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Abstract. A number of phylogenetic algorithms proceed by searching the
space of all possible phylogenetic trees on a given set of taxa, using topological
rearrangements and some optimality criterion. Recently, such an approach,
called FastME, has been applied to the balanced minimum evolution (BME)
principle. Several computer studies have demonstrated the accuracy of FastME
in reconstructing the correct tree. FastME icludes two variants: balanced
subtree prune and regraft (BSPR) and balanced nearest neighbor interchange
(BNNI), depending upon what topological moves define the range of the local
search. Both of these algorithms take as input a distance matrix and a putative
phylogenetic tree on a given set of species. The tree is modified using either
SPR or NNI operations with the aim of reducing the total BME length of the
resulting tree relative to the distance matrix. This process is repeated until a
tree with (locally) shortest BME length is found.

Guided by numerous computer simulations, it has been conjectured that
both BSPR and BNNI are consistent, that is, when applied to an input dis-
tance that is a tree-metric, they will always converge to the (unique) tree
corresponding to that metric. Here we prove that the BSPR algorithm is con-
sistent. Moreover, we show that even if the input distance matrix contains
small errors relative to the tree-metric, then the BSPR algorithm will still re-
turn the corresponding tree. To the best of our knowledge, no one has explored
theoretical properties of topological moves in the context of tree inference. Our
results thus are a first step towards filling this gap and explain why SPR moves
work so well in practice in BME framework. However, the question of whether

BNNI is consistent remains open.

1. Introduction

Most practical methods for phylogenetic tree inference (e.g. those in the widely
used PAUP∗ [27] and PHYLIP packages [12]) employ an optimality criterion to
select amongst trees (e.g. maximum likelihood or maximum parsimony), and re-
peatedly update some tree by applying topological rearrangements until a (locally)
optimal tree is found according to the criterion at hand. The most used topological
moves are Subtree Pruning and Regrafting (SPR), Nearest Neighbor Interchange
(NNI), and Tree Bisection and Reconnection (TBR); see [24] for definitions and
properties, and Fig. 1 for an illustration of SPR and NNI moves.
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Recently, such a local topology search approach was introduced for inferring phy-
logenetic trees from distance matrices, and implemented in a software called FastME
[6]. This is based on the balanced minimum evolution (BME) principle, which in-
volves minimizing Pauplin’s [20] tree-length estimate relative to the distance matrix
at hand. Minimum evolution [7, 21] can be seen as the distance version of maxi-
mum parsimony. Two algorithms are available in the latest release of FastME: the
balanced subtree prune and regraft (BSPR) algorithm [17] and the balanced near-
est neighbor interchange (BNNI) algorithm [6], depending upon what topological
operations define the range of the local search. FastME has been shown [6, 7] to
be a fast and accurate method for tree inference as compared with other popu-
lar distance-based methods, as NJ [23], BIONJ [15], FITCH [13] or WEIGHBOR
[3]. Vinh et al. [28] even concluded “We found that BNNI boosts the topological
accuracy of all [distance-based] methods”. As the local search range under NNI
operations is a subset of that under SPR operations, BSPR is expected to be at
least as accurate as BNNI, and simulations support this.

A number of studies have been dedicated to the greedy algorithms used to infer
an initial tree (e.g. Atteson’s study of NJ [2] ) but, to the best of our knowledge,
no one has explored theoretical properties of topological moves in the context of
tree inference. Here we will make a first step towards filling this gap in the BME
framework, and in this way shed some light on why BSPR and BNNI work so
well in practice. For such approaches it is natural to ask the following question.
Suppose the matrix of pairwise distances given as input is in fact a tree-metric
δ∗, i.e. there is a unique phylogenetic tree T ∗ with positive edge lengths so that,
for each x, y ∈ X , the distance δ∗xy is the length of the path between x and y in
T ∗. If we apply the BSPR (BNNI) algorithm starting with distance δ∗ and any
phylogenetic tree T , is the algorithm guaranteed to output T ∗? That is to say, is
the BSPR (BNNI) algorithm consistent? Note that the BME principle is consistent

[7], that is, l̂(T ∗) < l̂(T ) for any tree T 6= T ∗, where l̂(T ) denotes Pauplin’s [20]
length estimate of T relative to δ∗.

Numerous computer simulations have suggested that both the BSPR and BNNI
algorithms are consistent [7]. Here, we prove that the BSPR algorithm is indeed
consistent. We show that even if the input δ contains some errors, but remains
sufficiently close to δ∗ (|δxy −δ∗xy| is less than 1/3 of the smallest edge weight of T ∗,
for all x, y ∈ X), then the BSPR algorithm will still output T ∗ (Theorem 5.2). That
is to say, the BSPR algorithm has a safety radius of at least 1/3. As a corollary,
we show that the BME principle itself has a safety radius of at least 1/3, which
solves an open question [8]. Safety radius analysis was introduced by Atteson [2],
and has become a standard approach to characterize the performance of distance-
based, tree building algorithms (see e.g. [9] for a review). In particular, Atteson
showed that no distance method can have a safety radius larger than 1/2, and that
NJ and related greedy algorithms have optimal 1/2 safety radius.

The rest of the paper is organised as follows. In the following Section we re-
view some basic definitions concerning phylogenetic trees and balanced minimum
evolution, and prove a key lemma concerning the structure of pairs of trees. In
Sections 3 and 4, we prove some results analogous to consistency of the BSPR al-
gorithm for the Robinson-Foulds [22] and the quartet [11] tree comparison metrics.
In particular, in Section 3 we show that for two distinct phylogenetic trees T and
T ∗ there is a sequence of SPR operations which transforms T into T ∗ and decreases
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the Robinson-Foulds distance to T ∗ at every step. In Section 4, we prove a similar
result for the quartet distance. In Section 5, we show that the BSPR algorithm is
consistent and has safety radius at least 1/3. However, the question remains open
for BNNI. This is discussed along with other open questions in Section 6.

2. Basics, definitions and notation

A phylogenetic tree is a edge-weighted, binary tree T whose leaves are bijectively
labelled by the elements of some finite set X . The set X usually denotes a set of
species or taxa, and the tree T represents the evolutionary relationships between
them. Unless stated otherwise, from now on X will denote a finite set and all trees
considered will be phylogenetic trees on X .

The BSPR (BNNI, respectively) algorithm works as follows. For an input dis-
tance matrix δ, with entries δxy, x, y ∈ X and some phylogenetic tree T on X ,

the total tree length l̂(T ) of T (relative to δ) is defined according to the following
formula due to Pauplin [20]

(1) l̂(T ) =
∑

x,y∈X

21−pxyδxy,

where pxy denotes the number of edges in the path from x to y. Then, for all trees
T ′ that can be obtained from T by performing a single SPR (NNI, respectively)

operation on T (see Fig. 1), it is checked whether l̂(T )− l̂(T ′) > 0. If this holds, i.e.
the total tree length of T ′ is less than that of T , the tree T ′ is taken in preference
to T and the process is iterated. This process is repeated until a tree T ′′ is found
with the property that no SPR operation (NNI, respectively) on T ′′ yields a tree
having shorter total tree length. Note that (i) the local search range under NNI

operations is a subset of that under SPR, and (ii) the check l̂(T ) − l̂(T ′) > 0 can
be performed efficiently. Indeed in both BSPR and BNNI it takes time O(|X |2) to
evaluate all moves and update all data structures corresponding to the new current
tree, see [6, 17] for details.

u

A

v

B
e

T

C

D

NNI

D

v

B
e′

A C

(a)
T ′

SPR

(b)

Ck
. . .

C0 Cl−1A Cl

. . .

DB

e′

. . .

A

e

CkC0

DB

T T ′

Figure 1. The definition of NNI and SPR operations. A, B, C,
C0, . . . , Ck and D denote subtrees of T . (a) NNI: T ′ is obtained
from T by deleting e, suppressing vertex u, and adding an edge e′

between B and a vertex that subdivides either the edge v to D or
the edge v to C. (b) SPR: T ′ is obtained from T by deleting e,
suppressing u, and adding an edge e′ between B and a vertex that
subdivides an edge in the component of T −e that does not contain
B.

A split S = {A, B} on a taxa set X is a bipartition of X into two non empty
disjoint subsets A, B ⊆ X whose union is X . For ease of notation, we will write
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A|B or, equivalently B|A for the split {A, B}. In general, a collection of splits of
X is called a split system of X .

Suppose that T is a tree on X . Then a split system S(T ) can be associated to
T in the following way. Consider some edge e ∈ E(T ). Then deleting e induces
a split Se = A|B of the leaf set L(T ) = X where A is the leaf-label set of one of
the resulting connected components and B is the leaf-label set of the other. The
collection of splits of X obtained by deleting, in turn, every edge in T is the split
system S(T ).

A tree T ′ obtained from T by deleting an edge e in E(T ) and taking one con-
nected component of the result is called a subtree of T 1. Note that T ′ can always
be thought of as a tree rooted at the unique vertex in e∩ V (T ′), or as unrooted by
suppressing this degree 2 vertex. For convenience, we will always denote the root of
a subtree T ′ of T by rT ′ . Note also that, in particular, every leaf of T is a subtree
of T .

Given two subtrees A and B of T , we call A and B disjoint if V (A)∩ V (B) = ∅.
If there exist some vertex x ∈ V (T ) such that erA

= {x, rA}, erB
= {x, rB} ∈ E(T ),

then we denote the subtree of T with vertex set V (A) ∪ V (B) ∪ {x} and edge set
E(A) ∪ E(B) ∪ {erA

, erB
} by A ∪ B.

We conclude this section with a lemma concerning trees that will be helpful
throughout the paper. Given a tree T , we call a pair of leaves a, b in T which are
incident with the same vertex a cherry of T , and denote the set of cherries of T by
C(T ).

Lemma 2.1. Suppose T and T ∗ are two trees with distinct topologies. Then there
exist disjoint subtrees B, D in T such that B, D, and B ∪D are subtrees of T ∗ but
B ∪ D is not a subtree of T .

Proof: Suppose T and T ∗ are two trees with distinct topologies. To prove the
lemma, we distinguish between the cases that (a) there exist elements x, y ∈ X
such that x and y form a cherry in T ∗ but not in T , and (b) C(T ∗) ⊆ C(T ).

Suppose that (a) holds, i.e., there exist x, y ∈ X such that x and y form a cherry
in T ∗ but not in T . Then taking B to be the subtree x and D to be the subtree y,
the statement holds.

Now suppose (b) holds, i.e., C(T ∗) ⊆ C(T ). Associate to T and T ∗ new trees T
and T ∗, respectively, by contracting every cherry, with labels a and b say, of C(T ∗)
in both T and T ∗, into a leaf which we label {a, b}. Clearly, since T and T ∗ have
distinct topologies, T and T ∗ have distinct topologies.

Now, define X to be the leaf-label set of T . If there exist x, y ∈ X such that
x and y form a cherry in T ∗ but not in T , then we define the trees B and D as
described in case (a) (with X , T , and T ∗ replaced by X, T and T ∗, respectively).
The required subtrees B and D of T and T ∗ can then be obtained from B and D
by expanding every leaf labelled by a subset A of X of size 2, to a cherry with label
set A. If, on the other hand, C(T ∗) ⊆ C(T ), then we iterate the contraction process

until we have found two binary leaf labelled trees T and T ∗ for which there is a

cherry in C(T ∗) which is not in C(T ). From this cherry we obtain B and D, and
the required subtrees B and D of T and T ∗ can then be obtained by repeatedly

1Note that this definition of a subtree is more restrictive than the one that is commonly used,
as described in e.g. [24].
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applying the above described expansion process.

3. Robinson-Foulds distance

The Robinson-Foulds distance [22] is tree comparison metric that is commonly
used to measure of dissimilarity between phylogenetic trees on the same leaf set.
For two trees T1 and T2 on X , it is defined by

dRF (T1, T2) = |S(T1) − S(T2)| + |S(T2) − S(T1)|.

Note that T1 and T2 have the same topology if dRF (T1, T2) = 0.
In this section, we prove the following result.

Theorem 3.1. If T ∗ is a fixed tree and T is any other tree, then there is a sequence
of trees T0 = T, T1, . . . , Tk = T ∗, such that

(1) tree Ti+1 is obtained from Ti by a single SPR-operation, and

(2) dRF (Ti, T
∗) − dRF (Ti+1, T

∗) > 0,

for all 0 ≤ i ≤ k − 1.

This result is a direct consequence of the following lemma. For two trees T1 and
T2 the SPR-distance dSPR(T1, T2) between T1 and T2 is the minimal number of
SPR-operations needed to transform the topology of T1 into that one of T2.

Lemma 3.2. Suppose T and T ∗ are two trees with distinct topologies. Then there
exists a tree T ′ such that dSPR(T, T ′) = 1 and dRF (T ∗, T ′) < dRF (T ∗, T ).

Proof: Suppose T and T ∗ are two trees with distinct topology. Then, by Lemma 2.1,
there exist disjoint subtrees B, D in T such that B and D are subtrees of T ∗ and
the subtree B∪D is also a subtree of T ∗ but not of T . Consider the tree T ′ obtained
from T by pruning the subtree B and regrafting it adjacent to D (see Fig. 2) giving
rise to a new vertex p. Clearly, dSPR(T, T ′) = 1.

B

T ′T

DDB

e
p

C1 C2 Ck−1

C0 Ck C0

C1 C2

Ck

Ck−1

. . .. . .

Figure 2. The trees T and T ′ considered in the proof of Lemma 3.2.

To see that the inequality stated in the lemma holds, we distinguish between
two types of splits displayed by T . For R denoting either T or T ′ let Sb(R) denote
the set of splits in S(R) which correspond to a bold edge in R (see Fig. 2) and put
Snb(R) = S(R) − Sb(R). Note that the latter set also contains those splits that
correspond to an edge in the subtrees B, D or in one of the subtrees of R indicated
by C0, . . . , Ck, k ≥ 0, in Fig. 2.

Now suppose that S is a split on X . Then S ∈ Snb(T ) if and only if S ∈ Snb(T
′).

Let S1 = L(B)|X − L(B) and S2 = L(D)|X − L(D). Note that S1, S2 ∈ Snb(T ) ∩
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Snb(T
′) ∩ S(T ∗). Let Se denote the split in S(T ′) that corresponds to the interior

edge e ∈ E(T ′) that is incident with p. Observe that

(1) |Snb(T )| = |Snb(T
′)|,

(2) Sb(T )∩ S(T ∗) = ∅, since the only splits of T ∗ which separate B and D are
S1 and S2,

(3) Sb(T
′) ∩ S(T ∗) 6= ∅ since Se is a split of T ′ and T ∗.

Hence it follows that

|S(T ∗) − S(T )| = |S(T ∗) − Snb(T ) − Sb(T )|

= |S(T ∗) − Snb(T
′) − Sb(T )|

> |S(T ∗) − Snb(T
′) − Sb(T

′)|

= |S(T ∗) − S(T ′)|.

Since the trees are binary, they all have the same number of internal edges and
hence splits. Thus

|S(T ) − S(T ∗)| = |S(T ∗) − S(T )| > |S(T ∗) − S(T ′)| = |S(T ′) − S(T ∗)|.

The inequality stated in the lemma follows.

4. Quartet distance

In this section we prove the following analogous result to Theorem 3.1 in which
we replace the Robinson-Foulds distance dRF by the quartet distance dQ, another
popular tree-comparison metric [5, 11, 19, 25].

We start with recalling the definition of the quartet distance. Let Q(X) denote
the set of all quartets of X , that is splits A|B of subsets of X of size 4 with |A| =
2 = |B|. For brevity, we write ab|cd rather than {a, b}|{c, d} with {a, b, c, d} ⊆ X .
For a tree T and a quartet ab|cd, we say that T displays ab|cd if there exists some
split A|B ∈ S(T ) such that a, b ∈ A and c, d ∈ B. Let Q(T ) denote the set of all
quartets displayed by a tree T . Then for two trees T1 and T2 the quartet distance
dQ(T1, T2) between T1 and T2 is defined as

dQ(T1, T2) = |Q(T1) − Q(T2)| + |Q(T2) − Q(T1)|.

In contrast to the Robinson-Foulds distance, the quartet distance between any
tree T and the optimal tree T ∗ can be directly estimated from the data. For
example, the popular Quartet Puzzling algorithm [26], first estimates all quartets
using maximum-likelihood based on the sequences corresponding to each of the
taxa, and then builds a tree in a greedy way, trying to maximize the number
of quartets being displayed by the inferred tree. Theorem 4.1 is thus related to
the consistency of SPR-moves when the input is given in terms of quartets. In
particular, assuming that these quartets exactly correspond to a phylogenetic tree
T ∗, it shows that we are able to recover T ∗ starting from any tree T by simply
applying SPR moves and using the quartet distance.

Theorem 4.1. If T ∗ is a fixed tree and T is any other tree, then there is a sequence
of trees T0 = T, T1, . . . , Tk = T ∗, such that
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(1) tree Ti+1 is obtained from Ti by a single SPR-operation, and

(2) dQ(Ti, T
∗) − dQ(Ti+1, T

∗) > 0,

for all 0 ≤ i ≤ k − 1.

Theorem 4.1 is a direct consequence of the following lemma which is an analogue
of Lemma 3.2.

Lemma 4.2. Let T and T ∗ be two trees with distinct topologies. Then there exists
a tree T ′ such that dSPR(T, T ′) = 1 and dQ(T ∗, T ′) < dQ(T ∗, T ).

Proof: Let B and D denote two disjoint subtrees of T and T ∗ such that B ∪ D is
a subtree of T ∗ but not of T (which must exist by Lemma 2.1). We consider the
following two trees: T ′ formed by pruning B and regrafting it adjacent to D, and
T ′′ formed by pruning D and regrafting it adjacent to B.

For R ∈ {T, T ′, T ′′} we consider a partition of the set Q(R) of displayed quartets
into four classes QR

0 , QR
1 , QR

2 , QR
3 defined as follows.

QR
0 = {wx|yz ∈ Q(R) : either |{w, x, y, z} ∩ B| > 1 or

or |{w, x, y, z} ∩ D| > 1},

QR
1 = {wx|yz ∈ Q(R) : |{w, x, y, z} ∩ B| = 1 and |{w, x, y, z} ∩ D| = 0},

QR
2 = {wx|yz ∈ Q(R) : |{w, x, y, z} ∩ B| = 0 and |{w, x, y, z} ∩ D| = 1},

and

QR
3 = {wx|yz ∈ Q(R) : |{w, x, y, z} ∩ B| = 1 = |{w, x, y, z} ∩ D|}

Note that

QT
0 = QT ′

0 = QT ′′

0 ,(2)

and

|QT
3 ∩ Q(T ∗)| < |QT ′

3 ∩ Q(T ∗)| = |QT ′′

3 ∩ Q(T ∗)|.(3)

Now fix a leaf b ∈ B. Let QT
1 (b) be the subset of QT

1 consisting of quartets
containing b. Observe that since B is a subtree of T ∗,

|QT
1 ∩ Q(T ∗)| = |B||QT

1 (b) ∩ Q(T ∗)|.

Similarly, for a fixed leaf d ∈ D, we have

|QT
2 ∩ Q(T ∗)| = |D||QT

2 (d) ∩ Q(T ∗)|.

Moreover, since B and D are adjacent in T ∗ we can conclude that

|QT ′′

1 ∩ Q(T ∗)| = |B||QT
1 (b) ∩ Q(T ∗)| and |QT ′′

2 ∩ Q(T ∗)| = |D||QT
1 (b) ∩ Q(T ∗)|.

Similarly, we can conclude that

|QT ′

1 ∩ Q(T ∗)| = |B||QT
2 (d) ∩ Q(T ∗)| and |QT ′

2 ∩ Q(T ∗)| = |D||QT
2 (d) ∩ Q(T ∗)|.

Hence

|(QT ′′

1 ∪ QT ′′

2 ) ∩ Q(T ∗)| − |(QT
1 ∪ QT

2 ) ∩ Q(T ∗)|

= |D|(|QT
1 (b) ∩ Q(T ∗)| − |QT

2 (d) ∩ Q(T ∗)|),

and

|(QT ′

1 ∪ QT ′

2 ) ∩ Q(T ∗)| − |(QT
1 ∪ QT

2 ) ∩ Q(T ∗)|

= |B|(|QT
2 (d) ∩ Q(T ∗)| − |QT

1 (b) ∩ Q(T ∗)|).
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Since these cannot both be negative, and by (2) and (3), either

|Q(T ) ∩ Q(T ∗)| < |Q(T ′) ∩ Q(T ∗)|

or
|Q(T ) ∩ Q(T ∗)| < |Q(T ′′) ∩ Q(T ∗)|

holds, the result now follows.

5. SPR moves and the BME tree length

In this section we prove the main result of the paper (Theorem 5.2), from which
it immediately follows that the BSPR algorithm is consistent with safety radius 1

3 .
Note that for the rest of this section we assume that we are given a matrix δ of
estimated distances on X , which corresponds in practise to estimated evolutionary
distances between elements of X .

The key tool used in our proof is [6, Equation 10] which we now recall. First, for
any tree R and for any two disjoint subtrees U and V of R, we define the balanced
average distance δR

UV between the leaf sets of U and V recursively as follows. If
U and V only contain a single taxa u and v, respectively, then δR

UV equals the
estimated distance δuv between u and v. Moreover, if one of U and V , say V , is of
the form V = V1 ∪ V2 for disjoint subtrees V1 and V2 then

δR
UV = δR

U(V1∪V2) =
1

2
(δR

UV1
+ δR

UV2
).(4)

Now, let T be the tree on the left in Fig. 1(a) and T ′ be the tree obtained from T
by interchanging the subtrees B and C of T (i.e. T ′ is the tree depicted in the right
of Fig. 1(a)). Then, with the total tree length as defined by (1) in the introduction,
[6, Equation 10] states that

l̂(T ) − l̂(T ′) =
1

4
[(δT

AB + δT
CD) − (δT

AC + δT
BD)].(5)

As mentioned in the introduction, this formula allows a significant improvement of
the efficiency of the BNNI algorithm [6].

A

C

e

B

Figure 3. Edge length estimation from average distance between
subtrees using Equation (6).

Moreover, the balanced framework allows for simple edge length estimators [20].
Let e be the branch shown in Fig. 3, and assume B is composed of two disjoint
subtrees B′, B′′, i.e. B = B′ ∪ B′′. The estimated length of e is then equal to:

l̂(e) =
1

2
(−δT

B′B′′ + δT
BA + δT

BC − δT
AC),(6)

where the same formula holds if B is a leaf by defining δT
B′B′′ = 0.

As a first step towards proving Theorem 5.2 we look at how a single SPR-
operation applied to a tree T affects the total tree length of T .
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T T ′

C0

C1 C2 Ck

D

B

. . . . . .
Ck−1 Ck−1

e′e

Figure 4. The trees T and T ′ have SPR-distance 1; C0, . . . , Ck,
B and D denote subtrees of T (or equivalently of T ′).

Lemma 5.1. Let T and T ′ be the trees given in Fig. 4, so that T ′ can be obtained
from T by a single SPR operation in which subtree B is pruned and regrafted. Then

l̂(T ) − l̂(T ′) =

(

1

2
−

1

2k+1

)

(

δT
C0B − δT

BD

)

+

k
∑

i=1

[

1

2k−i+2
(δT

CiD
− δT

CiB
) −

1

2i+1
(δT

C0Ci
− δT

CiB
)

]

.

Proof: We first provide a reformulation of (5), which gives the difference in tree
length when performing one NNI operation. Let T and T ′ be the two trees in
Fig. 1(a), in which T ′ is obtained from T by using a single NNI operation, and let
e and e′ be the edges connecting B in T and T ′, respectively. Using (4), (5) and
(6) it follows that

l̂(e) − l̂(e′) =
1

2
(−δT

B′B′′ + δT
BA + δT

B(C∪D) − δT
A(C∪D))

−
1

2
(−δT

B′B′′ + δT
BD + δT

B(A∪C) − δT
D(A∪C))

=
1

4
(δT

AB + δT
CD − δT

AC − δT
BD)

= l̂(T ) − l̂(T ′).

In other words, the difference in tree length is simply the difference between the
lengths of edges e and e′.

We now show that this property also holds for SPR moves. Let T and T ′ be the
two trees shown in Fig. 4, and let e and e′ denote the edges connecting B in T and
T ′, respectively. Moreover, consider the series of trees T = T0, T1, T2, . . . , Tk = T ′,
where T1 is obtained from T by one NNI move exchanging B and C1, T2 is obtained
from T1 by one NNI move exchanging B and C2, . . ., T ′ is obtained from Tk−1 by
one NNI move exchanging B and Ck. Let e = ei be the edge connecting B in Ti.
Just as with the NNI move, we have

l̂(T ) − l̂(T ′) =

k−1
∑

i=0

l̂(Ti) − l̂(Ti+1) =

k−1
∑

i=0

l̂(ei) − l̂(ei+1) = l̂(e) − l̂(e′).
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Using the equation above and Equations (4) and (6), it follows that

l̂(T ) − l̂(T ′) =
δT
BC0

2
+

k
∑

i=1

δT
BCi

2i+1
+

δT
BD

2k+1
−

k
∑

i=1

δT
C0Ci

2i+1
−

δT
DC0

2k+1

−

(

δT ′

BD

2
+

k
∑

i=1

δT ′

BCi

2k−i+2
+

δT ′

BC0

2k+1
−

k
∑

i=1

δT ′

DCi

2k−i+2
−

δT ′

DC0

2k+1

)

.

Since the topological structure within each labelled subtree of Fig. 4 is the same in
T and T ′, we have δT

UV = δT ′

UV for all U, V ∈ {B, C0, . . . , Ck, D}. The lemma now
follows by simplifying this formula.

We now prove our main result. Suppose T ∗ is a fixed tree on X and, for any
edge e of T ∗, denote the length of e in T ∗ by l(e). In addition, let δ∗ denote the
distance on X defined by taking shortest paths between the leaves of T ∗ so that, in
particular, δ∗ is a binary tree-metric. Recall that we also have a matrix δ containing
estimates of the distances given by δ∗.

Theorem 5.2. Let T be a tree having a different topology to T ∗. Let B and D be
disjoint subtrees in T such that B, D, and B∪D are subtrees of T ∗ but B∪D is not
a subtree of T . Let T ′ be obtained from T by pruning the subtree B and regrafting
it adjacent to D. Then provided that |δab − δ∗ab| < ǫ := 1

3 mine∈E(T∗) l(e) for all

a, b ∈ X, we have l̂(T ) − l̂(T ′) > 0.

Proof: Note that B and D are well defined by Lemma 2.1. Let C0, . . . , Ck denote
the subtrees depicted in Fig. 4, as in Lemma 5.1. For notational simplicity, for any
two disjoint subtrees U, V of T we will write δUV for δT

UV , and for any subtree U of T
and leaf v 6∈ U we will write δUv for δT

U{v}. Let x be the parent vertex of subtrees B

and D in T ∗. Let ex be the edge adjacent to x but not B or D, (see Fig. 5). Then for
any subtree A in T ∗ disjoint with B we have δAB =

∑

b∈B 21−pxbδAb, where pxb is

the number of edges in the path from x to b in T ∗. Likewise δAD =
∑

d∈D 21−pxdδAd.

Since
∑

b∈B 21−pxb = 1 =
∑

d∈D 21−pxd , Lemma 5.1 yields

l̂(T ) − l̂(T ′) =
∑

b∈B,d∈D

22−pxb−pxd

[

(

1

2
−

1

2k+1

)

(δC0b − δbd)(7)

+

k
∑

i=1

[

1

2k−i+2
(δCid − δCib) −

1

2i+1
(δC0Ci

− δCib)

]

]

.

We now consider a specific pair b ∈ B and d ∈ D and examine its contribution to
the summation over b and d in (7). To this end, we denote the sum of the lengths
of the edges in the path Pxb between x and b in T ∗ by δ∗xb, and similarly define δ∗xd.

Since the path in T ∗ from any taxon in Ci to any taxon in B or D must pass
through x, and the error in any estimated distance is at most ǫ, we have

k
∑

i=1

1

2k−i+2
(δCid − δCib) ≥

k
∑

i=1

1

2k−i+2
(δ∗Cid

− δ∗Cib
− 2ǫ)

=

(

1

2
−

1

2k+1

)

(δ∗xd − δ∗xb − 2ǫ).
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c0

ci

D

B

ex
zc0ci

x

Figure 5. Sketch illustrating the proof of Theorem 5.2

and also
(

1

2
−

1

2k+1

)

(−δbd) ≥

(

1

2
−

1

2k+1

)

(−δ∗xd − δ∗xb − ǫ).

In addition
(

1

2
−

1

2k+1

)

δC0b =

k
∑

i=1

[

1

2i+1
δC0b

]

.

Hence, (7) implies

l̂(T ) − l̂(T ′) ≥
∑

b∈B,d∈D

22−pxb−pxd

[(

1

2
−

1

2k+1

)

(−2δ∗xb − 3ǫ)(8)

+

k
∑

i=1

[

1

2i+1
(δC0b − δC0Ci

+ δCib)

]

]

.

Now consider the term (δC0b − δC0Ci
+ δCib). For c0 ∈ C0, ci ∈ Ci let zc0ci

be
the vertex in T ∗ on the path between c0 and ci at which the path to the subtree
B ∪ D is attached, (see Fig. 5). Then

(δc0b − δc0ci
+ δcib) ≥ (δ∗c0b − δ∗c0ci

+ δ∗cib
− 3ǫ)

= (δ∗c0zc0ci
+ δ∗zc0ci

b − δ∗c0zc0ci
− δ∗zc0ci

ci
+ δ∗cizc0ci

+ δ∗zc0ci
b − 3ǫ)

= 2δ∗zc0ci
b − 3ǫ

≥ 2l(ex) + 2δ∗xb − 3ǫ.

It follows that (δC0b − δC0Ci
+ δCib) ≥ 2l(ex) + 2δ∗xb − 3ǫ, and therefore (8) implies

l̂(T ) − l̂(T ′) ≥
∑

b∈B,d∈D

22−pxb−pxd

[(

1

2
−

1

2k+1

)

(−2δ∗xb − 3ǫ)

+

k
∑

i=1

[

1

2i+1
(2l(ex) + 2δ∗xb − 3ǫ)

]

]

=
∑

b∈B,d∈D

22−pxb−pxd

[(

1

2
−

1

2k+1

)

2(l(ex) − 3ǫ)

]

= (1 − 2−k)(l(ex) − 3ǫ)

> 0.

This completes the proof.

We next show that our results imply that the safety radius of the BME principle
itself is at least 1/3. Recall that BSPR and BNNI are only heuristics for finding
a tree of minimal tree length. The following corollary states that the tree that
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achieves the minimal tree length is the correct tree provided that the errors in the
distance matrix are at most 1/3 the minimum edge length. In particular, this radius
is independent of the method used to find the shortest tree.

Corollary 5.3. Suppose that |δab − δ∗ab| < ǫ := 1
3 mine∈E(T∗) l(e) for all a, b ∈ X,

then the unique tree topology that minimises tree length relative to δ is T ∗.

Proof: Suppose for contradiction that there is a tree T distinct from T ∗ which

minimises tree length relative to δ, i.e. l̂(T ) ≤ l̂(T ′) for all trees T ′. Thus l̂(T ) is
minimal relative to δ. By Lemma 2.1 there exist disjoint subtrees B, D in T such
that B, D, and B ∪ D are subtrees of T ∗ but B ∪ D is not a subtree of T . By

Theorem 5.2 there exists a tree T ′ distinct from T such that l̂(T ) − l̂(T ′) > 0, i.e.

l̂(T ) > l̂(T ′), contradicting the minimality of l̂(T ).

6. Discussion

In this paper we have shown that the BSPR algorithm is consistent. As noted
in the introduction, SPR moves are more general than NNI moves in that any SPR
move can be achieved through a sequence of NNI moves (Fig. 1). It would be
interesting to know whether BNNI is also consistent.

In addition to consistency, we have shown that BSPR has safety radius of at
least 1/3. Can this result be improved or extended to other variants of minimum
evolution (ME) and to different search algorithms? We make the following obser-
vations.

(1) As previously mentioned, no distance based method can have a safety radius
greater than than 1/2 [2].

(2) We have observed that our results imply that the safety radius of the BME
principle itself is at least 1/3. In particular, this radius is independent of
the method used to find the shortest tree. We believe that the BME safety
radius should be 1/2 but a proof remains to be found.

(3) Several variants of ME are discussed in the literature and are implemented
within various computer programs. The most common, first proposed by
Kid and Sgaramella-Zonta [18] and studied in depth by Rzhetsky and Nei
[21], estimates tree edge lengths using ordinary least squares (OLS) and
defines the tree length estimate to be the sum of the edge length estimates
(including the negative ones). In [29] it is shown that this OLS version
of ME has safety radius at most 1/4 as the number of taxa grows large.
Moreover, Gascuel and Guillemot [16] have recently shown that OLS-ME
actually has safety radius converging to 0 as the number of taxa tends to in-
finity. These results could explain the poor accuracy of OLS-ME compared
to BME, which has been observed in simulations (e.g. [6]). Moreover, it sug-
gests that our approach to proving the consistency of the BSPR algorithm
will not apply to the OLS-ME variant without significant modification.

In summary, there are a number of open problems in the context of using topo-
logical moves for inferring phylogenetic trees. We believe that this is an important
direction for further research, and that such research should yield fundamental
insights into the performance of some commonly used tree inference methods.
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