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Abstract

In biodiversity conservation, one is interested in selecting a subset of taxa for
preservation priority. Phylogenetic diversity (PD) provides a quantitative measure
for taxon selection on phylogenetic trees. In particular, PD is the total length of
the minimal subtree induced by the selected taxa. Recently, it has been shown
that on trees the maximal PD score and the corresponding subset of taxa can be
computed by a greedy algorithm. However, if evolution is not treelike and networks
are a more appropriate illustration of phylogenetic relationships, then the greedy
strategy no longer works.

Here, we will extend the notion of PD to phylogenetic networks. To this end,
we suggest a dynamic programming algorithm (PD-NET) which guarantees the com-
putation of optimal PD scores and PD sets for circular networks, a commonly en-
countered category of networks. PD-NET has polynomial time complexity. Finally
we apply PD-NET to biological data and compare the resulting PD sets to the se-
lection of taxa derived from a tree. The outcome indicates that it is advisable to
include also non-treelike effects when dealing with conservation questions.

Keywords: phylogenetic diversity, dynamic programming, phylogenetic network,
split system, biodiversity conservation.

Introduction

Biodiversity embraces the variety of life from plants to animals, from micro- to macro-
organisms, from genes to genomes and ecosystems. The conservation planning of biodi-
versity is concerned with many research projects and intense discussions (e.g., Wilson,
1997; Gaston and Spicer, 2004).

In the last decades, the diversity of a set of taxa has been primarily measured
by genetic distance (Vane-Wright et al., 1991), i.e. by the discrepancy between the
genetic information of taxa. In particular, one is interested in selecting a subset of k
representative taxa which maximize the total genetic distance of all evolutionary lineages
spanned by these taxa. This concept was further extended to comparative genomics in
prioritizing taxa under sequencing projects (Pardi and Goldman, 2005).
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Which measure of genetic distance to use is the subject of numerous discussions
(e.g., Nee and May, 1997; Crozier et al., 2005; Faith and Baker, 2006). So far, two
measures are primarily used to evaluate the diversity of a taxon set. Genetic diversity
is the probability of observing at least two alleles in a given taxon set (Crozier, 1992),
whereas feature diversity is the average number of substitutions necessary to observe the
considered taxa (Faith, 1992). However, we will not delve into this discussion. The scope
of the paper is rather a distance based approach to detect a collection of k representative
taxa if the relationship of the group under study is not tree-like.

The evolutionary history is usually assumed to be treelike and the diversity of a
set of taxa equals the length of the minimal subtree connecting them. Under these
assumptions, Steel (2005) and Pardi and Goldman (2005) have shown that a greedy
algorithm is sufficient to determine an optimal taxon set of a given size. Minh et al.
(2006) presented an efficient implementation capable of handling trees with thousands of
taxa or more.

However, it is well known that different regions of the genome provide trees with
different genetic distances between taxa due to violations of the molecular clock or due
to varying rates of molecular evolution (e.g., Graur and Li, 2000). Moreover, sometimes
different regions of the genome lead to distinct trees due to ancestral polymorphisms
(e.g., Nei, 1987). Recently, it has been shown that the most likely gene tree, which is
often considered as the species tree may in fact differ from the true species tree (Deg-
nan and Rosenberg, 2006). Furthermore, horizontal gene transfer, frequently exploited
among bacteria, is a mechanism leading to non-treelike evolution (Doolittle et al., 2003).
Hybridization and recombination are additional factors contributing to inadequate rep-
resentation of phylogenetic relationships by a single tree.

Therefore, basing a conservation decision on a single tree which cannot depict con-
flicting signals appears to be rather unjustifiable. A possible solution for this problem
is to employ split networks (Huber and Moulton, 2005, and references therein). Such
networks are a generalization of phylogenetic trees and allow the user to visualize contra-
dictory signals in data, which cannot be included in trees. A split network represents a
set of so-called “splits”, i.e. bipartitions of the taxon set (e.g., Bandelt and Dress, 1992;
Dress et al., 2001).

Split networks have been regularly employed in the analyses of bacterial and plant
sequences or their allelic diversity (e.g., Sullivan et al., 2006; Henz et al., 2005; Suerbaum
et al., 2001; de las Rivas et al., 2004; Hertel et al., 2006). If one is interested in maintaining
diversity, it is thus in some instances more appropriate to measure genetic distance on
split networks rather than on trees. Unfortunately, the greedy strategy is not applicable
to networks (Minh et al., 2006). Therefore an alternative strategy is needed. Such a
strategy is the main subject of this paper.

First, we extend the notion of genetic distance to split networks. Then, we introduce
an efficient algorithm (PD-NET) to obtain an optimal taxon set for so-called circular
networks (Bandelt and Dress, 1992), a commonly encountered category of split networks.
Such a graph can be reconstructed by e.g. Neighbor-net (Bryant, 2004; Huson and Bryant,
2006). PD-NET works for unrooted networks and slightly modified for split networks
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directed by an outgroup (e.g., Faith and Baker, 2006, for a discussion). Subsequently,
we conduct a comparative analysis on several real world data sets to show how the
optimal taxon sets change when inferred from the split network rather than from the tree
derived from the same data set. The outcome indicates that the split network significantly
influences the resulting taxon sets, thus exhibiting a promising perspective of the method
for real-world applications.

Split Systems and Phylogenetic Diversity

Let X = {s1, . . . , sn} denote a finite set of n taxa. A split A|B is a bipartition of X into
two non-empty disjoint sets A and B, i.e., A ∩B = ∅ and A ∪B = X. A split system Σ
is any collection of splits of X.

Split systems are usually visualized as split networks , where each split is represented
by one or several parallel edges (e.g., Huber and Moulton, 2005). Figure 1 displays a five-
taxon split system consisting of nine splits and its corresponding split network. As an
example for the visualization of a split consider the dashed lines. Removing them from
the network would separate the taxon set {1, 2} from {3, 4, 5}. Trees are a special case of
networks where each split is represented by exactly one edge, i.e., only compatible splits
are allowed. For a more technical definition see Bandelt and Dress (1992).

We are particularly interested in circular split systems, i.e., a split system Σ for
which a circular taxon order (s1, s2, . . . , sn) exists such that all elements of Σ are of the
form {si, si+1, . . . , sj} X − {si, si+1, . . . , sj}, 1 ≤ i ≤ j ≤ n (e.g., Bandelt and Dress,
1992). Such split systems can be represented by so-called outer-labelled plane splits graphs
(Dress and Huson, 2004). Looking at its network representation, the taxa of a circular
split network can be placed on a circle and each split can be depicted as a line bisecting
the circle. The network in Figure 1 has the circular order (1, 2, 3, 4, 5).

An unrooted tree contains at most 2n−3 splits which equals the number of branches
in a bifurcating unrooted tree, whereas the maximum number of splits in a circular split
system is

(
n
2

)
(e.g., Bandelt and Dress, 1992).

We now come to the definition of diversity on networks. Since we calculate the
diversity in a phylogenetic framework, we will call the score of a taxon set its phylogenetic
diversity (PD). This term is often used for Faith’s feature diversity (e.g., Moulton et al.,
2007) but the reader should be aware that the measure is defined for arbitrary functions
of (genetic) distance.

Let λ denote the split weight function that assigns to each split A|B ∈ Σ a non-
negative weight λ(A|B). For any two taxa u and v the pairwise split-distance duv is the
sum of the weights of all splits separating u from v, i.e.,

duv =
∑

A|B∈Σ
u∈A,v∈B or
v∈A,u∈B

λ(A|B). (1)

As on trees the pairwise distance duv is also the phylogenetic diversity of the taxon set
{u, v}, i.e. PD({u, v}) = duv. We extend the definition to taxon subsets S ⊂ X in the
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following way. The phylogenetic diversity of S is the sum of the weights of all splits still
separating the taxa of S, i.e.,

PD(S) =
∑

A|B∈Σ
A∩S 6=∅
B∩S 6=∅

λ(A|B). (2)

This definition consistently extends the tree-based PD (see also Moulton et al., 2007)
since splits define the edges of trees.

Note that the PD strongly depends on the definition of the split weight function
λ. One can propose the split weights to denote the number of substitutions observed
between the split sets or declare alternative measures (e.g., Crozier, 1992). However,
our aim is not to measure diversity in itself but rather to present a tool that computes
diversity for subsets based on arbitrary split weight functions.

Based on split-distances, a key property of circular split systems is that for any
subset S ⊂ X containing k taxa with circular order (s1, s2, . . . , sk) the PD score of S can
be computed employing a circular tour (Korostensky and Gonnet, 2000). A circular tour
visits all taxa and returns to its starting taxon while taking the shortest path connecting
si and si+1 in the split system. Since each split bisects the circle, a circular tour traverses
each split exactly twice. Thus the sum of the weights of all edges encountered during a
circular tour equals twice the sum of the weight of all splits. Since circularity is retained
for subsystems of circular split systems, the PD score of the taxon subset S with circular
order (s1, s2, . . . , sk) is given by

PD(S) =
1

2

(
ds1sk

+
k−1∑
i=1

dsisi+1

)
. (3)

Thus obtaining the optimal PD set for k taxa is equivalent to determining the longest
circular tour traversing k taxa.

We introduce a few terms. For any given 2 ≤ k ≤ n−1 the maximal PD is denoted
by pdmax(k), and PDk denotes the set of all taxon sets S with PD(S) = pdmax(k).

On trees one employs a greedy strategy to obtain the optimal PD score and PD sets
(e.g., Pardi and Goldman, 2005) for a given size k. To this end, one simply constructs an
optimal S ∈ PDk set by determining an optimal set of two taxa and subsequently adding
k−2 taxa. Therefore, we have PD2 ⊂ PD3 ⊂ · · · ⊂ PDn−1, i.e. for any optimal taxon set
S ∈ PDk exists a series of taxon sets (Sj)

n−1
j=2 with Si ∈ PD i, Sk = S and Si ⊂ Sj, i ≤ j.

However, when looking at the split system depicted in Figure 1 we find the single optimal
PD2 set is {2, 5} and the optimal PD3 set is {1, 3, 4} which are disjoint. Thus the greedy
strategy does not apply on general split systems (see also Minh et al., 2006).

PD-NET: An efficient algorithm to obtain optimal PD sets for cir-
cular split systems

We introduce an efficient algorithm to select k taxa which maximize the PD score over
all possible sets of k taxa in a circular split system Σ. Equation (3) permits a direct
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computation of the PD score from a split-distance matrix without considering the detailed
structure of the underlying split network. Based on this observation, the calculation of
optimal PD sets reduces to the following task:

Given n taxa, their circular order and pairwise split-distances (duv), find the
longest circular k-tour, i.e. the longest among those circular tours travers-
ing k taxa.

Without loss of generality, we assume that (1, 2, . . . , n) represents the circular order. We
construct a directed acyclic graph (DAG; Cormen et al., 2001) with n taxa with respect
to the above circular order by introducing a directed edge from u to v with edge length
duv if u precedes v in the circular order. Figure 2 depicts the DAG constructed from the
example split network of five taxa with circular order (1, 2, 3, 4, 5).

A collection of k taxa (s1, s2, . . . , sk) is called an ordered k-path if 1 ≤ s1 < s2 <

· · · < sk ≤ n. Its length is given by L(s1, s2, . . . , sk) =
∑k−1

i=1 dsisi+1
. A circular k-tour is

attained if we add the vertex sk+1 = s1, i.e., returning to the starting taxon. Clearly, the
length of this circular k-tour is then L(s1, s2, . . . , sk, s1) = L(s1, s2, . . . , sk) + ds1sk

. For
two taxa u < v we denote by Lk

uv the length of the longest ordered k-path from u to v,
i.e.,

Lk
uv = max

u<s2<···<sk−1<v
L(u, s2, . . . , sk−1, v).

It is worth noting that every circular k-tour is uniquely represented by an ordered k-path
and vice versa. Therefore, looking at all ordered paths is sufficient to find a longest
circular k-tour. We will now present a way to obtain a PDk set by computing Li

uv for
all i from 2 to k, i.e., the length of the longest ordered i-path between every pair of taxa
u < v.

The key property we make use of is that if (s1, s2, . . . , sk, s1) is the longest circular
k-tour then (s1, s2, . . . , sk) is the longest ordered k-path from s1 to sk. The proof is given
in the appendix.

As a result, the length `k
max of the longest circular k-tour will be obtained by solving

the following iterative maximization:

`k
max = max

1≤u<v≤n
{Lk

uv + duv}, (4)

Li
uv =

{
maxu<s<v{Li−1

us + dsv}, if 3 ≤ i ≤ k,
duv, if i = 2.

(5)

We solve this series of equations by employing a dynamic programming technique
in a bottom-up fashion: First compute L2

uv, L
3
uv, . . . , L

k
uv for all pairs of taxa u < v by

equation (5), and then calculate `k
max by equation (4).

Now based on equation (3), the optimal k-sets S ∈ PDk have score pdmax(k) =
`k
max/2. To construct a set S with optimal score, we trace back the taxa which maximize

the sum on the right-hand side of the equations (4) and (5).
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5|1234 2.0
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23|145 2.0
45|123 2.0
15|234 1.0

Figure 1: A sample split system and its corresponding split network of five taxa. A split
is depicted by a single or parallel lines. E.g., the split 12|345 is depicted by the dashed
lines. The circle connecting the taxa of the graph indicates the circular order.
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3-path path tour
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(123) 11.5 21
(124) 16.0 26
(134) 18.0 28
(125) 16.5 25
(135) 18.5 27
(145) 15.5 24
(234) 14.5 25
(235) 15.0 26
(245) 16.0 27
(345) 14.0 23

Figure 2: The directed acyclic graph (DAG) of k-paths. The solid arcs depict the 3-path
(2, 3, 4). The table on the right hand side gives the length of all 3-paths and the length
of the ten circular tours.
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Figure 3: The neighbor-joining tree of the CYANO data with taxa in the union of PDNJ
20

and PDNNet
20 . The blue taxa appear in both sets. The red taxa occur exclusively in

PDNJ
20 . The green taxa are in PDNNet

20 and not in PDNJ
20 .

An Example

For illustration, let us regard the circular split system in Figure 1. We will construct an
optimal PD3 set. The circular order of the five taxa is (1, 2, 3, 4, 5). Equation (1) leads
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to the pairwise split-distance matrix:

(duv) =


0 5.5 9.5 10.0 8.5

5.5 0 6.0 10.5 11.0
9.5 6.0 0 8.5 9.0
10.0 10.5 8.5 0 5.5
8.5 11.0 9.0 5.5 0


As noted the length of the longest ordered 2-path L2

uv equals duv and therefore:

(L2
uv) =


− 5.5 9.5 10.0 8.5

− 6.0 10.5 11.0
− 8.5 9.0

− 5.5
−


From L2

uv we derive L3
uv as described in equation (5):

(L3
uv) =


− − 11.5 18.0 18.5

− − 14.5 16.0
− − 14.0

− −
−


where the secondary diagonal elements are omitted since there is no ordered 3-path

between two neighboring taxa, e.g., 1 and 2. To trace back the optimal 3-path, we define
the index matrix (α3

uv):

(α3
uv) =


− − 2 3 3

− − 3 4
− − 4

− −
−

 ,

where α3
uv denotes the next to last taxon label on the longest ordered 3-path between

taxon u and v. Thus the longest ordered 3-path from taxon 1 to taxon 3 contains taxon
2, and the longest ordered 3-path from taxon 2 to taxon 5 contains taxon 4, etc.

Finally we calculate the lengths of all longest circular 3-tours between pairs of taxa
i and j by solving equation (4). We get:

(L3
uv + duv) =


− − 21 28 27

− − 25 27
− − 23

− −
−
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Figure 4: The neighbor-net of the CYANO data with taxa in the union of PDNJ
20 and

PDNNet
20 . The taxa colors are coded in the same way as in Figure 3.

For the maximal elements of this matrix we can construct the underlying PD3 sets.
Thus each taxon set in PD3 has a score of pdmax(3) = 28/2 = 14 and taxa 1 and 4 span
the longest circular 3-tour. To recover the taxon set establishing the longest ordered
3-path from 1 to 4, we simply look at the stored index α3

14 and recognize that it is 3.
Therefore, a (and actually the only) PD3 set is {1, 3, 4} with score 14.
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Modifications for networks with outgroups

We have introduced PD-NET on undirected circular split systems. However, if one can
distinguish a circularity-retaining outgroup, i.e. a root taxon can uniquely be placed on
the split separating the outgroup from the rest of the taxa, PD-NET can easily be extended
to this form of directed networks. Simply label the outgroup as taxon 1. Then we order
the remaining taxa according to the circular order induced by the underlying network.
Now we want to compute pdmax(k) including the outgroup, which is accomplished by
solving the problem below:

Let n taxa be in a circular order (1, 2, . . . , n) with pairwise split-distances (duv)
and a number k < n. Find the longest circular k-tour originating in the first
taxon.

Conceptually, this is a special case of the problem for unrooted circular split systems
with the restriction that every ordered k-path starts at the root taxon. The dynamic
programming algorithm remains applicable since the main argument is the same: If
S = (1, s2, . . . , sk, 1) is the longest circular k-tour, then (1, s2, . . . , si), i = 2, . . . , k, is
the longest ordered i-path from 1 to si. The algorithm proceeds in the same way as for
the unrooted case by computing L2

1v, L
3
1v, . . . , L

k
1v and then obtains PD(S) based on Lk

1v.
However, the computational complexity is reduced by the factor n (see appendix).

Analysis of Real Data

To illustrate the difference between a tree based and a network based computation
we analyzed two datasets. The first dataset (CYANO) consists of 112 cyanobacteria,
cyanophages (cyanobacterial viruses), and environmental taxa (Sullivan et al., 2006).
Although the paper does not deal with bacterial diversity, the data are useful to demon-
strate the different outcome of PD-computation since horizontal gene transfer has oc-
curred among the cyanobacteria, in which the cyanophages play a key role (Sullivan
et al., 2006). We retrieved the psbA gene data (the core photo system reaction center
genes) for all taxa from the NCBI GenBank (Benson et al., 2006). The corresponding
sequences were aligned using ClustalW (Thompson et al., 1994) producing an alignment
with 729 positions.

The second dataset (CRAYF) comprises the freshwater crayfish of Australia (Shull
et al., 2005). The alignment combines four genes: the mitochondrial 16S rDNA, 12S
rDNA, and COI genes and the nuclear 28S gene. Among 129 aligned sequences, 20 of
them had genetic distance of zero to at least one other sequence. They were excluded
resulting in an alignment with 109 taxa. The conservation priorities based on the crayfish
phylogeny were previously studied in Whiting et al. (2000). However, the conservation
priorities were solely based on the 16S rDNA gene and a subset of 35 crayfish was
analysed.

For the CYANO data we calculated the pairwise maximum likelihood distances us-
ing IQPNNI (Minh et al., 2005) under the HKY85+G model of substitution (Hasegawa
et al., 1985; Yang, 1994). For the CRAYF we used the GTR+I+G model (Tavaré, 1986;
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Figure 5: The neighbor-joining tree of the CRAYF data with taxa in the union of PDNJ
27

and PDNNet
27 . The taxa colors are coded in the same way as in Figure 3.

Yang, 1994; Gu et al., 1995). The chosen models were suggested from the correspond-
ing papers. The model parameters were estimated from the maximum likelihood tree
reconstructed by IQPNNI. For the two resulting distance matrices we computed the
neighbor-joining tree (NJ; Saitou and Nei, 1987) and the neighbor-net (NNet; Bryant,
2004) using the program SplitsTree 4 (Huson and Bryant, 2006). Finally, we applied the
PD-NET to the distances derived from the NJ and NNet. These matrices were used to
compute the PDNJ

k and PDNNet
k sets for a given k.

Results

Figure 3 and 4 show the NJ tree and the NNet constructed from the CYANO data,
respectively. We only show the results for k = 20, thus we want to conserve a bit less
than 20% of the taxa. To avoid a crowded illustration only taxa are shown that occur
at least in one of the PD-set. The blue taxa appear in both sets, the red taxa are only
optimal on the NJ tree while the green taxa are exclusive to the NNet.

First of all, we notice that the structure of the NJ tree and the NNet do, by
and large, agree. The circular order of the labels is in both “phylogenies” preserved,
except for the taxon 25m 12. The corresponding PD sets overlap in 12 taxa (core-taxa)
and 8 taxa occur exclusively in one or the other PD-set.Thus the discrepancy of the
taxa representing the PD-set is considerable. However, the disagreement is not “evenly”
distributed. Subtree B (Figure 3) is not represented by a blue core taxon, i.e. the methods
cannot agree on a representation of this subtree. In such a case the conservation decision
depends on the reconstruction method. Subtree C (Figure 3) displays nicely the effect
of the NNet on displaying genetic relatedness. The PDNJ

20 set comprises three blue core
taxa but taxon 75m 27 is not included in the tree based PD-set. However, looking at
the corresponding position in the NNet graph it becomes obvious that 75m 27 occupies a
more intermediate position between group B and group C. Because of this intermediate
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Figure 6: The neighbor-net of the CRAYF data with taxa in the union of PDNJ
27 and

PDNNet
27 . The taxa colors are coded in the same way as in Figure 3.

position it contributes substantially to the diversity and should be included in the data.
Incidentally, such intermediates may be really worthwhile protecting.

For the CRAYF data (Figures 5 and 6) the discrepancy is less striking. For k = 27,
we observe 22 core taxa and only five taxa that occur exclusively in one of the phylogenies.
The circular order of the taxa is perfectly maintained and the tree and the network is
not well resolved, i.e. it is difficult to delineate subgroups in the tree. Thus, the CRAYF
data are an instance where a NNet analysis does not provide more information than a
NJ analysis . However, we would like to emphasize, that this result is not known a priori.
The PD-NET algorithm may help also in such cases, simply to support the results of a
PD-set computation based on a tree only.

Discussion

The selection of single genes can provide the user with ways to guide the conservation
analysis into a preferred direction. In this light, conservation studies can be declared to
be subjective if only few genetic information is involved in the determination of taxa.
Moreover, even the inclusion of several genes to generate a supertree or consensus tree
will lead to a loss of diversity information namely conflicting signals.

We have presented an alternative framework to evaluate the diversity of a taxon
set and to generate optimal taxon sets of a predefined size k on circular split systems.
Such split systems permit the user to incorporate conflicting signals. To this end, we
illustrated our method on two real-world datasets, one with horizontal gene transfer and
the other with four distinct genes. We compared the two optimal PD sets inferred from
the neighbor-joining tree and the neighbor-net. The results indicate that different ways
to summarize genetic diversity influence the determination of optimal taxon sets. We
expect that the PD-NET will be able, if different tree distance matrices are combined and
a NNet is computed from the resulting mixture of distance matrices.
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Moreover, the discrepancy between optimal PD sets from trees and networks gives
the user additional information for reserve selection. In particular, the user could fix a
size k but optimize for a larger value κ > k for both cases and thus can accumulate a
huge variety of alternative taxa to be added in later stages. The actual ordering of the
reserves could be achieved by employing, e.g., the Shapley index (Haake et al., 2005).

Concerning the PD-NET algorithm, it is worth noting that in a directed acyclic
graph, finding the longest path can be solved by a dynamic programming algorithm
(Sedgewick, 2002). Here we extend the problem to the longest k-path and show that the
dynamic programming strategy still works. This not only contributes a theoretical result
to combinatorial optimization but also shows a direct application of the method to the
phylogenetic diversity maximization.

We also measured the performance of the algorithm on a big dataset based on the
rbcL gene containing 736 flora from a biodiversity hotspot, the Cape of South Africa
(Forest et al., 2007). We repeated the same procedure as described in the data analysis
section to build the NJ and NNet. On a 2.2GHz computer, the algorithm consumed 25
seconds to compute all optimal PDNJ

k and PDNNet
k sets for k = 2, . . . , 736. The provided

algorithm is therefore suitable for most applications that deal with hundreds of taxa or
more.

Pardi and Goldman (2005) showed that phylogenetic diversity can also be employed
to prioritize species for sequencing in genomics. With the observation that the evolu-
tionary history of bacteria and plants (e.g., Suerbaum et al., 2001; de las Rivas et al.,
2004; Hertel et al., 2006) is usually visualized by networks, this presents an additional
field to apply our algorithm. In this context, one has to carefully consider whether a
tree or a network should be used as the underlying evolutionary model. Applications in
comparative genomics usually start with a predefined set of taxa and extend this set with
an optimal selection from the remaining taxa. This option is included in our algorithm.
We also allow the user to look for alternative taxon sets in PDk. However, this task
depends on the number of PDk sets and can lead to exponential computing time in the
worst case.

Recently, alternative measures for diversity were discussed. Budget constraints as
described in the Noah’s Ark Problem (Weitzman, 1998; Hartmann and Steel, 2006; Pardi
and Goldman, 2007) receive an increased interest. Here, an overall budget is prescribed to
signify the conservation effort. For each taxon a sub-budget is assigned as the requirement
for its survival. The optimization of diversity is now influenced by the sustainability of the
optimal set, i.e., we look for a taxon collection whose preservation costs do not exceed the
allotted budget. Such a model is clearly not restricted to trees but can also be extended
to networks.

Computer Program

A computer program written in C++ is freely available from http://www.cibiv.at/

software/pda/. The program accepts the input file in NEXUS format (e.g., as produced
by SplitsTree) as well as the tree file in NEWICK format. We integrate NEXUS Class Li-
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brary (NCL; Lewis, 2003) to parse the NEXUS file. The software will then automatically
detect the type of the input file to apply appropriate PDA algorithms.
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Appendix: Ordered k-paths

We show, that if (s1, s2, . . . , sk, s1) is the longest circular k-tour then (s1, s2, . . . , sk) is
the longest ordered k-path from s1 to sk. This is easily proven by assuming that there is
a longer ordered k-path (s1, t2, . . . , tk−1, sk) from s1 to sk. Then

L(s1, t2, . . . , tk−1, sk) + ds1sk
> L(s1, s2, . . . , sk) + ds1sk

,

and therefore (s1, s2, . . . , sk, s1) would no longer be the longest circular k-tour. Similarly,
if (s1, s2, . . . , sk) is the longest ordered k-path from s1 to sk then also (s1, s2, . . . , sk−1) is
the longest ordered (k−1)-path from s1 to sk−1. We say, that our problem exhibits an op-
timal substructure (Cormen et al., 2001), i.e., the longest circular k-tour (s1, s2, . . . , sk, s1)
contains also the longest ordered i-path from s1 to si for all i = 2, . . . , k. Therefore, we
can apply a dynamic programming algorithm to construct all the longest ordered i-paths
between every pair of taxa and subsequently combine them to accomplish a longest cir-
cular k-tour.

Appendix: Complexity considerations

Listings 1 and 2 describe the algorithm for the unrooted case in pseudo-code. Listing
1 calculates k − 1 matrices (Li

uv) and (αi
uv) for i from 2 to k given the circular order

and the split-distance matrix (duv). Listing 2 constructs an optimal k-set based on the
computed information (Li

uv) and (αi
uv) by identifying two taxa ũ and ṽ maximizing (4)

and incrementally adding the taxon maximizing (5) into the set.
The computation of matrices (Li

uv) and (αi
uv) needs four nested loops as shown

in Listing 1. The three outer loops generate all possible combinations of (i, u, v) which
amounts to O(kn2) since i runs from 3 to k, while u and v run from 1 to n. The fourth
loop has complexity O(n) because the taxon index s varies between u and v. We get the
cumulative time complexity of O(kn3). The computation of the optimal k-set as seen
from listing 2 requires O(n2) time for the determination of two taxa ũ and ṽ and O(k)
time for identifying k − 2 remaining taxa. In total, the computational complexity of the
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algorithm is O(kn3) in the unrooted case. In the rooted case the time complexity reduces
to O(kn2).

Considering memory requirement, one observes the following property of equation
(5). Each row of the matrix (Li

uv) is computed using only the same row of (Li−1
uv ) and the

split-distance matrix (duv). Hence, one can compute the first rows (Li
1v) and (αi

1v) and
infer the longest circular k-tour originating at taxon 1. Subsequently, one can re-use the
memory space to calculate the longest k-tour starting at taxon u, u = 2, . . . , n − k + 1.
With this trick, the memory requirement for the unrooted case can be reduced to O(kn)
which is also the memory complexity of the rooted case.

Listing 1: Compute Li
uv and αi

uv

Input: Set of taxa X = {1, 2, . . . n}, indexed in a circular order;
Subset size k;
Split-distance matrix (duv)
Output: Lengths Li

uv of longest ordered i-paths between all pairs of taxa u, v, for
1 ≤ u < v ≤ n, 2 ≤ i ≤ k;

Indices αi
uv of the taxon set which generates Li

uv

begin
Init L2

uv = duv for all 1 ≤ u < v ≤ n;
for i = 3 to k do

for u = 1 to n− i + 1 do
for v = u + i− 1 to n do

Init Li
uv = 0;

for s = u + i− 2 to v − 1 do
if Li

uv < Li−1
us + dsv then

Update Li
uv = Li−1

us + dsv;
αi

uv = s;

end
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Listing 2: Construct an optimal k-set

Input: Set of taxa X = {1, 2, . . . n};
Subset size k;
Split-distance matrix (duv);
Matrices (Li

uv) and (αi
uv)

Output: Set S of k taxa with maximal PD
begin

max = 0;
for u = 1 to n− k + 1 do

for v = u + k − 1 to n do
if max < Lk

uv + duv then
Update max = Lk

uv + duv;
ũ = u;
ṽ = v;

Init S = {ũ, ṽ};
for i = k downto 3 do

S = S ∪ {αi
ũṽ};

Set ṽ = αi
ũṽ;

return S;
end
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