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Abstract. We are concerned with a finite element approximation for time-harmonic wave propa-
gation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with
numerical dispersion, render standard finite element methods grossly inefficient already in medium-
frequency regimes. As an alternative, methods that incorporate information about the solution in
the form of plane waves have been proposed. Among them the ultra weak variational formulation
(UWVF) of Cessenat and Despres [O. Cessenat and B. Despres, Application of an ultra weak vari-
ational formulation of elliptic PDEs to the two-dimensional Helmholtz equation, SIAM J. Numer.
Anal., 35 (1998), pp. 255–299.].

We identify the UWVF as representative of a class of Trefftz-type discontinuous Galerkin methods
that employs trial and test spaces spanned by local plane waves. In this paper we give a priori
convergence estimates for the h-version of these plane wave discontinuous Galerkin methods. To that
end, we develop new inverse and approximation estimates for plane waves in two dimensions and use
these in the context of duality techniques. Asymptotic optimality of the method in a mesh dependent
norm can be established. However, the estimates require a minimal resolution of the mesh beyond
what it takes to resolve the wavelength. We give numerical evidence that this requirement cannot be
dispensed with. It reflects the presence of numerical dispersion.

Key words. Wave propagation, finite element methods, discontinuous Galerkin methods, plane
waves, ultra weak variational formulation, duality estimates, numerical dispersion
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1. Introduction. This paper is devoted to the numerical analysis of volumet-
ric discretization schemes for the following model boundary value problem for the
Helmholtz equation:

−∆u− ω2u = f in Ω,
∇u · n + iω u = g on ∂Ω.

(1.1)

Here, Ω is a bounded polygonal/polyhedral Lipschitz domain in Rd, d = 2, 3, and
ω > 0 denotes a fixed wave number (the corresponding wavelength is λ = 2π/ω). The
right hand side f is a source term in H−1(Ω), n is the outer normal unit vector to ∂Ω,
and i is the imaginary unit. Inhomogeneous first order absorbing boundary conditions
in the form of impedance boundary conditions are used in (6.2), with boundary data
g ∈ H−1/2(∂Ω).

Denoting by (·, ·) the standard complex L2(Ω)–inner product, namely, (u, v) =∫
Ω
u v dV , the variational formulation of (1.1) reads as follows1: find u ∈ H1(Ω) such

that, for all v ∈ H1(Ω),

(∇u,∇v) − ω2(u, v) + iω

∫

∂Ω

u v dS = (f, v) +

∫

∂Ω

g v dS . (1.2)
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1For a bounded domain D ⊂ Rd, d = 1, 2, 3, we denote by Hs(D), s ∈ N0, the standard Sobolev

space of order s of complex-valued functions, and by ‖ · ‖s,D the usual Sobolev norm. For s = 0, we

write L2(D) in lieu of H0(D). We also use ‖ · ‖s,D to denote the norm for the space (Hs(D))d .
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Existence and uniqueness of solutions of (1.2) is well establish, see, e.g., [20, Sec-
tion 8.1].

The Galerkin discretization of (1.2) by means of standard piecewise polynomial
H1(Ω)–conforming finite elements is straightforward. Yet, it may deliver sufficient
accuracy only at prohibitive costs. For two reasons: firstly, solutions of (6.2) tend to
oscillate on the scale of the wavelength λ = 2π/ω, which entails fine meshes or high
polynomial degrees in the case of piecewise polynomial approximation. Secondly, low
order finite element schemes are also haunted by the so-called pollution effect, that is,
a widening gap between best approximation error and Galerkin discretization error for
increasing wavenumbers, see [4, 18]. Spectral Galerkin methods can apparently avoid
the pollution effect, at the expense of non-locality of the discretization, see [1]. The
pollution effect is closely linked to the notion of numerical dispersion: we observe that
plane waves x 7→ exp(iωd · x), |d| = 1, are solutions of the homogeneous Helmholtz
equation −∆u − ω2u = 0; when the discretized operator is examined (in a periodic
setting), its kernel functions turn out to be similar plane waves but with a different
wavelength.

It is a natural idea to incorporate “knowledge” about both the oscillatory charac-
ter of solutions and their intrinsic wavelength into a discretization of (6.2). This
has been pursued in many ways, mainly by building trial spaces based on plane
waves. This has been attempted in the partition of unity (PUM) finite element
method [3, 14, 19, 20, 22], the discontinuous enrichment approach [12, 13, 26], and in
the context of least squares approaches [21, 25].

Arguably, the most “exotic” among the plane wave methods is the ultra-weak
variational formulation (UWVF) introduced by Cessenat and Despres [9–11]. It owes
its name to the twofold integration by parts underlying its original formulation, which
features impedance traces on cell boundaries as unknowns in the variational formula-
tion. Cessenat and Despres managed to establish existence and uniqueness of solutions
of the UWVF, but failed to give meaningful a priori error estimates. On the other
hand, extensive numerical experiments mainly conducted by P. Monk and collab-
orators indicate reliable convergence [16, 17] for a wide range of wave propagation
problems (without volume sources). This carries over to the extension of the method
to Maxwell’s equations [15].

Fresh analysis was made possible by the discovery that the UWVF can be recast
as a special discontinuous Galerkin (DG) method for (6.2) with trial and test spaces
supplied by local plane wave spaces. This relationship gradually emerged, cf. [15],
and is made fully explicit in Section 3 of this article and in a paper by A. Buffa and
P. Monk [7], which was written parallel to ours. The big gain from this new perspective
is that powerful techniques of DG analysis can be harnessed for understanding the
convergence properties of the UWVF. This was done in [7] building on estimates
already established by Cessenat and Despres. In the present paper the relationship
of UWVF and DG paves the way for adapting the convergence theory of elliptic DG
methods [8] combined with duality techniques [5,23]. We point out that this entailed
a slight modification of the UWVF in order to enhance its stability.

Thus, we obtain a priori h–asymptotic estimates in both a mesh-dependent broken
H1–norm and the L2–norm, see Section 5. The estimates target the case of uniform
mesh refinement keeping the resolution of local trial spaces fixed, the so-called h–
version of volumetric discretization schemes. h–asymptotic quasi-optimality with ω–
uniform constants is established, but under daunting circumstances: writing h for the
global meshwidth, we have to assume that hω2 is sufficiently small, which amounts
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to the pollution effect rearing its head again. Basically we end up with the same
requirement of over-resolving the wavelength as stipulated by the usual error estimates
for piecewise linear globally continuous finite elements.

In short, theory dismisses the UWVF as miracle cure for numerical dispersion
and simple numerical experiments carry the same message, see Section 7. Nevertheless
plane wave DG method for (6.2) can be viable when used wisely. It is not advisable to
try and improve accuracy by refining the mesh. Rather, the cell size should be linked
to the wavelength and the number of plane wave directions should be increased. In
fact, it is large cells and large local spaces that are preferred in practical applications
of the method.

Hence, the asymptotics considered in the present paper and in [7, 9] may not be
the right one. Nevertheless, we believe that investigation of h–version convergence is
an essential first step in understanding the more interesting p–version of plane wave
Galerkin methods. Moreover, already the case of h–refinement forced us to develop
some theoretical tools which are certainly of interest in their own right: (i) construction
of a basis for plane wave spaces that remains stable for small wavenumbers (see
Section 4.1); (ii) inverse estimates and projection error estimates for plane waves (see
Section 4.2); (iii) new variants of duality arguments (see Section 5).

The outline of the paper is as follows: after recalling the UWVF in Section 2,
we rewrite it in Section 3 as a (primal) mixed DG method; Section 4 contains the
definition of a stable basis for plane wave spaces and some related key results (inverse
and projection error estimates) used in the convergence analysis developed in Sec-
tion 5. Section 6 deals with the duality estimate in the one-dimensional case. Finally,
numerical results demonstrating the predicted h-convergence sharpness are presented
in Section 7.

2. Ultra weak variational formulation. The main ingredients of the ultra
weak variational formulation-based method introduced by Cessenat and Despres in [9]
are the following: (i) a partition Th of Ω into subdomains K of diameters hK ; (ii)
subdomainwise ultra weak variational formulation of (1.1) (integrate by parts twice
the second order term in the first equation of (1.1) on each K); (iii) finite dimensional
trial and test spaces spaces Vh made of p plane waves on each K ∈ Th.

Therefore, let Th be a partition of Ω into polyhedral subdomains K of diameters
hK with possible hanging nodes. Let Fh be the skeleton of the partition Th, and
define FB

h = Fh ∩ ∂Ω and FI
h = Fh \ FB

h . Finally, we will denote by ∇h and ∆h the
elementwise application of the operators ∇ and ∆, respectively.

The method of Cessenat and Despres as published in [9] is usually stated in terms
of unknown functions on Fh, see also [7, Formula 19]. Yet it can be equivalently stated
as follows: find uh ∈ Vh such that, for all vh ∈ Vh,

∑

K∈Th

∫

∂K

(−∇uh · n + iωuh)(−∇vh · n + iωvh) dS

−
∫

FI

h

(−∇u−h · n− + iωu−h )(∇v+
h · n+ + iωv+

h ) dS

−
∫

FI

h

(−∇u+
h · n+ + iωu+

h )(∇v−h · n− + iωv−h ) dS

= −2iω (f, vh) +

∫

FB

h

g(∇vh · n + iωvh) dS ,

(2.1)
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where the superscripts + and − refer to quantities from the two different elements
sharing the considered interior face (see [9, Formula (1.4)] and [17, Formula 10]).

Following [15], it is possible to show that the method by Cessenat and Despres can
be recovered by writing the second order problem as a first order system, and then
discretizing this system by using a discontinuous Galerkin (DG) method with flux
splitting approach (classical upwind DG method). Here, we follow a slightly different
approach and see that the method by Cessenat and Despres is a particular method
of the general class of DG methods presented in [8]. A similar perspective is adopted
in [7, Sect. 2].

3. Mixed discontinuous Galerkin approach. In order to derive the method
by Cessenat and Despres as a particular representative of the general class of DG
methods presented in [8], we introduce the auxiliary variable σ := ∇u/iω and write
problem (1.1) as a first order system:

iωσ = ∇u in Ω,

iω u−∇ · σ =
1

iω
f in Ω,

iωσ · n + iω u = g on ∂Ω.

(3.1)

Now, introduce a partition Th of Ω into subdomains K, and proceed as in [8]. By
multiplying the first and second equations of (3.1) by smooth test functions τ and v,
respectively, and integrating by parts on each K, we obtain

∫

K

iω σ · τ dV +

∫

K

u∇ · τ dV −
∫

∂K

u τ · ndS = 0 ∀τ ∈ H(div;K)

∫

K

iω u v dV +

∫

K

σ · ∇v dV −
∫

∂K

σ · n v dS =
1

iω

∫

K

f v dV ∀v ∈ H1(K) .

(3.2)

Introduce discontinuous discrete function spaces Σh and Vh; replace σ, τ by σh, τ h ∈
Σh and u, v by uh, vh ∈ Vh. Then, approximate the traces of u and σ across interele-
ment boundaries by the so-called numerical fluxes denoted by ûh and σ̂h, respectively
(see, e.g., [2] for details) and obtain

∫

K

iωσh · τh dV +

∫

K

uh ∇ · τ h dV −
∫

∂K

ûh τh · ndS = 0 ∀τ h ∈ Σh(K)

∫

K

iω uh vh dV +

∫

K

σh · ∇vh dV −
∫

∂K

σ̂h · n vh dS =
1

iω

∫

K

f vh dV ∀vh ∈ Vh(K) .

(3.3)

At this point, in order to complete the the definition of classical DG methods, one
“simply” needs to choose the numerical fluxes ûh and σ̂h (notice that only the normal
component of σ̂h is needed).

Here, in order to recover the method by Cessenat and Despres, we integrate back
by parts the first equation of (3.3):

∫

K

σh · τh dV =
1

iω

∫

K

∇uh · τ h dV − 1

iω

∫

∂K

(uh − ûh) τh · ndS . (3.4)
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Assume ∇hVh ⊆ Σh and take τ h = ∇vh in each element. Insert the resulting expres-
sion for

∫
K σh · ∇vh dV into the second equation of (3.3). We get

∫

K

(∇uh ·∇vh−ω2uhvh) dV −
∫

∂K

(uh−ûh)∇vh · ndS−
∫

∂K

iωσ̂h ·n vh dS =

∫

K

f vh dV .

(3.5)
Notice that the formulation (3.5) is equivalent to (3.3) in the sense that their uh

solution components coincide and the σh solution component of (3.3) can be recovered
from uh by using (3.4).

Another equivalent formulation can be obtained by integrating by parts once more
the first term in (3.5) (notice that the boundary term appearing in this integration
by parts cancels out with a boundary term already present in (3.5)):
∫

K

(−∆vh − ω2vh)uh dV +

∫

∂K

ûh ∇vh · ndS−
∫

∂K

iωσ̂h ·n vh dS =

∫

K

f vh dV . (3.6)

By taking Trefftz-type test functions vh in (3.6) such that, for all K ∈ Th,

−∆vh − ω2vh = 0 in K ,

formulation (3.6) simply becomes
∫

∂K

ûh ∇vh · ndS −
∫

∂K

iωσ̂h · n vh dS =

∫

K

f vh dV . (3.7)

By properly choosing the numerical fluxes in (3.7), we can recover the original method
by Cessenat and Despres (2.1). To give the details, it is convenient to adopt the
notation used in the description of discontinuous Galerkin methods: let uh and σh be
a piecewise smooth function and vector field on Th, respectively. On ∂K− ∩ ∂K+, we
define

the averages: {{uh}} := 1
2 (u+

h + u−h ) , {{σh}} := 1
2 (σ+

h + σ−
h ) ,

the jumps: [[uh]]N := u+
h n+ + u−h n− , [[σh]]N := σ+

h · n+ + σ−
h · n− .

Then, the method by Cessenat and Despres is obtained by choosing the numerical
fluxes in (3.7) as follows: on ∂K− ∩ ∂K+ ⊂ FI

h , we define

σ̂h =
1

iω
{{∇huh}} −

1

2
[[uh]]N ,

ûh = {{uh}} −
1

2iω
[[∇huh]]N ,

(3.8)

and on ∂K ∩ ∂Ω ⊂ FB
h , we define

σ̂h =
1

iω
∇huh − 1

2

(
1

iω
∇huh + uh n − 1

iω
gn

)
,

ûh = uh − 1

2

(
1

iω
∇huh · n + uh − 1

iω
g

)
.

(3.9)

In fact, multiply equation (3.7) by 2iω and sum over all elements:

∑

K∈Th

∫

∂K

(
2iωûh ∇vh · n + 2iωσ̂h · n iωvh

)
dS = 2iω(f, vh) .
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Now, plug in the fluxes defined in (3.8)–(3.9) and, by denoting with the superscript
ext the quantities taken from the neighbors of the considered element K (obviously,
next = −n), we can write

∑

K

[ ∫

∂K\∂Ω

[
(iωuh + iωuext

h −∇uh · n −∇uext
h · next)∇vh · n

+ (∇uh · n −∇uext
h · next − iωuh + iωuext

h )iωvh

]
dS

+

∫

∂K∩∂Ω

[
(iωuh −∇uh · n + g)∇vh · n

+ (∇uh · n − iωuh + g)iωvh

]
dS
]

= 2iω(f, vh) ,

from which, by rearranging the terms, we obtain (2.1).
We modify the fluxes in (3.8)–(3.9) by multiplying [[uh]]N and [[∇huh]]N in (3.8) by

mesh dependent coefficients. In order to do that, we define the local mesh size function
h on FI

h by h(x) = min{hK− , hK+} if x is in the interior of ∂K− ∩ ∂K+. Mimicking
the general form of numerical fluxes introduced in [8], the primal formulation we will
analyze is obtained by choosing the numerical fluxes in (3.7) as follows: on ∂K− ∩
∂K+ ⊂ FI

h , we define

σ̂h =
1

iω
{{∇huh}} − α [[uh]]N − γ

iω
[[∇huh]]N ,

ûh = {{uh}} + γ · [[uh]]N − β

iω
[[∇huh]]N ,

(3.10)

and on ∂K ∩ ∂Ω ⊂ FB
h , we define

σ̂h =
1

iω
∇huh − (1 − δ)

(
1

iω
∇huh + uh n − 1

iω
gn

)
,

ûh = uh − δ

(
1

iω
∇huh · n + uh − 1

iω
g

)
,

(3.11)

with parameters α > 0, β ≥ 0, γ and 0 < δ < 1 to be chosen.
The original method by Cessenat and Despres [9] is recovered by choosing

α = 1/2 , β = 1/2 , γ = 0 , δ = 1/2 .

Yet, this choice lacks essential stability properties needed for the analysis of Sect. 5.
Thus, we focus on a restricted class of primal methods where the parameters in the
definition of the numerical fluxes (3.10) and (3.11) are as follows:

α = a/ωh , β = bωh , γ = 0 , δ = dωh , (3.12)

with a ≥ amin > 0 on FI
h , b ≥ 0 on FI

h and d ≥ 0 on FB
h , all independent of the mesh

size and ω. Further assumptions on amin and d will be stated in Sect. 5.
Remark 3.1. One may also consider the Helmholtz boundary value problem with

Dirichlet boundary conditions. In this case, for the boundary condition u = gD on ∂Ω,
the appropriate numerical fluxes for cell faces on ∂Ω are

σ̂h =
1

iω
∇huh − λ (uh n − gD n) ,

ûh = gD,
(3.13)
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with a parameter λ > 0. In this case the boundary value problem lacks a unique
solution for ω from an infinte discrete set resonant wave numbers. Thus, we skip pure
Dirichlet boundary conditions, as well as pure Neumann boundary conditions, in the
convergence analysis.

4. Plane waves. We restrict ourselves to the case d = 2 and to triangular
meshes. Let PWω(R2) be the space of linear combinations of p ∈ N plane waves of
wavelength 2π

ω , ω > 0, in R2, i.e.,

PWω(R2) = {v ∈ C∞(R2) : v(x) =

p∑

j=1

αj exp(iωdj · x), αj ∈ C} , (4.1)

where the directions dj ∈ R2 are fixed, have unit length and are assumed to be
different from each other. For simplicity, we suppress the dependence on {dj}p

j=1 in

the notation for PWω(R2). It goes without saying that every v ∈ PWω(R2) is a
solution of the homogeneous Helmholtz equation −∆v − ω2v = 0 in R

2.

Lemma 4.1. With the abbreviation ek := exp(iωdk·) the set {ek}p
k=1 is a basis of

PWω(R2) for all ω > 0.

Proof. Setting x = dkξ, ξ ∈ R, we conclude from

p∑

j=1

αj exp(iωdj · x) = 0 ∀x ∈ R
2 , (4.2)

that

αk +

p∑

j=1
j 6=k

αj exp(iω(dj · dk − 1)ξ) = 0 ∀ξ ∈ R . (4.3)

As dj · dk < 1 for j 6= k, this can only hold if αk = 0.

The drawback of this natural basis is that its vectors become “ever more linearly
dependent” as ω → 0: obviously ek → 1 if ω → 0 uniformly on any compact set.
For both numerical and theoretical purposes a basis that remains stable for ω → 0
is urgently needed. The construction of such a basis is carried out in Section 4.1 and
inverse and projections estimates for plane wave functions are studied in Section 4.2.

4.1. Stable bases for plane waves. For reasons that will become apparent
below, we restrict ourselves to odd p = 2m+1, m ∈ N; see Remark 4.3 below. For the
direction vectors we may write dk :=

(cos(ϕk)
sin(ϕk)

)
, ϕk ∈ [0, 2π[, with ϕk 6= ϕj for k 6= j.

It is convenient to introduce the symbol

µl,k :=





1 for l = 1 ,

cos( l
2ϕk) for even l ,

sin( l−1
2 ϕk) for odd l ≥ 3 ,

l, k ∈ N . (4.4)
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Let Mp stand for the real p× p–matrix (µl,k)
p
l,k=1. For p = 2m+ 1 it reads

Mp :=




1 1 1 · · · · · · 1
cos(ϕ1) cos(ϕ2) cos(ϕ3) · · · · · · cos(ϕp)
sin(ϕ1) sin(ϕ2) sin(ϕ3) · · · · · · sin(ϕp)
cos(2ϕ1) cos(2ϕ2) cos(2ϕ3) · · · · · · cos(2ϕp)
sin(2ϕ1) sin(2ϕ2) sin(2ϕ3) · · · · · · sin(2ϕp)

...
...

...
...

cos(mϕ1) cos(mϕ2) cos(mϕ3) · · · · · · cos(mϕp)
sin(mϕ1) sin(mϕ2) sin(mϕ3) · · · · · · sin(mϕp)




. (4.5)

Lemma 4.2. For odd p the matrix Mp ∈ Rp,p from (4.5) is regular.

Proof. If MT
p
~ζ = 0 for some ~ζ ∈ Rp, then

ζ0 +
m∑

l=1

[
ζ2l−1 cos(lϕk) + ζ2l sin(lϕk)

]
= 0 for k = 1, . . . , p .

Hence, ~ζ is the coefficient vector for a real valued trigonometric polynomial of degreem
with 2m+1 different zeros ϕk, k = 1, . . . , p. This polynomial must be zero everywhere.

The inverse of the matrix Mp will effect a transformation to a basis that remains

stable in the limit ω → 0. We set α
(j)
k :=

(
M−1

p

)
k,j

, 1 ≤ k, j ≤ p, and define

bj := (iω)−[ j
2 ]

p∑

k=1

α
(j)
k ek . (4.6)

Since Mp is regular, {bj}p
j=1 will be a basis of PWω(R2), too.

The actual computation of bj starts from the series expansion of the exponentials

p∑

k=1

α
(j)
k ek(x) =

∞∑

n=0

1

n!
(iω)n

p∑

k=1

α
(j)
k (dk · x)n , (4.7)

where summations may be interchanged due to the uniform convergence of the series.
Next, we write x =

(
x
y

)
and use that

((
cosϕ

sinϕ

)
· x
)n

=

n∑

j=0

(
n

j

)
cosn−j(ϕ) sinj(ϕ) xn−jyj (4.8)

is a real trigonometric polynomial of degree n. Thus it can be expressed as a Fourier
sum

((
cosϕ

sinϕ

)
· x
)n

=
γn
0 (x)

2
+

n∑

j=1

[
γn

j (x) cos(jϕ) + σn
j (x) sin(jϕ)

]
, (4.9)

where

γn
j (x) =

1

π

π∫

−π

((
cosϕ

sinϕ

)
· x
)n

cos(jϕ) dϕ , j = 0, . . . , n , (4.10)

σn
j (x) =

1

π

π∫

−π

((
cosϕ

sinϕ

)
· x
)n

sin(jϕ) dϕ , j = 1, . . . , n . (4.11)
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From (4.9) is it immediate that both γn
j (x) and σn

j (x) are homogeneous polynomials
in x, y. We also find that

j + n odd ⇒ γn
j (x) = 0 , σn

j (x) = 0 . (4.12)

In fact, by setting z = x+ iy, we can write

((
cosϕ

sinϕ

)
· x
)n

= 2−n
n∑

k=0

(
n

k

)
zn−kzk exp(i(n− 2k)ϕ).

Therefore, for even n,
((

cos ϕ
sin ϕ

)
· x
)n

has vanishing Fourier coefficients for odd indices,

whereas, for odd n, it has vanishing Fourier coefficients for even indices. Formula (4.12)
follows from the the fact that σn

j and γn
j are such trigonometric Fourier coefficients;

see (4.9).
Moreover, for any n ∈ N, the nonzero γn

j (x), σn
j (x) provide a basis of the space

of two-variate homogeneous polynomials of degree n.
For the sake of simplicity, we set κn

1 (x) := γn
0 (x)/2, κn

2j(x) := γn
j (x), j = 1, . . . , n,

for even j, and κn
2j+1(x) := σn

j (x) for odd j. Using (4.4) this permits us to rewrite

((
cosϕk

sinϕk

)
· x
)n

=

2n+1∑

l=1

κn
l (x)µl,k . (4.13)

We plug this into (4.7)

p∑

k=1

α
(j)
k ek(x) =

∞∑

n=0

1

n!
(iω)n

p∑

k=1

α
(j)
k

2n+1∑

l=1

κn
l (x)µl,k

=

∞∑

n=0

1

n!
(iω)n

2n+1∑

l=1

κn
l (x)

p∑

k=1

α
(j)
k µl,k ,

and observe that, by definition of α
(j)
k ,

p∑

k=1

α
(j)
k µl,k = δlj , 1 ≤ l, j ≤ p .

Thus, we infer

p∑

k=1

α
(j)
k ek(x) =

m∑

n=[ j
2 ]

1

n!
(iω)nκn

j (x)

+

∞∑

n=m+1

1

n!
(iω)n



κn
j (x) +

2n+1∑

l=p+1

κn
l (x)

p∑

k=1

α
(j)
k µl,k



 .

This means

bj(x) =

m∑

n=[ j
2 ]

1

n!
(iω)n−[ j

2 ]κn
j (x) + ωm+1−[ j

2 ]Rj(ω,x) , (4.14)
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with a remainder function Rj(ω,x) that, thanks to |κn
j (x)| ≤ 2|x|n, is uniformly

bounded on compact sets. This immediately gives

lim
ω→0

bj(x) =
1[
j
2

]
!
κ
[ j
2 ]

j (x) . (4.15)

Unraveling the definition of κn
j , we find

κ0
1 = 1

2γ
0
0 ≡ 1 , κ

[ j
2 ]

j = γ
j
2
j
2

for even j , κ
[ j
2 ]

j = σ
j−1

2
j−1

2

for odd j ≥ 3 .

This links the limits to the integrals

1

π

π∫

−π

(x cosϕ+ y sinϕ)n exp(inϕ) dϕ =
1

π

π∫

−π

1

2n
(exp(iϕ)z + exp(−iϕ)z)n exp(inϕ) dϕ

=
1

2n
zn , with z = x+ iy , n ∈ N ,

which gives us

κ
[ j
2 ]

j (x) = 2−[ j
2
]

{
Re
Im

}
(x+ iy)[

j
2 ] ,

{
for even j ,
for odd j .

(4.16)

So the basis functions bj tend to scaled standard harmonic polynomials in the limit
ω → 0:
{
b0j(x) := lim

ω→0
bj(x)

}p

j=1
=

{
1,

2−k

k!
Re(x+ iy)k,

2−k

k!
Im(x+ iy)k

}m

k=1

. (4.17)

Those are, of course, linearly independent. Thus, we retain linear independence of the
functions in the limit ω → 0.

Remark 4.3. The use of odd p is essential, in fact, with even p, one would end
up with an incomplete space of harmonic polynomials in the limit ω → 0; see (4.17).
Moreover, for even p, the matrix Mp from (4.5) can be singular (take, e.g., p = 2,
0 < ϕ1 < 2π and ϕ2 = 2π − ϕ1) and the definition of the stable basis functions is no
longer valid.

Now, we take for granted that the directions dj are uniformly spaced on the circle,
that is,

dj =

(
cos(2π

p (j − 1) + ξ)

sin(2π
p (j − 1) + ξ)

)
, j = 1, . . . , p , ξ ∈ R . (4.18)

This is the customary choice, which is also made in the standard ultra weak discontin-
uous Galerkin formulation. The special plane wave space distinguished by equispaced
directions (4.18) will be designated by PW p,ξ

ω (R2).
Lemma 4.4. For the particular choice ϕj = 2π

p (j − 1) + ξ, j = 1, . . . , p, ξ ∈ R,

the matrix Mp from (4.5) satisfies MpM
H
p = diag(p, 1

2p, . . . ,
1
2p).

Proof. We only need to consider the case ξ = 0 (the result for ξ 6= 0 will follow in
a straightforward way). For the the first row and column, it holds

(
MpM

H
p

)
1,s

=
(
MpM

H
p

)
s,1

=






p for s = 1 ,

∑p
j=1 cos( s

2ϕj) for even s ,

∑p
j=1 sin( s−1

2 ϕj) for odd s ≥ 3 .
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For even s, we have

p∑

j=1

cos( s
2ϕj) =

p−1∑

k=0

cos
(

s
2

2πk
p

)
=

1

2

[
p−1∑

k=0

exp
(
i sπ

p

)k

+

p−1∑

k=0

exp
(
−i sπ

p

)k
]

=
1

2




1 − exp

(
i sπ

p

)p

1 − exp
(
i sπ

p

) +
1 − exp

(
−i sπ

p

)p

1 − exp
(
−i sπ

p

)



 = 0.

For odd s ≥ 3, the identity
∑p

j=1 sin( s−1
2 ϕj) = 0 can be obtained in a similar way;

then the first row and column are [p, 0, . . . , 0]. Using similar arguments, we also obtain

for even s, t:

p∑

j=1

cos( s
2ϕj) cos( t

2ϕj) = 1
2p δs,t ,

for odd s, t ≥ 3:

p∑

j=1

sin( s−1
2 ϕj) sin( t−1

2 ϕj) = 1
2p δs,t ,

for even s, odd t ≥ 3:

p∑

j=1

cos( s
2ϕj) sin( t−1

2 ϕj) = 0 ;

consequently, for 2 ≤ s, t ≤ p,
(
MpM

H
p

)
s,t

= 1
2p δs,t, and the proof is complete.

In concrete terms, the result of Lemma 4.4 means

bj(x) =






1
p

∑p
k=1 ek(x) for j = 1 ,

(iω)−
j
2

2
p

∑p
k=1 cos( j

2ϕk)ek(x) for even j ,

(iω)−
j−1

2
2
p

∑p
k=1 sin( j−1

2 ϕk)ek(x) for odd j ≥ 3 .

(4.19)

Remark 4.5. Use of the stable basis {bj}p
j=1 is essential in numerical studies of

low-wavenumber asymptotics. Yet, the representation (4.19) is prone to cancellation
and useless in numerical terms. Instead, we use the series expansion (4.14) up to ω13.
The resulting truncation errors are illustrated in Figure 4.1: for large ω the truncation
error becomes large, for small ω the instability of the exponential basis makes the
(MATLAB) computation sensitive to roundoff. For 1

2 ≤ ω ≤ 1, x ∈ K, and p ≤ 11
the resulting truncation errors are below 10−5 uniformly.

Remark 4.6. The construction of a stable basis is closely linked to plane wave
representation formulas for circular wave Helmholtz solutions

x 7→ ω−nJn(ωr) exp(±inθ) , x =

(
r cos θ
r sin θ

)
, n ∈ N0 , (4.20)

where Jn is a Bessel function. For those we have the integral representation

Jn(z) =
(−1)n

2π

∫ 2π

0

exp(iz cosϕ)einϕ dϕ , z ∈ C, n ∈ N0 . (4.21)

From the series expansion

Jn(z) =
(z

2

)n ∞∑

l=0

1

l!(n+ l)!

(
−z

2

4

)l

, z ∈ C , (4.22)
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Fig. 4.1. Residual norm for L2 projection of truncated basis functions bj onto plane wave space.
Truncation after 13 terms in the expansion w.r.t. ω.

it becomes clear that, in the limit ω → 0, the span of the functions, written in polar
coordinates (r, θ),

{
J0(ωr),Re

J1(ωr)

ω
eiθ, Im

J1(ωr)

ω
eiθ, . . . ,Re

Jm(ωr)

ωm
eimθ, Im

Jm(ωr)

ωm
eimθ

}
(4.23)

will be the same as that of the harmonic polynomials in (4.17). This suggests a rela-
tionship to the stable basis functions bj from (4.6):

b1 ∼ J0(ωr) , bj ∼
{
ω− j

2 Re J j
2

(ωr)ei j
2
θ for even j ,

ω− j−1

2 Im J j−1

2

(ωr)ei j−1

2
θ for odd j .

(4.24)

Using (4.21) we can rewrite

Jn(ωr)einθ =
(−1)n

2π

∫ 2π

0

exp(inϕ) exp

(
iω

(
cosϕ

sinϕ

)
· x
)

dϕ . (4.25)

The integral can be approximated by the p-point trapezoidal rule, p = 2m + 1. In
combination with (4.24) this yields

b1(x) ∼1

p

p∑

l=1

exp(iωdl · x) ,

bj(x) ∼





ω− j
2

1
p

p∑
l=1

cos( j
2ϕl)el(x) for even j ,

ω− j−1

2
1
p

p∑
l=1

sin( j−1
2 ϕl)el(x) for odd j ,

with dl introduced in (4.18), ϕl defined in Lemma 4.4. Up to scaling this agrees with
(4.19).

Some theoretical investigations will also rely on the augmented space

PPWω(R2) := PWω(R2) + P1(R
2) (4.26)

= 〈1, iωx, iωy, exp(iωd1 · x), . . . , exp(iωdp · x)〉 ,
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where P1(R
2) designates the space of two-variate affine linear functions.

For theoretical and computational purposes we also need a basis of PPWω(R2)
that remains stable for ω → 0. First we modify the plane wave functions ek by
subtracting the linear parts

ẽk(x) := exp(iωdk · x) − 1 − iωdk · x . (4.27)

It goes without saying that 〈1, iωx, iωy, ẽ1, . . . , ẽp〉 still constitutes a basis of

PPWω(R2). This time we define α
(j)
k , 1 ≤ k, j ≤ p, p ≥ 5, by

(
p∑

k=1

α
(j)
k µl,k

)p

j,l=1

=
(
ρ
(j)
l

)p

j,l=1
:=




1 0 0 0 0 0 . . . . . . 0

0 0 0 1 0 0
...

0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 0 1
. . .

...
. . . 1

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1




. (4.28)

Thanks to Lemma 4.2, this is a valid definition . The coefficients α
(j)
k can be used

to define the new basis functions. To justify this, we use the exponential series and

(4.13) to write, with ρ
(j)
l defined in (4.28),

p∑

k=1

α
(j)
k ẽk =

p∑

k=1

α
(j)
k

∞∑

n=2

1

n!
(iω)n

((
cosϕk

sinϕk

)
· x
)n

=

∞∑

n=2

1

n!
(iω)n

2n+1∑

l=1

κn
l (x)

p∑

k=1

α
(j)
k µl,k (4.29)

=

m∑

n=2

1

n!
(iω)n

2n+1∑

l=1

ρ
(j)
l κn

l (x) +

∞∑

n=m+1

1

n!
(iω)n

2n+1∑

l=1

κn
l (x)

p∑

k=1

α
(j)
k µl,k

=

m∑

n=2

1

n!
(iω)n

2n+1∑

l=1

ρ
(j)
l κn

l (x) + (iω)m+1Rj(ω,x) ,

where the remainder term is uniformly bounded on R × [0, 1]2. Thus, for p ≥ 5, we
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define special basis functions

b1 := (iω)−2

p∑

k=1

α
(1)
k ẽk ⇒ lim

ω→0
b1(x) = 1

2κ
2
1(x) = 1

4 (x2 + y2) , (4.30)

b2 := (iω)−2

p∑

k=1

α
(2)
k ẽk ⇒ lim

ω→0
b2(x) = 1

2κ
2
4(x) = 1

4 (x2 − y2) , (4.31)

b3 := (iω)−2

p∑

k=1

α
(3)
k ẽk ⇒ lim

ω→0
b3(x) = 1

2κ
2
5(x) = 1

2xy , (4.32)

b4 := (iω)−3

p∑

k=1

α
(4)
k ẽk ⇒ lim

ω→0
b4(x) = 1

6κ
3
2(x) = 1

24 (x3 + 3xy2) , (4.33)

b5 := (iω)−3

p∑

k=1

α
(5)
k ẽk ⇒ lim

ω→0
b5(x) = 1

6κ
3
3(x) = 1

24 (y3 + 3yx2) . (4.34)

We conclude the limits from (4.29), the definition of ρ
(j)
l in (4.28) and the fact that,

cf. (4.12),

κ2
l = 0 for l 6∈ {1, 4, 5} , κ3

l = 0 for l 6∈ {2, 3, 6, 7} . (4.35)

For the remaining basis functions bj, j = 6, . . . , p, we resort to the usual formula, cf.
(4.6),

bj := (iω)−[ j
2 ]

p∑

k=1

α
(j)
k ẽk , (4.36)

and recover the limit (4.15). For p ≥ 7, we point out that we have

b6 := (iω)−3

p∑

k=1

α
(6)
k ẽk ⇒ lim

ω→0
b6(x) = 1

6κ
3
6(x) = 1

48 (x3 − 3xy2) , (4.37)

b7 := (iω)−3

p∑

k=1

α
(7)
k ẽk ⇒ lim

ω→0
b8(x) = 1

6κ
3
7(x) = 1

48 (−y3 + 3yx2) . (4.38)

Summing up,

• if p ≥ 3, for ω → 0 the functions in the set {1, x, y, b1, b2, b3} will uniformly
converge to a stable polynomial basis of the full space P2(R

2) of quadratic
bi-variate polynomials,

• if p ≥ 7, the functions in {1, x, y, bk}7
k=1 have x–uniform limits for ω → 0 and

converge to a basis of P3(R
2).

• the limits lim
ω→0

bj , j ≥ 6, provide linearly independent harmonic polynomials

of degree [ j
2 ], see (4.17).

Thus we have found a basis of PPWω(R2) that does not degenerate as ω → 0.

Again, we examine the stable basis for the special case of equispaced directions
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(4.18). Using Lemma 4.4, the defining equations (4.28) imply, for p ≥ 5,

(
α

(j)
k

)p

j,k=1
= diag(

1

p
,
2

p
, . . . ,

2

p
)Mp







1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0




0

0 I



, (4.39)

where I denotes the (p− 5)× (p− 5)-identity matrix. In terms of basis functions this
means, for p ≥ 5,

bj =





(iω)−2 1
p

∑p
k=1 ẽk for j = 1 ,

(iω)−2 2
p

∑p
k=1 cos(2ϕk)ẽk for j = 2 ,

(iω)−2 2
p

∑p
k=1 sin(2ϕk)ẽk for j = 3 ,

(iω)−3 2
p

∑p
k=1 cos(ϕk)ẽk for j = 4 ,

(iω)−3 2
p

∑p
k=1 sin(ϕk)ẽk for j = 5 ,

(iω)−
j
2

2
p

∑p
k=1 cos( j

2ϕk)ẽk for even j > 5 , if p ≥ 7 ,

(iω)−
j−1

2
2
p

∑p
k=1 sin( j−1

2 ϕk)ẽk for odd j > 5 , if p ≥ 7 .

(4.40)

4.2. Inverse and projection estimates for plane waves. In order to develop
a convergence theory for the h–version of the DG methods from Section 3 with plane
wave trial and test functions, we aim to establish element-by-element inverse and
projection estimates for PW p,ξ

ω (R2) that parallel those for piecewise polynomials. As
usual we have to limit the distortion of the triangles.

Assumption 4.6.1 (Shape regularity). All angles of triangles in Th are bounded
from below by α0 > 0.

Our analysis heavily relies on scaling techniques employing similarity mappings
ΦK , that is, compositions of rigid motions and scalings:

ΦK : K̂ 7→ K , ΦK(x̂) = hK

hcK

Qx̂ + t, QT = Q−1, t ∈ R
2 . (4.41)

A function v ∈ PW p,0
ω (K) pulled back to K̂ has the representation

(v ◦ ΦK)(x̂) =: v̂(x̂) =

p∑

j=1

αj exp(i hK

hcK

ωd̂j · x̂) , αj ∈ C, x̂ ∈ K̂ , (4.42)

with, by (4.18),

d̂j =

(
cos(2π

p (j − 1) + γ)

sin(2π
p (j − 1) + γ)

)
, j = 1, . . . , p , γ ∈ R . (4.43)

The angle γ reflects the rotation Q involved in the mapping to K̂. In short, the image
of PW p,0

ω (R2) under similarity pullback is PW p,γ
bω (R2), ω̂ := hK

hcK

ω. It is essential to

note that even if two triangles are mapped to the same “reference triangle” K̂, the
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mapped plane wave spaces will not necessarily agree. This foils standard finite element
Bramble-Hilbert type arguments, see [6, Sect. 4.3.8].

The first class of inequalities are trace inverse estimates connecting norms of
traces onto element boundaries with norms over the element itself.

Theorem 4.7. Let Assumption 4.6.1 hold and p be odd. Then there exists a
constant Ctinv > 0 such that

‖v‖0,∂K ≤ Ctinvh
−1/2
K ‖v‖0,K ∀v ∈ PW p,0

ω (R2), ∀K ∈ Th, ∀ω ≥ 0 .

Proof. (i) Pick any K ∈ Th and an edge e ⊂ ∂K. There is a unique similarity
mapping ΦK according to (4.41) such that the line segment ê =

[(
−1
0

)
,
(
1
0

)]
is mapped

onto e. Write K̂ for the pre-image of K under ΦK . If we can establish the existence
of C > 0 that may only depend on α0 from Assumption 4.6.1, such that

‖v‖0,be ≤ C‖v‖0, bK ∀v ∈ PW p,γ
bω (R2), ∀γ ∈ [0, 2π[, ∀ω̂ ∈ R

+ , (4.44)

then the assertion of the theorem will follow by simple scaling arguments. Assumption
4.6.1 also guarantees that the isosceles triangle T with base ê and base angle α0 is
contained in K̂. Thus, (4.44) is already implied by

∃C > 0 : ‖v‖0,be ≤ C‖v‖0,T ∀v ∈ PW p,γ
bω (R2), ∀γ ∈ [0, 2π[, ∀ω̂ ∈ R

+ . (4.45)

(ii) If we choose some basis {wj}p
j=1 of PW p,γ

bω (R2), the computation of the best

possible value for C from (4.45) can be converted into a generalized eigenvalue problem
for matrices: this C agrees with the square root of the largest eigenvalue λmax =
λmax(ω̂, γ) of the generalized eigenvalue problem

λ ∈ R, ~α ∈ R
p \ {0} : T ~α = λM~α , (4.46)

with the mass matrices

T :=

(∫

be

wk(x) · wj(x) dS

)

1≤k,j≤p

, M :=

(∫

T

wk(x) · wj(x) dx

)

1≤k,j≤p

.

The eigenvalues of (4.46) do not depend on the choice of basis. Guided by convenience,
we may therefore either choose the stable basis {bj}p

j=1 from (4.19) or the standard

basis {ej}p
j=1, see Lemma 4.1.

(iii) No matter which basis is used, both Hermitian p× p–matrices T and M are
analytic functions of ω̂ ∈ R+, γ ∈ [0, 2π]. Moreover, linear independence of the plane
waves renders M positive definite for ω̂ 6= 0. Hence, the eigenvalues will be analytic
functions of ω̂ and γ on R+ × [0, 2π] (and periodic in γ).

For small ω, the basis {bj}p
j=1 is convenient. The uniform convergence of the bj

for ω̂ → 0 carries over to the mass matrices. Both T and M enjoy a uniform limit
for ω̂ → 0, which agrees with the mass matrices T 0, M0 arising from the use of the
harmonic polynomial basis {b0j}

p

j=1
, see (4.17). Obviously, M0 is positive definite,

and T 0 does not vanish. Hence, the eigenvalues from (4.46) (as functions of ω̂) have
a continuous extension to ω̂ = 0. Note that the limit does not depend on γ.

We conclude, that λmax(ω̂, γ) can be extended to ω̂ = 0 with a positive value
λmax(0, γ) = λmax(0) > 0 (independent of γ). Thus, λmax turns out to be a positive
and continuous function on R

+
0 × [0, 2π].
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(iv) To determine the behavior of λmax(ω̂, γ) for ω̂ → ∞, we resort to the standard
basis given in Lemma 4.1. Then, writing δxjk := dj,1 − dk,1, δyjk := dj,2 − dk,2,
a := tan(α0), we find

(T )jk = 2 sinc(iω̂δxjk) , 1 ≤ k, j ≤ p , (4.47)

(M )jk =

a∫

0

1−y/a∫

−1+y/a

exp(iω̂(δxjkx+ δyjky)) dxdy , 1 ≤ k, j ≤ p . (4.48)

Obviously, the Euclidean matrix norm of T can be bounded by ‖T ‖ ≤ 2p. Further,
M jj = a for 1 ≤ j ≤ p. To estimate the off-diagonal matrix entries (M )jk, k 6= j, we
use |dj − dk|2 = δx2

kj + δy2
kj = 4 sin2(π

p |k − j|) and distinguish two cases.

(i) If |δxjk| ≥ |δyjk|, we infer |δxjk| ≥ sin(π
p |k − j|) > 0. Thus, we can directly

evaluate the inner integral of (4.48)

(M )jk =2

a∫

0

exp(iω̂δyjky)(1 − y/a) sinc(ω̂δxjk(1 − y/a)) dy

≤ 2a

1∫

0

min{1 − y,
1

ω̂δxjk
} dy =

a

ω̂δxjk

(
1 +

1

ω̂δxjk
− 1

(ω̂δxjk)2

)
.

This expression tends to zero uniformly as ω̂ → ∞.
(ii) In the case |δxjk| < |δyjk|, that is, |δyjk| > sin(π

p |k − j|) > 0, we change the

order of integration in (4.48) and obtain

(M)jk = 2

1∫

0

cos(ω̂δxjkx)
exp(iω̂δyjka(1 − x)) − 1

iω̂δyjk
dx

≤ 4

1∫

0

min{a(1 − x),
1

ω̂δyjk
} dy → 0 uniformly as ω̂ → ∞ .

Summing up, we found the asymptotic behavior

max
1≤i,j≤p

j 6=k

(M)i,j = O(ω̂−1) for ω̂ → ∞ . (4.49)

As a consequence, for ω̂ large enough, Gershgorin’s theorem tells us that the smallest
eigenvalue of M can be bounded from below by 1

2a. We immediately infer

lim
bω→∞

λmax(ω̂, γ) ≤ lim
bω→∞

λmin(M )−1‖T ‖ ≤ 4p

a
∀γ ∈ [0, 2π[ . (4.50)

Summing up, λmax(ω̂, γ) is bounded on R
+
0 × [0, 2π], which ensures the existence of a

Ctinv > 0 in (4.45).
Numerical experiment. We have computed the constant in the inverse estimate

of Theorem 4.7 numerically for the unit square K =]0, 1[2 and the “unit triangle”
K := {x ∈ R2 : x1, x2 > 0, x1 + x2 < 1}, see Figs. 4.2 and 4.3. In addition, the
shape of the triangle K := {x ∈ R2 : x1, x2 > 0, ax1 + x2 < a} is varied smoothly
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in Figure 4.4. The computation were carried out in MATLAB using the standard
exponential basis {ek} of PWω for ω ≥ 1

2 . For smaller ω the computations employed
the first 13 terms in the Taylor expansions (w.r.t. ω) of the stable basis functions bj
from (4.6).

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

2

2.5

3

3.5

4

4.5

5

5.5

 ω

 C

Constant in inverse trace estimate

 

 

p = 3
p = 5
p = 7
p = 9
p = 11

10
0

10
1

10
2

2

2.5

3

3.5

4

4.5

5

 ω
 C

Constant in inverse trace estimate

 

 
p = 3
p = 5
p = 7
p = 9
p = 11

Fig. 4.2. Constants in the inverse trace norm inequality of Theorem 4.7 for K =]0, 1[2
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Fig. 4.3. Constants in the inverse trace norm inequality of Theorem 4.7 for the unit triangle

The plots strikingly illustrate the uniform boundedness of the constant in the
inverse trace inequality with respect to ω. Smooth dependence on the geometry of
K is also apparent. The bound for the constants is moderate, but seems to increase
linearly with p. Remember that this is also true for multivariate polynomials of degree
p; see, e.g., [24, Theorem 4.76].

Theorem 4.8. There exists a constant Cinv > 0 only depending on p and α0 such
that

‖∇v‖0,K ≤ Cinv(ωhK + 1)h−1
K ‖v‖0,K ∀v ∈ PW p,0

ω (R2), ∀K ∈ Th, ∀ω ≥ 0 .

Proof. Again we resort to transformation techniques and first establish the esti-
mate for the reference triangle K̂. Thanks to integration by parts and Theorem 4.7
(recall that plane wave spaces are invariant with respect to forming partial deriva-
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p = 7 p = 11

Fig. 4.4. Constants in the inverse trace norm inequality for triangle with vertices
`
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tives), we have

∫

bK

|∇v̂|2 dx̂ = −
∫

bK

∆v̂ · ¯̂v dx̂ +

∫

∂ bK

∇v̂ · n̂ ¯̂v dŜ

≤ ω̂2

∫

bK

|v̂|2 dx̂ + ‖∇v̂‖0,∂ bK‖v̂‖0,∂ bK

≤ ω̂2‖v̂‖2
0, bK

+ C2
tinv‖∇v̂‖0, bK‖v̂‖0, bK

≤
(
ω̂2 + 1

2C
4
tinv

)
‖v̂‖2

0, bK
+

1

2
‖∇v̂‖2

0, bK
.

Then transform this estimate to K.
Numerical experiment. Figs. 4.5 and 4.6 display approximate values for Cinv from

Thm. 4.8 for the unit square K =]0, 1[2 and the “unit triangle” K := {x ∈ R2 :
x1, x2 > 0, x1 + x2 < 1} (hK = 1 in each case). The computations were done in
MATLAB and used the truncated stable basis for ω ≤ 1

2 , see the previous numerical
experiments.
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Fig. 4.5. Constant in inverse inequality of Thm. 4.8 for K =]0, 1[2
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Fig. 4.6. Constant in inverse inequality of Thm. 4.8 for the unit triangle

Proposition 4.9. The estimates of Theorem 4.7 and Theorem 4.8 still hold with
PW p,γ

ω (R2) replaced by PPW p,γ
ω (R2).

Proof. The proof can be done as above, because (4.30)–(4.34) and (4.36) give us
a stable basis for ω → 0.

Next, we examine approximation and projection estimates for plane waves. We
fix a triangle K that complies with Assumption 4.6.1. We study the local L2(K)–
orthogonal projections

Pω : L2(K) 7→ PW p,γ
ω (R2) (4.51)

onto the space of plane waves on K, see (4.18). When referring to the associated

reference element K̂ with longest edge
[(

0
0

)
,
(
1
0

)]
and the pulled back plane wave

space we write P̂bω for this projector.
We pursue the policy to relate Pω to the L2(K)–orthogonal projection Q :

L2(K) 7→ P1(R
2) onto the space of bi-variate polynomials of degree 1. Simple trans-

formation techniques and Bramble-Hilbert argument establish the projection error
estimates

‖u− Qu‖0,K ≤Ch2
K |u|2,K ,

|u− Qu|1,K ≤ChK |u|2,K

∀u ∈ H2(K) , (4.52)

with C > 0 only depending on the minimal angle condition in Assumption 4.6.1.
The next Lemma gives a pivotal auxiliary result.
Lemma 4.10. For odd p ≥ 5 we find C > 0 independent of ω and γ such that

inf
v∈PW p,γ

ω (R2)
‖q − v‖0,]0,1[2 ≤ Cω2‖q‖0,]0,1[2 ∀q ∈ P1(R

2) .

Proof. Recall (4.12), the definition of κn
j (x) and the formula (4.14) for the func-

tions of the stabilized basis. Combining them, we see that, for p ≥ 5 and ω → 0,

b1(x) = 1 +O(ω2) , b2(x) = x+O(ω2) , b3(x) = y +O(ω2) ,

for small ω uniformly in x ∈]0, 1[2.
Remark 4.11. In the case p = 3 the best approximation error for linear functions

will behave like O(ω), because it will be affected by the remainder term in (4.15).
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Numerical experiment. We computed the error of the L2–projection of the function
x 7→ x onto the plane wave space on ]0, 1[2 numerically, see Figure 4.7. As above, a
truncated stable basis and the exponential basis were used for ω < 1

2 and ω ≥ 1
2 ,

respectively. This is not only in perfect agreement with Lemma 4.10, but also shows
that the estimate in Lemma 4.10 is sharp and the constants are small.
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Fig. 4.7. L2 projection error onto plane wave space for linear function x. The wiggles at ω = 1

2

reflect the truncation error for the stable basis.

In the next three propositions we establish projection errors and continuity of the
L2(K)–orthogonal projection Pω onto PW p,0

ω (R2).
Proposition 4.12. For odd p ≥ 5 we have, with C > 0 independent of K and

ω ≥ 0,

‖(Id− Pω)u‖0,K ≤ Ch2
K(|u|2,K + ω2‖u‖0,K) ∀u ∈ H2(K) .

Proof. Again, we use scaling arguments: consider the reference element K̂ ⊂]0, 1[2.
First of all, from Lemma 4.10, the equivalence of all norms on P1(R

2) and continuity

of the L2(K̂)–projection onto P1(R
2), we obtain the estimate

‖(Id− P̂bω)Q̂û‖0, bK ≤ Cω̂2‖Q̂û‖0,]0,1[2 ≤ Cω̂2‖Q̂û‖0, bK ≤ Cω̂2‖û‖0, bK ∀u ∈ H2(K) ,

(4.53)
with a constant C > 0 independent of ω̂. Then, by the triangle inequality, we get

‖(Id− P̂bω)û‖0, bK≤‖(Id− P̂bωQ̂)û‖0, bK≤‖û− Q̂û‖0, bK + ‖(Id− P̂bω)Q̂û‖0, bK

proj. est.

≤ C |û|2, bK + ‖(Id− P̂bω)Q̂û‖0, bK

(4.53)

≤ C |û|2, bK + Cω̂2‖û‖0, bK .

Now, taking into account that transformation to the reference element changes the
frequency according to ω̂ = hKω, the result is an immediate consequence of norm
transformation estimates.

Proposition 4.13. For odd p ≥ 5 we have, with C > 0 independent of K and
ω ≥ 0

|(Id− Pω)u|1,K ≤ ChK(ωhK + 1)
(
|u|2,K + ω2‖u‖0,K

)
∀u ∈ H2(K) .
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Proof. By the triangle inequality we have

|(Id− Pω)u|1,K ≤ |u− Qu|1,K + |(Id− Pω)Qu|1,K + |Pω(Qu− u)|1,K . (4.54)

Owing to (4.52), for the first term we get

|u− Qu|1,K ≤ ChK |u|2,K , (4.55)

with C > 0 independent of K and, obviously, of ω. To tackle second term we appeal
to Proposition 4.9 and use transformation to the reference triangle K̂

|(Id− Pω)Qu|1,K = |(Id− P̂bω)Q̂û|1, bK ≤ |(Id− P̂bω)Q̂û|1,]0,1[2

Prop. 4.9
≤ C(1 + ω̂)‖(Id− P̂bω)Q̂û‖0,]0,1[2

Lemma 4.10
≤ C(1 + ω̂)ω̂2‖Q̂u‖0,]0,1[2

(∗)

≤ C(1 + ω̂)ω̂2‖Q̂u‖0, bK

≤ C(1 + ω̂)ω̂2‖u‖0, bK ≤ C(1 + hKω)ω2hK‖u‖0,K .

(4.56)

again with C > 0 independent of K and ω. Step (∗) appeals to the equivalence of the
L2–norms of affine linear functions on different compact sets. The last step relies on
the transformation of L2–norm under scaling and uses ω̂ = hKω.

Eventually, the third term allows the bounds

|Pω(Qu − u)|1,K

Thm. 4.8
≤ C(ωhK + 1)h−1

K ‖Pω(Qu − u)‖0,K

cont. of Pω

≤ C(ωhK + 1)h−1
K ‖Qu− u‖0,K

proj. est.

≤ C(ωh2
K + hK)|u|2,K .

(4.57)

Also in this case the constants can be chosen independently of K and ω. Insert-
ing (4.55)–(4.57) into (4.54) gives the assertion.

Proposition 4.14. For odd p ≥ 5 we have, with C > 0 independent of K and
ω ≥ 0,

|Pωu|2,K ≤ C(ωhK + 1)2
(
|u|2,K + ω2‖u‖0,K

)
∀u ∈ H2(K) .

Proof. Since the second derivatives of Qu vanish, the triangle inequality gives

|Pωu|2,K ≤ |Pω(u − Qu)|2,K + |(Pω − Id)Qu|2,K . (4.58)

Since PW p,0
ω is invariant w.r.t. forming partial derivatives, we have

|Pω(u− Qu)|2,K

Thm. 4.8
≤ Cinv(ωhK + 1)h−1

K |Pω(u− Qu)|1,K

(4.57)

≤ C(ωhK + 1)2|u|2,K ,

(4.59)

with C > 0 independent of hK and ω, and

|(Pω − Id)Qu|2,K

Prop. 4.9

≤ C(ωhK + 1)h−1
K |(Pω − Id)Qu|1,K

(4.56)

≤ C(ωhK + 1)h−1
K (ω3h2

K + ω2hK)‖u‖0,K

= C(ωhK + 1)(ω3hK + ω2)‖u‖0,K ,

(4.60)

again with C > 0 independent of hK and ω. Inserting (4.59) and (4.60) into (4.58)
gives the result.
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5. Convergence analysis. Duality arguments are the linchpin of our analysis,
and, inevitably, they hinge on elliptic lifting estimates for the Helmholtz operator, cf.
[6, Sect. 5.8]. Thus, from now on, we assume that Ω is a convex polygon. We also recall
that Th is a triangular mesh with possible hanging nodes satisfying Assumption 4.6.1.

Set

Vh = {v ∈ L2(Ω) : v|K ∈ PW p,0
ω (R2) ∀K ∈ Th} , (5.1)

and let V ⊆ H2(Ω) be the space containing all possible solutions u to (1.1).
In this section, we study the convergence of the method introduced in Section 3,

with Vh as trial and test space. To this end, consider formulation (3.5), which is equiv-
alent to (3.7) for our choice of Vh, with numerical fluxes given by (3.10) and (3.11).

Adding (3.5) over all elements and expanding the expressions of the numerical
fluxes, with α as in (3.12) (we keep general β and δ, for the moment), we can write
the primal DG method as follows: find uh ∈ Vh such that, for all vh ∈ Vh,

ah(uh, vh)−ω2(uh, vh) = (f, vh)−
∫

FB

h

δ
1

iω
g∇hvh · ndS+

∫

FB

h

(1−δ) g vh dS , (5.2)

where ah(·, ·) is the DG–bilinear form on (V + Vh) × (V + Vh) defined by

ah(u, v) =(∇hu,∇hv) −
∫

FI

h

[[u]]N · {{∇hv}} dS −
∫

FI

h

{{∇hu}} · [[v]]N dS

−
∫

FB

h

δ u∇hv · ndS −
∫

FB

h

δ∇hu · n v dS

− 1

iω

∫

FI

h

β[[∇hu]]N [[∇hv]]N dS − 1

iω

∫

FB

h

δ∇hu · n∇hv · ndS

+ i

∫

FI

h

a

h
[[u]]N · [[v]]N dS + iω

∫

FB

h

(1 − δ)u v dS .

(5.3)

Proposition 5.1. If β > 0, 0 < δ < 1, and a is uniformly positive, the discrete
variational problem (5.2) possesses a unique solution for any f ∈ L2(Ω) and g ∈
L2(∂Ω).

Proof. Note that Im (ah(vh, vh)) > 0 for all vh ∈ Vh.
The DG method (5.2) is consistent by construction, and thus, if u is the analytical

solution of (1.1),

ah(u− uh, vh) = ω2(u − uh, vh) ∀vh ∈ Vh. (5.4)

Taking the cue from the definition of ah(·, ·), we define the following mesh-
dependent seminorm and norms on V + Vh:

|v|2DG := ‖∇hv‖2
0,Ω + ω−1‖β1/2[[∇hv]]N‖2

0,FI

h

+ ‖a1/2
h
−1/2[[v]]N‖2

0,FI

h

+ ω−1 ‖δ1/2∇hv · n‖2
0,FB

h
+ ω ‖(1 − δ)1/2v‖2

0,FB

h
,

‖v‖2
DG := |v|2DG + ω2‖v‖2

0,Ω,

‖v‖2
DG+ := ‖v‖2

DG + ω ‖β−1/2{{v}}‖2
0,FI

h

+ ‖a−1/2
h
1/2{{∇hv}}‖2

0,FI

h

+ ω ‖δ−1/2v‖2
0,FB

h

.

We prove that the auxiliary DG–bilinear form, which is related to the positive
operator −∆ + ω2,

bh(u, v) := ah(u, v) + ω2(u, v)
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is coercive in the DG–norm. To this end, we apply the inverse inequality for plane
waves asserted in Theorem 4.7.

Proposition 5.2. With the particular choice of α = a/ωh (see (3.12)), with
a ≥ amin > C2

tinv, and 0 < δ < 1/2 in the numerical fluxes (3.10) and (3.11), there
exists a constant Ccoer > 0 only depending on α0 from Assumption 4.6.1, in particular,
independent of ω and of the mesh, such that

|bh(v, v)| ≥ Ccoer‖v‖2
DG ∀v ∈ Vh.

Proof. By definition, we have

bh(v, v) =‖∇hu‖2
0,Ω − 2 Re

(∫

FI

h

[[v]]N · {{∇hv}} dS

)
− 2 Re

(∫

FB

h

δ v∇hv · n dS

)

+ iω−1‖β1/2[[∇hv]]N‖2
0,FI

h

+ iω−1‖δ1/2∇hv · n‖2
0,FB

h

+ i ‖a1/2
h
−1/2[[v]]N‖2

0,FI

h
+ iω ‖(1 − δ)1/2v‖2

0,FB

h
+ ω2‖v‖2

0,Ω.

(5.5)

From the weighted Cauchy-Schwarz inequality and the Young inequality, we obtain,
for s > 0 at disposal,
∣∣∣∣∣2 Re

∫

FI

h

[[v]]N · {{∇hv}} dS

∣∣∣∣∣ ≤s ‖h
−1/2[[v]]N‖2

0,FI

h

+
1

s
‖h1/2{{∇hv}}‖2

0,FI

h

≤ s

amin
‖a1/2

h
−1/2[[v]]N‖2

0,FI

h
+
C2

tinv

s
‖∇hv‖2

0,Ω ,

(5.6)

where in the last step we have used the inverse inequality of Theorem 4.7; similarly,
for t > 0 at disposal, we have
∣∣∣∣∣2 Re

∫

FB

h

δ v∇hv dS

∣∣∣∣∣ ≤ t ω
δ

1 − δ
‖(1 − δ)1/2v‖2

0,FB

h

+
1

t ω
‖δ1/2∇hv‖2

0,FB

h

. (5.7)

Since 0 < δ < 1/2 and amin > C2
tinv, if s and t are such that s > C2

inv and t > 1,
inserting (5.6) and (5.5) into (5.5) gives

|bh(v, v)| ≥ 1√
2

[|Re (bh(v, v))| + |Im (bh(v, v))|]

≥ 1√
2

[(
1 − C2

tinv

s

)
‖∇hv‖2

0,Ω +

(
1 − s

amin

)
‖a1/2

h
−1/2[[v]]N‖2

0,FI

h

+ ω

(
1 − t

δ

1 − δ

)
‖(1 − δ)1/2v‖2

0,FB

h
+ ω−1

(
1 − 1

t

)
‖δ1/2∇hv · n‖2

0,FB

h

+ ω−1‖β1/2[[∇hv]]N‖2
0,FI

h

+ ω2‖v‖2
0,Ω

]

≥C‖v‖2
DG,

with C > 0 independent of the mesh and ω.
Remark 5.3. For the original formulation of Cessenat and Despres [9] where a =

ωh/2, the coercivity stated in Proposition 5.2 remains elusive. Still, Proposition 5.1
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confirms existence and uniqueness of discrete solutions, which Cessenat and Despres
proved in a completely different fashion.

We develop the theoretical analysis of the method (5.2) by using Schatz’ duality
argument [23]. We start by stating the following abstract estimate.

Proposition 5.4. If u is the analytical solution to (1.1) and uh ∈ Vh defined as
in (5.1) is the discrete solution to (3.7) with numerical fluxes (3.10) and (3.11) (α
and δ as in Proposition 5.2), then

‖u− uh‖DG ≤ Cabs

(
inf

vh∈Vh

‖u− vh‖DG+ + sup
06=wh∈Vh

ω |(u− uh, wh)|
‖wh‖0,Ω

)
, (5.8)

where Cabs > 0 is a constant independent of the mesh and ω.

Proof. By the triangle inequality, for all vh ∈ Vh, it holds

‖u− uh‖DG ≤ ‖u− vh‖DG + ‖vh − uh‖DG. (5.9)

From the coercivity in Proposition 5.2, the definition of bh(·, ·) and (5.4), we get

‖vh − uh‖2
DG ≤ 1

Ccoer
|bh(vh − uh, vh − uh)|

≤ 1

Ccoer
|bh(vh − u, vh − uh)| + 1

Ccoer
|bh(u− uh, vh − uh)|

=
1

Ccoer
|bh(vh − u, vh − uh)| + 1

Ccoer
2ω2|(u− uh, vh − uh)|.

(5.10)

We estimate the first term on the right-hand side of (5.10). Setting wh := vh − uh,
integrating by parts and taking into account that −∆hwh = ω2wh, we can write

(∇h(vh − u),∇hwh) =
∑

K∈Th

[
−
∫

K

(vh − u)∆wh dV +

∫

∂K

(vh − u)∇hwh · ndS
]

=ω2(vh − u,wh) +

∫

FI

h

[[vh − u]]N · {{∇hwh}} dS

+

∫

FI

h

{{vh − u}}[[∇hwh]]N dS +

∫

FB

h

(vh − u)∇hwh · ndS ,

where we have used the usual “DG magic formula” to write the sum over all elements
of integrals over element boundaries as in terms of integrals over the mesh skeleton.



26 C. J. Gittelson, R. Hiptmair, I. Perugia

Thus, using the definition of bh(·, ·), we have

bh(vh − u,wh) = 2ω2(vh − u,wh) +

∫

FI

h

{{vh − u}}[[∇hwh]]N dS

+

∫

FB

h

(vh − u)∇hwh · ndS −
∫

FI

h

{{∇h(vh − u)}} · [[wh]]N dS

−
∫

FB

h

δ(vh − u)∇hwh · ndS −
∫

FB

h

δ∇h(vh − u) · nwh dS

+
i

ω

∫

FI

h

β[[∇h(vh − u)]]N [[∇hwh]]N dS

+
i

ω

∫

FB

h

δ∇h(vh − u) · n∇hwh · n dS

+ i

∫

FI

h

a

h
[[vh − u]]N [[wh]] dS + iω

∫

FB

h

(1 − δ)(vh − u)wh dS .

Therefore, by repeatedly applying the Cauchy-Schwarz inequality with appropriate
weights, we obtain

|bh(vh − u,wh)| ≤ C ‖vh − u‖DG+‖wh‖DG ,

with C > 0 only depending on α0. Inserting this into (5.10) and taking into ac-
count (5.9) gives the result.

We have to bound the term sup
06=wh∈Vh

ω |(u− uh, wh)|
‖wh‖0,Ω

in the estimate of Propo-

sition 5.4 by using a duality argument. To this end, we have to adopt the special
choice (3.12) of all the numerical flux parameters, with the additional constraints
amin > C2

tinv and 0 < δ < 1/2. Then the DG seminorm and norms can be explicitly
written as follows:

|v|2DG = ‖∇hv‖2
0,Ω + ‖b1/2

h
1/2[[∇hv]]N‖2

0,FI

h

+ ‖a1/2
h
−1/2[[v]]N‖2

0,FI

h

+ ‖d1/2
h
1/2∇hv · n‖2

0,FB

h
+ ‖(ω − dω2

h)1/2v‖2
0,FB

h
,

‖v‖2
DG = |v|2DG + ω2‖v‖2

0,Ω,

‖v‖2
DG+ = ‖v‖2

DG + ‖b−1/2
h
−1/2{{v}}‖2

0,FI

h
+ ‖a−1/2

h
1/2{{∇hv}}‖2

0,FI

h

+ ‖ω1/2
d
−1/2

h
−1/2v‖2

0,FB

h

.

We will make use of the following regularity theorem proved in [20]. Its original
statement makes use of the following weighted norm on H1(Ω):

‖v‖2
1,ω,Ω = |v|21,Ω + ω2‖v‖2

0,Ω . (5.11)

Theorem 5.5. [20, Proposition 8.1.4] Let Ω be a bounded convex domain (or
smooth and star-shaped). Consider the adjoint problem to (1.1) with right-hand side
w ∈ L2(Ω):

−∆ϕ− ω2ϕ = w in Ω,
−∇ϕ · n + iω ϕ = 0 on ∂Ω.

(5.12)
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Then, the solution ϕ belongs to H2(Ω), and

‖ϕ‖1,ω,Ω ≤ C1(Ω)‖w‖0,Ω ,

|ϕ|2,Ω ≤ C2(Ω) (1 + ω) ‖w‖0,Ω ,
(5.13)

with C1(Ω), C2(Ω) > 0.
The next lemma provides L2–projection error estimates for traces onto the skele-

ton of Th. In light of the definitions of the DG and DG+ seminorms and norms, these
are essential. We keep the notation Pω for the L2(Ω)–orthogonal projection onto Vh,
see (5.1).

Lemma 5.6. Let the assumptions of Theorem 5.5 hold true. Then there is c0 > 0
such that, provided that ω2h ≤ c0, the solution ϕ of (5.12) allows the estimates

{
‖h−1/2(ϕ− Pωϕ)‖2

0,Fh

‖h1/2∇h(ϕ− Pωϕ)‖2
0,Fh

}
≤ Ch(h+ c0)‖w‖2

0,Ω , (5.14)

with C > 0 depending only on the bound for the minimal angle of elements and the
domain Ω.

Proof. We start with local considerations: we recall the multiplicative trace in-
equality for K ∈ Th, see [6, Theorem 1.6.6],

‖u‖2
0,∂K ≤ C‖u‖0,K

(
h−1

K ‖u‖0,K + |u|1,K

)
∀u ∈ H1(K) . (5.15)

Here and in the rest of the proof constants C > 0 may only depend on the bound for
the minimal angle of K, cf. Assumption 4.6.1, and the domain Ω. Hence,

h−1
K ‖ϕ− Pωϕ‖2

0,∂K ≤ Ch−1
K ‖ϕ− Pωϕ‖0,K

(
h−1

K ‖ϕ− Pωϕ‖0,K + |ϕ− Pωϕ|1,K

)

≤ Ch2
K(ωhK + 1)

(
|ϕ|2,K + ω2‖ϕ‖0,K

)2
,

where the last estimate invokes Propositions 4.12 and 4.13. Similarly,

hK‖∇h(ϕ− Pωϕ)‖2
0,∂K ≤ ChK |ϕ− Pωϕ|1,K

(
h−1

K |ϕ− Pωϕ|1,K + |ϕ− Pωϕ|2,K

)

≤ Ch2
K(ωhK + 1)3

(
|ϕ|2,K + ω2‖ϕ‖0,K

)2
.

The last step relies on Propositions 4.13 and 4.14. Next, we sum over all elements,
apply the Cauchy-Schwarz inequality, and use the estimates (5.13) of Theorem 5.5:

‖h−1/2(ϕ− Pωϕ)‖2
0,Fh

≤ Ch2(ωh+ 1)(1 + ω)2‖w‖2
0,Ω ≤ Ch(h+ c0)‖w‖2

0,Ω ,

‖h1/2∇h(ϕ− Pωϕ)‖2
0,Fh

≤ Ch2(ωh+ 1)3(1 + ω)2‖w‖2
0,Ω ≤ Ch(h+ c0)‖w‖2

0,Ω .

Here, the assumption ω2h ≤ c0 comes into play, which also guarantees that ωh is
bounded.

Corollary 5.7. Let the assumptions of Theorem 5.5 hold true. Then there is
c0 > 0 such that, provided that ω2h ≤ c0, the solution ϕ of (5.12) allows the estimates

ω2‖ϕ− Pωϕ‖2
0,Ω ≤ Ch2c0(h+ c0)‖w‖2

0,Ω , (5.16)

‖ϕ− Pωϕ‖2
DG+ ≤ Ch(h+ c0)‖w‖2

0,Ω , (5.17)

ω2‖ϕ− Pωϕ‖2
DG+ ≤ Cc0(h+ c0)‖w‖2

0,Ω , (5.18)
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with C > 0 depending only on the bound for the minimal angle of elements, the
geometry of Ω, and the constants a, b and d in the definition of the numerical fluxes.

Proof. The first two bounds follow from Propositions 4.12, 4.13 and Lemma 5.6;
the third bound is a simple application of the assumption ω2h ≤ c0 to the second
bound.

Proposition 5.8. Let the assumptions of Theorem 5.5 hold true. Then there is
c0 > 0, such that, provided that ω2h ≤ c0, the following estimate holds true:

sup
06=wh∈Vh

ω|(u− uh, wh)|
‖wh‖0,Ω

≤ Cdual [c0(h+ c0)]
1/2 (‖u− uh‖DG + h‖f − Pωf‖0,Ω) ,

with a constant Cdual > 0 independent of the mesh and ω.
Proof. Consider the adjoint problem (5.12) with right-hand side wh ∈ Vh ⊂ L2(Ω).

Then, from Theorem 5.5, we have that ϕ ∈ H2(Ω), ‖ϕ‖1,ω,Ω ≤ C1(Ω)‖wh‖0,Ω and
|ϕ|2,Ω ≤ C2(Ω) (1 + ω) ‖wh‖0,Ω, with C1(Ω), C2(Ω) > 0. Moreover, this solution ϕ
satisfies

ah(ψ, ϕ) − ω2(ψ, ϕ) = (ψ,wh) ∀ψ ∈ V. (5.19)

The adjoint consistency of the DG method (see Section 3) implies that

ah(ψh, ϕ) − ω2(ψh, ϕ) = (ψh, wh) ∀ψh ∈ Vh. (5.20)

Taking into account adjoint consistency and consistency, i.e., (5.20) and (5.4), respec-
tively, we have, for all ψh ∈ Vh,

(u− uh, wh) = (u,wh) − (uh, wh)
(5.19)
= ah(u, ϕ) − ω2(u, ϕ) − (uh, wh)

(5.20)
= ah(u, ϕ) − ω2(u, ϕ) − ah(uh, ϕ) + ω2(uh, ϕ)

= ah(u− uh, ϕ) − ω2(u− uh, ϕ)

(5.4)
= ah(u− uh, ϕ− ψh) − ω2(u − uh, ϕ− ψh).

Using the definition of ah(·, ·), integrating by parts the gradient term and taking into
account that −∆u− ω2u = f and −∆huh − ω2uh = 0, we get

(u− uh, wh) = (f, ϕ− ψh) +

∫

FI

h

[[∇h(u − uh)]]N{{ϕ− ψh}} dS

+

∫

FB

h

∇h(u− uh) · n (ϕ− ψh) dS −
∫

FI

h

[[u− uh]]N · {{∇h(ϕ− ψh)}} dS

−
∫

FB

h

dωh (u− uh)∇h(ϕ− ψh) · ndS −
∫

FB

h

dωh∇h(u− uh) · n (ϕ− ψh) dS

+ i

∫

FI

h

bh [[∇h(u− uh)]]N [[∇h(ϕ− ψh)]]N dS

+ i

∫

FB

h

dh∇h(u − uh) · n∇h(ϕ− ψh) · ndS

+ i

∫

FI

h

a

h
[[u− uh]]N · [[ϕ− ψh]]N dS + i

∫

FB

h

(ω − dω2
h) (u− uh) (ϕ− ψh) dS .

and thus, for all ψh ∈ Vh, we obtain

ω|(u− uh, wh)| ≤ C ‖u− uh‖DG ω‖ϕ− ψh‖DG+ + ω|(f, ϕ− ψh)| , (5.21)
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with C independent of the mesh, ω, and the flux parameters.
Actually, the estimate (5.21) holds true with ‖ϕ − ψh‖DG+ replaced by the in-

terelement and boundary part of ‖ϕ− ψh‖DG+ only (no volume terms).
We choose ψh = Pωϕ, i.e., the L2(Ω)–projection of ϕ onto Vh. Since

ω|(f, ϕ− ψh)| = ω|(f − Pωf, ϕ− ψh)| ≤ ‖f − Pωf‖0,Ω ω‖ϕ− ψh‖0,Ω ,

the result follows from Corollary 5.7.
The following estimate of the DG–norm of the error is a direct consequence of

Proposition 5.4, Proposition 5.8 and of the following best approximation estimate.
Lemma 5.9. For any w ∈ H2(Ω), we have

inf
vh∈Vh

‖w − vh‖DG+ ≤ Ch(ωh+ 1)3/2
(
|w|2,Ω + ω2‖w‖0,Ω

)
,

with a constant C > 0 independent of the mesh and ω.
Proof. We bound infvh∈Vh

‖w − vh‖DG+ by ‖w − Pωw‖DG+ and proceed as in
Lemma 5.6 and Corollary 5.7.

Theorem 5.10. Let the assumptions of Theorem 5.5 hold true and impose amin >
C2

tinv and 0 < δ < 1
2 on the parameters of the plane wave discontinuous Galerkin

method (5.2). Then there is c0 > 0 such that, provided that

ω2h ≤ c0 , (5.22)

the following a priori error estimate holds true:

‖u− uh‖DG ≤ Ch
(
|u|2,Ω + ω2‖u‖0,Ω + [c0(h+ c0)]

1/2‖f − Pωf‖0,Ω

)
,

with a constant C > 0 independent of the mesh and wave number ω.
Proof. From Propositions 5.4 and 5.8, provided that CabsCdual[c0(h+ c0)]

1/2 < 1,
we have

‖u− uh‖DG ≤ C

(
inf

vh∈Vh

‖u− vh‖DG+ + h[c0(h+ c0)]
1/2‖f − Pωf‖0,Ω

)
,

with a constant C > 0 independent of the mesh and ω. The result now follows from
the regularity of u, Lemma 5.9 and the assumption ω2h ≤ c0.

Remark 5.11. The threshold condition (5.22) requires a minimum resolution of
the trial space before asymptotic convergence sets in. This reflects vulnerability to the
pollution effect discussed in the Introduction.

Remark 5.12. The mere first-order convergence asserted in Thm. 5.10 may be
disappointing, but in the presence of a non-vanishing source term f no better rate can
be expected, because plane waves only possess the approximating power of 1st-degree
polynomials for generic functions, see Section 4.2.

Only solution of the homogeneous Helmholtz equation, that is, the case f = 0,
allows better approximation estimates when using more plane wave directions. More
precisely, if u is sufficiently smooth and p = 2m + 1, we can expect ‖u − uh‖DG =
O(hm). The underlying approximation results are given in [20, Prop. 8.4.14]. In this
paper we will not elaborate this further in the DG setting.

We conclude this section by proving a priori L2–norm error estimates. We have
the following result:
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Theorem 5.13. Let the assumptions of Theorem 5.5 hold true. Then there is
c0 > 0, such that, provided that ω2h ≤ c0, we have

‖u− uh‖0,Ω ≤ C[h3(h+ c0)]
1/2
(
|u|2,Ω + ω2‖u‖0,Ω + [c0(h+ c0)]

1/2‖f − Pωf‖0,Ω

)
,

with a constant C > 0 independent of the mesh and wave number ω.
Proof. Let ϕ be the solution to the adjoint problem (5.12) with right-hand side

w ∈ L2(Ω). By proceeding like in the proof of Proposition 5.8, by definition of the
dual problem, consistency and adjoint consistency, we have

(u− uh, w) = ah(u− uh, ϕ− Pωϕ) − ω2(u− uh, ϕ− Pωϕ),

or, equivalently,

(u − uh, w) = ah(u − vh, ϕ− Pωϕ) − ω2(u− vh, ϕ− Pωϕ)

+ ah(vh − uh, ϕ− Pωϕ) − ω2(vh − uh, ϕ− Pωϕ)
(5.23)

for all vh ∈ Vh. By repeatedly applying the Cauchy-Schwarz inequality with appro-
priate weights, we obtain

|ah(u− vh, ϕ− Pωϕ) − ω2(u − vh, ϕ− Pωϕ)| ≤ ‖u− vh‖DG+‖ϕ− Pωϕ‖DG+ ,

whereas, since vh − uh ∈ Vh, proceeding as in the proof of Proposition 5.4, we get

|ah(vh − uh, ϕ− Pωϕ) − ω2(vh − uh, ϕ− Pωϕ)| ≤ ‖vh − uh‖DG‖ϕ− Pωϕ‖DG+ .

By applying these estimates to the right-hand side of (5.23), we obtain

|(u− uh, w)| ≤ (‖u− vh‖DG+ + ‖vh − uh‖DG) ‖ϕ− Pωϕ‖DG+

≤ (2‖u− vh‖DG+ + ‖u− uh‖DG) ‖ϕ− Pωϕ‖DG+

for all vh ∈ Vh. From the definition of the L2–norm we have

‖u− uh‖0,Ω ≤
(

2 inf
vh∈Vh

‖u− vh‖DG+ + ‖u− uh‖DG

)
sup

06=w∈L2(Ω)

‖ϕ− Pωϕ‖DG+

‖w‖0,Ω
.

The result follows from Lemma 5.9, Theorem 5.10 and Corollary 5.7.
Remark 5.14. In [7], an priori L2–norm error estimate of the form

‖u− uh‖0,Ω ≤ Ch−1/2 inf
vh∈Xh

‖u− vh‖X (5.24)

for h-version of the UWVF is directly established. It is valid for f = 0 and relies on
an error estimate in a mesh-dependent norm proved in [9]. Here, ‖ · ‖X is a scaled
L2-norm on the skeleton of the mesh and Xh a plane wave type space. In contrast to
our results, this estimate holds for all wave numbers, but the dependence of C on ω
is not made explicit.

For sufficiently smooth analytical solutions (5.24) yields O(hm−1)-convergence
when using p = 2m + 1 equispaced plane wave directions. The authors point out
that numerical tests show that this under-estimates the actual convergence rates and
conjecture that this gap might be filled by using duality arguments. It might be of
interest to investigate whether our approach could actually be useful in this direction
(see Remark 5.12).
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6. Duality estimate in one space dimension. The case d = 1 is very par-
ticular in that there are only two linearly independent plane wave solutions for the
homogeneous Helmholtz equation. Thus, the plane wave space is

PWω(R) = 〈exp(iωx), exp(−iωx)〉 = 〈cos(ωx), sin(ωx)〉 . (6.1)

In one dimension on Ω =]−1, 1[ the adjoint problem (5.12) boils down to the two-point
boundary value problem

−ϕ′′ − ω2ϕ = wh in ] − 1, 1[ , (6.2)

±ϕ′(±1) − iωϕ(±1) = 0 . (6.3)

We assume that Ω =] − 1, 1[ is equipped with nodes −1 = x0 < x1 < · · · < xM = 1,

M ∈ N, and a mesh Th := {]xj−1, xj [}M
j=1, with midpoints mj := 1

2 (xj−1 + xj). Thus,

the discrete trial and test space (5.1) becomes

Vh := {v ∈ L2(] − 1, 1[) : v(x) = ρj cos(ω(x−mj)) + κj sin(ω(x−mj)),

xj−1 < x < xj , ρj, κj ∈ C, j = 1, . . . ,M} .
(6.4)

Hence, we may write wh ∈ Vh as

wh =
M∑

j=1

χ]xj−1,xj [wj , wj(x) = ρj cos(ω(x−mj)) + κj sin(ω(x−mj)) ∈ PWω(R) .

(6.5)

The 2-point boundary value problem (6.2) with right hand side χ]xj−1,xj[wj has a
solution of the form

ϕj(x) =






A− cos(ωx) +B− sin(ωx), −1 < x < xj−1

ρjsj(x) + κjcj(x) +A cos(ω(x−mj)) +B sin(ω(x−mj)), xj−1 < x < xj

A+ cos(ωx) +B+ sin(ωx), xj < x < 1 ,

(6.6)

with suitable A±, B±, A,B ∈ C. We used the abbreviations

sj(x) := −(x−mj)
sin(ω(x−mj))

2ω
, cj(x) := (x−mj)

cos(ω(x−mj))

2ω
,

for xj−1 < x < xj ; these functions are supposed to be zero outside ]xj−1, xj [.
Write Qω for the L2(] − 1, 1[)–orthogonal projection onto Vh, which is defined in

a completely local fashion. Since it leaves local plane waves invariant, we find

(
(Id− Qω)ϕj

)
(x) =

{
(Id− Qω)(ρjsj + κjcj) for xj−1 < x < xj ,

0 elsewhere.
(6.7)

As a consequence, the projection error allows a completely local analysis

(Id− Qω)ϕ =
M∑

j=1

(Id− Qω)(ρjsj + κjcj) . (6.8)
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Thanks to symmetries of the basis functions cos(ω(x −mj)), sin(ω(x −mj)), and sj

and cj , one readily computes, with ω̂ := 1
2hjω, hj := xj−xj−1, and for xj−1 ≤ x ≤ xj ,

Qωsj(x) = −(1
2hj)

2
1
4 ω̂

−1
∫ 1

−1 ξ sin(2ω̂ξ) dξ
∫ 1

−1
cos2(ω̂ξ) dξ

· cos(ω(x −mj)) , (6.9)

Qωcj(x) = (1
2hj)

2
1
4 ω̂

−1
∫ 1

−1 ξ sin(2ω̂ξ) dξ
∫ 1

−1
sin2(ω̂ξ) dξ

· sin(ω(x −mj)) . (6.10)

Eventually, we have to measure the projection error in the norm ‖ · ‖DG+ . The local
contribution from the j–th cell ]xj−1, xj [ is bounded by

‖(Id− Qω)ϕ‖2
DG+,j ≤ C

(
ω2‖(Id− Qω)ϕj‖2

0,]xj−1,xj [
+ |(Id− Qω)ϕj |21,]xj−1,xj [

+

h−1
j

(
(Id− Qω)ϕj(xj−1)

2 + (Id− Qω)ϕj(xj)
2
)
+

hj

(
((Id− Qω)ϕj)

′(xj−1)
2 + ((Id− Qω)ϕj)

′(xj)
2
) )

.

(6.11)

For symmetry reasons, we have orthogonality with respect to the inner product as-
sociated with the local norm (6.11) between the basis functions cos(ω(x −mj)) and
sin(ω(x −mj)), sj and cj , sj and sin(ω(x −mj)), cj and cos(ω(x −mj)). Hence, in
order to determine the best possible constant in the estimate ‖(Id − Qω)ϕ‖DG+ ≤
C‖wh‖0,]−1,1[, we have to compute

C2 := max
1≤j≤M

max

{
‖(Id− Qω)sj‖2

DG+,j

‖ cos(ω·)‖2
0,]xj−1,xj[

,
‖(Id− Qω)cj‖2

DG+,j

‖ sin(ω·)‖2
0,]xj−1,xj [

}
. (6.12)

Based on (6.9) and (6.10) we obtain

ω2‖(Id− Qω)sj‖2
0,]xj−1,xj[

= 1
4 (1

2hj)
3




1∫

−1

ξ2 sin(ω̂ξ)2 dξ −

(∫ 1

−1 ξ sin(2ω̂ξ) dξ
)2

4
∫ 1

−1 cos2(ω̂ξ) dξ


 ,

(6.13)

ω2‖(Id− Qω)cj‖2
0,]xj−1,xj[

= 1
4 (1

2hj)
3




1∫

−1

ξ2 cos(ω̂ξ)2 dξ −

(∫ 1

−1
ξ sin(2ω̂ξ) dξ

)2

4
∫ 1

−1
sin2(ω̂ξ) dξ


 .

(6.14)

This implies, for instance,

ω2‖(Id− Qω)sj‖2
0,]xj−1,xj [

‖ cos(ω·)‖2
0,]xj−1,xj [

= (1
2hj)

2



∫ 1

−1 ξ
2 sin(ω̂ξ)2 dξ

4
∫ 1

−1
cos2(ω̂ξ) dξ

−
(∫ 1

−1 ξ sin(2ω̂ξ) dξ

2
∫ 1

−1
cos2(ω̂ξ) dξ

)2

 ,

(6.15)

ω2‖(Id− Qω)cj‖2
0,]xj−1,xj [

‖ sin(ω·)‖2
0,]xj−1,xj [

= (1
2hj)

2



∫ 1

−1 ξ
2 cos(ω̂ξ)2 dξ

4
∫ 1

−1
sin2(ω̂ξ) dξ

−
(∫ 1

−1 ξ sin(2ω̂ξ) dξ

2
∫ 1

−1
sin2(ω̂ξ) dξ

)2

 .

(6.16)
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Similar symbolic expressions can be derived for all other components of the norm
‖ · ‖DG+,j . Thus we end up with an estimate of the form

‖(Id− Qω)ϕj‖2
DG+,j ≤ h2

jη(hjω)‖wh‖2
0,]xj−1,xj[

, (6.17)

for which the function η is available as a sum of expressions involving integrals over
[−1, 1] that can be computed in closed form. Here, we are content with its numerical
evaluation. The behavior of η is displayed in Fig. 6.1. The most important observation
is that η is uniformly bounded for all real arguments.
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Fig. 6.1. Function η from (6.17)

Writing h := maxj hj for the global mesh width, we conclude the duality estimate,
cf. (5.21),

ω|(u− uh, wh)| ≤ Chω‖wh‖0,]−1,1[

(
‖u− uh‖DG + ‖f − Qωf‖0,]−1,1[

)
. (6.18)

with C > 0 independent of both the mesh and ω.

The important message sent by (6.18) and (5.8) is that quasi-optimality of
Galerkin solutions can already be achieved by guaranteeing Chω < 1, which con-
stitutes a major improvement compared to the requirement c0hω

2 < 1 stipulated
by the general analysis of Section 5. We owe this improvement to the exceptional
possibility to capture all possible plane wave directions in one dimension. Thus the
pollution effect can be avoided, as can also be achieved by other methods, see [4].
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7. Numerical experiments. In a series of numerical experiments in 2D we
study the convergence of the h-version of different primal plane wave discontinuous
Galerkin methods. We consider (1.1) on simple bounded domains Ω ⊂ R2 and fix
source terms f and g such that u agrees with a prescribed analytic solution. All
the computations were done in MATLAB on fairly uniform unstructured triangular
meshes.

Experiment 1 studies the homogeneous Helmholtz boundary value problem (1.1)
(f = 0) on the unit square Ω :=]0, 1[2. We impose an outgoing cylindrical wave
solution

u(x) = H
(1)
0 (ω|x − x0|) , x0 =

(−1/4

0

)
, (7.1)

where H
(1)
0 is the zero-th order Hankel function of the first kind.

The experiment seeks to explore
1. the relative performance of different versions of the mixed discontinuous

Galerkin approach (3.7), which differ in the choice of the parameters α, β, and
γ in the numerical fluxes (3.10), (3.11), see Table 7.1. Note that UWVF does
not, and PWDG0 may not comply with the assumptions of Propostion 5.2.

2. the presence and strength of the pollution effect, by monitoring the onset of
asymptotic convergence and its dependence on ωh as well as the increase of
the discretization error for increasing ω and fixed ωh.

A sequence of unstructured triangular meshes of different resolution (measured in
terms of the maximal edge length h) was used. It was produced by a mesh genera-
tor. Figure 7.1 gives an impression of what these meshes look like. We measure the
discretization error in the broken version of the weighted norm (“energy norm”) (5.11)

‖v‖2
1,ω,h := ‖∇hv‖2

0,Ω + ω2‖v‖2
0,Ω , (7.2)

and in the L2(Ω)-norm.
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Fig. 7.1. The third and fifth coarsest meshes on the unit square.

We observe algebraic convergence in terms of hω for all methods and p = 5, see
Figures 7.2, 7.3. All the methods offer about the same accuracy and convergence rates.
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method α β γ δ λ

UWVF [9] 1
2

1
2 0 1

2
1
2

PWDG0 2
ωh 0 0 0 2

ωh

PWDG1 C2

2ωh 0 0 0 C2

ωh

PWDG2 C2

2ωh
ωh
10 0 min{ 1

2 ,
ωh
10 } C2

ωh

Table 7.1
Choice of parameters for numerical fluxes (3.10), (3.11), (3.13), with different plane wave DG

methods. Here, C denotes an estimate for Ctinv from Thm. 4.7. We computed Ctinv on each element
using (4.46) in the plane wave basis and defined C on each edge as the maximal value of Ctinv on
the neighboring elements.

The plots hint at a slightly worse convergence for the classical UWVF, which does
not comply with the assumptions of the theory of Sect. 5.
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Fig. 7.2. Experiment 1: h-convergence of PWDG methods for ω = 4. The relative errors in the
energy norm (7.2) and the L2-norm are plotted against ωh. The divergence of the best approximation
in the L2-norm is due to numerical instability in the computation of the L2-projection.

In Figure 7.4 we notice faster algebraic convergence when using more plane wave
directions in the local trial spaces, cf. Remark 5.12.

Figures 7.3 and 7.5 highlight delayed onset of algebraic convergence for high
wavenumbers. Moreover, the plane wave DG solutions fails to come close to the best
approximation of the exact solution in the trial space. Thus, keeping ωh small, which
guarantees uniformly accurate best approximation in plane wave space, fails to control
the Galerkin discretization error for increasing ω, see Figure 7.6. All this is clear evi-
dence that numerical dispersion (pollution effect) also affects plane wave DG methods,
cf. Remark 5.11.

Experiment 2 conducts similar investigations as Experiment 1 for the realistic
setting of plane wave scattering at a sound soft circular object. Spatial discretization is
carried out in an annulus Ω := {x ∈ R2 : 1 < |x| < 3} and the exterior inhomogeneous
impedance boundary conditions allow for the exact Mie solution to the problem,

u(r, ϕ) = − J0(ω)

H
(2)
0 (ω)

H
(2)
0 (ωr) − 2

∞∑

n=1

in
Jn(ω)

H
(2)
n (ω)

H(2)
n (ωr) cos(nϕ) . (7.3)
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Fig. 7.3. Experiment 1: h-convergence of PWDG methods for ω = 64. The relative errors in
the energy norm (7.2) and the L2-norm are plotted against ωh.
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Fig. 7.4. Experiment 1: h-convergence of PWDG2 for various values of p. The relative errors
in the energy norm (7.2) and the L2-norm are plotted against the number N of degrees of freedom.
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Fig. 7.5. Experiment 1: h-convergence of PWDG2 for various values of ω. The relative errors
in the energy norm (7.2) and the L2-norm are plotted against ωh.



Plane Wave DG Methods 37

10
1

10
2

10
−2

10
−1

10
0

 ω

 r
el

at
iv

e 
er

ro
r 

(e
ne

rg
y 

no
rm

) 
fo

r 
ω

h 
= 

2

 Pollution effect in energy norm, p=5

 

 
UWVF
PWDG

0
PWDG

1
PWDG

2

10
1

10
2

10
−2

10
−1

10
0

 ω

 r
el

at
iv

e 
er

ro
r 

(L
2−n

or
m

) 
fo

r 
ω

h 
= 

2

 Pollution effect in L
2
−norm, p=5

 

 
UWVF
PWDG

0
PWDG

1
PWDG

2

Fig. 7.6. Experiment 1: errors of PWDG methods for fixed ωh = 2 and variable ω. Values were
computed by linear interpolation (w.r.t. h) of data points in bilogarithmic scale.

Dirichlet boundary conditions corresponding to the negative of the incoming wave
exp(iω

(
1
0

)
· x) are imposed on the inner circle.

The circular boundary is exactly taken into account by using an analytic pa-
rameterization. The evaluation of the matrix entries relies on high order Gaussian
quadrature rules which produce negligible quadrature error for all wave numbers ω
used in this experiment.
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Fig. 7.7. Experiment 2: the two coarsest meshes on the annulus.

By and large, in Experiment 2 we make the same observations as in Experiment
1, see Figures 7.8 through 7.10.

Experiment 3 studies the inhomogeneous Helmholtz boundary value problem
(1.1), i.e., f 6= 0. As solution we impose a circular wave (7.1) belonging to the “wrong”
frequency 1

2ω. Again, Ω :=]0, 1[2.

Again, for p = 5, we observe algebraic convergence in ωh in all norms examined,
see Figures 7.11 and 7.12. The classical UWVF suffers reduced order of convergence in
L2(ω)-norm. Figure 7.13 demonstrates that for this inhomogeneous Helmholtz prob-
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Fig. 7.8. Experiment 2: h-convergence of PWDG methods for ω = 2. The relative errors in the
energy norm (7.2) and the L2-norm are plotted against ωh.
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Fig. 7.9. Experiment 2: h-convergence of PWDG2 for ω = 16. The relative errors in the energy
norm (7.2) and the L2-norm are plotted against ωh.
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Fig. 7.10. Experiment 2: h-convergence of PWDG2 for various values of p. The relative errors
in the energy norm (7.2) and the L2-norm are plotted against the number N of degrees of freedom.
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Fig. 7.11. Experiment 3: h-convergence of PWDG methods for ω = 4. The relative errors in
the energy norm (7.2) and the L2-norm are plotted against ωh.
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Fig. 7.12. Experiment 3: h-convergence of PWDG methods for ω = 64. The relative errors in
the energy norm (7.2) and the L2-norm are plotted against ωh.

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

 N

 r
el

at
iv

e 
er

ro
r 

(e
ne

rg
y 

no
rm

)

 h−Convergence of PWDG
2
 in energy norm,  ω=64

 

 
p= 3
p= 5
p= 7

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

 N

 r
el

at
iv

e 
er

ro
r 

(L
2−n

or
m

)

 h−Convergence of PWDG
2
 in L

2
−norm,  ω=64

 

 
p= 3
p= 5
p= 7

Fig. 7.13. Experiment 3: h-convergence of PWDG2 for various values of p. The relative errors
in the energy norm (7.2) and the L2-norm are plotted against the number N of degrees of freedom.
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Fig. 7.14. Experiment 3: h-convergence of PWDG2 for various values of ω. The relative errors
in the energy norm (7.2) and the L2-norm are plotted against ωh.

lem raising p does not give better accuracy, cf. Remark 5.12.

However, since in this experiment the solution is not a propagating wave, numer-
ical dispersion cannot impair accuracy, see Figure 7.14.
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