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Abstract. We consider the Dirichlet problem for the focusing
NLS equation on the half-line, with Schwartz initial data and with
the periodic boundary data ae

2iωt+iǫ at x = 0. It is known from
PDE theory that there exists a unique classical solution to this
problem. On the other hand, the associated inverse scattering
transform formalism involves the Neumann boundary value for
x = 0. Thus the implementation of this formalism requires the
understanding of the ”Dirichlet-to-Neumann” map which charac-
terises the associated Neumann boundary value.

We consider this map in an indirect way: we postulate a certain
Riemann-Hilbert problem and then prove that the solution of the
initial-boundary value problem for the focusing NLS constructed
through this Riemann-Hilbert problem satisfies all the required
properties. By the results of the PDE theory this solution is the
unique solution of the Dirichlet problem.

1. Introduction

We are interested in the following initial-boundary value problem

(1.1)

iqt(x, t) + qxx(x, t) + 2|q(x, t)|2q(x, t) = 0, x > 0, t > 0,

q(x, 0) = q0(x), 0 < x < ∞,

q(0, t) = g0(t), 0 < t < ∞,

where the function q0(x) belongs to the Schwartz class and g0(t) =
ae2iωt+iǫ, where a > 0, ω, ǫ are real and the compatibility condition
q0(0) = g0(0) is satisfied. We will assume here that −3a2 < ω < a2.

It is known [3] that there exists a unique classical solution of this
problem. On the other hand, the inverse scattering transform for-
malism developed in ([7], [8], [1]), in addition to q0(x) and g0(t) also
requires the function g1(t) = qx(0, t) for 0 < t < ∞. The general
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methodology of [6] is applied to the problem (1.1) in [1], where it is
assumed that the unknown function g1 is the sum of 2iabe2iωt+iǫ (where
ω = a2 −2b2, b > 0) and a Schwartz function. The aim of this paper is
to prove that this assumption is indeed correct. Then, combining the
results of [1] with our proof it is possible to establish rigorously that
the solution of the initial boundary value problem (1.1) can be reduced
to the solution of a well defined Riemann-Hilbert problem.

In this paper, we proceed as follows. We first consider the problem
(1.1) up to a fixed frozen time T . The inverse scattering transform
formalism now holds without any extra assumption on g1. Following
[6] we define the functions a(k), b(k) corresponding to the ”x-problem”
specified by q0(x) and following [1] we define the functions AT (k), BT (k)
corresponding to the ”t-problem” specified by gT

0 and gT
1 , where gT

0 = g0

for t ≤ T and gT
1 is the associated Neumann boundary value whose

existence is guaranteed by [3]. For each T one can easily prove that
a, b, AT , BT satisfy the so-called global relation [6].

We next let T vary and define A and B as the limits of AT , BT when
T → ∞. It is easy to show that the limits exist and that a, b, A, B
satisfy the associated global relation.

We then consider the corresponding Riemann-Hilbert problem for
T = ∞. This Riemann-Hilbert problem was derived in the paper [1]
under the assumption that g1 is the sum of a periodic function and
a Schwartz function; however we do not make this assumption here.
We first prove existence and uniqueness of a solution of this Riemann-
Hilbert problem using an appropriate vanishing lemma. We then prove
that this solution gives rise to a solution of (1.1) with Dirichlet data
g0 and q0. Finally, using the asymptotic method of Deift-Zhou [5], we
prove the crucial property that the boundary value qx(0, t) is indeed
the sum of a periodic function and a Schwartz function.

2. A Riemann-Hilbert problem

The focusing NLS equation admits the Lax pair

µx + ik[σ3, µ] = Q(x, t)µ,(2.1a)

µt + 2ik2[σ3, µ] = Q̃(x, t, k)µ,(2.1b)

where σ3 = diag(1,−1),
(2.2)

Q(x, t) =

[

0 q(x, t)
−q̄(x, t) 0

]

, Q̃(x, t, k) = 2kQ − iQxσ3 + i|q|2σ3.
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A novel method for analysing initial boundary value problems for in-
tegrable nonlinear PDEs was introduced in [6]. This method, which
is based on the simultaneous spectral analysis of both the x-problem
and the t-problem in the Lax pair, was rigorously implemented to the
NLS on the half-line with Schwartz initial and boundary conditions in
[8]. In the problem (1.1) the initial data are of Schwartz class, thus the
scattering and inverse scattering of the x-problem is classical and goes
back to the original investigations of Gelfand, Levitan and Marchenko
(see [8]). On the other hand, the boundary values at x = 0 are per-
turbations of finite-zone functions, thus the spectral analysis of the
t-problem involves aspects of the finite-zone theory. In this paper we
will consider the simplest possible case of zero-zone data.

The zero-zone solution of NLS, namely q(x, t) = qp(x, t) = ae2ibx+2iωt+iǫ

gives rise to the Dirichlet data ae2iωt+iǫ and also yields qx(0, t) =
2iabe2iωt+iǫ.

Let us first restrict t to be less than a fixed time T . We define
gT
0 = g0, for 0 ≤ t ≤ T, and we know that gT

0 is smooth. We need
no extra assumptions on qx(0, t), apart from a minimal regularity. The
existence of such a smooth function gT

1 = qx(0, t), 0 ≤ t ≤ T , is
guaranteed by the existence and regularity theorem of [3].

We stress that at this point we cannot set T = ∞, because we do
not know yet that g1 is a Schwartz perturbation of 2iabe2iωt+iǫ.

Now, let b be defined by ω = a2 − 2b2, b > 0. We will assume here
that a2 − ω > 0 and b2 < 2a2. Let Ω(k) be the function defined as

(2.3) Ω(k) = 2(k − b)X(k), X(k) =
√

(k + b)2 + a2.

Following [1] we consider the two-sheeted Riemann surface X defined
by the function Ω(k). Our Riemann-Hilbert problem will be defined on
X. We also consider the oriented contour Σ defined by ImΩ(k) = 0,
see Figure 1.

One easily sees that the curve Σ consists of two copies of the real
line and an analytic arc Γ ∪ Γ̄ connecting the two branch points E =
−b+ia, Ē = b−ia and the two infinities ∞1 and ∞2 (on the two sheets
of X).

Σ defines a partition of the sphere X into D1, D2, D3, D4, where

(2.4)

D1 = {Imk > 0, ImΩ(k) > 0},

D2 = {Imk > 0, ImΩ(k) < 0},

D3 = {Imk < 0, ImΩ(k) > 0},

D4 = {Imk < 0, ImΩ(k) < 0}.
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Figure 1. The two-sheeted Riemann surface X.

Next, define the following matrices

(2.5) E(k) =

(

(k+b+X(k)
2X(k)

)1/2 ieiǫ(X(k)−k−b
2X(k)

)1/2

ie−iǫ(X(k)−k−b
2X(k)

)1/2 (k+b+X(k)
2X(k)

)1/2

)

,

H(t, k) = exp(iωσ3t)E(k)exp(−iωσ3t),
Ψ(t, k) = H(t, k)exp(i[ω − Ω(k)]σ3t).

Let the functions a(k) and b(k) be the (classical) scattering data for
the function q0(x) defined in [8]. All we need to know here is that a(k)
is smooth for k real and can be analytically extended in the upper half-
plane, with a(k) = 1+O(1/k) as k → ∞. Similarly, b(k) is a Schwartz
function for k real which can be extended to the upper half-plane such
that b(k) = O(1/k) as k → ∞. Furthermore, |a2| + |b2| = 1 for k real
and a can have at most a finite number of simple zeros in the complex
plane, say k1, k2, ....., kn, with Im(kj) > 0, j = 1, ..., n.

Let the functions AT , BT be the scattering data for the t-problem,
defined in [1]:

(2.6)

(

−BT (k)
ĀT (k̄)

)

= Φ̂(T, k),

where Φ̂(t, k) is the vector-valued function satisfying the integral equa-
tion

(2.7)

Φ̂(t, k) = [second column of E−1(k)]+
∫ t

0

Ψ−1(τ, k)Q0(τ, k)Φ̂(τ, k)dτ, 0 < t < ∞,
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with Ψ defined in (2.5) and Q̃0(τ, k) = Q(0, τ, k)−Q̃p(0, τ, k), where Q̃

is given in (2.2) and Q̃p is obtained from Q̃ by replacing q with ae2iωt+iǫ

and qx with 2iabe2iωt+iǫ.
All we need here are the following important properties, see [2] (these

properties are a priori valid in the complex plane but they can be
trivially extended to X).

(i) The functions AT (k), BT (k) are entire functions, bounded in D̄1∪
D̄3. Furthermore

(2.8)

AT (k) = 1 + O

(

exp[i(Ω(k) + 2k2)T ]

k

)

,

BT (k) = O

(

exp[i(Ω(k) + 2k2)T ]

k

)

,

as k → ∞.
(ii) There is a function c(k, T ) which is analytic and bounded in

D1 ∪ D2 and also of order O(1/k) as k → ∞ such that

(2.9) b(k)AT (k) − a(k)BT (k) = c(k, T )exp[i(Ω(k) + 2k2)T ].

This is the so-called global relation.
(iii) AT (k) may have a finite number of zeros, say κT

1 , ....., κT
m(T ).

3. Taking T → ∞

Since the family (AT , BT ), 0 ≤ T ≤ ∞ is bounded in D̄1 ∪ D̄3, a
subfamily of it must have a uniform limit as T → ∞, which we denote
by (A, B).

It is easily seen that the following are valid:
(i) The functions A(k), B(k) are analytic, bounded in D̄1 ∪ D̄3, and

(3.1) A(k) = 1 + O(1/k), B(k) = O(1/k),

as k → ∞.
(ii) b(k)A(k) − a(k)B(k) = 0 in D1. This follows from the global

relation (2.9) for AT , BT , taking T → ∞.
(iii) A has a finite number of zeros, say, κ1, κ2, ...., κm.

We will now define a Riemann-Hilbert problem in X, with jump data
given in terms of a, b, A, B, following [1].

We define the matrices

(3.2) s(k) =

(

ā(k̄) b(k)
−b̄(k̄) a(k)

)

,
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(3.3) S(k) =

(

Ā(k̄) B(k)
−B̄(k̄) A(k)

)

and G(k) = s−1(k)S(k). Let

ρ(k) =
G21(k)

G11(k)
,

r(k) =
b̄(k)

a(k)
,

c(k) = ρ(k) − r(k),

f(k) =
2iX(k)

aG11(k − 0)G11(k + 0)
.

Consider now the following Riemann-Hilbert problem with the jump
contour Σ:

(3.4)
M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ Σ,

limk→∞1
M(x, t, k) = I,

where
(3.5)

J(x, t, k) =

(

1 −r̄(k)e−2i(kx+(Ω(k)−ω)t)

r(k)e2i(kx+(Ω(k)−ω)t) 1 + |r(k))|2

)

, k ∈ R
upper,

J(x, t, k) =

(

1 −ρ̄(k)e−2i(kx+(Ω(k)−ω)t)

ρ(k)e2i(kx+(Ω(k)−ω)t) 1 + |ρ(k))|2

)

, k ∈ R
lower,

J(x, t, k) =

(

1 0
c+(k)e2i(kx+(Ω(k)−ω)t) 1

)

, k ∈ Γ12,

J(x, t, k) =

(

1 0
−c−(k)e2i(kx+(Ω(k)−ω)t) 1

)

, k ∈ Γ21,

J(x, t, k) =

(

1 −c̄+(k̄)e−2i(kx+(Ω(k)−ω)t)

0 1

)

, k ∈ Γ̄12,

J(x, t, k) =

(

1 −c̄−(k̄)e−2i(kx+(Ω(k)−ω)t)

0 1

)

, k ∈ Γ̄21.

Here c+ and c− are boundary values of the function c which is analytic
in D2.
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Furthermore the following pole conditions are satisfied.
(3.6)

resk=kj
[M(x, t, k)]1 = im1

je
2i(kx+(Ω(kj )−ω)t)[M(x, t, kj)]2, kj ∈ D1,

resk=zj
[M(x, t, k)]1 = im2

je
2i(kx+(Ω(zj )−ω)t)[M(x, t, zj)]2, zj ∈ D2,

resk=z̄j
[M(x, t, k)]2 = −im̄2

je
−2i(k̄x+(Ω(z̄j)−ω)t)[M(x, t, z̄j)]1, z̄j ∈ D3,

resk=k̄j
[M(x, t, k)]2 = −im̄1

je
2i(k̄x+(Ω(k̄j)−ω)t)[M(x, t, k̄j)]1, k̄j ∈ D4,

where

(3.7)
m1

j = (ib(kj)
da

dk
(kj))

−1, m2
j = −resk=zj

c(k),

m̄1
j = (ib̄(k̄j)

dā

dk
(k̄j))

−1, m̄2
j = −resk=z̄j

c̄(k̄).

Theorem 3.1. The above Riemann-Hilbert problem admits a unique
solution.

The theorem follows immediately from the so-called vanishing lemma
extended to the surface X [9] by employing the symmetries of the jump
J . Although the vanishing lemma applies to holomorphic Riemann-
Hilbert problems, the above meromorphic Riemann-Hilbert problem
can be easily transformed to a holomorphic Riemann-Hilbert problem
as in [4] by adding small loops around the poles and changing variables
inside the loops (see also [7], [8]).

4. Asymptotic analysis of the Riemann-Hilbert problem

The analysis in section 3.3 of [1] shows that the Riemann-Hilbert
problem above gives rise to a solution of the focusing NLS in the first
quadrant. Furthermore the initial data q(x, 0) are equal to q0 because
of the definition of a, b. What is not a priori clear is that q(0, t) = g0(t).
What is even less clear is whether qx(0, t) is the sum of 2iabe2iωt+iǫ and
a Schwartz function.

This is the main result of this paper.

Theorem 4.1. Define q(x, t) = 2ilimk→∞1
kM12(x, t, k) where M12 is

the (12) entry of the solution of the above Riemann-Hilbert problem.
Then q(x, t) solves the focusing NLS equation in the first quadrant, with
q(x, 0) = q0(x), q(0, t) = g0(t), qx(0, t) = 2iabe2iωt+iǫ + v(t) where v(t)
is a Schwartz function.

PROOF: The fact that q(0, t) = g0(t) follows easily from a limit-
ing argument. As shown in [8], if we replace A, B by AT , BT in the
Riemann-Hilbert problem we will still arrive at a solution qT (x, t) of
the focusing NLS equation in the first quadrant, with qT (x, 0) = q0(x)
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and q(0, t) = g0(t), 0 ≤ t ≤ T. Taking T → ∞ we clearly recover
the boundary data g0(t), 0 ≤ t < ∞. More precisely, by the stan-
dard Riemann-Hilbert deformation theory [5] which connects Riemann-
Hilbert problems to singular integral operators in L2(Σ) and using the
fact that the resolvent of the singular integral operator corresponding
to the focusing NLS equation is uniformly bounded in x, t, it follows
that qT (x, t) converges uniformly to q(x, t) and hence q(0, t) = g0(t) for
all t.

The fact that the function v(t) = qx(0, t)− 2iabe2iωt+iǫ is a Schwartz
function follows from the asymptotic analysis of the Riemann-Hilbert
problem (for data a, b, A, B), as t → ∞. From section 3.3 of [1] we
have that the Riemann-Hilbert problem above reduces to the following
Riemann-Hilbert problem when x = 0 (see p.601 of [1] and note that
we have inverted the orientation of part of the contour):

(4.1)
M

(t)
− (t, k) = M

(t)
+ (t, k)J (t)(t, k), k ∈ Σ,

limk→∞1
M (t)(t, k) = I,

where

(4.2) J (t)(t, k) =

(

1 B(k)
A(k)

e−2i(Ω−ω)t

B̄(k̄)

Ā(k̄)
e2i(Ω−ω)t 1

A(k)Ā(k̄)

)

, k ∈ Σ,

where the superscript + denotes the limit from the +side of the contour
and the superscript − denotes the limit from the −side of the contour.
For simplicity we will assume that there do not exist any poles, but
our analysis can be easily generalized in the presence of poles.

The following asymptotic analysis will show that as t → ∞, we
recover the pure zero-zone solution.

Theorem 4.2. Up to an exponentially small error, the Riemann-Hilbert
problem for M (t) is asymptotically (as t → ∞) equivalent to the trivial
Riemann-Hilbert problem which has no jump.

Proof. Note the factorization of J (t) on Σ:

(4.3)

J (t)(t, k) = J loJup,

where J lo =

(

D+ 0
−B̄(k̄)D+

Ā(k̄)(1+|B/A(k̄)|2)
e2i(Ω−ω)t 1/D+

)

,

and Jup =

(

1/D− − −B(k)
A(k)D

−

e−2i(Ω−ω)t

0 D−

)

,
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and where D solves the scalar problem

D+ = D−(1 + |B/A(k̄)|2), k ∈ Σ

and satisfies limk→∞1
D(k) = 1. This factorization follows from the

identity A(k)Ā(k̄) + B(k)B̄(k̄) = 1 for k ∈ Σ.
For the asymptotic analysis we must deform our Riemann-Hilbert

problem in small lenses with boundaries consisting of the different com-
ponents of R ∪ Γ and slight deformations of these components.

For example we consider the oriented contours C1,up and C1,lo from
∞1 to ∞2 on the upper sheet of the Riemann surface slightly deforming
the real line, with C1,up lying in D1 and C1,lo lying in D4, and denote
the corresponding lenses D1,up and D1,lo in a way that ∂D1,up = C1,up∪
R

upper and ∂D2,up = C2,up ∪R
upper. We construct similar lenses around

Γ, Γ̄, Rlower.
We define O as follows:

(4.4)
O(t, k) = M (t)(t, k)J lo, k ∈ D1,up,

O(t, k) = M (t)(t, k)(Jup)−1, k ∈ D1,lo.

Similarly for the other lenses.
We now observe that the off-diagonal entries of the jump matrix

for O are uniformly exponentially small. On the other hand, the
diagonal entries are uniformly bounded. So, according to standard
asymptotic analysis of Riemann-Hilbert factorization problems [5], it
follows that, up to an exponentially small error, O is given by the
solution of a problem with diagonal jump, which in turn reduces to the
scalar problem for D. Noting further that the residue of the solution
of the diagonal problem at ∞1 is zero we recover our result. �

The limiting Riemann-Hilbert problem is trivial and corresponds to
the purely zero-zone solution of NLS. Using the formula qx(0, t) =

limk→∞[4k2M
(t)
12 +2iq(0, t)kM

(t)
22 ] we see that v(t) = qx(0, t)−2iabe2iωt+iǫ

is actually exponentially small. Using similar formulae for ∂j

∂tj
v(t), i =

1, 2, 3, .... in terms of M (t) it is possible to show that v is a Schwartz
function and thus Theorem 4.1 is proved.

References

[1] A.Boutet de Monvel and V.Kotlyarov, The Focusing Nonlinear
Schrödinger Equation on the Quarter Plane with Time-Periodic Bound-
ary Condition: A Riemann-Hilbert Approach, J. Inst. Math. Jussieu 6-4,
579-611 (2007).



10 S. KAMVISSIS AND A.S.FOKAS

[2] A.Boutet de Monvel and V.Kotlyarov, Generation of Asymptotic Solitons
of the Nonlinear Schrödinger Equation by Boundary Data, J. Math. Phys.
44-8, 3185-3215 (2003).

[3] R.Carroll and Q.Bu, Solution of the Forced Nonlinear Schrödinger (NLS)
Equation Using PDE Techniques, , Applicable Analysis 41, 33–51 (1991).

[4] P.Deift, S.Kamvissis, T.Kriecherbauer and X.Zhou, The Toda Rarefaction
Problem, Communications on Pure and Applied Mathematics 49-1, 35-84
(1996).

[5] P. Deift and X. Zhou, A Steepest Descent Method for Oscillatory
Riemann–Hilbert Problems, Ann. of Math. (2) 137, 295–368 (1993).

[6] A.S.Fokas, A Unified Transform Method for Solving Linear and Certain
Nonlinear PDEs, Proc. R. Soc. Lond. A 453, 1411-1443 (1997); A.S.Fokas,
Integrable Nonlinear Evolution Equations on the Half-Line, Communica-
tions in Mathematical Physics 230-1, 1-39 (2002).

[7] A.S.Fokas and A.R.Its, The Linearization of the Initial-Boundary Value
Problem of the Nonlinear Schrödinger Equation, SIAM J. Math. Anal. 27,
738-764 (1996).

[8] A.S.Fokas, A.R.Its and L.Y.Sung, The Nonlinear Schrödinger Equation
on the Half-Line, Nonlinearity 18, 1771-1822 (1995).

[9] S.Kamvissis and G.Teschl, Stability of the Periodic Toda Lattice Under
Short Range Perturbations, arXiv:0705.0346.

Department of Applied Mathematics, University of Crete, 714 09

Knossos, Greece

E-mail address : spyros@tem.uoc.gr

Department of Applied Mathematics and Theoretical Physics, Uni-

versity of Cambridge, Cambridge CB3 E0H, UK

E-mail address : tf227@damtp.cam.ac.uk

mailto:spyros@tem.uoc.gr
mailto:tf227@damtp.cam.ac.uk

	1. Introduction
	2. A Riemann-Hilbert problem
	3. Taking T 
	4. Asymptotic analysis of the Riemann-Hilbert problem
	References

