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Abstract. Three desirable properties for any method of selecting a subset
of evolutionary units (EUs) for conservation or for genomic sequencing are

discussed. These properties are: spread, stability, and applicability. We are

motivated by a practical case in which the maximisation of phylogenetic diver-
sity (PD), which has been suggested as a suitable method, appears to lead to

counter-intuitive collections of EUs and does not meet these three criteria. We

define a simple greedy algorithm (GreedyMMD) as a close approximation to
choosing the subset that maximises the minimum pairwise distance between

EUs. This method of selection satisfies our three criteria and may be a useful

alternative to PD in certain real world situations. We also show that if dis-
tances between EUs are ultrametric, then GreedyMMD delivers an optimal

subset of EUs that maximises both the minimum pairwise distance and the
PD. Finally, since GreedyMMD works with distances and does not require a

tree, it is readily applicable to many datasets.

1. Introduction

Quantitative methods based on biodiversity have received much attention re-
cently in conservation biology. These methods are used for determining which
collection of evolutionary units (EUs, including species or other higher-level taxa)
should be conserved. Maximising phylogenetic diversity (PD) has emerged as a
leading criteria in this regard. (For a set of EUs and a given phylogeny, the PD
of the set is defined as the total length of the minimal phylogenetic subtree that
connects the EUs in the set.) In its most direct application to conservation (Faith,
1992), we want to select a k-element subset of EUs that maximises PD over all
k-element subsets. The use of PD has also been advocated when decisions need to
be made about which genomes should be sequenced (Pardi and Goldman, 2005).

However, there are instances when maximising PD appears to be the wrong
criterion to use when selecting a set of EUs for conservation, or deciding which
genomes should be sequenced. Perhaps the best example is the iconic small-subunit
ribosomal RNA tree of the bacteria, archaea, and eucarya first described in Woese
(1987), and reproduced in Fig. 1. Suppose that the aim is to select three of these
EUs for sequencing. A subset of three EUs chosen to maximise PD will include two
eukaryotes and one bacterium, as shown in red in Fig. 1A. Most people would agree
that this seems wrong; after all, the second eukaryote may add comparatively little
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Figure 1. Reproduction of Woese’s (Woese, 1987) small-subunit
ribosomal RNA tree showing the subtree subtended by three EUs
chosen by (A) minimising PD and by (B) maximising the minimum
distance. We constructed this tree using small-subunit ribosomal
RNA sequences from an alignment by Barns et al. (1996) available
in TreeBase (Sanderson et al., 1994). Maximum likelihood trees
were constructed with PHYML (Guindon and Gascuel, 2003) using
a GTR model of evolution. The three groups on our tree are repre-
sented by the following taxa. ARCHAEA: Methanococcus vannielli
(Methanogen A), Methanobacterium (Methanogen B), Thermo-
coccus (Extreme thermophile A), Thermoproteus (Extreme ther-
mophile B), Desulfurococcus (Extreme thermophile C), Haloferax
(Extreme halophiles); BACTERIA: Thermotoga, Flavobacteria
(Flavobacteria), Gloeobacter (Cyanobacteria), Escherichia coli
(Purple bacteria), Bacillus (Gram-positive bacteria), Thermomi-
crobium (Green non-sulphur bacteria); EUKARYOTES: Vairi-
morphal (Microsporidia), Euglena geniculata (Flagellates), Dic-
tyostelium (Cellular slime molds), Zea mays (Plants), Homo sapi-
ens (Animals) and Coprinus (Fungi).

information. In contrast, selecting a bacterium, an archaeon, and an eukaryote (as
shown in red in Fig. 1B) is a choice that few would disagree with; it seems intuitively
better. If one were asked to explain why this is more intuitive, one might reply that
the chosen EUs are more “spread out” on the phylogenetic tree, and are likely to
contain less redundant genetic information (measured, say, by the number of genes
in common).
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Since PD does not entirely capture what we want from a measure of diversity, we
propose an alternative. The first step is to identify exactly what it is we are after.
We do not simply require a measure of diversity, but also a method of selecting a
subset of EUs that will score well under this measure. In addition, we would like
the selected set to have the following properties:

(1) Spread. The selected EUs are in some sense spread evenly across the
phylogeny.

(2) Stability. The core of the solution set should be stable as the set size
fluctuates.

(3) Applicability. The method of selection should be able to be applied to as
general an input as possible.

We expand on these properties and why they are desirable below.

Spread. We have discussed one example of where PD does not capture the intuitive
solution because its optimal solution sets are not “spread out” on the phylogeny.
In fact, the idea of choosing a set of EUs that have this property of being “spread
out” along a tree has been formalised by Holland (2001). In particular, to obtain an
intuitively appropriate solution one needs to choose the set of EUs that maximises
the minimum phylogenetic distance between any pair of EUs in the set. Defined
formally in Section 2, we refer to this criterion as MMD (Maximise Minimum-
Distance). If MMD is applied to choose three of the EUs in Fig. 1, then a desired
set of one bacterium, one archaeon and one eukaryote will be obtained.

Stability. The amount of money available for conservation projects fluctuates
with the political climate and with other social and economic factors. The set
of species targeted for conservation or set of genomes chosen to sequence needs
to be stable as budgets vary. Suppose that you are told that there is sufficient
money to conserve k species, or sequence k genomes. Being a good phylogeneticist,
you apply a diversity-based method to choose your k-element subset of EUs. Your
project gets underway, but after a year the budget available is adjusted up or down.
Clearly, it is extremely desirable that the set of EUs selected under the new budget
is closely related to the original set of EUs chosen. If the number of EUs can be
increased, you would like the k EUs previously chosen, and partially worked on, to
be guaranteed to be in the larger set of EUs chosen by the algorithm you have used
for selection. If the number of EUs is to be reduced, you would like the new solution
set to be a subset of the EUs you have already started conserving or sequencing.
This notion of stability is captured by a greedy algorithm: selecting the pair of EUs
that maximises (pairwise) a measure of diversity, and then iteratively selecting an
EU to add to the set that gives the best measure amongst all single EU increments
to the existing set, until the desired number of EUs is reached. Therefore, any
increase in the size of the chosen set is made by simply adding more EUs to the
existing set, whilst any decrease may be made by removing the EUs added last.
Thus we see that a greedy selection criteria exactly captures the idea of stability
that we are after for our method of selection.

Applicability. We would like to be able to apply the selection method to many
varied data sets. It is not always the case that an accurate tree with known branch
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lengths will be available. However, as a minimum, it seems reasonable to expect
that a matrix of pairwise distances between taxa will be available, or at least readily
estimated from sequences (e.g. using Hamming distance). Therefore we would like
our method and measure of diversity to apply in this situation, without having to
go to the computational expense and loss of information involved in estimating a
phylogeny first.

We now consider what method of selecting EUs would satisfy these three criteria.
As observed above, the measure MMD seems to capture the notion of spread that
we require, whereas PD does not. In addition, since MMD depends only on the
pairwise distances between EUs, it can be applied to a distance matrix without
reference to any underlying tree. Thus MMD satisfies the applicability criteria,
while again PD does not. For stability, the situation is reversed. An optimal set
under the PD measure is generated by a greedy algorithm (Pardi and Goldman,
2005; Steel, 2005), while under MMD being greedy does not always return the
optimal solution (see Example 3.4). Hence MMD will not necessarily have the
stability property, whereas PD does. Indeed, after an increase of one EU, the
revised optimal subset of EUs under MMD could exclude some of the original EUs
you had selected (see Example 3.1). Thus neither MMD nor PD satisfies all three
criteria. In order to satisfy all three, we propose a greedy approach to MMD. This
method, called GreedyMMD, gains stability and still maintains a good, though
not necessarily optimal, solution to MMD, thus retaining spread and applicability.

In Section 3, we define GreedyMMD and prove a sharp bound to how ac-
curately it performs as an approximation to MMD. To be precise, we show that
GreedyMMD gives a 2-approximation to the optimal MMD solution provided the
pairwise distances satisfy the triangle inequality (Theorem 3.3). Note that this
includes the case that the distances fit a tree metric. Furthermore, if the distance
matrix satisfies the triangle inequality but is not necessarily a tree metric, then
it is NP-hard to compute an optimal set under MMD. Moreover, no polynomial-
time algorithm can consistently return a better approximation than that given by
GreedyMMD, unless P=NP (see Section 3). In addition, we show that if the
pairwise distances induce an ultrametric, then GreedyMMD returns an optimal
set of EUs under MMD and, moreover, this set also maximises PD (see Section 4).

One possible criticism of MMD as a measure of diversity is that it depends only
on the closest pair of EUs. Thus one can imagine a situation in which there are
t well separated clades, each consisting of a large number of closely related EUs.
Any set of t+ 1 EUs will have to contain two EUs from one of the clades. Hence,
under MMD, the measure for a set consisting of t+ 1 EUs from a single clade will
be similar to the measure for any other set of t+ 1 EUs. This example is another
illustration of why being greedy is good. The greedy solution for k EUs will always
contain the solution for j EUs for every j < k. Thus in a situation similar to that
outlined here, our GreedyMMD solution for t + 1 EUs will contain the solution
for t EUs, i.e. at least one from every clade.

In consequence of the above analysis, we conclude that the selection method
GreedyMMD satisfies the three criteria of spread, stability and applicability, and
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advocate it as a useful and practical alternative to PD in certain real world situa-
tions.

The paper is organised as follows. The next section contains some preliminaries
and a formal definition of MMD. In Section 3, we present GreedyMMD and show
that it provides a 2-approximation to MMD if the pairwise distances satisfy the
triangle inequality, while Section 4 considers GreedyMMD applied to a set of
pairwise distances that induce an ultrametric. In Section 5, we consider taxonomic
distinctness, a measure for diversity with similarities to MMD. The last section
summarises the paper with a brief discussion.

2. Definitions and Problem Specification

In this section, we detail some definitions that are used throughout the paper
and formally describe MMD.

An (unrooted) phylogenetic X-tree is a tree with no degree-two vertices and
whose leaf set is X. A rooted phylogenetic X-tree is a rooted tree with no degree-
two vertices except the root which may have degree two and whose leaf set is X.
For the purposes of this paper, we will assume that all the edges of a (rooted or
unrooted) phylogenetic tree are assigned non-negative real-valued lengths.

For a set X, a distance on X is a function δ that assigns a non-negative real
value to each ordered pair in X×X such that, for all x, y ∈ X, we have δ(x, x) = 0
and δ(x, y) = δ(y, x). A distance is said to satisfy the triangle inequality if, for all
x, y, z ∈ X,

δ(x, z) ≤ δ(x, y) + δ(y, z).

A natural way to obtain a distance on X is from a phylogenetic X-tree. In
particular, a distance δT on X can be obtained by setting δT (x, y) to be the sum
of the edge-lengths on the (unique) path from x to y for all x, y ∈ X. Distances
that can be realised via a phylogenetic tree in this way are known as tree metrics.
Such metrics satisfy the triangle inequality.

A tree metric δT on X is an ultrametric if it can be realised by a rooted phylo-
genetic X-tree T such that, for all x, y ∈ X,

δT (ρ, x) = δT (ρ, y),(1)

where ρ is the root of T . The equality in (1) means that all leaves are equidistant
from the root. Equivalently, for an arbitrary distance δ on X, δ is an ultrametric
precisely if, for every three distinct elements x, y, z ∈ X,

δ(x, y) ≤ max{δ(x, z), δ(y, z)}.

For this equivalence, see Semple and Steel (2003).

Let δ be a distance on X. For a subset S of X, we define the minimum distance
of S to be

MD(S) = min{δ(x, y) : x, y ∈ S}.
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Figure 2. A phylogeny on which the optimal set of 5 taxa and
the optimal set of 6 taxa selected under MMD intersect in only 2
taxa.

For a given positive integer k, the problem MMD is to find a subset S of X that
maximises MD(S) amongst all subsets of X of size k. Intuitively, such a set S
corresponds to selecting a k-element subset of X in which each pair of elements is
as ‘far apart’ as possible under δ. Formally, the problem is defined as follows:

Problem: MMD
Instance: A set X, a distance δ on X, and a positive integer k.
Question: Find a subset S of X of size k that maximises MD(S).

As noted in the introduction, whereas it is usual to think of phylogenetic diversity
as a criterion that requires a phylogenetic tree as a basis for implementation, MMD
is more general. In particular, the criterion MMD can be applied to any distance
measure.

3. A Greedy 2-Approximation Algorithm for MMD

In this section, we analyse the simple greedy approach for selecting a subset of
EUs under MMD with distance δ. If δ is a tree metric, then, as observed in Spillner
et al. (2007), one can obtain an optimal solution for MMD in polynomial time using
the techniques of Chandrasekaran and Daughety (1981). Nevertheless, because of
the desirable property of stability, we are interested in greedy solutions in their own
right, and so wish to understand their relative performance. Example 3.1 illustrates
the potential problem of using the true optimal solution.

Example 3.1. Consider the phylogenetic tree shown in Fig. 2. Under MMD,
it is easily checked that S5 = {x1, x3, x5, x7, x9} is the unique optimal set of five
taxa (MD(S5) = 7), while S6 = {x1, x2, x4, x6, x8, x9} is the unique optimal set
of six taxa (MD(S6) = 6). Thus, in this instance, increasing resources to enable
an additional taxa to be conserved would see three of the currently selected taxa
dropped from the optimal set. This example can be extended in the obvious way



SELECTING TAXA TO SAVE OR SEQUENCE 7

so that, for an arbitrary k, the unique optimal set of size k + 1 intersects in only
two taxa with the unique optimal set of size k.

We analyse the following greedy algorithm.

GreedyMMD(δ, k)

Step 1 Let S be the empty set.
Step 2 Select the two most distant EUs and add to S.

(That is, select two elements x and y that maximises δ(x, y).)
Step 3 Set counter c = 2.
Step 4 If c = k, STOP; otherwise, select an EU from those not already included

in S so that the minimum distance between that EU and those in S is
maximum amongst all remaining EUs not in S.
(That is, select z ∈ X − S that maximises miny∈S δ(z, y).)

Step 5 Set c = c+ 1 and return to Step 4.

The next theorem shows that provided δ satisfies the triangular inequality, then
GreedyMMD is a 2-approximation algorithm to MMD. This means that if S
is the solution returned by GreedyMMD and Yopt is an optimal solution, then
2MD(S) ≥ MD(Yopt), that is, MD(S) is at least half MD(Yopt). It is shown
in Ravi et al. (1994) that, assuming δ is only guaranteed to satisfy the triangle
inequality, for any ε > 0, no polynomial-time algorithm can return a (2 − ε)-
approximation to MMD unless P=NP. In particular, in this case the problem MMD
is NP-hard. Hence, in this setting, GreedyMMD gives the best possible approx-
imation. This theorem has previously been observed in the context of operations
research, for example, see Tamir (1991) and Ravi et al. (1994). However, we include
our proof here as we will require the preliminary lemma again in the next section
and the proof is written in the language of phylogenetics.

Lemma 3.2. Let δ be a distance on X and let k be an integer greater than two. Let
Sk−1 be the (k− 1)-element set that is constructed at the completion of the second-
to-last iteration of GreedyMMD(δ, k). Then, for any element x ∈ X − Sk−1, we
have MD(Sk−1 ∪ {x}) = δ(x, s) for some s ∈ Sk−1.

Proof. For 2 ≤ i ≤ k − 1, let Si = {s1, s2, . . . , si} denote the i-element subset of
Sk−1 that is sequentially constructed by GreedyMMD(δ, k). If MD(Sk−1∪{x}) 6=
δ(x, s) for any s ∈ Sk−1, then, for some distinct si, sj ∈ Sk−1 with i < j, we have
MD(Sk−1 ∪ {x}) = δ(si, sj) < δ(x, s). If there is more than one pair si, sj , choose
a pair with minimal j, and so MD(Sj−1) > δ(si, sj). But then, for all s ∈ Sj−1,

MD(Sj−1 ∪ {x}) ≥ min{MD(Sj−1), min
s∈Sj−1

δ(x, s)} > δ(si, sj) ≥MD(Sj),

contradicting the way in which GreedyMMD selects elements. The lemma now
follows. �

Theorem 3.3. Let δ be a distance on X, and suppose that δ satisfies the triangle
inequality. Let k be an integer greater than one and let Sk be set returned by
GreedyMMD(δ, k). Then MD(Sk) is a 2-approximation to MD(Yopt), where
Yopt is an optimal solution of size k to MMD.
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Proof. For all 2 ≤ i ≤ k, let Si = {s1, s2, . . . , si} denote the i-element subset
of Sk that is sequentially constructed by GreedyMMD(δ, k). By Lemma 3.2,
MD(Sk) = δ(sk, si) for some i ∈ {1, 2, . . . , k − 1}.

Let Yopt = {y1, y2, . . . , yk} be an optimal solution of size k to MMD. Amongst
the elements in Yopt − Sk−1, let y be an element such that

MD(Sk−1 ∪ {y}) = max{MD(Sk−1 ∪ {y′}) : y′ ∈ Yopt − Sk−1}.

By Lemma 3.2, MD(Sk−1∪{y}) = δ(y, si′) for some i′ ∈ {1, 2, . . . , k−1}. Because
of the selection criteria of GreedyMMD, MD(Sk) ≥ MD(Sk−1 ∪ {y}), and so
δ(sk, si) ≥ δ(y, si′).

Now assign each element of Yopt to the element in Sk−1 that it is closest to under
δ. Since |Yopt| > |Sk−1|, it follows by the pigeon-hole principle that two distinct
elements yr, ys ∈ Yopt − Sk−1 are assigned to the same element, s say, in Sk−1. By
the choice of y above,

δ(yr, s) ≤ δ(y, si′) and δ(ys, s) ≤ δ(y, si′).

Then, as δ satisfies the triangle inequality and it is symmetric,

MD(Yopt) ≤ δ(yr, ys)

≤ δ(yr, s) + δ(s, ys) = δ(yr, s) + δ(ys, s)

≤ 2δ(y, si′)

≤ 2δ(sk, si)

= 2MD(Sk)

≤ 2MD(Yopt).

That is,
MD(Yopt)/2 ≤MD(Sk) ≤MD(Yopt).

Hence MD(Sk) is a 2-approximation to MD(Yopt). �

It is possible that for a given set of EUs, the k-element subset returned by
GreedyMMD and that which optimises MMD will exhibit the same minimum
distance or, in fact, be the same subsets. However, we reiterate that the greedy
algorithm cannot be guaranteed to work any better than as a 2-approximation
algorithm even if δ is a tree metric as we show in the following example. We say,
therefore, that Theorem 3.3 is sharp.

Example 3.4. Consider the phylogenetic X-tree T shown in Fig. 3, where the
length of the edge incident with z is arbitrarily small. Suppose that GreedyMMD
is applied to the distance on X induced by the path lengths in T , where k is
chosen so that t + 2 ≤ k ≤ 2t. Let S be the subset of X returned by this appli-
cation. Without loss of generality, we may assume that the first t elements of X
selected by GreedyMMD are x1, x3, . . . , x2t−1. The (t+ 1)-th element selected by
GreedyMMD is z, while the remaining elements are any k − (t + 1) elements in
{y1, y2, . . . , yt}. A simple check shows that MD(S) = 3 + ε. However, it is easily
seen that

Yopt = {x1, x3, . . . , x2t−1, y1, y2, . . . , yk−t}
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Figure 3. A phylogenetic tree demonstrating that GreedyMMD
cannot be guaranteed to be better than a 2-approximation. For
2 < i < t, the configuration consisting of leaves yi, x2i−1, and x2i

is repeated where indicated by dashed lines.

is an optimal solution and MD(Yopt) = 6. Thus the approximation ratio in this
case can be made arbitrarily close to 2 by an appropriate choice of ε.

4. Ultrametric Distances

In the previous section, we described how well GreedyMMD performed as
an approximation to MMD provided the distance measure satisfied the trian-
gle inequality. In this section, we show that there are conditions under which
GreedyMMD will always return a subset of EUs that is optimal under MMD. In
particular, the next theorem guarantees that if δ is an ultrametric, then the solution
set S returned by GreedyMMD(δ, k) is an optimal solution of size k to MMD.
Moreover, if T is a rooted phylogenetic tree that realises δ, then the PD score of
S, denoted PD(S), is equal to the maximum PD score over all subsets of size k.
We denote this last score by PDk. Note that, in this setting, PD(S) is the total
length of the subtree connecting the elements of S and the root of the phylogeny.

Theorem 4.1. Let δ be an ultrametric on X, and let k be an integer greater than
one. Let Sk be the set returned by GreedyMMD(δ, k) and let Yopt be an optimal
solution of size k to MMD. Then

MD(Sk) = MD(Yopt).

Moreover, if T is a rooted phylogenetic X-tree that realises δ, then PD(Sk) = PDk

on T .

Proof. The first part of the proof proceeds in a similar way to that used for proving
Theorem 3.3. Nevertheless, for clarity, we include the proof in full.
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For 2 ≤ i ≤ k, let Si = {s1, s2, . . . , si} denote the i-element subset of Sk that
is sequentially constructed by GreedyMMD(δ, k). By Lemma 3.2, MD(Sk) =
δ(sk, si) for some i ∈ {1, 2, . . . , k − 1}. Let Yopt = {y1, y2, . . . , yk} be an optimal
solution of size k to MMD. Amongst all elements in Yopt−Sk−1, let y be an element
that maximises MD(Sk−1 ∪ {y}). By Lemma 3.2, MD(Sk−1 ∪ {y}) = δ(y, si′) for
some i′ ∈ {1, 2, . . . , k−1}. Now δ(sk, si) ≥ δ(y, si′) as MD(Sk) ≥MD(Sk−1∪{y}).
Assign each element of Yopt to the element of Sk−1 that it is closest to under δ.
Since |Yopt| > |Sk−1|, there are two distinct elements yr and ys in Yopt − Sk−1

assigned to the same element s in Sk−1. By choice of y above,

δ(yr, s) ≤ δ(y, si′) and δ(ys, s) ≤ δ(y, si′).

Thus, since δ is an ultrametric, we have

MD(Yopt) ≤ δ(yr, ys)

≤ max{δ(yr, s), δ(ys, s)}
≤ δ(y, si′)

≤ δ(sk, si)

= MD(Sk)

≤MD(Yopt).

In other words, equality holds throughout and so MD(Sk) = MD(Yopt). This
completes the first part of the theorem.

To show that PD(Sk) = PDk on T , we use induction on k. Clearly, the re-
sult holds if k = 2. So assume that the result holds whenever the set return by
GreedyMMD has size at most k − 1, where k ≥ 3.

Suppose that Sk = {s1, s2, . . . , sk} is returned by GreedyMMD. By Lemma 3.2,
MD(Sk) = δ(sk, si) for some i < k. Let u be the most recent common ancestor of
sk and si in T . Then, as δ is an ultrametric,

MD(Sk) = δ(si, sk) = δ(si, u) + δ(u, sk) = 2δ(u, sk).

Thus, in determining Sk, GreedyMMD finds the element s in X − Sk−1 that
maximises the sum of the edge lengths from s to the minimal subtree of T that
connects the elements in Sk−1. Indeed, this is exactly how the greedy algorithm
works in selecting elements for optimising phylogenetic diversity. By the induction
assumption, PD(Sk−1) = PDk−1, and so PD(Sk) = PDk. This completes the
proof of the theorem. �

5. Taxonomic Distinctness

A measure closely related to MMD that is widely used in conservation biol-
ogy, though in slightly different circumstances, is taxonomic distinctness (TD),
see Clarke and Warwick (1998). Typically, TD is used for comparing the biodi-
versity of different areas. Each area is visited and the set of taxa observed within
the area is recorded. The TD of the area is (effectively) taken to be the average
pairwise distance between taxa. This naturally leads to the idea in our setting of
selecting a set of EUs that maximises the average distance between EUs (MAD). At
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b1 b2 bm−1 bmana2a1 b4b3

Figure 4. An ultrametric tree on which MAD disagrees with
MMD and PD.

first sight, this appears similar to maximising the minimum pairwise distance as in
MMD. However, for many instances in which there is dominant longest path in the
tree, e.g. to an out-group of EUs, the optimal and greedy sets chosen under MAD
unduly try to balance the number of EUs either side of this path, see Example 5.1.
A greedy set under MAD is chosen in the same way as that for MMD except that
Step 4 in GreedyMMD is replaced with the following step:

Step 4′ If c = k, STOP; otherwise, select an EU from those not already included
in S so that the sum of the pairwise distances between that EU and those
in S is maximum amongst all remaining EUs not in S.
(That is, select z ∈ X − S that maximises

∑
y∈S δ(z, y).)

Example 5.1. Consider the ultrametric tree shown in Fig. 4. Under MMD and
PD, a greedy (and therefore optimal) solution set will involve an ai and a spread
of elements from {b1, b2, . . . , bm}. Whereas, under MAD, both greedy and optimal
solution sets will have half of their elements from {a1, a2, . . . , an}.

Likewise, when three EUs from Fig. 1 are selected to optimise MAD, two eu-
karyotes and one bacterium are chosen, as in PD. Thus MAD does not capture the
notion of spread we desire.

For completeness, we note below the computational similarities and differences
between MMD and MAD.

(1) If δ is a tree metric, then, as in the case for MMD, selecting an optimal
set of k EUs under MAD can be done in polynomial time (Chandrasekaran
and Daughety, 1981).

(2) If δ is a tree metric, then, as far as we are aware, the exact approximation
ratio of the greedy algorithm for MAD is unknown. Ravi et al. (1994) have
shown that it is no worse than a 4-approximation; simple examples show
that it is no better than a 4/3-approximation. In comparison, the greedy
algorithm GreedyMMD returns a 2-approximation to MMD and this is
sharp.

(3) If δ satisfies the triangle inequality, Ravi et al. (1994) show that the greedy
algorithm for MAD is no worse than a 4-approximation and no better
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than a 2-approximation algorithm. Again, GreedyMMD returns a 2-
approximation to MMD, and this is sharp.

6. Discussion

In this paper, we show that a subset of EUs that maximises phylogenetic diversity
may result in a counter-intuitive collection of species earmarked for conservation
or as genomic sequencing targets. We argue that as a plausible alternative to
phylogenetic diversity, an appropriate criterion is to choose the subset of EUs where
the minimum distance between any pair of EUs is maximum, amongst all possible
subsets of the same size. This criterion has the virtue of choosing EUs that are
“spread out” across the phylogenetic tree.

However, as others have shown (e.g. Moulton et al., 2007), choosing the subset
that maximises the minimum pairwise distance between EUs cannot be achieved
by applying a greedy algorithm whereby one “builds up” a subset of k EUs by
successively adding to optimal subsets of 2, 3, . . . , k−1 EUs. Nonetheless, we think
that there is real value in being greedy. When one has the opportunity to sequence
yet another genome or save yet another species, one would want all the genomes
that have already been sequenced and all the species that have already been saved
to be part of the larger optimal subset. A greedy algorithm guarantees this.

It is of value, then, to consider the extent to which a greedy algorithm approxi-
mates an optimal implementation of MMD. We showed that, at worst, the greedy
algorithm we defined (GreedyMMD) will choose EUs that are separated on a tree
by distances no shorter than half the shortest distance of an optimal subset of EUs
under MMD provided the distance satisfies the triangle inequality. This suggests
that GreedyMMD will still choose a subset that is reasonably “spread out”.

When distances are ultrametric, Theorem 4.1 shows that GreedyMMD returns
a set which is in fact optimal under both MMD and PD. This is significant because,
until now, the only way to find a set which maximises PD has been to use a
phylogenetic tree. Here, we can apply GreedyMMD to obtain the set of EUs
that maximise PD by working only on the distance matrix. One may question its
applicability, given that ultrametric distances are unlikely to apply to real EUs.
However, it may be possible that even with approximately ultrametric distances
GreedyMMD produces a set that is close to optimal under PD.

Lastly, GreedyMMD can be used on a pairwise distance matrix that does not
necessarily induce a tree metric. Thus a large set of sequences could be analysed
using this method based upon a simple distance measure such as Hamming distance,
without expending the computational time required to reconstruct an accurate
phylogeny. Moreover, if our data satisfies the triangle inequality, we have the
performance guarantee of Theorem 3.3.
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