4 SYM, all of these symmetric traceless functions are obtained

by acting with rotations on zn, and therefore they are in some sense locally holomorphic

with respect to a suitable choice of complex coordinates. This is characterized exactly by

having a harmonic function. We will now extend this calculation on the moduli space of a

‘single brane’ in N = 4 SYM to the case of a ‘single brane’ in the case of a conformal field

theory associated to a general conifold. As we noted, the term mixing the eigenvalues in
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the Hamiltonian, the measure, will again not be important to leading order at large N for

this problem.

5.2 The spectrum for general conifolds

As we have discussed, for the general conifold the eigenvalue dynamics is locally given by

N = 4 SYM. The wave function is a global object, but the property of being a harmonic

function is something that one can check locally, as it is governed by a second order differ-

ential equation. It seems natural to take the same ansatz for this more involved case as we

did for N = 4 SYM. We consider wave functions of the form

ψ = ψ0Trh(x) , (35)

where h(x) is a harmonic function on the Calabi-Yau cone over X5 and ψ0 = e−r
2/2, as we

found above.

The one particle problem (i.e. without the measure, see Appendix B) now corresponds

to the Hamiltonian

H = − 1

2r5
d

dr
r5
d

dr
− 1

2r2
∇2

5 +
r2

2
. (36)

One can separate variables in θ (the coordinates on X5) and r, and hence consider harmonic

functions of the form h(x) = h(r)Θ(θ), where Θ is an eigenfunction of the Laplacian on the

Sasaki-Einstein space. That is

−∇2
5Θ(θ) = ν2Θ(θ) . (37)

Harmonicity now requires solving the following differential equation for h(r)

(

− 1

r5
d

dr
r5
d

dr
+
ν2

r2

)

h(r) = 0 . (38)

This is solved by h(r) = rλ, where λ satisfies

λ(λ+ 4) − ν2 = 0 , (39)

or equivalently

λ = −2 +
√

4 + ν2 , (40)

where we chose the root that makes the wavefunction nonsingular at the origin. The same

manipulations that told us in the case of N = 4 SYM that the energy of the harmonic

function of weight n multiplying the ground state wave function has energy n, now show us

that the energy of the single-particle wave function (35) is given by λ.
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The equation (39) is familiar from supergravity in AdS5 [16, 17] (see also [18]), where

one associates a scaling dimension λ to a scalar particle in five dimensions that originates

from perturbations mixing the graviton and the self-dual five-form field strength. We see

that the scaling dimensions of the operators are controlled by harmonic analysis on the

Sasaki-Einstein space, recovering exactly the spectrum of some of the scalar fluctuations in

the dual gravity theory. In particular, for all holomorphic wave functions we recover the

exact scaling dimension predicted by the chiral ring. Most of these harmonic functions are

not holomorphic, however, so we are recovering universally the spectrum of a large family

of non-BPS Kaluza-Klein harmonics of the dual supergravity theory.

In Appendix C we discuss the possibility of building coherent states using these single

trace states. These appear to be dual to classical geometries, as one would expect for

coherent states of gravitons.

6 Spectrum of off-diagonal fluctuations

The off diagonal modes connect pairs of eigenvalues. For small separations, ∆zij = zj − zi,

the energies of these modes are given by their mass term plus the distance between the two

eigenvalues, see [3, 8] and section 2 above,

E2
ij = 1 +

g2
eff.

2π2
gi ab̄∆z

a
ij∆z̄

b̄
ij . (41)

Recall that geff. is the effective N = 4 coupling which controls the masses of off diagonal

modes connecting nearby eigenvalues. The zi are all at constant radius r given by (27).

Thus we have

E2
ij = 1 +

λeff.

4π2

π3

Vol(X5)
|∆θij |2g5,i

, (42)

where λeff. = g2
eff.N , ∆θij is the separation in X5, and g5 is the metric on X5.

We would like to write down an operator that describes these off diagonal fluctuations.

The operators that do the trick [2, 3, 4] are strong coupling realisations of the BMN [19]

operators

Ok,J =
J
∑

n=1

Tr
[

znβ†zJ−nβ̃†
]

e2πink/J . (43)

In this expression k is an integer, J is the R charge of the operator, β† and β̃† are creation

operators for off diagonal modes, and z is a complex coordinate on the conical moduli space

with a fixed scaling dimension c.
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The wavefunction corresponding to this operator is

ψk,J = Ok,Jψ0 . (44)

In principle, the inclusion of the operator Ok,J will backreact on the dominant eigenvalue

distribution, in a way similar to that described below in probing the radial direction. How-

ever, here we wish to take J large, but not of order N . In this case the effect of the insertion

of Ok,J in (44) on the eigenvalue distribution is subleading in 1/N . Thus we can take the

eigenvalues zi to lie on the ground state solution (26).

Invariance under the unbroken U(1)N symmetry requires that β† and β̃† carry opposite

charges. Thus if we take β† to connect the ith and jth eigenvalues, then β̃† must connect

the jth to the ith. This is implemented automatically by the trace in (43). The operator

(43) may be written

Ok,J =
∑

i,j

J
∑

n=1

zni z
J−n
j β†ij β̃

†
jie

2πink/J . (45)

At large J , there is a dominant contribution to this sum [3, 4]. Firstly, the dominantly

contributing eigenvalues maximize |z|. This does not fix the location along the angle ψ dual

to the R charge, as z is a chiral operator and hence |z| is invariant under R charge rotations.

More specifically, on the locus where |z| is maximized we may write

zi ∝ rceicψi . (46)

The exponent follows from two observations. Firstly, because z has conformal dimension

c, we have r∂rz = cz. Secondly, see for instance [12, 13], ∂ψ = J (r∂r), where J is the

complex structure on the Calabi-Yau. Therefore ∂ψz = icz, as implied by (46). Now doing

a saddle point approximation to the sum over n in (45) we find

ψi − ψj = −2πk

cJ
. (47)

This is a crucial relation which says that for given k and J , the dominant contribution

to the operator Ok,J comes from two off diagonal modes connecting a pair of eigenvalues

separated according to (47). It follows from our previous expression (42) for the off diagonal

energies that

EOk,J
− cJ = 2Eij = 2

√

1 +
λeff.π3

Vol(X5)

k2

c2J2
, (48)

where we included the contribution to the energy from zJ in (43). Conveniently, we did

not need to find the point on the remaining directions in X5 at which |z| is maximized, as

13



g5(∂ψ, ∂ψ) = 1 is in fact constant over the Sasaki-Einstein space, see for instance [12, 13].

We will now see that this result is precisely the spectrum of excitations about a rapidly

rotating BMN string in the dual spacetime.

7 Comparison with the plane wave limit

The spacetime dual to the superconformal field theory is AdS5 ×X5. The metric may be

written as

ds2 = L2ds2AdS5
+ L2

[

(dψ + σ)2 + ds2KE
]

. (49)

Here ds2KE is a four dimensional Kähler-Einstein metric and dσ is proportional to the

Kähler two form corresponding to this metric. We restrict ourselves here to (quasi)regular

Sasaki-Einstein manifolds, in which the fibre coordinate ψ has a finite periodicity.

States with large angular momentum about the ψ direction, corresponding to large R

charge, are captured by the Penrose limit of this background [19]. This limit was computed

in [20] – Penrose limits of the special case of X5 = T 1,1 were also computed in [21, 22] – to

give

ds2 = −4dx+dx− − |x|28(dx+)2 + dx2
8 , (50)

where

x+ =
1

2
(t+ ψ) , x− =

L2

2
(t− ψ) . (51)

Note that (50) is just the maximally supersymmetric plane wave background [19, 23].

The conformal dimension and R charge are given by

∆ = i∂t , cJ = −i∂ψ . (52)

Where for ease of comparison with the previous subsection, we denote the total R charge

by cJ . Therefore from (51)

2p− = i∂x+ = i (∂t + ∂ψ) = ∆ − cJ , (53)

2p+ = i∂x− =
i

L2
(∂t − ∂ψ) =

1

L2
(∆ + cJ) . (54)

Quantising the string excitations [19, 24] in the plane wave background (50) gives the

spectrum of excitations

2δp− =

√

1 +
k2

α′2(p+)2
. (55)
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Using the expressions for the momenta (53) and working to leading order at large J , but

with L2/α′J fixed, one obtains

∆ − cJ =

√

1 +
L4k2

α′2c2J2
. (56)

The supergravity background has a Ramond-Ramond five form

F (5) =
N
√
π

2Vol(X5)
(volAdS5

+ volX5
) . (57)

The solution to the supergravity equations specifies a relation between the units of flux, N ,

and the AdS radius, L, in string units

L4

α′2 =
4πgsNπ

3

Vol(X5)
, (58)

To further relate this expression to our previous results, note that the local effective N = 4

coupling, geff., must be related to the expectation value of the dilaton in the usual way

g2
eff. = 4πgs . (59)

This follows, for instance, by noting that these quantities transform in the correct way

under S duality. Hence we obtain from (56)

∆ − cJ =

√

1 +
λeff.π3

Vol(X5)

k2

c2J2
. (60)

Recalling that the eigenvalue Hamiltonian is in fact the conformal dimension, H = ∆, we

have precisely reproduced the matrix quantum mechanics result (48). We need to multiply

(60) by two because we are considering two excitations. Note that we nontrivially match

the appearance of the volume factor Vol(X5).

8 Exciting an eigenvalue: the radial direction

In the previous two sections we have shown how off diagonal modes connecting ground state

eigenvalues are dual to string excitations about the AdS5 × X5 background in the BMN

limit. In this section we return to purely eigenvalue excitations, no off-diagonal modes, but

with a larger R charge, J ∼ N . We will see how these excitations move a single eigenvalue

into the radial direction, and are dual to AdS giant gravitons. To familiarise ourselves with

the procedure, we will consider the N = 4 case first.
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8.1 Probing the radial direction in N = 4

In the N = 4 case, the cone is over S5, i.e. the total space is just R
6. We will use cartesian

coodinates ~x to denote the matrices, rather than the ‘polar’ coordinates r, θ.

Consider the wavefunction

ψ = ψ0TrzJ , (61)

where z = x1 + ix2 and ψ0 is the ground state wavefunction. In Appendix B we show

that in the large N limit, this is an eigenfunction of the Hamiltonian (12) with eigenvalue

E = E0 + J . The probability density is

µ2|ψ|2 = e−
P

i ~x
2
i + 1

2

P

i6=j log |~xi−~xj |2+log
P

i,j(x1
i +ix2

i )
J
(x1

j−ix2
j)

J

, (62)

where we used the explicit Green’s function on R
6 to write µ2 =

∏

i<j |~xi − ~xj |2.
We will make the assumption, to be verified a posteriori, that |xN | > |xi| for all i 6= N

and that J ≫ 1. We may thus approximate the last term

log
∑

i,j

(

x1
i + ix2

i

)J (
x1
j − ix2

j

)J → J log
[

(x1
N )2 + (x2

N )2
]

. (63)

This is the assumption that one eigenvalue will be moved away from the others.

The large N semiclassical support of the wavefunction is found by extremising the

exponent in (62). The equations of motion are

xAi =
∑

i6=j

xAi − xAj
|~xi − ~xj|2

+
JδiN

[

δ1Ax1
N + δ2Ax2

N

]

(x1
N )2 + (x2

N )2
. (64)

We look for a solution to these equations which is given by the ground state before the

insertion, an S5 of radius squared r2 = N/2 and density N/π3r5, together with a single

eigenvalue ~xN separated from the sphere. There will be an S1 worth of such solutions, where

the S1 lies in the x1 − x2 plane. Without loss of generality, we can take the eigenvalue to

move off in the x1 direction

xAN = xNδ
1A . (65)

For i 6= N , the equation of motion (64) is satisfied to leading order in N , because the

equation of motion is just that corresponding to the ground state wavefunction which is

solved by the S5. The effect of the extra eigenvalue is subleading. The equation for i = N ,

however, gives a nontrivial equation for xN . Using the integral

8N

3π

∫ π

0
dθ sin4 θ

xN − r cos θ

x2
N + r2 − 2xNr cos θ

=
N(6x4

N − 4x2
Nr

2 + r4)

6x5
N

, (66)
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Figure 1: A single eigenvalue is removed from the X5 to a distance xN ∼
√
J .

the equation of motion becomes, using r2 = N/2,

x6
N − (J +N)x4

N +
N2

3
x2
N − N3

24
= 0 . (67)

If we set

x2
N = d2N , J = jN , (68)

then the solution to the (cubic) equation (67) is

d2 =
1 + j

3
+

2j(j + 2)

3p(j)1/3
+
p(j)1/3

6
, (69)

where

p(j) =
1

2

[

1 + 24j + 48j2 + 16j3 +
√

1 + 48j + 672j2 + 288j3
]

. (70)

This gives us the distance of the xN eigenvalue from the origin as a function of the angular

momentum J . We see that J ∼ N is indeed large as required. Figure 1 illustrates the

configuration we have just obtained.

Taking the further limit that the eigenvalue is far away from the sphere in
√
N units,

i.e. j ≫ 1, gives the result

xN =
√
J + · · · (J/N ≫ 1) . (71)

The association of an object with large R charge to a radial motion is strongly reminis-

cent of AdS giant gravitons. This will shortly lead us to identify the radial direction of the

Calabi-Yau cone outside of the X5 occupied by the ground state with the radial direction

of global AdS5.

8.2 Probing the radial direction for general conifolds

The argument goes through essentially unchanged for the case of a general cone over X5.

We make the assumption that one eigenvalue will have a larger modulus than the others
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|zN | > |zi|, for all i 6= N . Thus in the limit J ≫ 1 we may write the probability density as

µ2|ψ|2 = µ2|ψ0TrzJ |2 = e−
P

i r
2
i −

P

i6=j sij+J log |zN |2 . (72)

As we note in Appendix B, the holomorphic coordinate z must be a power of r multiplied

by a harmonic function on X5

z = rcFc(θ) . (73)

The large N semiclassical equations of motion following from (72) are therefore

ri +
∑

j 6=i

∂sij
∂ri

=
cJδiN
rN

,
∑

j 6=i

∂sij
∂θi

=
JδiN∂θN

|Fc(θN )|
|Fc(θN )| . (74)

In the large N limit, as for the case of S5 above, the equations of motion for the

eigenvalues i 6= N are unaffected by the insertion of TrzJ , as the motion of the single

eigenvalue zN away from the ground state configuration is a subleading effect. The equations

of motion for rN and θN however are nontrivial. Recall the observation we made in section

4: that the independence of the ground state eigenvalue density on θ implies that any

integral of the form
∫

dθxρ(θx)s(θx, θy) kills the θy dependence. This fact, together with

the expression for s in equation (92) and the integral

∫ ∞

0

dλ

λ3

J2(
√
λr)

r2
∂

∂rN

J2(
√
λrN )

r2N
=

−4r2Nr
2 + 6r4N + r4

192r5N
, (75)

leads to the following equations

r6N −
(

cJ + Nπ3

Vol(X5)

)

r4N + 1
3

(

Nπ3

Vol(X5)

)2
r2N − 1

24

(

Nπ3

Vol(X5)

)3
= 0 , (76)

∂θN
|Fc(θN )| = 0 , (77)

where we also used the radius of the ground state X5 in (27).

The immediate observation we can make from these equations is that the radial and

angular parts have completely decoupled. We can interpret this as the fact that the radial

direction in the bulk geometries emerges universally. It does not depend on where the

eigenvalue is sitting in X5. This reflects the direct product structure of the dual geometry:

AdS5 ×X5.

The equation (77) for θ says that |zN | is maximized given its fixed radius rN . This,

together with the fact that we will find rN > r, guarantees that our assumption that

|zN | > |zi| for i 6= N is consistent. As in the case for S5, there will not be a unique solution

to (77). Rather there will be an S1 worth of solutions, corresponding to the R symmetry

circle.
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If we make the definitions

r2N = d2 Nπ3

Vol(X5)
, cJ = j

Nπ3

Vol(X5)
, (78)

then we find that the radial equation (76) is exactly the same as the one we found in the

case of S5, with solution (69). Thus (69) describes how the eigenvalue zN moves out in the

radial direction as a function of the R charge cJ . From the equation (76) we see that the

general relation between rN and cJ depends on the volume of X5. However, in the limit

j ≫ 1 we again find

rN =
√
cJ + · · · (J/N ≫ 1) . (79)

8.3 Comparison with AdS giant gravitons

In the N = 4 case, at weak coupling, the wavefunction dual to an AdS giant graviton with

angular momentum J along the equator of the S5 is [25]

ψ = ψ0χSJ
(z) , (80)

where χSJ
is the Schur polynomial corresponding to the totally symmetric representation

of rank J . In terms of the eigenvalues of z

χSJ
(z) =

∑

1≤i1≤···≤iJ≤N
zi1 · · · ziJ . (81)

We would like to approximate χSJ
(z) with TrzJ , so that we can use the results of the

previous section to evaluate the semiclassical wavefunction. This will be valid provided

that the largest eigenvalue |xN/xp| ≫ 1 for all p 6= N , which requires j ≫ 1. In this

limit d2 = j in (69). Furthermore, it is unclear that the Schur polynomials (81) will be

orthogonal at strong coupling. On the other hand, we have shown in Appendix B that the

states ψ0TrzJ are eigenstates to leading order at large N , with different eigenvalues, and

therefore are orthogonal.

In the bulk, the AdS giant gravitons are D3 branes in which an S3 expands to a finite

radius in AdS5, due to their angular momentum about the R symmetry direction. With

angular momentum J the radius is [26, 27] given by r2giant = J/N . Here we are using global

coordinates in AdS5 ×X5

1

L2
ds2 = −(1 + r2)dt2 +

dr2

1 + r2
+ r2dΩ2

S3 + dΩ2
X5
. (82)

Comparing this bulk result with our matrix model result (79), and absorbing the factor

of c into the definition of J , now the total R charge, we obtain

rN√
N

= rgiant for rgiant ≫ 1 . (83)
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Thus the radial direction in the space of eigenvalues, in units of
√
N , is exactly equal to

the radial direction of AdS in the large radius limit. This is a nice result, but it is also not

clear why the particular coordinate r that we chose in (82) should have been singled out in

this way.

We can unambiguously draw the following conclusions from this section, however: The

radial direction of the Calabi-Yau cone outside of the X5 occupied by the eigenvalues is to

be topologically identified with the radial direction in global AdS5. This direction emerges

independently of and orthogonally to the manifold X5. The radial coordinate may be

probed using operators with large R charge and identifying the dual string theory states.

It is of great interest to obtain more information using this approach, such as the warping

of spacetime and the redshift of AdS as a function of radius.

9 Discussion and future directions

One main objective of this paper has been to show that a framework now exists for per-

forming precise computations in many strongly coupled N = 1 conformal field theories.

This is of interest because these theories are dual to compactifications of type IIB string

theory on Sasaki-Einstein spaces. We have seen how the Sasaki-Einstein manifold emerges

as the semiclassical limit of the ground state of a commuting matrix model. We have then

found that the spectrum of certain non-BPS supergravity and stringy excitations may be

reproduced exactly as excited states in the matrix quantum mechanics.

The basic setup has exploited a connection that all these field theories have an effective

(local) N = 4 SYM description on moduli space, and that one should copy strategies

that worked in N = 4 SYM by analogy and a use of local concepts on moduli space. In

particular, the formalism used in this paper required the introduction of a measure that was

determined by solving a differential equation on the moduli space. If one can find a closed

form expression for the corresponding measure in various cases (let us say the conifold), it

would be possible to test this proposal further.

A very important result that follows from our proposed measure is that a particular

Sasaki-Einstein slice of the Calabi-Yau cone is singled out by a saddle point calculation.

We checked that the volume of this manifold is properly normalized in field theory units:

we had no additional free parameters in matching the BMN limits. These volumes are also

related to the gravitational calculation of the conformal anomalies of the field theory.

These matchings show that the conjectured framework can precisely capture quantitative

20



aspects of strongly coupled theories. The ultimate objective of this research program is to

provide a description of situations where no other approach seems feasible, such as when the

dual spacetime develops a region of high curvature. However, before reaching that point,

more computations should be done.

It is clear that the calculations that have been done here can be improved further and

one might be able to go beyond BMN limits to capture more information about string

motion in these geometries. Ideally, one would want to derive that the string motion should

obey the equations of motion associated to a non-linear sigma model on the corresponding

AdS dual geometry.

It is also important to understand more precisely to what extent the approximations

that we have described are applicable, and when they break down.
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A Logarithmic scaling of the Green’s function

In this appendix we show that the Green’s function satisfying

−∇6
6s(r, r

′, θ, θ′) = −
(

1

r5
d

dr
r5
d

dr
+

1

r2
∇2

5

)3

s(r, r′, θ, θ′) = 64π3δ(6)(r, r′, θ, θ′) , (84)

has a logarithmic scaling under r, r′ → αr, αr′, as advertised in the main text. Recall that r

is the radial direction in the cone (7), whereas the θ are coordinates on the five dimensional

base manifold.

One could find the Green’s function using a standard partial wave expansion for this

Laplace-like equation. However, the symmetry r ↔ r′, crucial for our purposes, may be

kept manifest as follows. Consider the eigenmodes of the related equation

−∇2
6φλ(r, θ) = λφλ(r, θ) . (85)

These modes give a complete basis of functions. There is an infinite degeneracy for each

value of λ given by the modes

φλ(r, θ) = Φλ,ν(r)Θν(θ) , (86)
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where

−∇2
5Θν(θ) = ν2Θν(θ) ,

∫

dθ
√
g5Θ

∗
ν(θ)Θν′(θ) = δν,ν′ . (87)

The eigenvalues ν2 are discrete and the lowest is ν = 0, corresponding to a constant mode

on the base of the cone. For each value of ν, the radial functions are normalised as

∫

drr5Φλ,ν(r)Φλ′,ν(r) = δ(λ − λ′) . (88)

The delta function may now be written

δ(6)(r, r′, θ, θ′) =
∑

ν

∫ ∞

0
dλΦ∗

λ,ν(r)Φλ,ν(r
′)Θ∗

ν(θ)Θν(θ
′) . (89)

Solving the equation (85) for the radial part of the mode (86) and imposing the normal-

isation (88), one obtains the Bessel function

Φλ,ν(r) =
J√4+ν2(

√
λ r)

√
2r2

. (90)

Note that this expression is real. We may now use this expression to solve for the Green’s

function in (84). Näıvely, we would like to write the following

snäıve(r, r
′, θ, θ′) =

∑

ν

∫ ∞

0

64π3dλ

λ3
Φλ,ν(r)Φλ,ν(r

′)Θ∗
ν(θ)Θν(θ

′) . (91)

Although this expression formally solves the equation (84), it is divergent. The divergence

arises as λ→ 0 in the integrand of the ν = 0 term. This problem is entirely expected, due

to the fact that the sixth order equation (84) has zero modes. Specifically, the six modes

are: {1, log r, r±2, r±4}. We can deal with this divergence as follows.

Firstly, regularize the divergent part of the näıve expression (91):

sǫ =
32π3

Vol(X5)

∫ ∞

ǫ

dλJ2(
√
λ r)J2(

√
λ r′)

r2r′2λ3
+ sν>0 , (92)

where sν>0 contains the terms in (91) with ν > 0:

sν>0 =
∑

ν>0

∫ ∞

0

32π3dλ

r2r′2λ3
J√4+ν2(

√
λ r)J√4+ν2(

√
λ r′)Θ∗

ν(θ)Θν(θ
′) . (93)

The integral over λ in this last expression can be performed to obtain a hypergeometric

function. Performing the integral will break the symmetry r ↔ r′ however, as the result

depends on which of r and r′ is bigger.

We can now obtain a finite ‘renormalised’ Green’s function via a minimal substraction

s = lim
ǫ→0

(

sǫ +
π3 log ǫ

2Vol(X5)

)

. (94)
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The expression (94) solves the equation for the Green’s function (84) and is manifestly

symmetric in r ↔ r′. However, we need to check that it is regular as r → 0 with r′ fixed.

Taking r ≪ r′ we obtain

sǫ(r ≪ r′) =
4π3

Vol(X5)

∫ ∞

ǫ r′2

dλJ2(
√
λ)

λ2
+ O(r/r′) , (95)

which via (94) leads to

s(r ≪ r′) = −π
3 log r′

Vol(X5)
+ const. + O(r/r′) , (96)

where the constant is unimportant, as the Green’s function is only defined up to a constant

in any case. This expression is manifestly finite as r → 0.

The expression (96) provides a further nontrivial check of the result (94) as follows.

Integrating over a ball of large radius r′

−
∫

Br′

drdθ
√
g6 ∇6

6s = π3

[

r5
d

dr

(

1

r5
d

dr
r5
d

dr

)2

log r

]r′

= 64π3 , (97)

as required by (84).

From (94) or (96) it is easy to see that the Green’s function obeys the logarithmic scaling

advertised in (11)

s(αr, αr′, θ, θ′) = s(r, r′, θ, θ′) − π3 logα

Vol(X5)
. (98)

B Holomorphic polynomials are eigenfunctions at large N

In this appendix we show that wavefunctions of the form

ψ = ψ0TrP (z) =
∑

i

P (zi)e
−

P

j Kj , (99)

for P (z) a holomorphic polynomial in z with all terms of degree J , which in turn is a holo-

morphic coordinate on the Calabi-Yau cone with fixed conformal dimension c, are eigen-

functions of the Hamiltonian (12) to leading order at large N . Some, but not all, of these

arguments essentially appear in appendix A of [5]. These arguments go through if P is not

holomorphic, but simply a harmonic function on the Calabi-Yau cone.

Holomorphy implies ∇2P (z) = 0 and scaling dimension c of z implies r∂rz = cz.

Straightforward algebra then shows that

Hψ = (E0 + cJ)ψ + ψ0

∑

i

∇iP (zi) ·
∑

j 6=i
∇is(zi, zj) . (100)
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We now show that the last term vanishes to leading order at large N .

In the continuum large N limit, the last term in (100) is proportional to

∫

d6xρ(x)∇xP (zx) ·
∫

d6yρ(y)∇xs(zx, zy) . (101)

If P (z) is a polynomial with not too high degree, as in the case P (z) = zJ we considered in

section 8 above, then the backreaction of P (z) onto the eigenvalue distribution is subleading

at large N . Therefore in (101) we may take the ρ(x) to be the ground state (26). In

particular, this distribution adds no extra dependence on the coordinates θ of X5. The

integral over d6y includes an integral over X5. From the fact that
∫

dθ
√
g5Θν(θ) = 0 for

ν > 0 and from the expression (93), only the part of s(zx, zy) that is independent of both

θx and θy survives the θy integral. Thus (101) is proportional to

∫

d5θ
√
g5∂rP (z) . (102)

The final step is now to show that P (z), and hence also ∂rP (z), is a nontrivial eigenfunction

of the Laplacian on X5, and therefore the integral (102) vanishes. From holomorphy we

have

∇2P (z) =

(

1

r5
d

dr
r5
d

dr
+

1

r2
∇2

5

)

P (z) = 0 . (103)

The scaling dimension of z implies that each monomial in P (z) is of the form PJ(z) =

rcJFJ (θ). It is immediately seen that (103) implies that

−∇2
5FJ(θ) = cJ(cJ + 4)FJ (θ) . (104)

Therefore PJ (z) is a harmonic of the Laplacian on X5, as we required.

The upshot of the preceding paragraph is that (101) does indeed vanish and hence the

holomorphic polynomial does give an eigenfunction, as claimed.

C Coherent states and orthogonality

In the large N limit, single trace operators are supposed to be related to single string states.

To the extent that these are free, one can build coherent states of these traces. Formally,

we would want to consider a coherent state as an exponential of a raising operator. In our

identification, we have said that Trh(x) is a single graviton state, so a coherent state of

gravitons would be described formally by

ψcoh ∼ eαTrh(x)ψ0 . (105)
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We can try to understand the distribution of particles on the cone that is associated to this

wave function. We do this by thinking of α as a formal parameter (usually h(x) will grow

faster at infinity than the decay of ψ0, which is just gaussian decay).

If we replace Trh(x) by
∫

ρ(x)h(x), as is required for the large N limit, we can repeat

the arguments made in studying equation (25) to show that once again the dominant semi-

classical density of eigenvalues is a singular distribution. It was suggested in [2] that having

singular distributions of particles in the saddle point limit is exactly the type of situation

that leads to classical gravity solutions. This supports the proposal made above for the

wave functions associated to non-BPS gravitons.

Unfortunately, it seems that the corresponding wave functions are not eigenfunctions

of the full effective Schrödinger equation with the measure added. This has already been

seen for the case of N = 4 SYM [5]. There is no new effect that shows up in this more

general case that is not there in the case of maximal supersymmetry. Moreover, as shown

in appendix B, they become eigenstates to leading order in the large N limit.

One can also show that these single trace wave functions (including the measure) are

approximately orthogonal to the ground state and to each other. One would need to evaluate

the overlap
∫

e−r
2

µ2Trh1(x)Trh2(x) . (106)

The idea to show approximate orthogonality is that the overlap is dominated by the saddle

of the ground state. Then the dependence of µ2 on eigenvalue i, that is written as

µ2
i = exp(−

∫

ρ(x)s(xi, x)) , (107)

can be approximated by a function that depends only on the radial variable ri, but not on

the angular variables. Using the product decomposition of h into a radial and angular part,

we see that the orthogonality of the angular part of the wave functions makes these single

trace perturbations orthogonal to each other (unless h1 ∼ h∗2).

For N = 4 SYM this statement is exact and follows from orthogonality of different

unitary representations of the SO(6) symmetry group. This orthogonality is also exact in

N = 1 cases when h1 and h2 have different R-charges. These arguments can be extended

further, and suggest that the standard large N counting arguments are applicable in some

generality.

The arguments show that the details of the calculations depend on various properties of

harmonic analysis on the Saski-Einstein manifold and the particular saddle point we found

that determines the vacuum structure. To our knowledge, the most general study of the
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spectrum of the scalar Laplacian has been done in [28].
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