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Abstract

In this article a conservative least-squares polynomial reconstruction operator is
applied to the discontinuous Galerkin method. In a first instance, piecewise polyno-
mials of degree N are used as test functions as well as to represent the data in each
element at the beginning of a time step. The time evolution of these data and the
flux computation, however, are then done with a different set of piecewise polyno-
mials of degree M ≥ N , which are reconstructed from the underlying polynomials
of degree N . This approach yields a general, unified framework that contains as two
special cases classical high order finite volume (FV) schemes (N = 0) as well as the
usual discontinuous Galerkin (DG) method (N = M). In the first case, the polyno-
mial is reconstructed from cell averages, for the latter, the reconstruction reduces
to the identity operator. A completely new class of numerical schemes is generated
by choosing N 6= 0 and M > N . The reconstruction operator is implemented for
arbitrary polynomial degrees N and M on unstructured triangular and tetrahedral
meshes in two and three space dimensions.

To provide a high order accurate one-step time integration of the same formal
order of accuracy as the spatial discretization operator, the (reconstructed) poly-
nomial data of degree M are evolved in time locally inside each element using a
new local continuous space-time Galerkin method. As a result of this approach, we
obtain, as a high order accurate predictor, space-time polynomials for the vector of
conserved variables and for the physical fluxes, which then can be used in a natural
way to construct very efficient fully-discrete and quadrature-free one-step schemes.
This feature is particularly important for DG schemes in three space dimensions,
where the cost of numerical quadrature may become prohibitively expensive for very
high orders of accuracy.
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Numerical convergence studies of all members of the new general class of proposed
schemes are shown up to sixth order of accuracy in space and time on unstructured
two- and three-dimensional meshes for two very prominent nonlinear hyperbolic
systems, namely for the Euler equations of compressible gas dynamics and the
equations of ideal magnetohydrodynamics (MHD). The results indicate that the new
class of intermediate schemes (N 6= 0, M > N) is computationally more efficient
than classical finite volume or DG schemes. Finally, a large set of interesting test
cases is solved on unstructured meshes, where the proposed new approach is applied
to the equations of ideal and relativistic MHD as well as to nonlinear elasticity.

Key words: Hyperbolic systems, unstructured meshes, finite volume and
discontinuous Galerkin schemes, M -exact least squares reconstruction, one-step
time discretization, local continuous space-time Galerkin method, Euler equations,
ideal and relativistic MHD equations, nonlinear elasticity.

1 Introduction

The idea of applying a reconstruction operator to the DG method in order to
enhance accuracy was first introduced by Cockburn et al. in [16] and further
developed by Ryan et al. in [61]. However, they applied the reconstruction
operator only at the final output time and therefore called their method a
postprocessing technique for DG. Obviously, this kind of accuracy enhance-
ment becomes problematic on reasonably coarse meshes in space and time for
general nonlinear time dependent problems, where discretization errors (tem-
poral and spatial errors) necessarily accumulate during time stepping and thus
information that is once lost due to any kind of discretization error can never
be completely recovered. Therefore, Dumbser and Munz [25,31] were the first
to propose the application of a reconstruction operator to the DG scheme at
the beginning of each time step. The advantages of the proposed tensor prod-
uct reconstruction on Cartesian grids were: First, the formal order of accuracy
of a DG scheme using basis functions of degree N was increased to 3N + 3.
Second, the resulting reconstructed DG scheme could be directly applied to
the diffusion equation by simply using a central flux formulation, yielding a
much larger stability limit than the classical local DG schemes [19,21]. An-
other possibility to combine the DG method with a reconstruction operator in
order to discretize diffusion equations can also be found in the recent work by
van Leer and Nomura [79]. Nonlinear versions of reconstruction operators are
also applied to DG schemes in order to serve as limiters, as in the HWENO
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approach introduced by Qiu and Shu in [58,59] and as also recently furthered
by Balsara et al. in [5].
In this article we propose a linear, i.e. a non-data dependent, reconstruction
operator for DG schemes on general unstructured triangular and tetrahedral
meshes in two and three space dimensions, respectively. A nonlinear version of
this reconstruction operator is already available in form of a WENO method in
the pure finite volume context [28,29] and will be extended to the full general
new class of methods in subsequent work since it would be out of the scope
of this article to deal with nonlinear reconstruction operators for the general
case.
The reconstruction is applied to polynomials of degree N , spanned by or-
thogonal basis functions Φl and generates piecewise polynomials of any degree
M ≥ N , spanned by hierarchical orthogonal basis functions Ψl. The basis
functions Ψl are chosen such that up to degree N they coincide with the
basis functions Φl and that the functions Ψl with degree larger than N are
orthogonal to all Φl. Furthermore, general conservation of all degrees of free-
dom up to degree N is imposed. These particular properties of the proposed
reconstruction operator will be of significant importance for the resulting nu-
merical scheme. In the following, we use the notation PNPM for reconstructed
DG schemes using N -th degree test functions and original basis functions and
M -th degree reconstruction polynomials that are used for time integration
and flux evaluation. It is obvious that in this proposed general framework of
using a reconstruction operator together with DG schemes, the special case
of choosing N = 0 yields classical (high order) finite volume schemes and
that the choice N = M is equivalent to the classical discontinuous Galerkin
method. In the latter case, the reconstruction reduces to the identity opera-
tor. For N 6= 0, N > M we obtain a new class of numerical methods from
third order of accuracy upwards, that could be either denoted as Hermite fi-
nite volume schemes or reconstructed discontinuous Galerkin methods. For a
graphical illustration of the different methods and their relationships, see Fig.
1. Note that a nonlinear HWENO version of the P1P2 scheme was already
developed for structured meshes by Balsara et al. in [5].
For the construction of a high order one-step time discretization that is au-

tomatically of the same order of accuracy as the space discretization, we pro-
pose a new approach that evolves the (reconstructed) polynomials of degree
M locally inside each element using a local weak formulation of the govern-
ing PDE in space-time, which is approximated by a local continuous space-
time Galerkin method. This approach is more general than those based on an
analytic or semi-analytic version of the Cauchy-Kovalewski or Lax-Wendroff
procedure, such as the original ENO scheme of Harten et al. [44], the ADER
approach of Toro et al. [72,69,73,63,70,71,49,32,67,28,29] and other Cauchy-
Kovalewski procedure based methods [34,57,56,52,37]. The continuous local
space-time Galerkin method used in this article has lower computational com-
plexity and is substantially easier to implement than the local discontinuous

space-time Galerkin method introduced recently by Dumbser, Enaux and Toro
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for hyperbolic balance laws with stiff source terms [26]. Within the proposed
continuous space-time Galerkin approach a full set of space-time polynomials
is produced for the conservative variables as well as for the physical fluxes of
the governing PDE. This allows the construction of quadrature-free, see [2],
one-step schemes for nonlinear PDE that only solve one Riemann problem per
element interface, independent of the order of accuracy of the scheme. Using
the evidence of a numerical von-Neumann stability analysis we will show that
the stability of the resulting reconstructed PNPM DG schemes depends only
on the degree N of the test functions and not on the degree M of the re-
constructed polynomials. This means, in contrast to usual DG schemes, that
the explicit time step limit is not restricted by the final order of the method
(except for the case N = M), but by the degree of the underlying data repre-
sentation.

The three key points of the proposed schemes, which also serve as guiding
themes for this article, are: First of all, the construction of the new general re-
construction operator for PNPM DG schemes on unstructured triangular and
tetrahedral meshes (section 2). Second, the new time discretization method
(section 3). Third, using the previous two ingredients, the construction of
efficient quadrature-free and fully-discrete one-step schemes (section 4). A de-
tailed analysis of the linear stability as well as the accuracy and efficiency
of the proposed schemes are shown in section 5. In section 6 we underscore
the generality of the proposed new time discretization compared to previ-
ous Cauchy-Kovalewski procedure based one-step methods and will apply the
nonlinear WENO finite volume version (N = 0) of our schemes to three com-
plicated and challenging hyperbolic systems, namely the ideal and relativistic
MHD equations and the equations of nonlinear elasticity. In section 7 we give
a conclusion with outlook towards future work.
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Fig. 1. Classification of the proposed PNPM schemes. The leftmost branch (N = 0)
coincides with standard finite volume schemes and the rightmost branch (N = M)
with classical DG schemes. From third order on, there is a new class of intermediate
schemes in between those branches.
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2 The PNPM Reconstruction Operator on Unstructured Meshes

The main ingredient of the proposed PNPM discontinuous Galerkin schemes is
a direct extension of the reconstruction algorithm proposed in [28,29] for finite
volume schemes. The computational domain Ω is discretized by conforming
elements T (m), indexed by a unique mono-index m ranging from 1 to the total
number of elements E. The elements are chosen to be triangles in 2D and
tetrahedrons in 3D. The union of all elements is called the triangulation or
tetrahedrization of the domain, respectively,

TΩ =
E
⋃

m=1

T (m). (1)

As usual also for standard DG schemes, the numerical solution up of the
vector of conserved quantities is represented at the beginning of a time-step
by piecewise polynomials of degree N inside an element as a sum of degrees
of freedom û(m)

p and the space-only dependent basis functions of degree N as
follows:

u(m)
p

(

~ξ, tn
)

= û
(m)
pl (tn)Φl

(

~ξ
)

, (2)

where ~ξ = (ξ, η, ζ)T are the spatial coordinates in a reference coordinate sys-
tem, see Fig. 2, where also the reference elements TE are defined. The equations
for the transformation can be found in [28,29]. As short notation for the map-

ping and its inverse mapping from ~ξ = (ξ, η, ζ) to ~x = (x, y, z) and vice versa
with respect to the element T (m), we simply write

~x = ~x
(

T (m), ~ξ
)

, ~ξ = ~ξ
(

T (m), ~x
)

. (3)

Via the inverse mapping given in (3) for the vector ~ξ, the element T (m) is trans-
formed to the unit element TE, whose volume is |TE| = 1

2
in two dimensions

and |TE| = 1
6

in three space dimensions, respectively. Furthermore,

Jij =
∂xi

∂ξj

(4)

is the Jacobian matrix of the transformation and |J | = |Jij| its determinant,
being equal to twice the triangle’s surface in 2D and equal to six times the
tetrahedron’s volume in 3D. Throughout the paper we use classical tensor no-
tation, which implies summation over each index appearing twice.
In our proposed approach, we now apply a reconstruction operator on these
data in order to achieve an even higher order of accuracy for the spatial dis-
cretization. At time tn the reconstructed numerical solution wp of the con-
served variables is written for element T (m) as

w(m)
p

(

~ξ, tn
)

= ŵ
(m)
pl (tn)Ψl

(

~ξ
)

, (5)

5



where the reconstruction basis functions Ψl are polynomials of degree M ≥ N .
The index l ranges from 1 to its maximum value LN in eqn. (2), and to LM

in eqn. (5), where LN and LM are the numbers of degrees of freedom in d
space dimensions, e.g. LM = 1

d!
(M + 1) · (M + 2) · ... · (M + d). We use the

hierarchical orthogonal reconstruction basis functions that are given, e.g. in
[14,24], for triangles in 2D and tetrahedrons in 3D. In the following, we will
drop the time argument from the notation of the degrees of freedom, meaning
û

(m)
pl = û

(m)
pl (tn) and ŵ

(m)
pl = ŵ

(m)
pl (tn) for the sake of compactness. In the

present paper the two operators

〈f, g〉 =

1
∫

0

∫

TE

(

f(~ξ, τ) · g(~ξ, τ)
)

d~ξ dτ [f, g] =
∫

TE

(

f(~ξ, t) · g(~ξ, t)
)

d~ξ (6)

denote respectively the scalar products of two functions f and g over the
space-time reference element TE × [0; 1] and the spatial reference element TE.
We choose the functions Φl and Ψl so as to satisfy the following properties:

Φl = Ψl, for 1 ≤ l ≤ LN ,

[Ψm, Ψn] = 0, ∀m,∀n, with m 6= n.
(7)

The reconstruction basis functions Ψl and the basis functions Φl representing
the data are equal up to degree N , and the reconstruction basis functions Ψl

of degree larger than N are chosen to be orthogonal to the Φl. For performing
the reconstruction on element T (m), we now choose a reconstruction stencil

S(m) =
ne
⋃

k=1

T (j(k)) (8)

that contains a total number of ne elements. Here 1 ≤ k ≤ ne is a local
index, counting the elements in the stencil, and j = j(k) is the mapping
from the local index k to the global indexation of the elements in TΩ. We set
by definition j(1) = m and thus the first element in the stencil (k = 1) is
always the considered element T (m) for which reconstruction is to be done.
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Fig. 2. Transformation from the physical triangle and tetrahedron T (m) to the canon-
ical reference triangle TE with nodes (0, 0), (1, 0) and (0, 1) and the canonical ref-
erence tetrahedron TE with nodes (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).
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For ease of notation, we write in the following only j, meaning j = j(k). The
reconstruction technique presented here follows closely the ones presented in
[28,29].

We then apply the inverse mapping (3) with respect to element T (m) to all
the elements T (j) ∈ S(m), where the transformed elements are in the following
denoted as T̃ (j). We emphasize that for all elements T (j) ∈ S(m) the mapping
with respect to the first element in the stencil is applied, so m is constant
for each stencil and therefore the applied mapping formula is the same for
all elements in S(m). We note in particular that the transformed element of
the first element in the stencil is of course the canonical reference element,
hence T̃ j(1) = T̃ (m) = TE. The stencil transformed in that way is denoted as
S̃(m) =

⋃

T̃ (j), see examples in [28].

The reconstruction relies on L2-projection and through the choice of the basis
automatically yields a generalized conservation property for all degrees of free-
dom inside element T (m) up to degree N . In the physical coordinate system
we have for each conserved variable up

∫

T (j)

Φk · w(m)
p

(

~ξ
(

T (m), ~x
))

d~x =
∫

T (j)

Φk · u(j)
p

(

~ξ
(

T (m), ~x
))

d~x,

∀T (j) ∈ S(m). (9)

Eqn. (9) expresses a weak form of the identity of the reconstructed solution wp

of degree M and the original numerical solution up of degree N in all elements
of the stencil. After transforming all elements of the stencil using (3) and

taking into account that the degrees of freedom ŵ
(m)
pl and û

(m)
pl do not depend

on space, we obtain the intermediate result

|J | ŵ(m)
pl

∫

T̃ (j)

ΦkΨld~ξ = |J | û(j)
pn

∫

T̃ (j)

ΦkΦnd~ξ, ∀T̃ (j) ∈ S̃(m).

The Jacobian determinant appears on both sides of eqn. (10) and thus cancels
out. Please note that this is only possible for triangles and tetrahedrons with
straight edges, to which we restrict ourselves in this paper. General polyhedral
elements or curved boundaries are not considered here. The canceling of the
Jacobian determinants automatically cancels scaling effects of the problem
and avoids ill-conditioned reconstruction matrices as reported by Abgrall in
[1]. During the reconstruction step, the basis polynomials are continuously
extended over the whole stencil. In more detail, this extension means that
during reconstruction the polynomial term given by Ψl

(

~ξ
)

is not only valid
inside the reference element TE, but also in all the other elements in the
transformed stencil S̃(m). After the reconstructed polynomial for element T (m)

has been obtained, the basis polynomials are again restricted to the considered
element T (m). We emphasize that the integration on the left hand side has to
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be done over the transformed elements T̃ (j). In order to do this integration we
perform another coordinate transformation to a second reference coordinate
system using the vertices of the transformed element T̃ (j) as parameter of
another mapping from the first ξ − η − ζ reference system to the second
ξ̃−η̃−ζ̃ reference coordinate system. For convenience, we denote ~Ξ =

(

ξ̃, η̃, ζ̃
)

.
The mapping and its inverse are then denoted as

~ξ = ~ξ
(

T̃ (j), ~Ξ
)

, ~Ξ = ~Ξ
(

T̃ (j), ~ξ
)

(10)

and the Jacobian determinant of this mapping is denoted as
∣

∣

∣J̃
∣

∣

∣. Thus, eqn.

(10) becomes after the second transformation

ŵ
(m)
pl

∫

TE

Φk

(

~ξ
(

T̃ (j), ~Ξ
))

Ψl

(

~ξ
(

T̃ (j), ~Ξ
))

dξ̃dη̃dζ̃ =

û(j)
pn

∫

TE

Φk

(

~ξ
(

T̃ (j), ~Ξ
))

Φn

(

~ξ
(

T̃ (j), ~Ξ
))

dξ̃dη̃dζ̃, ∀T̃ (j) ∈ S̃(m). (11)

In order to compute the integral on the left hand side in (11), we use classical
multidimensional Gaussian quadrature of appropriate order. For an exhaustive
overview of such multidimensional quadrature formulae see [66]. The integral
on the right hand side is the standard mass-matrix, which is diagonal for the
chosen orthogonal basis functions Φl.
The reconstruction equations constituted by (11) are solved according to the
least squares approach presented in detail in [28]. Here, we indicate only the
modifications that have to be carried out. The number of reconstructed de-
grees of freedom is LM and per element LN degrees of freedom are stored.
Therefore, we need at least ne = LM

LN
elements in each reconstruction sten-

cil. From this expression for ne it is immediately clear that the reconstructed
PNPM DG schemes need much smaller stencils than classical finite volume
schemes, which makes the PNPM schemes very compact for N > 0.
On unstructured meshes, we are forced to use more elements than the nec-
essary minimum for stability purposes. The use of enlarged reconstruction
stencils for robustness purposes has already been reported previously in the
literature in the context of finite volume schemes, see e.g. [8,53,49]. We typi-
cally choose two times more elements in 2D and three times more but at least
12 elements in 3D. In the general case, the PNPM reconstruction leads to very
compact stencils, as for HWENO schemes [58,59,5], hence we can admit this
quite generous choice for the stencil size. Since (11) becomes overdetermined
with the choice ne > LM/LN we use a constrained least-squares technique
in order to solve (11) respecting conservation of all degrees of freedom up to
degree N in the first element T (m) of the stencil, i.e. we require

ŵ
(m)
pl = û

(m)
pl , for 1 ≤ l ≤ LN . (12)

Eqn. (12) in particular also guarantees conservation of the cell average and
eqn. (11) has to be solved with constraint (12) only once for each element in
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a preprocessing stage and the resulting matrices can be inverted analytically
and then stored. The resulting M -exact PNPM least squares reconstruction
can be interpreted as a generalization of the k-exact reconstruction proposed
for pure finite volume schemes by Barth and Frederickson in their pioneering
work [8].
From the generalized conservation property (12) and the properties of the
reconstruction basis functions (7) we have for all elements T (m) that wp =
up + rp and rp⊥up. Hence,

[wp, up] = [up, up] . (13)

3 The Local Space-Time Continuous Galerkin Method

3.1 Review of Solution Techniques for the High Order Riemann Problem

Finite volume and discontinuous Galerkin finite element methods make use
of numerical fluxes at the interface of each element. The classical method of
Godunov [39] computes these fluxes by solving the classical Riemann problem,
i.e. the Cauchy problem for a system of homogeneous conservation laws, with
initial condition consisting of two constant states separated by a discontinuity
at the origin. In this manner one obtains a first-order accurate method, which
is in fact the best first-order method that is also monotone.
Higher-order methods can be constructed by considering higher-order spatial
representations of the data, either stemming from a reconstruction procedure
as in the finite volume framework, or available directly from a high order
polynomial data representation in each element as in the DG framework, or a
combination of both, as presented in this paper. This leads in a very natural
way to the definition of the high-order Riemann problem (also called the Gen-
eralized Riemann problem or the Derivative Riemann Problem). This is the
Cauchy problem for the relevant PDEs in which the initial condition consists
of two piecewise smooth functions, separated by a discontinuity at the origin.
It appears as if the first author to consider a high-order Riemann problem was
Kolgan [50]. He used a monotone piecewise linear polynomial reconstruction,
followed by the solution of the classical Riemann problem at the interface for
the boundary extrapolated values. Kolgan, however, did not include a local
time-evolution of the data, resulting in a linearly unstable method, which is
second order accurate in space, but only first order accurate in time.
Amongst the many contributions to the subject, since then, there are two
main lines of thought. The first is the so called GRP (Generalized Riemann
Problem) method of Ben-Artzi and Falcovitz [9]. They solved the high-order
Riemann problem with piecewise linear polynomials, whereby the approximate
solution was given as a time power series expansion right at the interface, thus
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providing a numerical flux for a second order Godunov-type method.
The other approach of interest is provided by the second-order MUSCL scheme
by van Leer [76,77]. This scheme, also attributed by van Leer to S. Hancock
[78], may be viewed as using a solution of the high-order Riemann problem
(piece-wise linear polynomial data) that first includes an evolution of the ini-
tial condition via the application of the Cauchy-Kovalewski procedure followed
by an interaction of the evolved data via a classical Riemann problem solution.
Due to the time evolution phase, the MUSCL scheme of van Leer is second
order accurate also in time and linearly stable, in contrast to Kolgan’s method.
Extensions of the first approach, that of Ben-Artzi and Falcovitz, were then
formulated by several authors such as for example [35,10,36]. These studies
were mainly concerned with theoretical aspects of the high-order Riemann
problem.
The work of Harten and collaborators [44] may be interpreted as an extension
of the second approach, namely the MUSCL scheme of of van Leer and Han-
cock [76–78]. They also evolved the data via the Cauchy-Kovalewski procedure
resolving the interaction of the evolved data at the interface via the classical
Riemann problem. Harten’s work produced fully discrete one step finite vol-
ume schemes of theoretically arbitrary order of accuracy in space and time.
In the late 90’s Toro and collaborators returned to the approach of Ben-Artzi
and Falcovitz. This effort resulted in what they called ADER schemes [72]
(for Arbitrary Accuracy DERivative Riemann problem). These schemes solve
the high-order Riemann problem approximately at the interface. For non-
linear systems with source terms a semi-analytical solver was first proposed
by Toro and Titarev, see [73,70,71]. This solver generalizes the time power
series expansion at the interface proposed by Ben-Artzi and Falcovitz. The
determination of all the high-order terms of the series involves the applica-
tion of the Cauchy-Kovalewski procedure and the solution of classical linear
Riemann problems for the all-order spatial derivatives of the vector of un-
knowns. The resulting ADER schemes (available for both, the finite volume
and the discontinuous Galerkin framework) are, like Harten’s schemes, one-
step fully discrete and of arbitrary order of accuracy in space and time, see
e.g. [72,69,73,63,33,70,71,49,32,67]. The original version of the ADER method,
however, needs Gaussian quadrature in space and time in order to compute
the fluxes at the interface. In [28,29], the authors proposed a quadrature-free
version of the scheme (i.e. not using numerical flux integration but analyti-

cal flux integration at the boundary) of arbitrary accuracy in space and time
on unstructured meshes in two and three space dimension. This version of
the ADER schemes is more similar to the original ENO scheme proposed by
Harten et al., since it first evolves the data in each element via the Cauchy-
Kovalewski procedure and then solves the interactions at the boundary. To
obtain a quadrature-free version of the scheme, all the space-time information
produced by the Cauchy-Kovalewski procedure has been used, which was nei-
ther done in the original ENO scheme of Harten et al. nor in previous ADER
schemes. For DG schemes, a very efficient fully discrete Cauchy-Kovalewski
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based approach, similar to the one of Harten et al. [44], has been introduced
recently in [52,37].
In a recent paper, Castro and Toro [12] have re-interpreted the schemes of van
Leer and Harten et al. in the framework of the solution of the high-order Rie-
mann problem at the interface and systematically compared various different
possible semi-analytical methods based on the Cauchy-Kovalewski procedure
for solving the high-order Riemann problem. They found that for linear hy-
perbolic systems, all approaches coincide.
We note that the main inconvenience induced by the Cauchy-Kovalewski pro-
cedure is that it may quickly become very complex for general hyperbolic sys-
tems in multiple space dimensions and at higher order of accuracy, although
for very important systems like the Euler [32,29], MHD [67] and Navier-Stokes
[37] equations this procedure is available for any order of accuracy due to mod-
ifications of a semi-analytic algorithm originally developed by Dyson in [34].

An alternative solver for the high-order Riemann problem has recently been
proposed by Dumbser et al. [26]. This is an entirely numerical solver that
starts from the Harten approach of evolving the data inside each element in
a predictor step. But instead of using the strong, differential, form of the
governing PDE for data evolution, i.e. instead of using the semi-analytical
Cauchy-Kovalewski method, the weak, integral, form of the governing PDE in
space-time is used to evolve the data numerically. This is done using a new
local space-time discontinuous Galerkin approach, different from the global
space-time DG schemes introduced by van der Vegt and van der Ven [74,75].
The local space-time approach presented in [26] results in small local nonlinear
algebraic systems to be solved, compared to the globally implicit formulation
of the space-time DG approach presented in [74,75]. Then, the interaction of
the evolved data at the desired time t = τ requires the solution of the classical
Riemann problem. The advantages of this numerical variant are twofold (i) one
avoids completely the cumbersome Cauchy-Kovalewski procedure, resulting in
great generality; (ii) one can treat stiff source terms properly, reconciling the
usually incompatible concepts of high accuracy and stiffness.

Although the new local space-time DG scheme presented in [26] is very success-
ful for stiff problems and also applicable to very general hyperbolic systems, it
is computationally more expensive compared to the Cauchy-Kovalewski proce-
dure. In the space-time DG framework [74,75] the initial condition is imposed
only in a weak form, which leads to a large number of degrees of freedom to
solve for. For non-stiff problems, the extra degrees of freedom allowing the
numerical solution of the local space-time DG scheme to be different at time
t = 0+ from the initial condition at time t = 0 are not important, since for
non-stiff problems the numerical solution will usually exhibit only very small
jumps between t = 0 and t = 0+. Therefore, we now propose to use a local

continuous space-time Galerkin machinery to evolve the data inside each ele-
ment in order to obtain smaller algebraic systems that, as has turned out in
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our research, can be solved very efficiently by a simple iteration scheme.

3.2 Weak Local Space-Time Formulation

In this article we consider nonlinear time-dependent hyperbolic systems of
conservation laws of the form

∂

∂t
up +

∂

∂x
fp +

∂

∂y
gp +

∂

∂z
hp = Sp, (14)

where up is the vector of conserved variables, fp = fp(uq), gp = gp(uq) and
hp = hp(uq) are the nonlinear fluxes and Sp = Sp(uq) is a nonlinear but non-
stiff algebraic source term. In this paper, only the non-stiff case is considered,
for the robust and accurate treatment of stiff sources we refer the reader to [26].
Introducing the local time τ = (t− tn)/∆t and the coordinate transformation
(3), we first rewrite the governing PDE (14) in the reference coordinates ξ, η,
ζ and τ as

∂

∂τ
up +

∂

∂ξ
f ∗

p +
∂

∂η
g∗

p +
∂

∂ζ
h∗

p = S∗

p , (15)

with

f ∗

p = ∆t(fpξx + gpξy + hpξz), g∗

p = ∆t(fpηx + gpηy + hpηz),

h∗

p = ∆t(fpζx + gpζy + hpζz), S∗

p = ∆tSp. (16)

We now multiply (15) with space and time dependent test functions θk =

θk(~ξ, τ) and integrate over the space-time reference element TE × [0; 1]:

〈

θk,
∂

∂τ
up

〉

+

〈

θk,
∂

∂ξ
f ∗

p

〉

+

〈

θk,
∂

∂η
g∗

p

〉

+

〈

θk,
∂

∂ζ
h∗

p

〉

=
〈

θk, S
∗

p

〉

. (17)

The numerical solution of (17) in space-time, denoted by Up, as well as the
fluxes and the source terms are approximated using the same space-time basis
functions θk as used for the test functions, i.e.

Up(~ξ, τ) = Ûlpθl(~ξ, τ), Sp(~ξ, τ) = Ŝlpθl(~ξ, τ),

Fp(~ξ, τ) = F̂lpθl(~ξ, τ), Gp(~ξ, τ) = Ĝlpθl(~ξ, τ), Hp(~ξ, τ) = Ĥlpθl(~ξ, τ), (18)

where we use classical tensor index notation, implying summation over indices
appearing twice. For the degrees of freedom, the same transformation (16) for
the fluxes and source terms holds, i.e.

F̂∗

lp = ∆t(F̂lpξx + Ĝlpξy + Ĥlpξz), Ĝ∗

lp = ∆t(F̂lpηx + Ĝlpηy + Ĥlpηz),

Ĥ∗

lp = ∆t(F̂lpζx + Ĝlpζy + Ĥlpζz), Ŝ∗

lp = ∆tŜlp. (19)

12



Inserting (18) into (17) yields

〈

θk,
∂

∂τ
θl

〉

Ûlp +

〈

θk,
∂

∂ξ
θl

〉

F̂∗

lp +

〈

θk,
∂

∂η
θl

〉

Ĝ∗

lp +

〈

θk,
∂

∂ζ
θl

〉

Ĥ∗

lp = 〈θk, θl〉 Ŝ∗

lp.

(20)
The matrices arising in equation system (20) are the temporal stiffness matrix
Kτ

kl, the mass matrix Mkl and the spatial stiffness matrices Kξ
kl, Kη

kl and Kζ
kl,

defined as follows:

Kτ
kl =

〈

θk,
∂

∂τ
θl

〉

, Mkl = 〈θk, θl〉 ,

Kξ
kl =

〈

θk,
∂

∂ξ
θl

〉

, Kη
kl =

〈

θk,
∂

∂η
θl

〉

, Kζ
kl =

〈

θk,
∂

∂ζ
θl

〉

. (21)

We still need a relation between the degrees of freedom Ûlp of the numerical

solution, the degrees of freedom F̂lp, Ĝlp and Ĥlp approximating the fluxes and

Ŝlp approximating the source. The best one would be an L2 projection but this
would involve the numerical computation of space-time integrals with very
high order of accuracy, which may become prohibitively expensive for time
dependent problems in three space dimensions. Therefore we prefer to use a
nodal approach where the degrees of freedom of the fluxes and the source term
are simply evaluated as the physical fluxes and the source at the respective
degrees of freedom of the state Ûpl:

F̂lp = fp(Ûlq), Ĝlp = gp(Ûlq), Ĥlp = hp(Ûlq), Ŝlp = Sp(Ûlq). (22)

All the stiffness matrices defined in (21) are singular, which is physically cor-
rect because we still have to introduce the initial condition at τ = 0 into eqn.
(20). If we construct our nodal basis functions θl in such a way that the first
degrees of freedom are located at different spatial points at relative time τ = 0,
grouped together in a sub-vector Û0

lp, and all the other degrees of freedom are
located at spatial points at later times τ > 0, grouped together in a sub-vector
Û1

lp, we can write the total vector of degrees of freedom as Ûlp = (Û0
lp, Û1

lp)
T .

The same holds for the fluxes and the source term, i.e. F̂∗

lp = (F̂0
lp, F̂1

lp)
T ,

Ĝ∗

lp = (Ĝ0
lp, Ĝ1

lp)
T , Ĥ∗

lp = (Ĥ0
lp, Ĥ1

lp)
T and Ŝ∗

lp = (Ŝ0
lp, Ŝ1

lp)
T . According to this

definition, we introduce the following sub-matrix notation for the mass matrix
and the stiffness matrices, where α may represent τ , ξ, η or ζ, respectively:

M =







M00 M01

M10 M11





 , Kα =







Kα,00 Kα,01

Kα,10 Kα,11





 . (23)

Note that the degrees of freedom of the state at relative time τ = 0 are known

from the reconstruction polynomials wp(~ξ, t
n) and due to eqn. (22) also the

degrees of freedom of the fluxes and the source term at τ = 0 are known.

13



Removing test functions of known degrees of freedom (i.e. canceling the first
rows of the equation system) and moving the degrees of freedom known from
the initial condition onto the right hand side of the equation system we obtain
from (20):

Kτ,11
kl Û1

lp + Kξ,11
kl F̂1

lp + Kη,11
kl Ĝ1

lp + Kζ,11
kl Ĥ1

lp − M11
kl S1

lp =

−Kτ,10
kl Û0

lp − Kξ,10
kl F̂0

lp − Kη,10
kl Ĝ0

lp − Kζ,10
kl Ĥ0

lp + M10
kl Ŝ0

lp. (24)

Equation (24) together with (22) form a nonlinear algebraic system for the
unknowns Û1

lp on the left hand side and all quantities with the superscript
’0’ on the right hand side are known from the initial condition at τ = 0. We
propose to use the following iterative approach: the temporal stiffness matrix
Kτ,11

kl is universal and does neither depend on the mesh nor on the timestep nor
on the equations to be solved. For all orders of accuracy and for all numbers of
space dimensions treated in this paper, it also could be inverted analytically
and therefore we obtain the following simple iteration scheme for Û1

lp, where
the superscript ’i’ denotes the iteration number:

Û1,i+1
lp =

(

Kτ,11
lk

)

−1 (

M11
knŜ1,i

np − Kξ,11
kn F̂1,i

np − Kη,11
kn Ĝ1,i

np − Kζ,11
kn Ĥ1,i

np

)

+
(

Kτ,11
lk

)

−1 (

M10
knŜ0

np − Kξ,10
kn F̂0

np − Kη,10
kn Ĝ0

np − Kζ,10
kn Ĥ0

np − Kτ,10
kn Û0

np

)

(25)

Using symbolic algebra tools, we found analytically some very interesting prop-

erties of the matrices
(

Kτ,11
lk

)

−1
Kξ,11

kn ,
(

Kτ,11
lk

)

−1
Kη,11

kn and
(

Kτ,11
lk

)

−1
Kζ,11

kn ,
using the space-time basis functions presented in the subsequent section 3.3.
Although the matrices are almost fully populated, all the eigenvalues of these
matrices are zero, for any order of accuracy up to six and for any number of
space dimensions up to three. We conjecture, that this holds for any order and
any number of space dimensions. At least for linear homogeneous hyperbolic
PDE, this automatically implies directly that the operator (25) is a contraction
and therefore the scheme (25) is a contractive fixed point iteration. According
to the Banach fixed point theorem, the iterative scheme (25) therefore has
a unique solution and the convergence of the method is guaranteed. For lin-
ear homogeneous scalar equations we furthermore observed (using analytical
computations via symbolic algebra tools) that the method always converges
for any initial guess vector after at most M iterations.

The iterative scheme (25) is very simple and efficient. As an initial guess value
for Û1

lp we suppose a stationary solution of the PDE (15) to begin with. From
the extensive numerical experiments shown later in section 6 of this paper
we found that also for nonlinear systems only at most three to six iterations
are needed to reach convergence to a precision of 10−9 using the iterative
scheme (25). We remark that due to the structure of the equation system
(24), the second order local space-time Galerkin schemes are fully explicit
and hence do not need any iteration. In the second order finite volume case,
the method automatically reduces to the MUSCL scheme. Since (25) is based
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on a weak formulation of the PDE using a nodal space-time finite element
approach, only evaluations of physical fluxes and source terms are required and
no differentiation operations are needed, compared to the rather complicated
Cauchy-Kovalewski procedure used in the original ENO scheme [44] as well as
in previous ADER schemes [29,31,32,67,70,73]. Thus, (25) is very general and
can be applied also to complex hyperbolic systems such as nonlinear elasticity
and relativistic magnetohydrodynamics, as seen later in section 6.

3.3 Choice of the Space-Time Basis

As already mentioned in the previous section the optimal way to connect the
space-time degrees of freedom for the fluxes and the source term with those
of the vector of conserved variables would be an L2 projection. However, this
would become prohibitively expensive in three space dimensions plus time.
Therefore, a nodal approach is chosen, leading to (22), where we take special
care of using the minimal number of space-time nodes necessary to reach the
formal order of accuracy. In d space dimensions, the optimal number of space-
time degrees of freedom for a PNPM scheme with reconstruction polynomial
degree M is

nST
DOF(d,M) =

1

(d + 1)!

d+1
∏

j=1

(M + j). (26)

The only restriction concerning the distribution of the nodes is that we have
a sufficient number of nodes located at τ = 0 to include the initial condition.
The minimum number of nodes at τ = 0 is therefore nST

DOF(d − 1,M). We
choose the following simple distributions in one space dimension, on triangles
in two space dimension and on tetrahedra in three space dimensions:

(ξkl, τkl) =

(

k

M − l
,

l

M

)

, (27)

(ξjkl, ηjkl, τjkl) =

(

j

M − l
,

k

M − l
,

l

M

)

, (28)

(ξijkl, ηijkl, ζijkl, τijkl) =

(

i

M − l
,

j

M − l
,

k

M − l
,

l

M

)

, (29)

for 0 ≤ l < M, 0 ≤ k ≤ M−l, 0 ≤ j ≤ M−l−k, 0 ≤ i ≤ M−l−k−j.

The last point, corresponding to the singular case l = M in equations (27)-
(29), is inserted at the spatial barycenter of the reference element at τ = 1,
i.e.:

(~ξ0...0M , τ0..0M ) =
(

1

d + 1
, ..,

1

d + 1
, 1

)

. (30)

In Figs. 3 and 4 we show the nodal distribution for a fourth order local space-
time continuous Galerkin scheme in one space dimension and for a triangle in
two space dimensions, respectively.
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Fig. 3. Distribution of the space-time nodes for the fourth order local space-time
continuous Galerkin scheme in one space dimension plus time.
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Fig. 4. Distribution of the space-time nodes for the fourth order local space-time
continuous Galerkin scheme in two space dimensions plus time.

4 Formulation of the Fully-Discrete Quadrature-Free PNPM DG

Schemes for General Nonlinear Hyperbolic Systems

To derive the fully discrete form of the PNPM schemes we multiply the con-
servation law (14) with a test function Φk and integrate over the space-time
element T (m) × [tn; tn + ∆t], using integration by parts in space:

tn+∆t
∫

tn

∫

T (m)

Φk
∂

∂t
up dV dt +

tn+∆t
∫

tn

∫

∂T (m)

Φk
~Fp · ~n dS dt −

tn+∆t
∫

tn

∫

T (m)

∂Φk

∂~x
· ~Fp dV dt =

tn+∆t
∫

tn

∫

T (m)

ΦkSp dV dt, (31)

with ~Fp = (fp, gp, hp) and ∂Φk/∂~x = (∂Φk

∂x
, ∂Φk

∂y
, ∂Φk

∂z
). Furthermore, ~n =

(nx, ny, nz)
T is the outward pointing unit normal vector on the surface ∂T (m)

of the element. In classical DG schemes [18,17,15,13,20] the fluxes and source
terms in (31) are computed using the same piecewise polynomials of degree N

as used for the representation of the numerical solution up, i.e. ~Fp := ~Fp(uq)
and Sp := Sp(uq). In this paper we propose to use instead the solution of the
local space-time Galerkin scheme (24) with polynomial degree M to compute

the fluxes and source terms in (31), i.e. we use ~Fp := ~Fp = (Fp,Gp,Hp)
T and

Sp := Sp. To define the surface integral a numerical flux must be introduced.
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Since we want to construct quadrature-free schemes, it is natural to use also
the space-time solution obtained for the fluxes from (24). We therefore use

the four-argument flux function ~F h
p = ~F h

p (U−

q ,U+
q , ~F−

q , ~F+
q ) introduced in [29],

which allows an analytical integration over the element boundaries. It consists
of a classical two-point interface flux ~F (L)

p as a leading flux, which depends
only on the left and right states at the space-time barycenter of each element
interface, and a four-argument corrector flux ~F (C)

p that takes into account the
whole polynomial space-time representation of the states on the left and right
of the interface and which is a linear function in its arguments and hence
allows analytical integration:

~F h
p (U−

q ,U+
q , ~F−

q , ~F+
q ) = ~F (L)

p

(

U−

q (~ξ(χ̄1, χ̄2), τ̄),U+
q (~ξ(χ̄1, χ̄2), τ̄)

)

+ (32)

~F (C)
p

(

U−

q ,U+
q , ~F−

q , ~F+
q

)

Here, χ̄1, χ̄2 and τ̄ denote the space-time barycenter of the element face. In
this paper, we decide to choose the Rusanov flux as leading and corrector flux
due to its simplicity, robustness and generality. As described in detail in [29]
the signal velocities are once computed using the states at the element face
space-time barycenter and then are frozen, i.e. kept constant, for the whole
face inside the corrector flux.
Integrating the first term in (31) in space and time, introducing the numer-
ical flux, and rewriting the third term over the space-time reference element
TE × [0; 1] we get the following expression of our fully discrete one-step PNPM

schemes:

[Φk, Φl]
(

ûn+1
lp − ûn

lp

)

+
∆t

|J |

1
∫

0

∫

∂T (m)

Φk
~F h

p (U−

q ,U+
q , ~F−

q , ~F+
q ) · ~n dS dτ −

(〈

∂Φk

∂ξ
,F∗

p

〉

+

〈

∂Φk

∂η
,G∗

p

〉

+

〈

∂Φk

∂ζ
,H∗

p

〉)

=
〈

Φk,S∗

p

〉

. (33)

Note that the local space-time Galerkin solution Up as well as the resulting
fluxes Fp, Gp, Hp and the source term Sp are related to the reconstructed solu-

tion wp = wp(~ξ, t
n) of degree M at time tn via the local space-time continuous

Galerkin scheme (24) and the reconstructed solution wp at time tn is related to
the original numerical solution up of (33) via the reconstruction operator (11)
and the generalized conservation property (12), i.e. we have the dependency
Up = Up(wq(ur)) and similarly also for the fluxes and source terms. Note that
a pure DG scheme is recovered by setting N = M , i.e. wp = up and the pure
finite volume case is obtained by setting N = 0, i.e. the ûlp reduce to the cell
averages ūp.

Due to the linearity of the corrector flux in its four arguments, flux computa-
tion and space-time integration can be exchanged. To perform this integration
analytically, we introduce the following mesh-independent flux matrices, which
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can be precomputed once and then stored:

F 0,e
k =

1
∫

0

∫

∂(TE)e

Φk dχ1dχ2dτ, (34)

F−,e
kl =

1
∫

0

∫

∂(TE)e

Φk

(

θl(~ξ
(e)(χ1, χ2), τ) − θl(~ξ

(e)(χ̄1, χ̄2), τ̄)
)

dχ1dχ2dτ, (35)

F+,e+,h
kl =

1
∫

0

∫

∂(TE)e

Φk

(

θl(~ξ
(e+)(χ̃

(h)
1 , χ̃

(h)
2 ), τ) − θl(~ξ

(e+)(χ̄1, χ̄2), τ̄)
)

dχ1dχ2dτ.

(36)
Here, e and e+ are the local numbers of the considered common element in-
terface between element T (m) and its neighbor element T (ke) as seen from each
element, respectively, and h takes into account the possibly different orienta-
tions of two tetrahedral faces due to rotation and has a meaning only in the
three-dimensional case. The element faces are parametrized by the face param-
eters χ1 and χ2, which are mapped to the volume coordinates ~ξ by a mapping
function depending on the face number and the orientation. We furthermore
use the notation Φk = Φk((~ξ

(e)(χ1, χ2))). For more details on the computa-
tion of the flux matrices in 2D and 3D, see [28] and [29]. The final form of
the fully discrete scheme using the definition of the flux-matrices introduced
above yields:

[Φk, Φl]
(

ûn+1
lp − ûn

lp

)

+

NE
∑

e=1

∆t
|J∂Te

|
|J |

(

F 0,e
k

~F (L)
p + ~F (C)

p (F−,e
kl Û−

lq , F+,e+,h
kl Û+

q , F−,e
kl

~̂F−

lq , F+,e+,h
kl

~̂F+
q )

)

· ~ne −
(〈

∂Φk

∂ξ
, θl

〉

F̂∗

lp +

〈

∂Φk

∂η
, θl

〉

Ĝ∗

lp +

〈

∂Φk

∂ζ
, θl

〉

Ĥ∗

lp

)

= 〈Φk, θl〉 Ŝ∗

lp. (37)

In the following, we summarize the necessary steps of the whole algorithm
described in this section to perform the update of the degrees of freedom ûlp

from time tn to time tn + ∆t:

(1) Reconstruction. Apply the PNPM reconstruction algorithm described
in section 2 to the numerical solution up at time tn represented by the
piecewise polynomials of degree N to obtain the higher order reconstruc-
tion polynomials wp of degree M , i.e. compute ŵlp = ŵlp(û

n
mq).

(2) Local Data evolution. Use the reconstructed solution wp in each
element as initial condition for the local continuous space-time Galerkin
method presented in section 3. Solve for Up via the iterative scheme (25) to

obtain Ûlp = Ûlp(ŵmq), F̂lp = F̂lp(ŵmq), Ĝlp = Ĝlp(ŵmq), Ĥlp = Ĥlp(ŵmq)

and Ŝlp = Ŝlp(ŵmq).
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(3) Solution of the Riemann Problem. Solve the Riemann problem
at the interface approximately using the space-time polynomials of the
state, the fluxes and the source terms generated in the previous step.
A quadrature-free flux integral can be obtained using the special four-
argument numerical flux function introduced in [28].

(4) Update. Update the degrees of freedom ûlp from time level n to time
level n + 1 according to the quadrature-free formulation (37).

5 Linear Stability Analysis and Numerical Convergence Studies

5.1 Von-Neumann Stability Analysis

To assess the stability of the proposed PNPM schemes we perform a von-
Neumann stability analysis, see e.g. [45] for details, applying the schemes to
the linear scalar advection equation in one space dimension

∂u

∂t
+ a

∂u

∂x
= 0, a ∈ , a > 0. (38)

As usual for a von-Neumann analysis, we suppose an equidistant partition of
a periodic computational domain Ω =

⋃

T j with element length ∆x, where
the degrees of freedom of the numerical solution of (38) at time tn are written
for each element T j in terms of a single vector Fourier mode of the form

ûj
l (t

n) = Ũn
l eikj∆x, (39)

with the amplitude vector Ũn
l at time tn, the wavenumber k and the imag-

inary unit i2 = −1. Applying the linear PNPM reconstruction operator pro-
posed in section 2 to the degrees of freedom (39) we obtain a Fourier mode
representation for the degrees of freedom of the reconstructed solution as
ŵj

l (t
n) = W̃ n

l (Ũn
l , k)eikj∆x, where the amplitude vector W̃ n

l = W̃ n
l (Ũn

l , k) is
a function of the amplitude vector Ũn

l and the wavenumber k. It depends on
the reconstruction operator and its expression is quite complicated, but it can
be computed using modern computer algebra systems. Finally, the time dis-
cretization technique introduced by the local space-time continuous Galerkin
methods proposed in section 3 is applied and the result for the space-time
degrees of freedom Û j

l is inserted into the fully discrete one-step scheme (37).
Then, the amplification factor matrix Gml, which is a function of the Courant
number CFL = a∆t/∆x and the reduced wavenumber ϕ = k∆x can be de-
termined from the relation Ũn+1

m = Gml(ϕ, CFL) Ũn
l . The eigenvalues of Gml

are then computed numerically. The method is stable if the largest eigenvalue
of Gml is less than one for all reduced wavenumbers 0 < ϕ < π. The maxi-
mum admissible Courant numbers for all possible PNPM schemes up to fifth
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Table 1
Stability limits for PNPM schemes from second to fifth order of accuracy.
CFLmax N = 0 N = 1 N = 2 N = 3 N = 4

M = 1 1.00 0.33
M = 2 1.00 0.32 0.17
M = 3 1.00 0.32 0.17 0.10
M = 4 1.00 0.32 0.17 0.10 0.069

order of accuracy in space and time are given in Table 1. From these results
we can deduce that it is the polynomial degree N of the data representation
that governs the stability of the method and not the polynomial degree M of
the reconstruction operator. Hence, the new class of schemes with N > 0 and
M > N allows for larger time steps than the pure DG method of the same
order.

5.2 Numerical Convergence Studies on Unstructured Meshes

5.2.1 Two-Dimensional Euler Equations

The convergence studies of the two-dimensional version of our PNPM schemes
are carried out solving the Euler equations of compressible gas dynamics, with
conservative variables up = (ρ, ρvj, ρE)T and the flux tensor defined as

~Fp = Fpi =















ρvi

ρvivj + p δij

vi(ρE + p)















. (40)

To close the system we use the equation of state of a perfect gas

p = (γ − 1)
(

ρE − 1

2
ρ(u2 + v2)

)

. (41)

We consider the smooth two-dimensional example of a convected isentropic
vortex given for example by Hu and Shu in [47]. The initial condition is a linear
superposition of a homogeneous background field and some perturbations δ:

(ρ, u, v, p) = (1 + δρ, 1 + δu, 1 + δv, 1 + δp) . (42)

The perturbations of the velocity components u and v as well as the pertur-
bations of entropy S = p

ργ and temperature T of the vortex are given by







δu

δv





 =
ǫ

2π
e

1−r2

2







− (y − 5)

(x − 5)





 , δS = 0, δT = −(γ − 1) ǫ2

8γπ2
e1−r2

, (43)
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with r2 = (x − 5)2 + (y − 5)2, the vortex strength ǫ = 5 and the ratio of
specific heats γ = 1.4. If we define the relationship between density, pressure
and static temperature in a nondimensional fashion so that the gas constant
becomes equal to unity, we obtain the following perturbations of the primitive
variables density and pressure:

δρ = (1 + δT )
1

γ−1 − 1, δp = (1 + δT )
γ

γ−1 − 1. (44)

The computational domain is Ω = [0; 10]× [0; 10] and four periodic boundary
conditions are imposed. After one period of t = 10, the exact solution is given
by the initial condition (42). For measuring the error between the numerical
solution up and the exact solution ue

p, we first apply the reconstruction operator
in order to get wp from up and then we use the continuous L2-norm

∥

∥

∥wp − ue
p

∥

∥

∥

L2(Ω)
=





∫

Ω

|wh − ue|2 dV





1
2

, (45)

in which the integration is approximated using Gaussian integration formulae
with appropriate order of accuracy. We use the sequence of irregular triangular
meshes shown in Fig. 5 (top) and set the Courant number to 0.7/(2N + 1),
except for the fifth and sixth order schemes where we use 0.5/(2N + 1). The
tolerance for the iterative solution of the nonlinear system arising from the lo-
cal continuous space-time Galerkin method (24) via the iterative scheme (25)
is set to 10−9 for the Euclidean norm of the vector ∆Ûlp = Û1,i+1

lp − Û1,i
lp . This

rather small tolerance is kept constant throughout the paper unless something
else is explicitly specified.
The results obtained for all possible PNPM schemes using the linear recon-
struction operator as described in section 2 are shown in Table 2 from second
to sixth order of accuracy in space and time. Similar to the structure shown
in Fig. 1 we present the pure finite volume schemes on the left of the table
and the results obtained with pure DG schemes are reported on the diagonal,
the intermediate PNPM schemes are shown in between. The L2 errors with the
associated convergence rates for the density are presented. The first column
of Table 2 entitled NG characterizes the reciprocal mesh size and denotes the
number of triangle edges used per space dimension. Note that there are two
numbers given in this column, separated by a slash. The first number refers to
the mesh size used for the finite volume schemes, the second number is valid
for all the other PNPM schemes. From Table 2 we conclude that for smooth
problems high order finite volume schemes seem to be less accurate than the
mixed PNPM schemes and the pure DG schemes of the same accuracy on the
same mesh. Furthermore, we observe that in this test case the PNPM schemes
with N < M but N close to M are as accurate as the pure DG schemes, in
particular on the finer meshes. For a quantitative efficiency comparison we
also give the total CPU times in seconds in Table 3 as well as the total time
in microseconds needed for all schemes to perform one entire time step per
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element (for all conserved variables), including reconstruction, iterative solu-
tion of the equations resulting from the local space-time Galerkin method and
computation of the quadrature-free fluxes in the fully discrete schemes. The
times given in Table 3 were measured on one CPU core of an Intel Core 2 Duo
computer with 2GHz clock speed and 2 GB of RAM. We also give the CPU
time needed for one element update (EU), which is computed by dividing the
total CPU time by the number of time steps and the number of elements in
the mesh. To be able to compare the CPU times between 2D and 3D com-
putations as well as to allow a comparison with different hyperbolic systems,
we also give the CPU time per degree of freedom update (DU), which is the
time per element update divided by the number of equations in the hyperbolic
system and the number of degrees of freedom in the scheme used to represent
the data, i.e. LN . We give this additional information to allow for a direct effi-
ciency comparison with other methods, such as e.g. high order finite difference
schemes. Based on these CPU times we conclude that in 2D the new class of
intermediate PNPM schemes is much more efficient than pure finite volume or
pure DG schemes.
Example: in order to reach an error of about 3 · 10−5 the pure fifth order DG
scheme (P4P4) needs approximately 900 seconds. On the same 322 mesh the
new P3P4 method reaches the same error in only about 450 seconds and the
P2P4 method even needs only about 300 seconds to reach this level of accuracy.
For comparison, the computation with the fifth order finite volume method
(P0P4) takes about 2800 seconds on a 1282 mesh to reach an error or 3 · 10−5.
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Fig. 5. Sequence of triangular meshes used for the two-dimensional convergence
studies (top), and sequence of tetrahedral meshes used for the three-dimensional
convergence studies (bottom).
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Table 2. Two-dimensional PNPM schemes from second to sixth order of accuracy applied to the Euler equations. Errors for density ρ

are shown.
NG L2 OL2 L2 OL2 L2 OL2 L2 OL2 L2 OL2 L2 OL2

O2 P0P1 P1P1

24/16 2.17E-01 5.56E-02
32/24 1.27E-01 1.9 2.24E-02 2.2
64/32 3.78E-02 1.7 9.75E-03 2.9
128/64 9.97E-03 1.9 1.87E-03 2.4

O3 P0P2 P1P2 P2P2

24/16 1.72E-01 3.17E-02 1.25E-02
32/24 8.67E-02 2.4 7.11E-03 3.7 4.81E-03 2.3
64/32 1.66E-02 2.4 2.10E-03 4.2 2.53E-03 2.2
128/64 2.40E-03 2.8 1.35E-04 4.0 3.65E-04 2.8

O4 P0P3 P1P3 P2P3 P3P3

24/16 4.45E-02 2.46E-02 3.37E-03 4.47E-03
32/24 1.91E-02 2.9 3.86E-03 4.6 6.85E-04 3.9 8.86E-04 4.0
64/32 1.41E-03 3.8 1.10E-03 4.4 1.96E-04 4.4 2.86E-04 3.9
128/64 8.78E-05 4.0 4.06E-05 4.8 1.21E-05 4.0 1.90E-05 3.9

O5 P0P4 P1P4 P2P4 P3P4 P4P4

24/16 3.54E-02 9.12E-03 1.20E-03 8.88E-04 8.78E-04
32/24 1.58E-02 2.8 1.15E-03 5.1 1.65E-04 4.9 1.36E-04 4.6 1.46E-04 4.4
64/32 8.31E-04 4.2 2.39E-04 5.5 4.31E-05 4.7 3.23E-05 5.0 3.93E-05 4.6
128/64 3.14E-05 4.7 2.43E-06 6.6 2.75E-06 4.0 1.24E-06 4.7 1.56E-06 4.7

O6 P0P5 P1P5 P2P5 P3P5 P4P5 P5P5

24/16 1.83E-02 7.67E-03 6.50E-04 2.28E-04 1.77E-04 2.11E-04
32/24 3.56E-03 5.7 1.06E-03 4.9 5.98E-05 5.9 2.07E-05 5.9 1.63E-05 5.9 1.94E-05 5.9
64/32 1.08E-04 5.0 1.83E-04 6.1 1.08E-05 5.9 3.69E-06 6.0 2.82E-06 6.1 3.26E-06 6.2
128/48 1.49E-06 6.2 1.13E-05 6.9 1.48E-06 4.9 3.43E-07 5.9 2.63E-07 5.8 3.08E-07 5.8
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Table 3
Total CPU times in seconds associated to the results presented in Table 2 and (in
bold letters) time in microseconds needed by the schemes to perform one entire
element update (EU) and one single degree of freedom update (DU) for the 2D
Euler equations.

O2 NG P0P1 P1P1

24/16 2.2 2.3
32/24 5.4 7.5
64/32 44.0 17.9
128/64 408 145

µs/EU: 7.5 8.3

µs/DU: 1.9 0.7

O3 NG P0P2 P1P2 P2P2

24/16 3.8 4.2 8.2
32/24 9.2 14.0 27.0
64/32 73.8 33.8 65.0
128/64 681 272 524

µs/EU: 13 16 18

µs/DU: 3.1 1.3 0.8

O4 NG P0P3 P1P3 P2P3 P3P3

24/16 8.1 8.4 16.8 27.3
32/24 19.5 28.4 56.6 91.6
64/32 151 68.1 136 221
128/64 1352 539 1077 1758

µs/EU: 25 31 37 43

µs/DU: 6.2 2.6 1.5 1.1

O5 NG P0P4 P1P4 P2P4 P3P4 P4P4

24/16 19.3 19.5 35.9 58.4 120
32/24 45.0 64.2 119 192 392
64/32 332 151 280 450 925
128/64 2829 1145 2126 3480 7193

µs/EU: 52 65 73 85 98

µs/DU: 10 5.5 3.0 2.1 1.6

O6 NG P0P5 P1P5 P2P5 P3P5 P4P5 P5P5

24/16 45.3 46.2 80.0 118 232 321
32/24 101 144 249 378 747 1034
64/32 688 327 573 876 1754 2466
128/48 8573 1381 2469 3840 7768 10818

µs/EU: 140 140 150 160 180 210

µs/DU: 34 11 6.1 4.1 3.1 2.5

5.2.2 Three-Dimensional Ideal MHD Equations

In this section we consider a more complicated hyperbolic system than the
Euler equations used in the previous two-dimensional case. We solve the equa-
tions of ideal magnetohydrodynamics (MHD) in three space dimensions. The
MHD system introduces an additional difficulty for numerical schemes since
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Table 4. Three-dimensional PNPM schemes from second to sixth order of accuracy applied to the ideal MHD equations. Errors for
velocity field component w are shown.

NG L2 OL2 L2 OL2 L2 OL2 L2 OL2 L2 OL2

O2 P1P1

10 1.90E-01
20 4.39E-02 2.1
30 1.60E-02 2.5
40 6.81E-03 3.0

O3 P1P2 P2P2

10 7.97E-02 1.68E-02
20 7.46E-03 3.4 2.44E-03 2.8
30 1.75E-03 3.6 8.11E-04 2.7
40 5.75E-04 3.9 3.18E-04 3.3

O4 P1P3 P2P3 P3P3

10 5.20E-02 4.91E-03 2.20E-03
20 3.27E-03 4.0 4.03E-04 3.6 1.97E-04 3.5
30 5.40E-04 4.4 9.48E-05 3.6 4.70E-05 3.5
40 1.20E-04 5.2 2.75E-05 4.3 1.42E-05 4.2

O5 P1P4 P2P4 P3P4 P4P4

10 7.82E-02 1.04E-02 4.83E-03 1.60E-03
20 3.68E-03 4.4 3.92E-04 4.7 2.26E-04 4.4 1.31E-04 3.6
30 3.65E-04 5.7 6.08E-05 4.6 3.87E-05 4.4 2.54E-05 4.0
40 5.12E-05 6.8 1.30E-05 5.4 8.52E-06 5.3 6.27E-06 4.9

O6 P1P5 P2P5 P3P5 P4P5 P5P5

10 6.71E-02 6.89E-03 1.78E-03 8.09E-04 5.75E-04
15 1.37E-02 3.9 7.94E-04 5.3 2.63E-04 4.7 1.62E-04 4.0 1.34E-04 3.6
20 2.46E-03 6.0 1.21E-04 6.5 5.50E-05 5.4 3.60E-05 5.2 3.32E-05 4.9
30 1.96E-04 6.2 1.19E-05 5.7 6.35E-06 5.3 3.78E-06 5.6 4.36E-06 5.0
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Table 5. Three-dimensional PNPM schemes from second to sixth order of accuracy applied to the ideal MHD equations. Errors for
magnetic field component Bx are shown.

NG L2 OL2 L2 OL2 L2 OL2 L2 OL2 L2 OL2

O2 P1P1

10 7.54E-01
20 1.83E-01 2.0
30 6.71E-02 2.5
40 2.81E-02 3.0

O3 P1P2 P2P2

10 3.07E-01 6.26E-02
20 2.88E-02 3.4 8.30E-03 2.9
30 6.54E-03 3.7 2.64E-03 2.8
40 2.03E-03 4.1 1.02E-03 3.3

O4 P1P3 P2P3 P3P3

10 1.51E-01 1.80E-02 7.15E-03
20 1.10E-02 3.8 1.34E-03 3.7 5.65E-04 3.7
30 2.32E-03 3.8 3.11E-04 3.6 1.31E-04 3.6
40 7.34E-04 4.0 8.75E-05 4.4 3.95E-05 4.2

O5 P1P4 P2P4 P3P4 P4P4

10 2.89E-01 4.03E-02 1.67E-02 3.96E-03
20 1.38E-02 4.4 1.36E-03 4.9 6.90E-04 4.6 2.38E-04 4.1
30 1.34E-03 5.8 2.00E-04 4.7 1.07E-04 4.6 3.78E-05 4.5
40 1.84E-04 6.9 4.12E-05 5.5 2.20E-05 5.5 8.07E-06 5.4

O6 P1P5 P2P5 P3P5 P4P5 P5P5

10 2.48E-01 2.71E-02 6.00E-03 2.32E-03 8.81E-04
15 5.13E-02 3.9 2.99E-03 5.4 8.31E-04 4.9 3.92E-04 4.4 1.59E-04 4.2
20 9.30E-03 5.9 4.31E-04 6.7 1.68E-04 5.6 7.50E-05 5.7 3.13E-05 5.7
30 7.42E-04 6.2 3.93E-05 5.9 1.77E-05 5.5 1.33E-05 4.3 3.43E-06 5.5
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Table 6
Total CPU times in seconds associated to the results presented in Tables 4 and 5
and (in bold letters) time in microseconds needed by the schemes to perform one
entire element update (EU)and one single degree of freedom update (DU) for the
3D ideal MHD equations.

O2 NG P1P1

10 23.6
20 169
30 705
40 2466

µs/EU: 51

µs/DU: 1.42

O3 NG P1P2 P2P2

10 37 71
20 297 590
30 1382 2653
40 4797 25731

µs/EU: 99 113

µs/DU: 3.8 1.2

O4 NG P1P3 P2P3 P3P3

10 88 163 256
20 747 1453 2271
30 3422 6611 10541
40 11641 22750 35833

µs/EU: 216 253 285

µs/DU: 6.0 2.8 1.5

O5 NG P1P4 P2P4 P3P4 P4P4

10 205 364 561 987
20 1718 3131 4943 8700
30 7719 13828 21737 38696
40 25823 46394 72458 132470

µs/EU: 533 575 641 729

µs/DU: 15 6.4 3.6 2.3

O6 NG P1P5 P2P5 P3P5 P4P5 P5P5

10 591 982 1744 2439 3303
15 1905 3160 5963 8418 11315
20 4543 7908 14849 20761 28298
30 20109 34681 64517 94317 125713

µs/EU: 1510 1563 1662 1890 2061

µs/DU: 42 17 9.23 6.0 4.1

the divergence of the magnetic field must remain zero in time, i.e.

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0, (46)

which for the analytical problem is always satisfied under the condition that
the initial data of ~B are divergence-free. From the discrete point of view this is
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Fig. 6. Iso-surfaces for p, u and v (from left to right) and streamlines for the magnetic
field ~B after one full advection period at t = 10 using a P3P4 scheme on a 403 mesh
containing 434327 tetrahedrons.

not necessarily guaranteed and hence extra care is required in the discretiza-
tion. In this article we use the hyperbolic version of the generalized Lagrangian
multiplier (GLM) divergence cleaning approach proposed in [23]. It consists in
adding an auxiliary variable Ψ and one linear scalar PDE to the MHD system
to transport divergence errors out of the computational domain with the artifi-
cial speed ch. This is quite similar as role of the pressure in the incompressible
Navier-Stokes equations. The augmented MHD system with hyperbolic GLM
divergence cleaning has the state vector up = (ρ, ρvj, ρE,Bj, Ψ)T and the
following flux tensor:

~Fp = Fpi =

















ρvi

ρvivj + (p + 1
8π

~B2) δij − 1
4π

BiBj

vi(ρE + p + 1
8π

~B2) − 1
4π

Bi(vkBk)
viBj − Bivj + Ψ δij,

c2
hBi

















. (47)

with the velocity vector ~v = vi = (u, v, w)T and the magnetic field vector
~B = Bi = (Bx, By, Bz)

T . The equation of state is

p = (γ − 1)(ρE − 1

2
~v 2 −

~B2

8π
). (48)

For the numerical convergence studies in 3D of the proposed quadrature-free
PNPM schemes, we solve a 3D version of the 2D vortex test problem proposed
by Balsara in [4]. The fully three-dimensional version of the problem is ob-
tained by rotating the 3D domain Ω′ = [−5; 5]3 by 45◦ around the y-axis.
Six periodic boundary conditions are imposed. The unstructured tetrahedral
mesh sequence used for this test as well as the rotated final computational do-
main Ω can be seen in Fig. 5 (bottom). The initial condition using the vector
of primitive variables, Wp = (ρ, u, v, w, p, Bx, By, Bz, Ψ)T , is

Wp = (1,

√
2

2
+ δu, 1 + δv,

√
2

2
+ δw, 1 + δp, δBx, δBy, δBz, 0)T , (49)
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with the following relations for the perturbations, using δ~v = (δu, δv, δw)T

and δ ~B = (δBx, δBy, δBz)
T :

~λ =
1

2

√
2(1, 0, 1)T , ~r =

(

1 − ~x · ~λ
)

~x, r = ‖~r‖ ,

δ~v =
κ

2π
eq(1−r2) ~λ × ~r, δ ~B =

µ

2π
eq(1−r2) ~λ × ~r, (50)

δp =
1

64qπ3

(

µ2(1 − 2qr2) − 4κ2π
)

e2q(1−r2). (51)

The speed for the divergence cleaning is set to ch = 3 in the whole domain and
the parameters κ and µ are set to κ = 1 and µ =

√
4π according to [4]. After

one period at time t = 10 the exact solution is given by the initial condition.
Compared to the test case proposed by Balsara in [4] we introduce an addi-
tional parameter q in eqn. (50) and (51), which plays a very important role in
this test case when using very high order schemes. In [4], the smallest error
norm of the magnetic field obtained with the best second order scheme on
the finest mesh (800 × 800 elements) was of the order 10−5. This is precisely

the order of magnitude of the perturbation δ ~B at the radial boundaries of the
computational domain, since the exponential function is never exactly zero,
but will always produce some small contributions. Since By and Bx have op-
posite signs on the left and right and on the top and bottom boundary of Ω,
respectively, there is a jump in the magnetic field at the boundaries due to the
periodic boundary conditions. In the numerical convergence studies these dis-
continuities cause first order disturbances of the order 10−5 and for sufficiently
high order accurate schemes on sufficiently fine meshes, the small jump at the
boundary will lead to dominant first order errors. We therefore decide to use
the value q = 1

2
according to [4] only for schemes up to fourth order of accu-

racy, since the smallest error obtained on the finest mesh is still larger than
10−5. For the fifth and sixth order accurate schemes, which are very accurate
even on the coarse meshes used in this paper, we decide to use q = 1. This
leads to a more difficult test case due to a narrower Gaussian function, but
resulting in jumps in the magnetic field of only 10−10 at the boundaries, thus
guaranteeing that the small discontinuities at the boundaries will not deteri-
orate our convergence results. The iso-surfaces of pressure, u- and v-velocity
components as well as several magnetic streamlines are depicted in Fig. 6 on
an unstructured 403 mesh after one full advection period at t = 10 using the
P3P4 scheme. With the notation N3

G for unstructured tetrahedral meshes we
denote the number of tetrahedron edges NG per space dimension. The total
number of elements inside such a N3

G mesh is then roughly between 6N3
G and

7N3
G since the volume of the unit tetrahedron is only 1/6. The numerical solu-

tion obtained with the P3P4 scheme after one advection period is practically
identical to the initial condition, as confirmed by the convergence rates and
error norms given for the velocity component w and the magnetic field com-
ponent Bx shown for this three-dimensional test case in Tables 4 and 5.
The detailed CPU times (wallclock times) associated with our computations
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done on 64 CPUs of the HLRB2 supercomputer of the Leibniz Rechenzentrum

in München, Germany, are given in Table 6. The CPU times per element
update (wallclock time × number of CPU ÷ number of elements ÷ number
of time steps) already include all the necessary MPI communications on the
supercomputer. From the convergence results for the velocity component w
(Table 4) and the CPU times (Table 6) we clearly deduce again that the new
intermediate class of schemes is superior in efficiency compared to the stan-
dard DG method. This result holds also for all the other classical Euler flow
quantities ρ, u, v and p. However, for the magnetic field components Bx, By

and Bz, the pure DG scheme is computationally the most efficient. Further
work will be needed to devise essentially divergence-free PNPM reconstruction
operators on unstructured meshes, following the ideas given for second order
TVD schemes in [4].
Thanks to the use of our very high order accurate schemes, the error norms
decrease quickly even on very coarse meshes using at most 40 elements per
space dimension. We remind the reader that the best error norms obtained
in [4] with second order TVD schemes were of the order 10−5 on 800 × 800
meshes for q = 1

2
, corresponding to an equivalent total number of 512 · 106

grid points for a fully 3D computation as presented here. The proposed P3P4

scheme reaches this accuracy for the even more difficult test case with q = 1
and only needs 8.68654 · 106 degrees of freedom per variable on the finest
mesh with 434327 tetrahedrons. The number of spatial degrees of freedom of
a PNPM scheme and the number of mesh points for a second order TVD finite
volume scheme can be directly compared to each other and show the drastic
benefits for memory storage efficiency using very high order accurate methods
compared to standard second order TVD schemes.
We must emphasize that we did not obtain the correct convergence rates with-

out the use of the divergence cleaning approach. Although the error norms
were small even without divergence cleaning, the full formal order of accuracy
could not be observed. This is a strong indication that high order schemes
alone are not able to resolve the problem of the divergence-free condition of
the magnetic field for MHD computations on unstructured meshes in multiple
space dimensions.

6 Applications

To validate the new one-step time integration approach obtained by the local
space-time continuous Galerkin formulation introduced in section 3 of this
paper on problems with discontinuous solutions, we solve a broad spectrum of
different challenging hyperbolic systems on unstructured meshes in two and
three space dimensions. Therefore, the ideal and relativistic MHD equations
as well as the equations of nonlinear elasticity are tackled. Since we want to
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show the capability of the continuous space-time Galerkin predictor method
also in the presence of shock waves and other discontinuities, we now restrict
ourselves to the pure finite volume case P0PM where we use the nonlinear
WENO reconstruction operator on unstructured meshes proposed in [28] and
[29], since the nonlinear version of the general PNPM reconstruction operator
will be the subject of future work. We use the following parameters for the
WENO scheme [29]: λ1 = 105, r = 8 and ǫ = 10−14.

6.1 Ideal MHD Equations

3D MHD Shock Tube Problems. The first test case is a set of three
Riemann problems, solved on a fully unstructured tetrahedral mesh (see Fig.
7) consisting of 186145 elements with characteristic mesh length h = 1

400
.

The computational domain is Ω = [−0.5; 0.5] × [−0.01; 0.01]2 with periodic
boundary conditions in y and z direction and transmissive boundaries in x-
direction. In our fully three-dimensional computations we use the P0P2 scheme
with characteristic WENO reconstruction. The initial condition consists of two
piecewise constant states (see Table 7), separated by a discontinuity at x = 0.
The first test case is the classical Lax shock tube problem [51] for the Euler
equations of compressible gas dynamics. In our present test case, we solve the
full MHD system (47), but with the magnetic fields switched off. The exact
reference solution is then given by the exact solution of the classical Riemann
problem for the Euler equations. The other two test cases correspond to the
shock tube problems proposed by Brio & Wu [11] and Ryu & Jones [62], for
which an exact solution is available. For test case 2 we compute a numerical
reference solution in 1D using a second order TVD finite volume scheme on
20000 elements. In Fig. 8 we show, for each test case, cuts through the domain
Ω along the x-axis using 400 equidistant sample points. In all cases, we obtain
an excellent agreement between the numerical solution, obtained on the 3D
tetrahedral mesh, and the 1D reference solutions.

Table 7
Initial states left (L) and right (R) for the 3D shock tube problems for the ideal
MHD equations in 3D. Values for γ, ch and te are also given.

ρ u v w p Bx By Bz

Case 1 (Lax problem): γ = 1.4, ch = 0, te = 0.14

L 0.445 0.698 0.0 0.0 3.528 0.0 0.0 0.0
R 0.5 0.0 0.0 0.0 0.571 0.0 0.0 0.0

Case 2 (Brio & Wu problem): γ = 2.0, ch = 2, te = 0.10

L 1.0 0.0 0.0 0.0 1.0 0.75
√

4π
√

4π 0.0

R 0.125 0.0 0.0 0.0 0.1 0.75
√

4π
√

4π 0.0

Case 3 (Ryu & Jones problem): γ = 5
3 , ch = 2, te = 0.20

3L 1.08 1.2 0.01 0.5 0.95 2.0 3.6 2.0
3R 0.9891 -0.0131 0.0269 0.010037 0.97159 2.0 4.0244 2.0026
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bottom). P0P2 scheme with characteristic WENO reconstruction on unstructured
tetrahedral mesh (squares) and reference solution (solid line).

32



MHD Rotor Problem. The second test case is the well-known MHD rotor
problem proposed by Balsara and Spicer in [7]. It consists of a rapidly rotating
fluid of high density embedded in a fluid at rest with low density. Both fluids
are subject to an initially constant magnetic field. The rotor causes torsional
Alfvén waves to be launched into the fluid at rest. As a result the angular
momentum of the rotor is diminished. The problem is set up on a circular
computational domain Ω with radius r = 1

2
using a locally refined mesh to-

wards the center of the domain with a total number of 106842 triangles. The
characteristic mesh size is h = 0.003 for 0 ≤ r ≤ 0.13 and h = 0.005 for
0.13 < r ≤ 0.5. The density of the rotor is ρ = 10 for 0 ≤ r ≤ 0.1 and ρ = 1
for the ambient fluid. The rotor has a constant angular velocity ω that is de-
termined in such a way to obtain a toroidal velocity of v = ω ·r = 1 at r = 0.1.
The pressure is p = 1 in the whole domain and the magnetic field vector is set
to ~B = (2.5, 0, 0)T in the whole domain. As proposed by Balsara and Spicer
we apply a linear taper to the velocity and density field in the range from
0.1 ≤ r ≤ 0.13 such that density and velocity match those of the ambient
fluid at rest at a radius of r = 0.13. The speed for the hyperbolic divergence
cleaning is set to ch = 2 and γ = 1.4 is used. Transmissive boundary con-
ditions are applied at the outer boundaries. A zoom into the computational
domain together with the triangular mesh and a contour plot of the magnetic
pressure at time t = 0.25 is given in Fig. 9. The whole domain together with
the results for density, pressure, Mach number and magnetic pressure obtained
after 745 time steps at t = 0.25 are depicted in detail in Fig. 10. Compared to
the results presented by Balsara and Spicer we note a very good agreement.
We emphasize that thanks to the divergence cleaning, no spurious oscillations
can be seen in the density field and in the magnetic pressure, as reported
by Balsara and Spicer for Godunov schemes without divergence cleaning. We
used a P0P2 scheme with simple componentwise WENO reconstruction. The
total CPU time was 76 minutes on one single CPU core of an Intel Core 2 Duo
computer with 2GHz clockspeed and 2 GB of RAM. From this information
we can deduce the total time needed for one element update being 57µs. This
CPU time needed for the 9 equations of the augmented GLM-MHD system
together with a nonlinear WENO reconstruction compares very well to the re-
sults obtained for the linear P0P2 scheme in the section on convergence studies
for the four equations of the 2D Euler system (13µs).

Orszag-Tang Vortex System. The last test case that we consider for the
ideal MHD equations is the vortex system of Orszag and Tang [54] which was
studied extensively in [55] and [22]. The computational domain is Ω = [0; 2π]2.
We use the parameters of the computation of Jiang and Wu [48], scaling the
magnetic field by

√
4π due to the different normalization of the governing

equations. The initial condition of the problem is given by

(ρ, u, v, p, Bx, By) =
(

γ2,− sin(y), sin(x), γ,−
√

4π sin(y),
√

4π sin(2x)
)

, (52)
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Fig. 9. Zoom into the triangular mesh used for the MHD rotor problem together
with a contour plot of the magnetic pressure at t = 0.25.

with w = Bz = 0 and γ = 5
3
. The problem is solved up to t = 5.0 using a

P0P2 scheme with componentwise WENO reconstruction on an unstructured
triangular mesh with 89832 elements (h = 1

200
). The divergence cleaning speed

is set to ch = 2.0. The results for pressure are shown in Fig. 11 for t = 0.5,
t = 2.0, t = 3.0 and t = 5.0, showing an excellent agreement with the fifth
order WENO finite difference solution computed by Jiang and Wu [48] on a
1922 Cartesian grid. The computation for 1533 time steps until t = 5.0 took
131 minutes on one CPU core of a 2GHz Intel Core 2 Dual Core computer
with 2 GB of RAM, leading again to 57µs per element update.

6.2 Relativistic MHD Equations

The relativistic MHD (RMHD) equations form a very complicated hyperbolic
system, for which an analytic or even semi-analytic version of the Cauchy-
Kovalewski (Lax-Wendroff) procedure as proposed in [34,32,67,29] becomes
impossible for orders greater than two. This limitation is due to the fact that
the primitive variables that enter the physical flux can not be expressed any
more in a closed analytical form in terms of the conserved quantities. The
local space-time continuous Galerkin scheme proposed in this paper for local
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Fig. 10. Results for density, pressure, Mach number and magnetic pressure, obtained
for the MHD rotor problem at t = 0.25 using the P0P2 scheme with componentwise
WENO reconstruction.

data evolution in time is very general, since it is only based on flux and source
evaluations at the local space-time nodes, and is therefore suitable to build
a one-step scheme of order larger than two even for the relativistic MHD
equations. The details about this very interesting hyperbolic system can be
found in [3,80,38,46,60]. For the multi-dimensional version of the equations, we
also have to enforce the divergence-free condition of the magnetic field as in the
non-relativistic MHD case. This is done again using the hyperbolic divergence-
cleaning approach proposed by Dedner et al. [23]. Using the notation of [80]
the vector of conserved variables is given in terms of the primitive variables
ρ, vj, p, Bj and Ψ by

up =

















D
Qj

E
Bj

Ψ

















=

















γρ
γwtotvj − b0bj

γ2wtot − b0b0 − ptot

Bj

Ψ

















. (53)
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Fig. 11. Evolution of the pressure field of the Orszag-Tang problem at times t = 0.5,
t = 2.0, t = 3.0 and t = 5.0 (top left to bottom right) using the P0P2 scheme with
componentwise WENO reconstruction.

The flux tensor is defined in multiple space dimensions as

~Fp = Fpi =

















γρvi,
γ2wtotvivj − bibj + ptotδij,

γ2wtotvi − b0bi

viBj − Bivj + Ψδij

c2
hBi

















. (54)

The equation of state is

e = ρ +
p

Γ − 1
, (55)

the Lorentz factor, denoted as γ in this section, is defined by

γ =
1√

1 − ~v 2
, (56)
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further quantities appearing in (53) and (54) are given by

b0 = γvkBk, bi =
Bi

γ
+ γvi(vkBk), |b|2 =

~B2

γ2
+ (vkBk)

2, (57)

from which total enthalpy and total pressure are then finally defined as

wtot = e + p + |b|2 , ptot = p +
1

2
|b|2 . (58)

In this entire section, the speed of light is supposed to be set to unity. The com-
putation of the primitive variables ρ, vk and p from the vector up of conserved
quantities is very complicated. It can not be done analytically but requires
necessarily the use of an iterative technique such as Newton’s method. A very
elegant, robust and efficient way of transforming the conservative variables to
primitive variables using the analytic inversion of a third degree polynomial
together with one nonlinear scalar equation to which subsequently Newton’s
method is applied is given in [80]. For the reader who may not be familiar
with the procedure described in [80], we give a very brief summary here. For
the primitive variables, the following relations hold according to [80]:

ρ = D
√

1 − ~v 2, p =
(

(1 − ~v 2)W − ρ
)

/Γ, vj =
1

W + ~B 2

(

Qj +
S

W
Bj

)

,

(59)
with S = QkBk = WvkBk and the auxiliary variable W . Introducing T 2 =
~B 2 ~Q 2−S2 and algebraic manipulations yield the following cubic equation for
the auxiliary variable W in terms of the unknown ~v 2:







1 − 1 − ~v 2

Γ
W − E +

ρ

Γ
+

~B 2

2









(

W + ~B 2
)2

+
T 2

2
= 0. (60)

This cubic equation can be solved analytically for W = W (~v 2) for a given
~v 2 and it is shown in [80] that all solutions of (60) are real and that always
the largest solution is the physically correct one. The unknown ~v 2 can then
be computed numerically via Newton’s method according to [80] from the
nonlinear equation

(~v 2) =
(

W (~v 2)
)2

~v 2 + T 2 2W (~v 2) + ~B 2

(

W (~v 2) + ~B 2
)2 − ~Q 2 = 0. (61)

One-dimensional shock-tube problems computed in 1D. We now
solve a series of one-dimensional standard shock tube test cases proposed
in [3]. For the detailed description of our WENO reconstruction operator in
1D see [26]. The computational domain is Ω = [0; 1] and the initial condition
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Table 8
Initial states left (L) and right (R) for the relativistic MHD shock tube problems
and final times te.
Case ρ p u v w By Bz Bx te
1L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.5 0.4
1R 0.125 0.1 0.0 0.0 0.0 -1.0 0.0 0.5

2L 1.0 30.0 0.0 0.0 0.0 6.0 6.0 5.0 0.4
2R 1.0 1.0 0.0 0.0 0.0 0.7 0.7 5.0

3L 1.0 1000.0 0.0 0.0 0.0 7.0 7.0 10.0 0.4
3R 1.0 0.1 0.0 0.0 0.0 0.7 0.7 10.0

4L 1.0 0.1 0.999 0.0 0.0 7.0 7.0 10.0 0.4
4R. 1.0 0.1 -0.999 0.0 0.0 -7.0 -7.0 10.0

5L 1.08 0.95 0.4 0.3 0.2 0.3 0.3 2.0 0.55
5R 1.0 1.0 -0.45 -0.2 0.2 -0.7 0.5 2.0

consists of two piecewise constant states on the left and the right of the dis-
continuity located at x = 0.5. The initial states are summarized in Table 8. In
all test cases we use Γ = 5/3 except for the first test case where Γ = 2 is used,
according to [3]. The results of our one-dimensional computations are shown
in Figs. 12 - 16. We use 400 elements in all test cases, except for test case 3
where 800 elements are used, and set the Courant number to CFL = 0.8 in
all test cases, except in test case 4, where we use CFL = 0.1. In all test cases,
the P0P2 scheme is used together with characteristic WENO reconstruction.
For a detailed description of the eigenstructure of the RMHD system see [3].
The reference solution is the exact solution as published by Giacomazzo and
Rezzolla in [38]. For all test cases we note a very good agreement between
the computations carried out with the new third order P0P2 one-step scheme
and the exact reference solution. Note that the compound wave is present
also in our third order WENO computations as shown for second order TVD
methods by Balsara in [3], but it is not present in the exact reference solu-
tion. See [38] for a comment on this topic. In general, our proposed high order
scheme remains essentially non-oscillatory. Only small oscillations are visible
in most of the test cases. The largest spurious oscillations are produced in
test case 2 for the density ρ whereas the other flow quantities remain virtually
non-oscillatory. The kink that is visible in the density for the collision test
problem number 4 corresponds to the well-known wall heating phenomenon,
also present in the computations shown in [3], [80] and [46].

One-dimensional shock-tube problem computed in 2D. In this para-
graph we show with a simple example that the extension of the one-dimensional
PNPM method to unstructured multi-dimensional meshes is straightforward
for any hyperbolic system, including even such complicated PDE as the rel-
ativistic MHD equations. We solve again test problem number 5 of the pre-
vious paragraph, but now on a two-dimensional computational domain Ω =
[0; 1] × [0; 0.05] using a 400 × 20 mesh composed of 17628 triangles using the
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Fig. 12. Numerical results for the relativistic MHD Riemann problem 1 at t = 0.4.
P0P2 scheme on 400 elements (circles) and exact reference solution [38].
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Fig. 13. Numerical results for the relativistic MHD Riemann problem 2 at t = 0.4.
P0P2 scheme on 400 elements (circles) and exact reference solution [38].
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Fig. 14. Numerical results for the relativistic MHD Riemann problem 3 at t = 0.4.
P0P2 scheme on 800 elements (circles) and and exact reference solution [38].
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Fig. 15. Numerical results for the relativistic MHD Riemann problem 4 at t = 0.4.
P0P2 scheme on 400 elements (circles) and and exact reference solution [38].
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Fig. 16. Numerical results for the relativistic MHD Riemann problem 5 at t = 0.55.
P0P2 scheme on 400 elements (circles) and and exact reference solution [38].

P0P2 scheme with componentwise WENO reconstruction. The solution of the
problem for the density ρ is shown in Fig. 17 together with the triangular
mesh. Since the maximum admissible speed in relativistic MHD is the speed
of light, we correspondingly choose the divergence cleaning speed equal to the
speed of light, i.e. ch = 1. A plot of our numerical solution obtained for den-
sity ρ is shown in Fig. 17, together with the mesh. To give also a quantitative
comparison against the one-dimensional reference solution, a cut through the
computational domain is taken parallel to the x-axis at y = 0.025. The results
obtained with our P0P2 scheme and the reference solution are depicted in Fig.
18 and show a very good agreement between our numerical solution and the
reference.

RMHD Rotor Problem. We finally propose to solve two relativistic ver-
sions of the MHD rotor problem of Balsara and Spicer [7]. The first is a vari-
ation of the relativistic MHD rotor test case already proposed by Del Zanna
et al. [80], but with lower rotational speed, in order to show the influence of
the initial rotation speed on the produced wave patterns. The second test case
is exactly the same as proposed in [80]. We remark that in the second test
case, the Lorentz factor is very high (γ ≈ 10) and that high order methods
may encounter difficulties with pressure positivity. Therefore, a strategy as
described in detail in [6] should be applied. In the present paper, we simply
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reduce the order of accuracy locally to one in those elements where negative
pressures are encountered in the time evolution phase.
In contrast to [80], who used a perfectly regular Cartesian mesh on the unit-
square, we solve both test cases in Cartesian coordinates on a circular com-
putational domain with radius R = 0.5 using an unstructured triangular mesh
with a characteristic mesh spacing of h = 0.0025 towards the center and
h = 0.005 at the outer border of the domain, leading to a total number of
121196 triangles. The rotor has a radius of Ri = 0.1 and is spinning with an
angular frequency of ω = 8.0 in the first test case and with ω = 9.95 in the
second one, leading to maximal toroidal velocities of v = 0.8 and v = 0.995,
respectively. The density is ρ = 10 inside the rotor and ρ = 1 in the fluid
at rest. The pressure is p = 1 and the magnetic field is ~B = (1, 0, 0)T in the
whole domain. We use a P0P2 scheme with characteristic WENO reconstruc-
tion. No taper is applied to the initial condition, as in [80]. The speed for the
hyperbolic divergence cleaning is set constantly to ch = 1 and γ = 5/3 is used.
Transmissive boundary conditions are applied at the outer boundaries. The
whole computational domain together with the results for pressure at output
times t = 0.1, t = 0.2, t = 0.3 and t = 0.4 is shown in Fig. 19 for the first
test case (ω = 8.0) and several flow quantities are shown at t = 0.4 in Fig.
20 for the second test case (ω = 9.95). In both cases, we observe the Alfvén
waves sent out by the rotor into the medium at rest. For the second test case,
we observe a strong roll-up of the shear waves, as reported in [80]. To our
knowledge, the computations shown in this article are the first calculations
ever done for relativistic MHD using high order WENO finite volume schemes
on unstructured triangular meshes.
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Fig. 17. Numerical results for the two-dimensional version of the relativistic MHD
Riemann problem number 5 at t = 0.55. P0P2 scheme on unstructured triangular
mesh with componentwise WENO reconstruction.
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Fig. 18. Numerical results for the two-dimensional version of the relativistic MHD
Riemann problem number 5 at t = 0.55. Cut through the 2D domain along the line
y = 0.025. P0P2 scheme (circles) and exact reference solution (solid line).

Fig. 19. Results for the pressure p for the first RMHD rotor problem (ω = 8.0) at
output times t = 0.1, t = 0.2, t = 0.3 and t = 0.4 (top left to bottom right).
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6.3 Nonlinear Elasticity

In this section we consider the equations of nonlinear elasticity (NLE) in Eule-
rian coordinates as derived by Godunov and Romenski in [40–42] and studied
numerically in one space dimension by Titarev, Romenski and Toro in [68]. We
mostly follow the notation given in [68], except for the deformation gradient
that we call cij instead of Fij to avoid confusion with the flux tensor of the
hyperbolic system in multiple space dimensions. The vector of conservative
variables is then up = (ρ, ρui, ρcij, ρE)T and the flux tensor is defined as

~Fp = Fpk =











ρuk

ρuiuk − σik

ρcijuk − ρckjui

ukρE − uiσik











. (62)

Note that according to [68] the equation for density replaces one equation
for the deformation gradient, say c11. The total energy is defined as usual as
ρE = ρ(e + 1

2
~v 2). The stress tensor σij is a complicated nonlinear function

of the deformation gradient cij and depends on the equation of state (EOS)
that is needed to close the system. The EOS defines the internal energy e as
a function of the the deformation gradient cij and entropy S as e = e(cij, S).
Then, the following definitions for density ρ, strain tensor gij, stress tensor σij

Fig. 20. Results for the second RMHD rotor problem (ω = 9.995). Density, pressure,
magnetic pressure and Lorentz factor are shown at t = 0.4 (top left to bottom right).
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and temperature T hold:

ρ =
ρ0

det cij

, gij = c−1
ji c−1

jk , σik = ρcij
∂e

∂ckj

= −2ρgij
∂e

∂gjk

, T =
∂e

∂S
, (63)

where ρ0 is the constant density in the reference state. In an isotropic medium,
the internal energy e is a function of three invariants of the strain tensor gij:

e(I1, I2, I3) =
K0

2α2

(

I
α/2
3 − 1

)2
+ cV T0I

γ/2
3

(

eS/cV − 1
)

+
B0

2
I

β/2
3

(

1

3
I2
1 − I2

)

,

(64)
with the invariants

I1 = tr (gij) = g11 + g22 + g33, I3 = det (gij) =

(

ρ

ρ0

)2

,

I2 = (g11g22 − g12g21) + (g22g33 − g23g32) + (g33g11 − g31g13) . (65)

In two space dimensions, we always have g33 = 1. According to [68], K0 and B0

are the squared speed of the pressure and the shear wave, respectively, cV is the
heat capacity at constant volume, T0 is the reference temperature and α, β and
γ are constants characterizing the non-linearities in the EOS. Furthermore,
there exist constraints in the form of steady PDE for the equations of nonlinear
elasticity, similar to the divergence-free condition for the magnetic field in the
MHD equations [68]. In nonlinear elasticity they are called the compatibility
conditions and are given in terms of the deformation gradient by

∂ρc1j

∂x
+

∂ρc2j

∂y
+

∂ρc3j

∂z
= 0. (66)

In our multi-dimensional computations performed in this section we did not
encounter any problems with the compatibility conditions (66), but in long-
time evolution problems with high accuracy requirements, a hyperbolic gen-
eralized Lagrangian multiplier (GLM) technique as proposed in [23] may be-
come necessary. We first solve two of the one-dimensional shock tube problems
proposed in [68] using our P0P2 scheme with componentwise WENO recon-
struction on the computational domain Ω = [0; 1]×[0; 0.05] on a 200×10 mesh
composed of 4420 triangles. The material properties for copper are chosen as
in [68], i.e. we use ρ0 = 8.9, K0 = c2

0 − 4
3
b2
0, B0 = b2

0, c0 = 4.6, b0 = 2.1,
T0 = 300 and cv = 0.4 ·10−3. We use furthermore α = 1, β = 3 and γ = 2. The
shock tube problems are solved on the two-dimensional domain defined above,
where periodic boundary conditions are applied in y-direction and transmis-
sive boundaries are imposed in x-direction. The initial condition consists of
two piecewise constant states, separated by a discontinuity at x = 0.5. The
states for both test cases are given in terms of the primitive variables in Table
9. Test case 1 corresponds to the three-wave shock tube problem and test case
2 corresponds to the five-wave shock tube problem described in [68]. The sec-
ond test case deliberately violates the compatibility condition (66). It consists
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Table 9
Initial states left (L) and right (R) for the shock tube problems solved for the
equations of nonlinear elasticity and final output times te.
Case u v c11 c12 c21 c22 S te
1L 0.0 0.0 0.95 0.0 0.0 1.0 0.001 0.06
1R 0.0 0.0 1.0 0.0 0.0 1.0 0.0

2L 0.0 1.0 0.95 0.0 0.05 1.0 0.001 0.06
2R 0.0 0.0 1.0 0.0 0.0 1.0 0.0

of two pieces of material that have been subject to different strain conditions
and that are afterwards attached to each other. Dr. Titarev kindly provided
us with the exact solution of the three-wave shock tube problem and with the
numerical reference solution of the five-wave shock tube problem. Our numeri-
cal results for the density obtained for both test cases in two space dimensions
are shown in Fig. 21, together with the triangular mesh. A one-dimensional
cut through the solution at y = 0.025 is plotted in Fig. 22, together with
the reference solution. We note a very good agreement between our numeri-
cal computations in two space dimension and the one-dimensional reference
solutions. In both test cases, only few oscillations can be noted.

Finally, we propose a rotor problem for the equations of nonlinear elasticity,
similar to the test case shown previously for the two-dimensional ideal MHD
equations. The material properties (copper) are identical to the ones used for
the shock tube problems. The computational domain is defined by a circle of
outer radius Ro = 0.5, into which is embedded a rotor of radius Ri = 0.1,
spinning with a constant angular frequency of ω = 10 so that the tangential
velocity is vt = ωRi = 1 at r = Ri. Density, entropy and deformation gradient
are constant ρ = ρ0, S = 0 and cij = δij in the entire computational domain
and outside the rotor the velocity is zero. We solve the problem on a triangular
mesh with a characteristic mesh size of h = 0.0025 at the center of the domain
and h = 0.005 at the outer boundaries, leading to a total number of 121196
triangles. This test case may be considered as a highly simplified model for
the inner (rotating) and the outer (fixed) part of a bearing which are suddenly
attached together via spontaneous welding by friction. The results obtained
for the quantities ρu and ρc22 are shown in Figs. 23 and 24. We observe fast
p-waves travelling into the material at rest and slower shear waves travelling
into both the rotor and the stator, thus slowing down the rotor until its final
velocity zero is reached.

7 Summary and Conclusions

In this article we presented a unified framework for the construction of fully-
discrete and very high order accurate quadrature-free one-step finite volume
and discontinuous Galerkin schemes on unstructured triangular and tetrahe-
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Fig. 21. Numerical results for the two-dimensional version of the three-wave Rie-
mann problem (left) and the five-wave Riemann problem (right) at t = 0.06 for
the equations of nonlinear elasticity. P0P2 scheme on unstructured triangular mesh
with componentwise WENO reconstruction.
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dral meshes in two and three space dimensions. The pure finite volume and
DG schemes are only special cases of a more general class of reconstructed
PNPM schemes, where the data are represented inside each element by piece-
wise polynomials of degree N and the fluxes and source terms are computed in
the final scheme using piecewise polynomials of degree M ≥ N . The new class
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Fig. 23. Results for the quantity ρu for the nonlinear elasticity rotor problem at
different output times (top left to bottom right): t = 0.02, t = 0.05, t = 0.1 and
t = 0.2.

of intermediate schemes with M > N and N 6= 0 produces computationally
more efficient algorithms than the traditional finite volume and DG methods.
This is mainly due to the fact that the time step is only restricted by the
polynomials of degree N representing the data and not by the reconstrution
polynomials of degree M used for flux computation.
In this article, also a radically different time discretization approach has been
presented. Instead of using the traditional method of lines (MOL) approach
based on third order TVD Runge-Kutta time stepping [64,65,43] and also
instead of using a local strong form of the governing PDE such as the Cauchy-
Kovalewski procedure used in the original MUSCL [77] and ENO [44] schemes
as well as in ADER finite volume and ADER discontinuous Galerkin schemes
[72,69,73,63,70,49,32,67,28–30] and other Cauchy-Kovalewski procedure based
methods [57,56,52,37], we propose to construct a new globally explicit time
discretization procedure based on a local weak form of the governing PDE in
space-time, as done in [26] for stiff hyperbolic systems in one space-dimension.
To save CPU time comared to the local space-time discontinuous Galerkin ap-
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Fig. 24. Results for the quantity ρc22 for the nonlinear elasticity rotor problem at
different output times (top left to bottom right): t = 0.02, t = 0.05, t = 0.1 and
t = 0.2.

proach used in [26] we introduce a new local space-time continuous Galerkin
ansatz that uses much less degrees of freedom compared to the local space-time
DG scheme. Furthermore, a new and very efficient iterative scheme to solve
the small systems of nonlinear algebraic equations arising from the weak local
space-time continuous Galerkin formulation has been proposed. Our new one-
step time discretization is as general as the method of lines approach, since it
only requires the evaluation of fluxes at point values and not the computation
of flux derivatives as needed for the Cauchy-Kovalewski procedure. However,
the advantages of the new fully-discrete one-step approach compared to TVD
Runge-Kutta schemes are (1) its superior MPI efficiency, since no additional
MPI communications occur during one time step, (2) its capability to achieve
any order of accuracy in time without accuracy barrier, (3) its smaller mem-
ory requirements because no intermediate Runge-Kutta stages must be stored
and (4) the straight-forward possibility to use all the information produced
inside the local space-time continuous Galerkin scheme to construct a globally
explicit and fully discrete quadrature-free method that does not need time-
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consuming Gaussian integration in space and that only needs one numerical
flux computation per element face, independent of the order of accuracy. More
details on the MPI parallelization of our method and its MPI efficiency can
be found in [27] and [29].
The feasibility of the new approach on unstructured meshes as well as its effi-
ciency and robustness have been demonstrated on a very large set of different
complicated hyperbolic equations on unstructured triangular and tetrahedral
meshes in two and three space dimensions, ranging from Euler and ideal MHD
equations to relativistic MHD and nonlinear elasticity.

In our opinion, the proposed unified approach for implementing high order
accurate quadrature-free one-step finite volume and discontinuous Galerkin
schemes as well as the new class of intermediate schemes may be useful for
code developers to include both types of standard discretization methods for
hyperbolic PDE in one single software package and let it up to the user to
decide whether for his particular application the use of a highly robust finite
volume approach or a very accurate DG scheme or even the new class of
intermediate methods is the most appropriate.

The most important open problem from an algorithmic point of view, which
will be the topic of further research, is the construction of a nonlinear version
of our general PNPM reconstruction operator. This may lead to a new class
of very high order accurate HWENO limiters for DG schemes based on small
stencils on unstructured meshes in two and three space dimensions, different
from the existing ones.
Another future topic of research will be the generalization of the time-accurate
local time stepping approach to PNPM schemes, as introduced for ADER-DG
schemes on unstructured tetrahedral meshes in three space dimensions in [30]
and as also used in the STE-DG approach for compressible Euler and Navier-
Stokes equations in one and two space dimensions presented in [52,37].
Further work will concern the discretization of the compressible Navier-Stokes
equations as well as viscous and resistive MHD equations on unstructured
triangular and tetrahedral meshes using the new intermediate class of PNPM

schemes, for which we were able to show in [25] the much more generous stabil-
ity limits for explicit time-stepping schemes. Work regarding non-conservative
hyperbolic systems is currently in progress.
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[28] M. Dumbser and M. Käser. Arbitrary high order non-oscillatory finite volume
schemes on unstructured meshes for linear hyperbolic systems. Journal of
Computational Physics, 221:693–723, 2007.
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A Example of Nodal Space-Time Basis Functions and Matrices in

1D

In this appendix, we give an example for the space-time basis functions θl(ξ, τ)
as well as the associated temporal and spatial stiffness matrices for a fourth
order scheme (M = 3) in one space dimension. The space-time basis functions
read as follows:

θ1(ξ, τ) = 1 − 11

2
ξ + 9 ξ2 − 9

2
ξ3 − 49

8
τ +

45

4
ξ τ − 27

4
ξ2τ +

189

16
τ 2 − 9

2
ξ τ 2 − 117

16
τ 3

θ2(ξ, τ) = 9 ξ − 45

2
ξ2 +

27

2
ξ3 +

9

8
τ − 27

4
ξ τ +

27

4
ξ2τ − 81

16
τ 2 +

81

16
τ 3

θ3(ξ, τ) =−9

2
ξ + 18 ξ2 − 27

2
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9

8
τ − 27

4
ξ τ +

27
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16
τ 2 +
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τ 3
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2
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ξ3 − 13

8
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9

4
ξ τ − 27
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ξ2τ +
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16
τ 2 +

9

2
ξ τ 2 − 117

16
τ 3

θ5(ξ, τ) = 9 τ − 12 ξ τ + 6 ξ2τ − 45

2
τ 2 + 9 ξ τ 2 +

27

2
τ 3

θ6(ξ, τ) =−3 τ + 12 ξ τ − 12 ξ2τ +
27

2
τ 2 − 27
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τ 3

θ7(ξ, τ) = 3 τ + 6 ξ2τ − 27
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τ 2 − 9 ξ τ 2 +

27

2
τ 3

θ8(ξ, τ) =−3 τ +
3
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τ 3
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2
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τ 3

θ10(ξ, τ) = τ − 9

2
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2
τ 3

(A.1)

In order to transform the reconstruction polynomials from the modal space
to the nodal space at local time τ = 0 for the local space-time continuous
Galerkin scheme, the following transformation via L2-projection is applied:

[θk(ξ, 0), θl(ξ, 0)] Û0
l = [θk(ξ, 0), Ψm(ξ)] ŵm (A.2)

[θk(ξ, 0), θl(ξ, 0)]−1 [θl(ξ, 0), Ψm(ξ)] =
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(A.3)
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The temporal stiffness matrix Kτ
ij is given by

Kτ
ij =


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and the spatial stiffness matrix Kξ
ij is given by

Kξ
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