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Abstract: Given a collection of rooted phylogenetic trees with overlapping
sets of leaves, a true supertree S is a single tree whose set of leaves is the
union of the input sets of leaves and such that S agrees with each input tree
when restricted to the leaves of the input tree. Typically with trees from real
data, no true supertree exists, and various methods may be utilized to reconcile
the incompatibilities in the input trees. This paper focuses on a measure of
robustness of a supertree method called its “radius” R. For example, if R =
1/10, then whenever T is a candidate binary tree and for all rooted triples ablc
in T' we have that {a, b, ¢} occur together in some input tree and that more than
90% of the input triples involving {a, b, ¢} are in fact ab|c (a strong assumption),
then the method outputs 7" as the supertree; but this might fail if 90% is replaced
by 89%. It is shown that the maximal possible radius for a method is R = 1/2.
Many familiar methods, both for supertrees and consensus trees, are shown
to have R = 0, indicating that they need not output a tree 7" that would
seem to be the natural correct answer. A polynomial-time method Normalized
Triplet Supertree (NTS) with the maximal possible R = 1/2 is defined. A
geometric interpretion is given, and NTS is shown to solve an optimization
problem. Additional properties of NTS are described.

1 Introduction

A phylogenetic tree T on a collection X of taxa i1s a tree that seeks to repre-
sent an evolutionary history including all the taxa in X. The members of X



correspond to the leaves of the tree, and the interior vertices correspond to hy-
pothesized common ancestors from which speciation events occurred. The arcs
indicate direct parent/child relationships between the vertices. Reconstructing
phylogenetic trees from data is a fundamental problem of phylogenetics.

A recurring situation is that different researchers, using a variety of data,
collections of taxa, and methods, together create a set D of phylogenetic trees
T; with different leaf sets X;. An important problem then becomes to create a
single tree T, often with more taxa than any individual tree 7}, which combines
the information in the various input trees T;. If T exhibits all the tree T;,
it may be called a “true supertree”. Typically, however, the input trees are
incompatible so that no single tree 7" contains all the input trees 7;. In this
situation, 7' must reconcile incompatible data in some manner, and it may
be called an “approximate supertree”. The term “supertree” refers to both
situations. The goal to produce a “tree of life” [6] is of necessity the computation
of a supertree.

There exist a great many supertree methods. The book [7] contains a fine
collection of articles on the subject, including overviews of supertrees and their
limitations.

The most commonly utilized supertree method is Matrix Representation
with Parsimony (MRP). This method was suggested by Baum [4] and Ragan
[19]; for more information see [21] and [5]. Suppose we are given data consisting
of a collection D of rooted trees in which each leaf is labelled by a taxon. The
topological information about each tree in D is encoded into a new character
matrix, typically with many entries corresponding to missing data. The com-
putationally intensive method of maximum parsimony is then applied to this
new character matrix. If a true supertree exists, it corresponds to a maximum
parsimony tree. Typically, whether or not a true supertree exists, there are
many different maximum parsimony trees. Some consensus tree i1s then pre-
sented as a summary of the maximum parsimony trees. MRP has been utilized
for some very large datasets, such as a supertree of the mammals [8]. MRP is
appealing because of its ease of implementation. Nevertheless, since it reduces
the supertree problem to the NP-hard problem of maximum parsimony [14], it
is inherently slow for dealing with large numbers of taxa, and it must rely on
heuristics rather than proven methods.

The fast procedure BUILD described in [2] finds a true rooted supertree from
input rooted trees provided there are no incompatibilities. Fast generalizations
in the presence of incompatibilities are provided in, for example, [22], [17], [9],
[24], and [20]. Methods based on BUILD have the advantage of speed since
they typically have polynomial-time complexity. They have the disadvantage
of producing only rooted supertrees and requiring the input of rooted trees.
They may also produce trees that resemble Adams consensus trees [1] in that
biologists may interpret the graphs as containing nestings, not clades, and hence
the results may not be interpretable as the depiction of historical evolutionary
events.

This paper focuses on generating rooted supertrees. Rooted trees are more
biologically relevant than unrooted trees since it is believed that all life on earth



has a common origin; unrooted trees express ignorance of the root. Moreover,
[25] shows that there can be no unrooted supertree method satisfying certain de-
sirable properties. The procedures utilized will involve a modification of BUILD
in order to obtain a rooted supertree.

Any supertree method has two roles. The first role is that of extrapolation,
in which relationships are inferred which might exist in no input tree. For
example, 1t may happen that no single input tree T; contains the taxa a, b, and
¢ together, yet the supertree infers a relationship among them. The second role
1s reconciliation of incompatible data, in which different input trees contradict
each other, and some kind of choice must be made between them.

This paper focuses on the second role, that of reconciliation of incompatible
data. To study this role, an extreme situation is studied in which the collection
D of input trees is dense, t.e., for every a, b, and ¢ in X there exists an input
tree T; in D containing containing a, b, and c.

Phylogenetic information in a rooted tree is carried by rooted triples of
the form ablc, wherein taxa a and b are clustered by comparison with taxon
¢. Rooted triples are an especially reliable carrier of phylogenetic information.
Degnan and Rosenberg [12] show that under coalescent models, rooted triples
should be accurately reconstructed (whereas for trees with 5 or more taxa the
most likely gene tree in some circumstances differs from the species tree). It is
therefore plausible to try to utilize rooted triples in creating supertrees.

In this paper, a quantity called the “robustness radius” R is defined for each
rooted supertree method. An exact definition of R is given in Section 4. Here we
illustrate its meaning. Suppose that a particular method has R = 1/10. Suppose
a collection D of input trees is dense, and that T is a binary rooted tree such
that for every rooted triple able expressed in T, at least (1 — R) * 100% = 90%
of the input trees containing {a,b,c} express the rooted triple ablc. Then we
expect that the supertree method should output 7' as the supertree. This is
a natural condition, since it would appear that for each collection {a,b, ¢} the
data are strongly supporting the rooted triple ab|c found in T'. Moreover, to say
that R = 1/10 is to assert also that 1/10 is the largest number for which this
condition holds. Hence there exists a collection D of input trees and a binary
rooted tree T such that for every rooted triple ablc expressed in T, at least
89% of the input trees containing {a, b, ¢} express the rooted triple able, yet the
supertree method does not output 7" as the supertree.

Theorem 4.1 shows that for any rooted supertree method, R < 1/2. A new
supertree method called Normalized Triplet Supertree (NTS) is shown to have
the optimal robustness radius R = 1/2 (Theorem 4.2).

What is most surprising to the author is that many familiar supertree meth-
ods have robustness radius R = 0. Theorem 5.1 shows that both MinCutSu-
pertree [22] and Modified MinCutSupertree [17] have robustness radius 0. Thus
for every € > 0 there exists a dense collection D of input trees and a binary tree
T such that for every rooted triple able in T we have that at least (1 —¢)* 100%
of the input trees containing {a, b, ¢} express the rooted triple able, yet T is not
output as the answer.

Moreover, there exist examples that show that the robustness radius R for



MRP satisfies R < 0.01.

Consensus methods always have as input a collection D that is dense since all
the input trees have the same leaf set. Theorem 5.2 shows that the robustness
radii for the strict, majority rule, and Adams consensus trees [23], [13] all satisfy
R = 0. These methods thus have paradoxical results on some datasets. By
contrast, if NTS (or another method of radius 1/2) is utilized as a consensus
method, these paradoxes are avoided.

Theorem 3.2 shows that NTS has polynomial-time complexity: if X has n
members and D has m input trees, then NTS may be computed in time O(n*m).
This gives NTS a practical advantage over MRP. Section 6 investigates further
properties of NTS.

Section 7 gives a geometric interpretation of NTS in terms of a hypercube
Hx. Roughly, each input dataset D in which each taxon is a member of X gives
rise to a unique point sptp in Hyx, and similarly each rooted X-tree T" gives rise
to a unique point sptp in Hx. The robustness radius R of a method is naturally
expressed in terms of the lo, norm on Hx. It is shown (Theorem 7.3) that if S
is the output of NTS given D, then S satisfies a geometric optimization problem
n Hx.

Suppose that a supertree method on the dataset D outputs a tree 7. Suppose
in Hx that we have ||sptp — sptr||cc = . Section 8 gives an interpretation in
terms of the natural measure on Hx. The smaller the value of o , the more
strongly the data in D support the tree T'.

Section 9 concludes the paper with a biological example.

2  Fundamentals

2.1 Rooted trees

Let X be a finite nonempty set. A rooted tree (T, X) with leaf set X is a
collection T' of subsets U of X such that

(1) X eT.

(2) T U and V are in T, either U C V or V C U or UNV = . (nesting)

(3) For each « € X, the singleton {z} lies in T.

(4) The empty set is not a member of 7T'.

We may also say 7' is an X -tree. Each member of T" will be called a cluster in
T. The clusters X and the singleton clusters {«} are called trivial; all other
clusters are nontrivial. The star tree contains all the trivial clusters but no
other clusters.

If (T, X) is a rooted tree, A € T, B €T, A C B, A# B, and there is no
CeTlTwithACCCB, A#C, B# C, then we say that A is a child of B and
B is a parent of A. We call X the root. Fach member of T" other than the root
has a unique parent. Each singleton set {z} is a leaf and has no child. Each
member of T that is not a leaf has at least two children. A rooted tree T is
binary if each cluster that is not a leaf has exactly two children.

If T'is a rooted tree with leaf set X and X’ is a nonempty subset of X, then



the restriction of T to X', denoted T'|X’, consists of the collection of sets U N X'
such that
(1)) U eT, and
(il) U N X' is nonempty.
It is easy to see the following result, whose proof is omitted:

Lemma 2.1. T|X' is a rooted tree with leaf set X'.

Write ablc for the rooted tree with leaf set {a, b, ¢} and with clusters {a, b, ¢},
{a}, {b}, {c}, and {a,b}. We call able a resolved rooted triple on {a,b,c}. Note
able = bale. Given distinct elements a, b, and ¢, there exist three distinct
resolved rooted triples able, aclb, and bc|a on {a, b, c}. Write abe for the rooted
tree with leaf set {a, b, c} and with clusters {a, b, c}, {a}, {6}, and {c}. We call
abe the star tree on a, b, and ¢ or the unresolved rooted triple on {a,b,c}. If X is
a set, then RT(X) denotes the set of all resolved rooted triples on {a, b, ¢} such
that {a,b,c} C X. If | X| = n, then RT(X) contains 3(%) members since there
are (g) subsets with three members, and each has 3 resolved rooted triples.

If (T, X) is a rooted tree and {a,b,c} C X, then say ablc in T or ablc € T
if TH{a,b, c} = able. Equivalently, ablc in T'iff T' contains a cluster U such that
{a,b} C U but ¢ ¢ U. Similarly abc in T if T'|{a,b, c} = abc. Equivalently, abc
in T iff every cluster U of T that contains two members of {a, b, ¢} also contains
the third.

A rooted tree X-family D is a finite collection of rooted trees (7}, X;) for
t = 1,..., k, where T; is a rooted tree on the leaf set X; and X = UX;. A rooted
tree (T, X)) is a true supertree for D provided for i = 1,..., k it is true that T|X;
contains T;. Note that it is possible that 7'|X; is more highly resolved (contains
more members) than 7;. Equality is not required because in typical biological
applications a lack of resolution is interpreted merely as inadequate information
about the true resolution. In general, a supertree for D is a rooted tree (T, X).

2.2 Minimal threshold trees

A graph G = (V, E) consists of a finite set V' whose elements are vertices and
set E of edges each of which is a set {u, v} consisting of two distinct elements
of V. There are no loops and no multiple edges. A subgraph G' = (V' E') of G
is a graph such that V. C Vand B/ C E. f G/ = (V', E') and G" = (V' E")
are subgraphs of G, say G' < G” if V! C V" and E’ C E”. It is easy to see that
< is a partial order on the set of subgraphs of G.

The graph G = (V, E) is complete if E consists of all 2-subsets of V. Equiv-
alently, G is complete if for all distinct v and v in V, {u,v} € E.

If a and b are distinct vertices, a path in G = (V, E) from a to b is a
sequence a = vp, vy, ..., Vg = b of distinct vertices such that for all 7, 1 <7 <k,
{vi—1,v;} € E. A graph G is connected if for each pair a and b of distinct
vertices there exists a path from a to b. A graph G is disconnected if it is not
connected. A subgraph G' = (V' E') of GG is a component of G provided that G’
is connected and there is no subgraph G” = (V| E") of G such that ¢’ < G,



G' £ G”, and G” is connected. Thus a component of G is a maximal connected
subgraph of G.

A weighting w on a graph G = (V, E) is a function w : F — RZ where RZ is
the set of nonnegative real numbers. If G = (V, E) is a graph with weighting w
and 7 is a nonnegative real number, G will denote the subgraph (V, E;) of G
where E; = {e € E:w(e) > 7}. If 7 < 7/ then it is immediate that EF, C E;.
Consequently, if 7 < 7/, then each component of G,: is a subgraph of some
component of G;. Observe Fg = {e € F : w(e) > 0}.

Suppose G = (V, E) is a graph with weighting w. If |V]| > 2 and Gy is
connected, let 7(G) := inf{r € RZ : (, is disconnected }. Observe that if
7 > w(e) for all e € E, then G, is disconnected since E; = @, whence 7(G) is
well-defined. Moreover, (¢ () is disconnected since if it were connected we could
select € > 0 such that no value w(e) lies in the open interval (7(G), 7(G) + €)
whence for 7 € (7(G), 7(G) + ¢€) we would have Fr ) = E. whence G, is
also connected, contradicting the definition of r(G). If |[V| > 2 and Gy is
disconnected, define 7(G) = 0. Call 7(G) the minimal disconnection threshold
for G. If 7(G) > 0 and 0 < 7 < 7((), then G; is connected.

Suppose X is a finite set. If U is a nonempty subset of X, let K(U) = (U, E)
be the complete graph with vertex set U. Suppose, for all nonempty subsets
U of X such that |U] > 2, there is a weighting wy on K(U). The minimal
threshold tree T for (X, w) is defined as the smallest collection T of subsets of
X such that the following three conditions hold:

(1) X eT.

(2) If U € T has exactly two elements, U = {u, v}, then {u} € T and
{veT.

(B3) U €T and |U| > 3, form K(U) with weighting wy. Let (K (U))
be the minimal disconnection threshold for K'(U). Then K (U);(x ) is discon-
nected. For each component C' of K(U)T(K(U)), the set of vertices of C'1sin 7.
More explicitly, for each component C = (U’, E') of K(U);xy), U' € T. We
will frequently write 7(U) for (K (U)).

It is easy to see that the minimal threshold tree is in fact a rooted tree with
leaf set X. For each # € X, the singleton set {«} € T, and the set X itself is in
T, and constitutes its root. Observe also that in the construction, given U, one
may as well form not the complete graph K(U) = (U, E) but a graph (U, E')
where E' = {e € F : w(e) > 0} since only edges with positive weight influence
the construction.

A similar construction is studied, in a different notation, in [15]. See also

[16], p. 157.

3 The Normalized triplet supertree (NTS)

Let D = {(T;, X;) : i € A} be a rooted tree X-family. Let RT(X) be the set of
resolved rooted triples from X. Define sptp : RT(X) — R as follows: For each
distinct a, b, ¢ in X let

den(a,b,c¢)=|{i € A:{a,b,c} C X;},



num(able) = |{i € A : able € T3},

b (at1e) it qon(a b e) S 0
Sptp(ab|c): {den(a,b,c) 1 eﬂ(a, ,C)

0 otherwise

Call sptp(ablc) the normalized triplet support for able in D.

Lemma 3.1. For all distinct a, b, ¢ in X
0 < sptp(ablc) < 1,
sptp(able) = sptp(balc),
sptp(able) + sptp(aclb) + sptp(bela) < 1.

The proof is immediate.
Suppose U C X and |U]| > 3. Given distinct a € U, b € U, define

mspty (a,b) = max{sptp(able) : c € U,c # a,c # b}.

We call mspty(a, b) the “maximum normalized triplet support for {a,b} on U.”

The Normalized Triplet Supertree (NTS) for D is defined to be the minimum
threshold tree for (X, mspty). More explicitly, if S denotes the NTS for D, then
S 1s the smallest collection of subsets of X such that

(1) X € 5;

(2) If U € S has exactly two elements, U = {u,v}, then {u} € S and
{v}es.

(3) f U € S and |U| > 3, form the complete graph K(U) with vertex set
U, where each edge {u, v} has weighting mspty (u,v). Let 7(U) = 7(K(U)) be
the minimal disconnection threshold for K (U). Then K (U ),y is disconnected.
For each component C' = (U’, E) of K(U),w), U" € S. Observe that we may
omit any edges {a, b} from K(U) such that mspty(a,b) = 0, since 7(U) > 0.

We call the graph K(U) with weighting mspty the Aho graph of U.

The computation of the components of K (U); ) may be performed as fol-
lows. TIf K(U)y is disconnected, then 7(U) = 0 and the components of K(U)g
may be found directly. If K(U)g is connected, note that K(U); is disconnected
since for all {u,v}, mspty(u,v) < 1. Let Iy = [0,1]. Suppose I; = [a;,b;]
is an interval such that K(U),, is connected and K(U), is disconnected. Tt
follows that 7(U) € (ai, b;]. Let ¢; = (a; + b;)/2. If K(U),, is connected, let
Iit1 = [ei,b;], whereas if K(U)., is disconnected, let ;11 = [ai, ¢;]. Define
[@it1,bix1] = Lix1. Then ;4 is an interval with half the length of I; such that
K(U)a,,, is connected and K(U)y,,, is disconnected.

The minimum disconnection threshold r(U) is a value mspty (u, v) for some
w and v in U. Suppose D contains m input rooted trees. Then mspty (u,v)
is a rational number with denominator at most m. Any two distinct rational
numbers with denominator at most m differ by at least 1/m? since

la/b— ¢/d| = |ad — be|/|bd| > 1/|bd| > 1/m?.

Thus when the length of I; = [a;, b;] is less than 1/m?, then I; contains precisely
one rational number a/b with b < m, and this value must be 7(U). In particular,



it follows that K(U)y, = K(U), () since if e is an edge and mspty () > 7(U),
then mspty (e) has form a/b with b < m, whence mspty (e) > b;.
The following result shows that the computation of the NTS is fast:

Theorem 3.2. Let D = {(T;, X;) : 1 < i < m} be a rooted tree X -family, where
| X| =n.

(1) The computation of sptp(zy|z) for all x, y, z in X takes time O(n*m).
(2) The computation of the normalized triplet supertree S takes time O(n*m).

Proof. For (1), for each input tree T;, the computation of its clusters takes time
O(n) and its rooted triples are found, for each cluster U, by choosing every
possible  and y in U, z ¢ U. Hence the time to compute the rooted triples
for each input tree is O(n*) and the total time to find all the rooted triples is
O(n*m). From these counts of all rooted triples, the time to compute sptp(zy|2)
is another O(n3). Hence the total time required is O(n*m) + O(n®) = O(n*m).

For (2), suppose all sptp(xy|z) are known. For each cluster U € S and for
each z and y in U, the computation of mspty (x,y) takes time O(n). Hence
the computation of K(U) including its weights takes time O(n®). Each weight
mspty (z,y) is a rational number between 0 and 1 with denominator at most
m since no 3-subset {x,y, 2z} occurs more than m times. Computation of the
minimum threshold 7(U) by bisection hence requires at most O(log,(m)) steps
to shorten the interval containing 7(U) to a length less that 1/m?. Each such
step requires the evaluation of connectivity of K (U), for some %, which can
be done by a depth-first search requiring time O(n?). Hence for each U, the
computation of the children of U can be accomplished in time O(n?log,(m)). Tt
follows that the computation of K (U) and the children of U can be done in time
O(n®) + O(n?log,(m)). Since S has O(n) clusters, the total time to compute S
after all sptp(zy|z) are known is O(n*) + O(n?log,(m)).

Hence the total time to find S is O(n*m) + O(n3log,(m)) = O(n*m). O

One advantage of the NTS is that sometimes we can predict the NTS. This
result will require the following definition:

Let (7, X) be a rooted tree. Define sptp : RT(X) — R as follows: For each
resolved rooted triple zy|z let

{1 if zylzin T
sptr(xylz) =
0 else

Thus sptr is an indicator function which, for each resolved rooted triple,
tells whether the triple is present in 7.

It is known ([23], p. 119) that any two distinct rooted trees have exactly
the same sets of resolved rooted triples. It follows that if (7, X) and (W, X) are
distinct rooted trees then sptr # sptw.

The first main theorem (Theorem 3.5) is that if for all z, y, and z, sptr(xy|z)
and sptp(xy|z) are close enough, then the NTS will be equal to 7. Tts proof
requires the following lemma:



Lemma 3.3. Let D be a rooted tree X -family. Suppose that (T, X) is a rooted
tree. Assume that for all distinct x, y, z in X we have

|sptp(zy|z) — sptr(zy|z)| < 1/2.

Suppose that the tree T has a cluster U with exactly k children Ay, ..., Ag, k >
1. Suppose W C X is the union of at least two members of Ai,..., Ag; by
renumbering say W = Ay U A U ..U Ay, with m > 1. Let K(W) be the Aho
graph of W. Then

(1) K(W)1/2 is disconnected and its components are exactly Ay, ..., Apy.

(2) If T(W) is the minimal disconnection threshold, then each component of
K(W); is a union of some collection of Ay, ..., Am.

Proof. Suppose a and b are in A;, 7 < m. We show that a and b lie in the
same component of Ky/5(W). Assume without loss of generality that j = 1 and
choose ¢ € Ay. Then ablein T. Hence sptp(ablc) = 1, whence sptp(able) > 1/2.
Hence msptw (a,b) > 1/2 and there is an edge {a, b} in K (W);/2, whence a and
b are in the same component of K(W);/s.

Suppose @ and b are in different A;’s, j < m. We show that a and b lie in
different components of K(W);/5. For every ¢ € W distinct from a and b, we
have sptr(ablc) = 0 since a and b are in different A;’s. Hence sptp(ablc) < 1/2.
It follows that msptyw (a,b) < 1/2, whence K(W),/o does not contain an edge
{a,b}.

It follows that there are no edges between members of different A;’s. Hence
the components of K (W), /s are exactly A1, ..., A,,. This proves (1).

For (2), note since K(W)y/5 is disconnected, it follows that 7(1W) < 1/2.
Since decreasing the threshold 7 from 1/2 to 7(W) can only add edges to
K(W)1/2, it follows that for each ¢, A; is completely contained in some compo-
nent of K (W),qw). This proves (2).

O

Corollary 3.4. Let D be a rooted tree X -family. Suppose that (T, X) is a rooted
tree. Assume that for all distinct x, y, z in X we have

|sptp(zylz) — sptr(zy|z)| < 1/2.

Suppose that the tree T' has a cluster U with exactly 2 children Ay and A . Let
T = 1(U) be the minimal disconnection threshold. Then K(U), has exactly the
two components Ay and A,.

Proof. By Lemma 3.3 (2), A; is completely contained in some component of
K(U);, and As is completely contained in some component of K (U),. If these
were the same component of K (U);, then there would be only one component,
contradicting that K (U), is disconnected. Hence the components of K(U),
must be exactly A; and As,. O

Theorem 3.5. Let D be a rooted tree X -family. Suppose that (T, X) is a binary
rooted tree. Assume that for all distinct x, y, z in X we have



|sptp(zylz) — sptr(zy|z)| < 1/2.
Let S denote the NTS. Then S =1T.

Proof. In T the cluster X has exactly two children A; and A, since T' is binary.
By Cor 3.4 it follows that the children of X in S are also A; and A,. Generally,
if U 1s a cluster of both 7" and S and U is not a leaf of T', then U has exactly
two children since 7' is binary, and by Cor 3.4, U has the same children in S.
The result follows by induction. O

The next two results give more detail about the NTS in case 7" is not binary,
or an alternative construction to yield 7" if T" is not binary.

Theorem 3.6. Let D be a rooted tree X -family. Suppose that (T, X) is a rooted
tree. Assume that for all distinct x, y, z in X we have

|sptp(zylz) — sptr(zy|z)| < 1/2.

Let S denote the NTS. Each cluster W of S has one of the following forms:
(1) W is a cluster of T'; or

(2) there exists a cluster U of T with children Ay, ..., Ay in T (k > 2), and there
is a subcollection A Ay, such that W =U[A;, 1 j=1,...,m].

TERE

Proof. This result is proved by induction using Lemma 3.3. The details are
omitted. O

Theorem 3.7. Let D be a rooted tree X -family. Suppose that (T, X) is a rooted
tree. Assume that for all distinct x, y, z in X we have

|sptp(zy|z) — sptr(zy|z)| < 1/2.

Define S to be the smallest collection of subsets of X such that the following
hold:
(1) X € 5.
(2) If U € S has exactly two elements, U = {u, v}, then {u} € S and {v} € S.
(3) If U € S and |U| > 3, form the complete graph K(U) with vertex set
U, where each edge {u,v} has weight mspty (u,v). For each component C of
K(U)12, the set of vertices of C is in S.

Then S =T1T.

Proof. By Lemma 3.3(1), the components of K(X); s are precisely the children
of X in T'. Assume inductively that each member so far placed into .S 1s a cluster
of T'. Suppose U € S. Then by Lemma 3.3(1), the components of K(U); s are
precisely the children of U in 7. Hence the result follows by induction. O
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4  Robustness radius

Following Atteson [3], say that the I, radius R of a method of supertree con-
struction is « provided that,

(1) whenever D is a rooted tree X-family and (7, X) is a binary rooted tree
such that, for all distinct a, b, ¢ in X,

[sptp(ablc) — spty (able)| < «

then the method outputs 7'; and
(2) for every 8 > « there exists a binary rooted tree (T, X) and a rooted
tree X-family D such that, for all distinct «a, b, ¢ in X,

[sptp(ablc) — spty(ablc)| < B

but the method does not output 7.

Alternatively, call such « the robustness radius R.

If R > 0, then whenever spip is uniformly sufficiently close to spir on all
resolved rooted triplets, then the method outputs 7.

The following result shows that the best possible robustness radius for any

method is R = 1/2.
Theorem 4.1. No supertree method has robustness radius greater than 1/2.

Proof. Let X = {a,b,c}. Let T = ablc and W = bc|a. Suppose that D consists
of n copies of T and m copies of W. One computes that
sptp(able) = n/(n +m) = msptx (a,b)
sptp(bela) = m/(n+ m) = msptx (b, c)
sptp(aclb) = 0.
Since sptr(ablc) =1 we see

|sptp (ablc) — sptr(able)| = m/(n + m).
Since sptp(bela) = 0, it follows

|sptp (bela) — sptr(bela)| = m/(n + m).

Similarly
|sptp(aclb) — sptr(aclb)| =0,
[spto (able) — sptay (able)| = n/(n + m)
|sptp (bela) — sptw (bela)| = n/(n + m), and
|sptp(aclb) — sptw (ac|b)| = 0.

Suppose for some @ > 1/2 a method yields a tree Y when, for all distinct x,
Yy, z1in X,
|sptp(zy|z) — sptY (zy|z)| < B.
We could choose m > n with m/(n + m) < 8. Then since n < m it would

also follow that n/(n + m) < 5. Hence the method would have to output both
T and W, which is impossible. O
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The next result is that NTS has optimal robustness radius.

Theorem 4.2. The normalized triplet supertree method has robustness radius

R=1/2.
Proof. By Theorem 3.5, we have R > 1/2. But by Theorem 4.1, R < 1/2. O

Let D = {(T;, X;) : ¢ € A} be a rooted tree X-family. Say D is dense in X
if, for all distinct «, y, z in X, there exists ¢ € A such that {z,y, 2} C X;.

The next result shows that Theorem 3.5 and the definition of robustness
radius are moot unless D 1s dense in X.

Lemma 4.3. Suppose that T is a binary rooted tree with leaf set X . Assume that
there exists o < 1 such that, for all distinct x, y, z in X, we have |sptp(xy|z) —
sptr(xy|z)| < e . Then D is dense in X.

Proof. Note that, for any distinct #, y, z in X, since T' is binary either 2y|z or
zz|yor yz|lz in T. Suppose zy|zin T. Then sptr(xy|z) = 1. Hence sptp(zylz) >
1 —a > 0. It follows that den(z,y,z) > 0, so there must exist ¢ such that
{z,y,2} C X;. O

5 Robustness radii of some other supertree and
consensus methods

In this section we consider some well-known supertree and consensus methods
and we show that their robustness radii are disappointing. On the other hand,
MRP using triplets has the maximal possible robustness radius.

The method MinCutSupertree is described in [22]. A modification due to
Page was described in [17].

Theorem 5.1. For the MinCutSupertree methods (both original and modified)
the robustness radius R satisfies R = 0.

Proof. Given a positive integer m, let X = {a,b,1,2,..,m} and let T" be the
rooted X-tree with the nontrivial clusters {a,b}, {1,2,....m}, {2,3,...,m},
{3,4,.....m}, ..., {m—1,m}. Let Y be the rooted X-tree with nontrivial clusters
{6,1,2,....,m}, {1,2,....,m}, {2,3,...m}, ..., {m — 1, m}. Let i indicate in a list
that ¢ is missing. For ¢ = 1,2, ..., m let Z; be the rooted X-tree with nontrivial
clusters {a,b,1,....4,....,m}, {b,1,..4,....m}, {1,...,i,....m}, {2,3,...1,...,m},
ey {m—1,m}. The input D consists of ¢ copies of T', y copies of Y, and 1 copy
each of 7Z; for i = 1,...,m. Then n = t + y + m is the number of input trees in
D. Each input tree has leaf set X.
We easily see that, if y +m > 4, then for all distinct u, v, w

|spto (uv|w) — sptr (wvlw)] < (y +m = 1)/n.

Our notation for MinCutSupertree is as in [22]. Note that for each u €
X — {b}, there is an input tree in which u is adjacent to the root. Hence there

12



is no pair {u, v} such that for all input trees both v and v are in a cluster other
than X. Hence in Xp we find that EZ}*" is trivial and the vertices in Xp/ER*"
are the members of X.

Next we describe the edges of Xp and the capacity of various cuts under
the MinCutSupertree algorithm. The capacity of edge {u, v} is the number of
input trees in which u and v are both in a proper cluster. Hence

{a, b} has capacity ¢ + m.

{a, i} has capacity m — 1 from all Z; except Z;.

{b, i} has capacity y + m — 1 from Y and all Z; except Z;.

{i,j} for i < j has capacity t +y+m—2 from T and Y and all Z; except
Zz' and Zj.

Hence the cut {a, b} has total capacity (m—1)(m)+(y+m—1)(m) by cutting
all edges {a, i} and {b,7}. The cut {a} has total capacity (t +m) + (m —1)(m)
by cutting edge {a,b} and all edges {a,i}. It follows that the capacity of cut
{a} is smaller than the capacity of cut {a,b} provided

(t+m) + (m—1)(m) < (m—1)(m) + (y + m = 1)(m)

in which case {a,b} is not a minimal cut. Equivalently, this happens when
t < ym+m?—2m. Set t = ym + m? — 2m — 1. If this holds and ¢t > 0, y > 0,
m > 0, then {a, b} is not a minimal cut for Xp, whence in the MinCutSupertree
the children of X are not {a,b} and {1,2,...,m}. Hence under these conditions,
T is not the MinCutSupertree.

On the other hand, under these conditions and assuming y+m > 4 we have
that for all u, v, w

|spto(wvlw) — sptr (uvw)] < (y +m —1)/n

=(y+m—1)/(ym+m? —2m— 14+ y+m).

For fixed m as y increases without bound, note that the right side has limit
1/(m + 1). Tt follows that, if » > 1/(m + 1) then there exist input data D for
which the binary tree 7" is not returned by MincutSupertree yet for all u, v, w,
[sptp(uv|w) — sptr(uvjw)| < r.

Hence the robustness radius R satisfies R < 1/(m 4+ 1) for all m, whence
R = 0. Informally, we see that MinCutSupertree favors tree Y over tree T even
though most triplets match those of T'.

In the Page version of the algorithm, one notes that every edge in Xp is
contradicted since if if v and v appear in a proper cluster of some input tree,
there is also an input tree containing u and v in which they do not appear
in a proper cluster. Hence the removal of contradicted edges leaves no edges
at all, and the algorithm continues exactly as in the original MinCutSupertree
algorithm.

O

The familiar consensus trees are defined in [23], p. 53, or [13], p. 521.
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Theorem 5.2. For each of the majority rule consensus tree M, the strict con-
sensus tree S, and the Adams consensus tree A, the robustness radius R satisfies

R=0.

Proof. Let n > 3 be a positive integer; we show R < 1/n. Let m = n + 1,
and let X = {1,2,...,m}. Fori = 2,....m let T; be the rooted tree with leaf
set X and nonsingleton clusters {14}, {1,2,¢}, {1,2,3,4}, ..., {1,2,...,i— 1,i},
(1,2, i+ 1}, ., X.

Let D = {T5,T5,....Tn}. If 2 < y < z then ay|z in T; for i # z. Hence
if # < y < z it follows sptp(zy|z) = (n — 1)/n. For other rooted triples the
support is either 0 or 1/n.

Let T'= T, so T has nonsingleton clusters {1,2}, {1,2,3}, ..., {1,2, ..., m}.
If we assume # < y then zy|z in T iff # < y < z. Hence sptr(ay|z) = 1 if
r<y<zand spty(zylz) =0if x <y but z < y, so

|spto(xylz) — sptr(eylz)] < 1/n

for all z, y, z. Hence if the method does not yield 7', then the robustness radius
R must satisfy R < 1/n.

For the majority rule consensus tree M, if n > 3, note that the cluster {1,2}
arises only once, so {1,2} is not in M. Since {1,2} is a cluster of T, it follows
M # T. Hence R < 1/n. Since n is arbitrary, it follows R < 0. Since R must
be nonnegative, R = 0.

The strict consensus tree S for this example is the star tree since only the
singleton clusters and X lie in each 7;. Hence R < 1/n and as above R = 0.

For the Adams consensus tree A, to find the children of the root X, we form
a graph G with vertex set X and with an edge {x,y} iff for each 7, # and y are
together in some proper cluster of T;. In 7, note that n = m — 1 lies only in
the clusters X and {n}. Hence (G contains no edge with endpoint n. It follows
that {1,2,..,n} is not a cluster of A, whence A # T. Thus R < 1/n and as
above R = 0.

O

It is perhaps surprising that the majority rule consensus tree has robustness
radius 0. The underlying reason seems to be that its calculation deals with the
frequency of clusters while the robustness radius deals with the frequency of
rooted triples.

Theorem 5.3. For MRP the robustness radius R satisfies R < 1/100.

Proof. For each natural number m > 3 let X = {1,2,...,2m — 1}. Con-

sider the rooted tree X-family D consisting of m trees T; for ¢ = 1,...,m, de-
fined as follows: The nontrivial clusters of T} are precisely {2,3,...,2m — 1},
{3,4,..,2m— 1}, ... ,{2m —2,2m — 1}. For k # 1, k # m — 1, the nontriv-

ial clusters of Ty are {2,3,.....,2m — 1}, {3,4,5,....2m — 1}, ..., {k — 1,k k +
Lo,2m—1}4{k—Lk+1Lk+2 ....2m—1}{k—1,k+2k+3,....2m— 1},
{k—1,k+3,k+4,..,2m—1}, ..., {k—1,2m—1}. The nontrivial clusters of T},,_;
are {2,3,....2m—1},{3,4,....2m—1}, .. {m -2 m—1,mm+1,....2m— 1},
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{m—-2mm+1,m+2,....2m—1}, {m -2 mm+ 1,m+ 2, ...2m — 2},
{m—2mm+1,m+2 .. 2m—-3},{m—-2mm+1,m+2 .. 2m—4}, ..
{m —2,m}.

Let T = Ty. Tt is readily checked that for all z, y, z, |sptp(xy|z) —
sptr(xylz)| < 1/m. For m = 3,4,5,6,7,8,20 it has been verified using PAUP*
[26] with branch-and-bound that MRP leads to a unique tree which is, how-
ever, different from 7. For m = 30,50,90,100 the same has likewise been
verified using heuristic search. Hence the robustness radius R of MRP satisfies

R < 1/100. O

I conjecture that in fact the examples in Theorem 5.3 show that R = 0 for
MRP.

An alternative to MRP is triplet MRP, in which a different matrix represen-
tation M is used from the matrix representation in MRP [19]. Given the input
trees D, for each input tree T; in D, for each rooted triple ablc in T;, M will
have one column which contains 0 in the rows for the outgroup and for ¢, 1 in
the rows for taxa a and b, and 7 in the rows for each other taxon. The method
seeks a maximum parsimony tree.

Theorem 5.4. Triplet MRP has robustness radius R = 1/2.

Proof. Let D be a rooted tree X-family and let 1" be a binary rooted X-tree.
Assume that, for all distinct z, y, z, |sptp(zy|z) — spir(zy|z)| < 1/2.

For each rooted triplet ablc, let there be mgy|. copies of ablc in D and map.
copies of the star triplet abc in D.

If zy|z in T, then sptr(zy|z) = 1. Hence spip(zy|z) > 1/2 whence

May|2/ (Maylz + Mazly + Myzje + Mayz) > 1/2

SO
Mey|2 > Mez|y + Myz|z + Mgyz-

In particular, mgyy|. > Mgy and mey; > My if 2y|z in T'.

To see that 7" 1s a maximum parsimony tree, we suppose W is a binary
X-tree, W # T, and we show that 7" requires fewer parsimony steps than W
according to the matrix M.

For each rooted triple able if able in W, then the corresponding column
contributes exactly one step in computing the parsimony since all vertices sepa-
rated from the outgroup by mrca(a, b) may receive 1 and all other vertices may
receive 0. If, instead, ablc is not true in W, then the corresponding column
contributes exactly two steps in computing the parsimony by assigning 0 to all
vertices except a and b. Thus the parsimony score of W is

k(W) = Z[deC s sptw (able) = 1] + Z[Qmablc : sptw (ablc) = 0].
Similarly,

k(T) = Z[deC s sptr(able) = 1]+ Z[Qmablc : sptr(able) = 0].
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I claim that k(W) > k(T) if W # T. This follows by a comparison of
the corresponding terms in the inequality for each 3-subset {a,b,c}. Since T is
binary, we may rename the elements if necessary so as to assume sptp(ablc) = 1.
If sptw (ablc) = 1 as well, then the contributions to k(W) and k(T) are the same.
If sptw (ablc) = 0, suppose sptw (aclb) = 1. Then the contribution to k(W) is
Mac|p +2Mgp|c +2Mye|q While the contribution to k(T7) is map|e +2Mac|p + 2Mpea-
Hence the contribution to k(W) — k(1) is mgpjc — Mac)p > 0.

O

6 Properties of NTS

Wilkinson et al. [27] propose some “desiderata for liberal supertrees.” We briefly
discuss related properties of NTS.

(1) Sizeless. The method should not be biased by input trees with large
size. Note that if D = {(7;,X;) : ¢ € A} is a rooted tree X-family, then the
NTS for D is precisely the same as that for D’ where D’ is the multiset of triples
obtained by replacing each 7; by the set of its rooted triples and star triples.
Hence we may always assume that the rooted tree X-family merely consists of
triples, and the size of the trees in D is not directly relevant.

(2) Shapeless. The method should not be biased by the shape of input
trees. Asin (1), the NTS for D is the same as for D', where D’ merely consists
of triples.

(3) Order invariance. The method should not be influenced by the order
in which members of D are introduced, or the order of leaves in the adjacency
matrix of an input tree. This property of NTS is obvious.

(4) Uniqueness. The method should give a unique answer, which is obvious
for NTS.

(5) Plenary. The resulting supertree should contain all the leaves of the
input trees. This is obvious for NTS.

(6) Weightable. The method should allow different input trees to be
weighted. In fact, if D = {(T3, X;) : i € A} with (T}, X;) weighted by 5; > 0,
then for each distinct a, b, ¢ in X, redefine sptp(ablc) as the ratio of

num(able) = > {vi : ¢ € A ablc € T;}, by
den(a,b,¢) => {v;i i€ A, {a,b,c} C X;}.

(7) Speed. NTS has polynomial time-complexity, as seen in Theorem 3.2.

(8) Assessable. The method should allow a measure of the amount of
support of the output supertree. The smallest number a such that for all distinct
x, Yy, z,

|sptp (zy|z) — sptr(xylz)| < o
gives a measure of the overall support for the tree 7. A smaller « means a
better fit. This aspect will be discussed further in Section 8.
(9) Pareto. Relationships in all input trees should appear in the output. For

this property, NTS does not quite satisfy the desired property. We nevertheless
have the following results:
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Theorem 6.1. Suppose that D s a rooted tree X -family and contains at least
one input tree containing all the taza X. Suppose sptp(able) = 1. Then ablc in
the NTS.

Proof. In the construction of the NTS| let U be the smallest cluster containing
{a,b,c}. Note that mspty(a,b) = 1 since sptp(ablc) = 1. Suppose there are
m input trees. I claim that the minimal disconnection threshold 7(U) satisfies
mU) < 1—1/m. To see this, suppose W is an input tree containing all members
of U (which exists since there exists an input tree containing all members of
X). Then W|U has children Aj, As, ..., Ay for some k& > 1. Suppose u and v
are in distinct A;’s. Then there is no w € U such that uv|w in W|U. Hence
whenever u and v are in distinct A;’s, it follows that sptp (uv|w) < 1—1/m since
there is at least one tree W in which wv|w fails. In particular, for r=1—1/m
we have no edge in A; between members of different A;’s. Since k > 1, A; is
disconnected. But mspty(a,b) = 1, whence a and b are in the same component
of A;, whence they are in the same component of Ay where 7(U) is the
minimal disconnection threshold. Since U is the smallest cluster containing a,
b, and ¢, it follows that ¢ is not in that same component, whence ab|e in the

NTS. O

Corollary 6.2. Suppose that D consists only of trees with the leaf set X. If
sptp(ablc) = 1, then able in the NTS.

Theorem 6.1 is not true without the assumption in the first sentence. For
example, let X = {a,b,¢,d}. Let D consist of one copy each of the rooted triplet
trees able, be|d, cd|a, and ad|b. Since each 3-set occurs exactly once, we have
msptx (a,b) = msptx(b,¢) = msptx(c,d) = msptx(a,d) = 1. Hence K(X)
has edges {a,b}, {b,c}, {¢,d}, and {a,d} each with weight 1, and the Normed
Triplet Supertree is the star tree.

7 Geometric interpretation

Recall that RT(X) is the set of all rooted triples from the set X. The total
number of rooted triples 1s

m = |[RT(X)| = 3(’;) =n(n—1)(n —2)/2.

List the members of RT(X) in some arbitrary but fixed order. Let Hx =
[0, 1]™ be the m-dimensional triplet hypercube in which each coordinate corre-
sponds to a rooted triple able. If u € Hx, we will write its coordinate corre-
sponding to the rooted triple ablc as uqp.. A corner of Hx is a point u € Hx
such that for each ablc we have ugy). is 0 or 1. The I, norm on R™ is defined

by

||t — |00 = max{|tqp|c — Vap|c| : @, b, ¢ are distinct elements of X}

17



and makes R™ a normed vector space. We will regard Hx as a subspace of R™
with the o, norm.

Hx contains a kind of rooted-triplet-landscape space. To every rooted tree
X-family D there is a point sptp € Hx given by (sptp)ap|c = sptp(ablc). To any
rooted X-tree 7" there corresponds spty € Hx given by (splr)q.s|e = sptr(ablc).
Since each value of sptp(able) is either 0 or 1, sptr is a corner of Hx. If T and
T are distinct rooted X-trees, then they differ on some rooted triple; ie, there
exists ablc in RT(X) such that either ablc € T and ablec ¢ T, or ablec € T" and
able ¢ T'. Hence no two distinct trees correspond to the same corner.

Not all corners correspond to trees. For example, if u is a corner point and
there exist a, b, ¢ such that ugpc = ugep = 1, then there is no tree 7' such that
u = sptp. We see that the elements sptr are spread out among the corners of
Hx.

Theorem 3.5 may be restated as follows:

Theorem 7.1. Let D be a rooted tree X -family. Suppose that (T, X) is a binary
rooted tree. Assume that ||sptp — spir||eo < 1/2. Let S denote the NTS. Then
S=T.

Since sptr 1s a corner of Hx, the set
Bio(T) ={u € Hx : ||u— sptr|le < 1/2}

is a rectangular box of dimension m such that each side has length 1/2. Theorem
7.1 asserts that if sptp lies in By/o(7), then the NTS is 7'.
A natural problem that arises in this context is:

Closest Tree Problem. Let D be a rooted tree X -family. Find a rooted tree
(T, X) that minimizes ||sptp — sptr||co-

By Theorem 7.1, if S is the NTS, then S solves the Closest Tree Problem
provided the solution T is binary and satisfies ||splp —splr||oo < 1/2. Examples
show, however, that the NTS need not solve the Closest Tree Problem more
generally.

Note that ||sptp — sptr||ec = max{|sptp(zy|z) — sptr(zy|z)|}
= max{max{sptp(zy|z) : zy|z ¢ T}, max{(1 — sptp(zy|z)) : zy|z € T}}.

Define the weak distance of T' from D by

D3 (T) := max{sptp(zy|z) : zy|z ¢ T}.

Observe that for every T', D}(T) < ||sptp — sptr||co-

For each rooted triplet #y|z in T, there are two rooted triplets zz|y and yz|«
not in 7'. Hence D¥(T) in some sense deals with two rooted triples for every
one rooted triple dealt with by the omitted expression max{(1 — sptp(zy|z)) :
zy|lz € T}.

The definition of D} (T) leads to the following related problem:

Weak Closest Tree Problem. Let D be a rooted tree X -family. Find a
rooted tree (T, X) that minimizes D} (T).
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We shall see that the NTS S solves the Weak Closest Tree Problem. In the
process, we observe in Lemma 7.2 that D} (S) is the largest minimum discon-
nection threshold that arises in the computation of the NTS.

Lemma 7.2. Let D be a rooted tree X-family. Let S be the NTS for D. If
U € S satisfies |[U| > 3, let 7(U) denote the minimal disconnection threshold
for K(U). Let 7 = max{t(U) : U € S,|U| > 3}. Then DJ(S) =7.

Proof. Suppose zy|z is not in S. Let U be the smallest cluster of S that contains
z, y, and z. Then K(U);@) places  and y in different components. It follows
that sptp(xylz) < 7(U). Hence DR(S) < 7.

Conversely, choose a cluster U of S such that 7(U) = 7. Since 7(U) is the
minimal disconnection threshold, there exists a component A of K(U), ) such
that there exist ¢ € A and b € U — A such that mspty(a,b) = 7(U). Hence
there exists ¢ € U such that 7(U) = mspty(a,b) = sptp(ablc). Since a and b
are in different children of U in S, it follows ablc ¢ S. Hence 7 < D} (S). O

Theorem 7.3. The Normalized Triplet Supertree S solves the Weak Closest
Tree Problem.

Proof. Let 7(U) and 7 be as in Lemma 7.2. Let T satisfy that D% (7T') is minimal
among all rooted X-trees. Let U be a cluster of S such that 7(U) is maximal,
whence 7 = 7(U) = D¥(S) by Lemma 7.2. If 7(U) = 0, then 7 = 0, so
D¥(S) = 0 and we have DE(T) > D¥%(S), whence S also solves the Weak
Closest Tree Problem. Hence we may assume 7(U) > 0, whence U contains at
least three points.

Let W denote the smallest cluster of T that contains U. Let B denote a
child of W in T such that BNU # (. Then U — B is nonempty, since otherwise
U C B, contradicting the minimality of W.

I claim that there exist b € B, a € U — B, and ¢ € U, all distinct, such
that sptp(ablc) > r(U). If not then, for all such «, b, ¢, sptp(able) < 7(U) and
there is a number € > 0 such that for all such a, b, ¢, sptp(ablc) < 7(U) —e. Tt
follows that for all b € B and a € U — B, mspty(a,b) < 7(U) — €. Hence every
edge between B and U — B has weight less that 7(U) — ¢, whence K(U)-()-c
is disconnected. This contradicts the minimality of 7(U), proving the claim.

Observe that ab|e ¢ T since a, b, and ¢ are all in W, but a and b are not in the
same child B of W. Hence D} (T) > sptp(able). But then sptp(able) > 7(U) =
D¥(S). This proves that S also solves the Weak Closest Tree Problem. O

There is typically not a unique solution to the Weak Closest Tree Problem.

8 Measuring subsets of Hy

Let Hx = [0,1]™ be the triplet hypercube for X, where |X| = n and m = 3(2)
For each 3-subset {a,b,c} of X let Hqypc) = [0,1]% with coordinates able,

aclb, and be|a. Then

Hx = H[H(a,b,c) :{a, b, c} are distinct 3-subsets of X]
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By Lemma 3.1 for any D we have
0 < sptp(ablc) + sptp(aclb) + sptp(bela) < 1
and a similar inequality applies for spt7. Hence only u € H, p . satisfying
Ugble T Uaclo T Upeja < 1

are of biological interest.

For each 3-subset {a,b,c} of X define
BH(a,b,c) = {U € H(a,b,c) FUgh|ce + Uac|b + Upe|a < 1}

Then define
BHx = H BH(ap.0)-

Note BHx = {u € Hx : for all distinct a,b, ¢, tap|c + Uge|p + Upe|a < 1}. Only
vectors u in BHx are of biological interest since each vector sptp and each
vector sptr liesin BHx . It is clear that BH x is a compact convex subspace of
Hx.

The Lebesgue 3-dimensional volume of BH ¢ is

/01 /Ol_x(l — & — y)dyde = 1/6.

Hence the Lebesgue m-dimensional volume of BHx is (1/6)(2).
Suppose T is a binary rooted X-tree. For any a, 0 < a <1, let

BH,(T)={u € BHx : ||u—sptr]|le < a}

denote the box centered at sptp with radius a. Thus BH,(T) is that portion
of {u € Hx : ||u— sptr|le < o} which is biologically relevant. If for example
u € BHy 49(T), then Theorem 7.1 says that the NTS tree S satisfies S = T.

Theorem 8.1. Let T be a binary rooted X -tree. The m-dimensional volume of

BH.(T) is a™(1/6)(3).
Proof. For each collection {a,b,c} of three distinct members from X let

BH(abc

1 Gy

Tya) = {ue BHape : |tap|c — sptr(ablc)| < a,

[uaelp — sptr (aclb)| < a, |upeja — sptr(bela)| < a}.

Since T is binary, one of sptr(ablc), sptr(ac|b), and sptr(be|a) is equal to 1, and
the rest are 0. By symmetry we may assume sptp(ablc) = 1. Let the coordinates
be x, y, z where x corresponds to able. Then BH (4 1 .o) may be identified
with {(z,y,2) eR?*:1—-a<2<1,0<y<o,0<2s<ar+y+2z <1}
Note that when o =1, BH (4 ¢ 7,1) = BH(ap,c) of volume 1/6. For 0 < oo < 1,

1 Gy
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the shape 1s exactly similar but rescaled by a factor a. Since the shape is 3-
dimensional, the volume is therefore a®/6. Alternatively, the volume can be
computed explicitly as f11—a Ol_x(l —r —y)dydz.

Since Bo(T') = [[ BH(apb,e,r,a) With one factor for each of the (") sets

3
{a, b, c}, it follows that its m-dimensional volume is
(23/6)(3) = a3() (1/6)().
O

Recall [23], p. 20, that the number of rooted binary trees with n leaves is
(2n—3)'=(2n —3)(2n —5)....(5)(3)(1).

Corollary 8.2. Let 0 < a < 1.

(1) Let (T, X) be a binary rooted tree. The probability that a random member
of BHx lies in BH(T) is a™.

(2) The probability p that a random member of BHx lies in BHy(T) for some
binary rooted X -tree satisfies p < (2n — 3)!1 a™.

Proof. Tf U is a closed subset of R™, let V(U) denote the m-dimensional volume
of U. For (1), note V(BH.(T)) = a(1/6)(3) and V(BHx) = (1/6)(), so their
ratio gives the desired probability. For (2), use (1) and note that the number of
binary rooted X-trees is (2n — 3)!l.

O

A natural way to visualize Hx 1s extrapolating from a three-dimensional
cube. This visualization is deceptive since m is usually very large. For example,
suppose X contains 7 taxa. Then m = 105. If T is a binary X-tree, then
the volume of BHy5(T) is (1/2)1%9/63% = 1.43404 x 1075 while the volume
of BHx is (1/6)3® = 5.81715 x 10728, Hence the probability that a random
member of BHx lies in BHy5(T) is 2.465 x 10732, There are 10,395 distinct
binary rooted trees with 7 taxa, so the probability that a random member of
BHx is within distance 1/2 of some binary tree is at most 2.563 x 10725,

9 Discussion and a biological example

This paper deals with how effectively various supertree methods identify an
appropriate supertree when the data are dense and sufficiently close to a tree.
For supertree methods that are being used to extrapolate information from
data that are not dense, the results may not be relevant. Frequently, however,
consensus methods are utilized to find a unique supertree that summarizes a
collection of trees all with the same leaf set. In this situation, the data are
always dense. It is possible that methods with robustness radius R = 1/2, such
as NTS, may be superior to the frequently used consensus methods which have
been shown to have R = 0.
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Even when the input trees do not all have the same leaf set, it may occur
that the data are dense and the principal concern is reconciliation of incom-
patibilities. For example, Philip, Creevey, and McInerney [18] considered 780
single-gene trees for a set of ten eukaryotes. The numbers of taxa in a given tree
ranged widely. They performed a Most Similar Supertree analysis [10] using the
software package CLANN [11]. They published and analyzed the resulting tree.

T used the 664 trees that contained humans (out of 780 obtained at the web
site http://bioinf.nuim.ie/supplementary/eukaryotes/). Each tree was rooted
so that the human species was adjacent to the root. The resulting dataset D
was dense. The NTS S was computed, and it was topologically the same binary
tree as that published in [18]. The dataset was very appropriate to analysis by
NTS, since the problem posed was the reconcilication of many different input
trees.

Of interest was that the NTS S satisfied that ||sptp — spts|lec = 0.611111.
By Corollary 8.2(2), the probability, assuming that a vector u is randomly
chosen in BHx, that a binary tree lies within distance 0.611111 of u is at most
(2n — 3)110.611111™. Here n = 10 and m = 360, so the probability is at most
3.47 x 10~7°. This low value indicates that the dataset vector sptp is far from
randomly related to S.

It would be interesting to know the complexity of the Closest Tree Problem.
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