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Abstract

Motivated by a desire to find a useful 2d Lorentz-invariant reformulation of the AdS5×S5 su-
perstring world-sheet theory in terms of physical degrees of freedom we construct the “Pohlmeyer-
reduced” version of the corresponding sigma model. The Pohlmeyer reduction procedure involves
several steps. Starting with a coset space string sigma model in the conformal gauge and writing
the classical equations in terms of currents one can fix the residual conformal diffeomorphism
symmetry and kappa-symmetry and introduce a new set of variables (related locally to currents
but non-locally to the original string coordinate fields) so that the Virasoro constraints are auto-
matically satisfied. The resulting equations can be obtained from a Lagrangian of a non-abelian
Toda type: a gauged WZW model with an integrable potential coupled also to a set of 2d fermionic
fields. A gauge-fixed form of the Pohlmeyer-reduced theory can be found by integrating out the
2d gauge field of the gauged WZW model. The small-fluctuation spectrum near the trivial vac-
uum contains 8 bosonic and 8 fermionic degrees of freedom with equal mass. We conjecture that
the reduced model has world-sheet supersymmetry and is ultraviolet-finite. We show that in the
special case of the AdS2 × S2 superstring model the reduced theory is indeed supersymmetric: it
is equivalent to the N=2 supersymmetric extension of the sine-Gordon model.
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1 Introduction

String theory in AdS5 × S5 is represented by a Green-Schwarz-type [1] action on a supercoset
PSU(2,2|4)

SO(1,4)×SO(5)
[2]. It is classically integrable [3] and has an involved solitonic spectrum (see, e.g.,

[4, 5]). To quantize it one may attempt to eliminate first unphysical degrees of freedom by choosing a
kind of light-cone gauge, i.e. an analog of x+ = p+τ, Γ+θ = 0. One natural option is to expand near
the null geodesic parallel to the boundary in the Poincare patch; the resulting gauge-fixed action is
then quartic in fermions [6]. An alternative is to use the null geodesic wrapping S5 [7]; the resulting
action [8, 9, 10] has a rather complicated structure with many non-linear interaction terms.

An apparent disadvantage of the light-cone gauge choices is that the gauge-fixed action lacks man-
ifest 2d Lorentz invariance (beyond the quadratic level in the fields). This makes it hard to apply
familiar methods of integrable quantum field theories; in particular, the S-matrix for the elementary
excitations has apparently less restricted form [11, 12] than in a Lorentz-invariant case (cf. [13]).

An alternative approach which we shall explore here is to impose the conformal gauge condition
and to perform a non-local transformation of variables (from coodinates to currents) that solves the
Virasoro constraints at the classical level while preserving the integrable structure. This generalizes
the Pohlmeyer “reduction” (or better “reformulation”) relating the classical S2 sigma model to the
sine-Gordon model [14] (see also [15, 16, 17, 18, 19]). A related work in this direction appeared in
[20, 21]. One is then left with the right number of physical (“transverse”) degrees of freedom. In a
certain sense, this reduction approach may be viewed as a “covariant analog” of a light-cone gauge
fixing.

The resulting “reduced” model should have closely related solitonic spectrum to the original one,
and one may then raise the question if the classical correspondence between the two models may
extend to the quantum level. This is not what happens in the case of the S2 sigma model and the
sine-Gordon model (one reason is that in the reduction procedure one uses conformal symmetry of
the SO(3)/SO(2) model which does not survive beyond the classical level) but we may conjecture
that the relation may still hold in the very special case of the full AdS5×S5 superstring model which
should be conformal at the quantum level.

Below we shall first discuss the Pohlmeyer-type reduction for the bosonic part of the classical
AdS5 × S5 sigma model and then consider the full supercoset superstring theory. As we shall see,
the application of this procedure to the bosonic part of the AdS5 × S5 string action leads to a 2d
relativistically invariant “reduced” theory represented by a sigma model with a potential term which
has an equivalent integrable structure. It generalizes the sine-Gordon [14] and the complex sine-
Gordon [14, 22] models to the case of the 4+4 dimensional target space.

We shall explain how to obtain a local Lorentz-invariant action for this reduced theory in terms
of “physical” (gauge-fixed) degrees of freedom.1 We shall follow the approach of [23, 24] (see also
[25]), in which the reduced theory is interpreted as a gauge-fixed version of a gauged WZW theory
with a potential representing a relevant integrable deformation, i.e. as a special case of a non-abelian

1This was not done explicitly in the past for the Sn models with n > 3. The existence of a local Lagrangian is an
important issue. At the level of equations for the currents or the Lax pair equations there is a large freedom [15] in how
one can choose a local field representation – many classically equivalent models have same-looking Lax equations and
yet very different local field representations (and thus inequivalent quantum structure). When one addresses the issue of
existence of a local action the choice of the fundamental fields becomes relevant.
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Toda theory [27].

The reduced model for the full AdS5×S5 superstring (found after an appropriate kappa-symmetry
gauge fixing) turns out to be a 2d Lorentz-covariant fermionic generalisation of a non-abelian Toda
theory for G

H
= Sp(2,2)

SU(2)×SU(2)
× Sp(4)

SU(2)×SU(2)
with 4 + 4 dimensional bosonic target space. Its simple

structure (and the matching of the numbers of the bosonic and the fermionic degrees of freedom)
suggests that it may possess 2d supersymmetry. Indeed, the existence of the supersymmetry can be
seen directly in the special case of the AdS2 × S2 superstring theory for which the reduced model
happens to be the same as the N = 2 supersymmetric sine-Gordon theory.

Though the relation of the reduced model to the original conformal superstring model involves a
non-local transformation, we may still expect that it should define a UV finite 2d theory. Its confor-
mal invariance is then only “spontaneously” broken by a scale µ (entering the potential term and its
fermionic counterpart) that appears after fixing the residual conformal diffeomorphism freedom in the
conformal gauge (the same happens in the plane-wave light-cone gauge case [7]). If this is indeed the
case, the reduced model may serve as a starting point for understanding the corresponding quantum
AdS5 × S5 superstring theory.2 Its small-fluctuation spectrum near a natural vacuum state contains
8 bosonic and 8 fermionic dynamical degrees of freedom of equal mass µ, and the corresponding
relativistic (and 2d supersymmetric) S-matrix should have the [SU(2)]4 global symmetry.

Let us now describe the contents of the paper. We shall start in section 2 with a review of the
Pohlmeyer reduction in the case of the bosonic string models on Rt × S2 and Rt × S3 with sine-
Gordon and complex sine-Gordon models as the corresponding reduced theories.

To systematically construct the Lagrangians of reduced models for higher-dimensional bosonic
SO(n,m)/SO(n−1,m) examples we shall first explain the relation between the equations of motion
of geometrical (“right”) F/G coset model written in terms of currents and the G/H (“left-right”)
gauged WZW model (gWZW) with an integrable potential. As a preparation, we shall review the
classical equations of the F/G symmetric-space sigma model (sect. 3.1) and the equations of the
G/H gWZW model with a potential, i.e. of a special case of the non-abelian Toda theory (sect. 3.2).
The potential is determined by a choice of an element T+ = T− = T in the abelian subspace in the
complement of the algebra g ofG in the algebra f of F , andH is such that its algebra h is a centralizer
of T in g.

In sect. 4 we shall show how to relate the equations of motion of the F/G coset model to those of
the G/H gWZW model by (i) imposing the so called reduction gauge in the equations of the F/G
model written in terms of the current components, and by (ii) making use of the residual 2d conformal
diffeomorphism symmetry to eliminate an additional degree of freedom (setting components of the
stress tensor to be constant and thus satisfying the conformal gauge constraints of the string theory on
Rt×F/G). This will allow us to solve part of the gauge-fixed equations of motion explicitly in terms

2While the transformation used to arrive at the reduced model is non-local (e.g., the Poisson structures of the original
and reduced models are different [20, 21]), one may hope that in an integrable finite field theory the solitonic spectrum
should be determined essentially by the semiclassical approximation [28] and it may then be the same in a pair of theories
with classically equivalent integrable structures. Having obtained the reduced model via the classical procedure and using
it as a starting point for quantization one would still need to understand how to compute the “observables” of the original
theory in terms of the quantum reduced theory (at the classical level one can do this by solving the linear Lax system). In
particular, one would need to compute the global charges of the PSU(2, 2|4) symmetry group as these are relevant for
comparison with the gauge theory side.
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of a new field g taking values in G and the h-valued gauge field A± (sect. 4.2). The resulting system
will turn out to be invariant under the both left and rightH gauge symmetries. After imposing a special
gauge condition under which the gauge symmetry reduces to that of the G/H gWZW model these
equations of motion become equivalent to the ones following from the gWZW action with a special
integrable potential described in sect. 3.2. That the reduced equations of motion of the F/G coset
model can be related to those of the gWZW model with an integrable potential was first suggested
(and checked on several examples) in [24, 25]. Here we shall explain why this correspondence should
work in general and specify the necessary conditions on the groups and the algebras involved. We
shall also note that the potential term is equal to the original F/G coset Lagrangian in the reduction
gauge.

In sect. 4.3 we shall mention the equivalence of the Lax representations for the F/G coset and
the G/H gWZW models and in sect. 4.4 we shall consider the reduced equations for the Sn =
SO(n + 1)/SO(n) coset model in the A± = 0 [24] H-gauge. These equations, are, however, non-
Lagrangean on physical subspace.3

As we shall discuss in sect. 5, to get the Lagrangean equations for the independent n–1 degrees
of freedom of the reduced counterpart of the Sn model (that generalizes the sine-Gordon and the
complex sine-Gordon cases) one should start with the gWZW action, impose the H-gauge on the
group element g ∈ G and integrate out the gauge field components A±. The resulting reduced action
is that of a sigma model with a curved target space metric (but no antisymmetric tensor coupling)
combined with a relevant integrable potential term given universally by a cosine of one of the n–1
angles. We describe few explicit examples of reduced models for strings on Rt × S4 and Rt × S5 in
sect. 5.2. The generalisation to AdSn × Sn models is then straightforward (sect. 5.3).

In sect. 6 we shall turn to the AdS5 × S5 superstring starting with the equations of motion for
the bF

G
= PSU(2,2|4)

Sp(2,2)×Sp(4) supercoset model (with the bosonic part F
G

= AdS5 × S5 = SU(2,2)
Sp(2,2)

× SU(4)
Sp(4)

).
We choose conformal gauge and write them in terms of the components of the left-invariant current
of PSU(2, 2|4). We use the formulation based on Z4 grading property [54, 3] of the superalgebra
psu(2, 2|4). Fixing a particular kappa-symmetry gauge we perform the analog of the Pohlmeyer
reduction discussed earlier for the similar bosonic cosets. An important ingredient is a generalization
to the psu(2, 2|4) superalgebra case of the Lie algebra decomposition originally used in [18] in the
bosonic coset case.

Introducing the new set of fermionic variables directly related to the odd components of the super-
coset current we show in sect. 6.4 that the reduced system of equations follows from a 2d Lorentz-
invariant Lagrangian (6.49). Its bosonic part is that of G

H
= Sp(2,2)

SU(2)×SU(2)
× Sp(4)

SU(2)×SU(2)
gWZW model

with an integrable potential determined by a special diagonal matrix T = T± in the even part of the
psu(2, 2|4) superalgebra. In addition, the Lagrangian contains a quadratic fermionic part with a stan-
dard first-derivative kinetic term. The fermions interact “minimally” with the H gauge field A± and
are also coupled (by a “Yukawa-type” term) to the bosonic field g ∈ G. We mention that as in the
bosonic case, the sum of the µ-dependent potential and “Yukawa” interaction terms in the reduced
Lagrangian is equal to the original superstring Lagrangian written in terms of currents.

The vacua of the theory are described by constant g taking values in H; in the A± = 0 gauge the

3The original observation of [24] that the gWZW model with an integrable potential provides a Lagrangean formula-
tion of the reduced equations of motion of the F/G coset model applied on the extended configuration space involving
the “auxiliary” A± fields. Similar construction was discussed in a string context in [26].
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small-fluctuation spectrum near the trivial vacuum consists of 8 bosonic and 8 fermionic dynamical
modes of the same mass µ. We comment on the interpretation of the parameter µ and mention that
the corresponding scattering matrix should have a global H = [SU(2)]4 symmetry.

The structure of the reduced action suggests the presence of a 2d supersymmetry. Its existence is
indeed confirmed in sect. 7 on the example of a similar AdS2 × S2 superstring model based on the
psu(1, 1|2) superalgebra. The corresponding reduced Lagrangian is found to be the same as that of
the N = 2 supersymmetric extension of the sine-Gordon model.

There are also several Appendices containing some technical details and definitions.

2 Examples of reduced models: strings in Rt × S2 and Rt × S3

Let us begin with a review of the prototypical example: reduction of the S2 sigma model to the sine-
Gordon model [14]. Starting with the action of the sigma model on the sphere written in terms of the
embedding coordinates S = 1

4πα′

∫
d2σ L where (∂± = ∂0 ± ∂1)

L = ∂+X
m∂−X

m − Λ(XmXm − 1) , m = 1, 2, 3 , (2.1)

we get for the classical equations of motion

∂+∂−X
m + ΛXm = 0 , Λ = ∂+X

m∂−X
m , XmXm = 1 . (2.2)

Then the stress tensor satisfies

T+− = 0 , ∂+T−− = 0 , ∂−T++ = 0 , T±± = ∂±X
m∂±X

m, (2.3)

so that T++ = f(σ+), T−− = h(σ−). Since the theory is classically conformally invariant one can
apply conformal transformations to put T±± into the special constant form

∂+X
m∂+X

m = µ2 , ∂−X
m∂−X

m = µ2 , µ = const . (2.4)

This effectively fixes one of the two fields of S2 leaving us with a one-dimensional “reduced” theory.
Indeed, one can introduce a new field variable ϕ via the following non-local transformation Xm → ϕ

µ2 cos 2ϕ = ∂+X
m∂−X

m . (2.5)

Then the equations for Xm (2.2) and the conditions (2.4) are solved provided ϕ is subject to the
sine-Gordon (SG) equation ∂+∂−ϕ+ µ2

2
sin 2ϕ = 0. The latter follows from

L̃ = ∂+ϕ∂−ϕ+
µ2

2
cos 2ϕ , (2.6)

which is thus the Lagrangian of the “reduced” theory. The classical solutions and integrable structure
(Lax pair, etc.) of the original sigma model and its reduced counterpart are then directly related.

This reduction from sigma model on S2 to the SG theory has also an equivalent interpretation as
a classical equivalence between the bosonic string theory in Rt × S2 in a special gauge and the SG
theory. Indeed, starting with the Polyakov string action containing the time direction term −∂+t∂−t
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in addition to the S2 term (2.1) and choosing the conformal gauge combined with t = µτ (to fix
the residual conformal reparametrisation symmetry) we end up with the same conditions (2.4), now
interpreted as the conformal gauge (Virasoro) constraints. Then the classical string equations on
Rt × S2 become equivalent to the SG equation for the one remaining “transverse” degree of freedom
parametrized by ϕ (the gauge conditions eliminate 1+1 out of 1+2 string degrees of freedom).

One interesting outcome of the above reduction is that while the conditions (2.4) obviously vio-
late the 2d Lorentz invariance of the original theory (t = µτ “spontaneously breaks” the 2d Lorentz
invariance in the string-theory version of the reduction), the resulting SG theory is still Lorentz in-
variant. Note also that the SO(3) global symmetry of the original model (2.1) becomes trivial in the
reduced model: ϕ defined in (2.5) is SO(3) invariant. Given a SG solution for ϕ and thus a specific
value of the Lagrange multiplier function Λ = µ2 cos 2ϕ = ∂+X

m∂−X
m in (2.2) one can reconstruct

the corresponding solution for Xm by solving the linear equation ∂+∂−X
m+ΛXm = 0.4 For a given

solution for Xm one can then find the corresponding SO(3) conserved charges. Thus the classical
solitonic spectra of the two models should be in direct correspondence (see [30, 31, 32] for some
specific examples).

This classical equivalence relation obviously breaks down in quantum theory where there are UV
divergences and mass generation in the S2 sigma model so that the classical conformal invariance is
broken (invalidating, in particular, the argument leading to (2.4)). Still, one may hope that an analog
of this reduction may extend to the quantum level in the case of a theory like AdS5 × S5 superstring
which remains conformally invariant upon quantisation.

The above reduction has a straightforward generalisation to the case when S2 is replaced by S3

[14, 22]. The reduced model corresponding to the string on Rt × S3 is the complex sine-Gordon
(CSG) model

L̃ = ∂+ϕ∂−ϕ+ tan2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ . (2.7)

The variables ϕ and θ are expressed in terms of the SO(4) invariant combinations of derivatives of
the original variables Xm (m = 1, 2, 3, 4)

µ2 cos 2ϕ = ∂+X
m∂−X

m , µ3 sin2 ϕ ∂±θ = ∓1

2
εmnklX

m∂+X
n∂−X

k∂2
±X

l . (2.8)

Again, the integrable structures and the soliton solutions of the two models are closely related (see
[31, 32]). The CSG model can be interpreted as a special case of a non-abelian Toda theory [27] – a
massive integrable perturbation of a gauged (coset) WZW model (here SO(3)

SO(2)
model) [51].5

Reduced equations of motion for sigma models on higher spheres Sn (n = 4, 5, ...) involve field
variables related to SO(n + 1) invariants built out of Xm and its higher derivatives ∂±Xm, ∂

2
±Xm,

∂3
±Xm, ... (with indices contracted using δmk and εm1...mn+1); they were found in [17] (see also [16,

19]). The resulting equations were not, however, derivable from a local Lagrangian.
It was later shown in [24] that they can be obtained as a particular gauge-fixed version of the clas-

sical equations of the SO(n)
SO(n−1)

gauged WZW model with an integrable potential term. This provided

4To find periodic solutions on R × S1 one would need to start with a periodic solution of SG model and also impose
periodicity on Xm in solving the linear system.

5The corresponding quantum S-matrix was discussed in [52].
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a Lagrangean formulation of these equations on the extended field space including the 2d gauge field
A± of the gWZW model.

This construction gives a strong indication that there should exist an alternative version of the
classical reduced equations of motion which is manifestly Lagrangean, i.e. that can be derived from
an action containing only physical “reduced” set of fields as was found in the previous cases of the
SG and CSG models.

The reason for this expectation is that the classical equations written in the Lax-pair form admit
different “gauge-equivalent” [15] versions related by (non-local) field redefinitions.6 This was already
noticed in [19] in the S3 case where the field variables corresponding to the CSG model were related
by a non-local transformation to the variables of the reduced model of [17].

Below we shall present an explicit form of the reduced Lagrangian models for the string onRt×S4

and Rt × S5; the AdSn versions can be found by an analytic continuation. One is then able to write
down the reduced Lagrangian for the bosonic part of theAdS5×S5 theory. The basic idea is to follow
[24] and start with the SO(n)

SO(n−1)
gWZW model with a relevant integrable perturbation term but instead

of fixing the gauge field A± = 0 as in [24] fix the gauge on the group element and integrate out the
gauge fieldA± as in [36, 37, 38, 40] (see also [25, 29]). In the case of the SO(3)

SO(2)
(or equivalently SU(2)

U(1)
)

model that procedure immediately explains the appearance of the familiar D = 2 target space metric
in the CSG action (2.7) as was originally observed in [39].

The construction of the reduced models based on the conformal gauge and fixing the remaining
conformal transformations by t = µτ condition was applied above to a string on Rt × Sn. The same
can be done for the bosonic string model onAdSn×S1 in conformal gauge and with fixing the residual
conformal symmetry choosing the S1 angle α equal to µτ . Denoting the embedding coordinates of
AdSn as Ys (with Y sYs = −Y 2

0 −Y 2
−1 +Y 2

1 + ...+Y 2
n = −1) the AdSn Lagrangian is then the analog

of (2.1)
L = ∂+Y

s∂−Ys − Λ̃(Y sYs + 1) , (2.9)

with the equations of motion and conformal gauge constraints being

∂+∂−Ys + Λ̃Ys = 0, Λ̃ = −∂+Y
s∂−Ys , Y sYs = −1 , (2.10)

∂+Ys∂+Y
s = −µ2 , ∂−Ys∂−Y

s = −µ2 . (2.11)

By concentrating on the plane formed by the normalized vectors ∂+Y
s and ∂−Y s (orthogonal to Y s)

one can see that their scalar product can be set equal to

∂+Y
s∂−Ys = −µ2 cosh 2φ , (2.12)

where φ is a new variable (cf. (2.5)). Then in the AdS2 case we get ∂+∂−φ + µ2

2
sinh 2φ = 0 which

follows from the reduced Lagrangian (cf. (2.6))

L̃ = ∂+φ∂−φ−
µ2

2
cosh 2φ . (2.13)

6 This is a classical gauge equivalence when gauge transformations at the level of Lax equations lead to equivalent
integrable systems. The resulting non-local relation at the level of field theory models does not, in general, extend to the
quantum level, cf. [34, 35].
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Let us now explain how the above special examples can be generalized to the case of the bosonic
string on AdSn × Sn. Denoting the embedding coordinates of AdSn as Ys and the coordinates of Sn

as Xm the conformal gauge condition means the vanishing of the total stress tensor,

T++(Y ) + T++(X) = 0 , T−−(Y ) + T−−(X) = 0 . (2.14)

Since in the conformal gauge the equations of motion for Ys and Xm factorize, the corresponding
stress tensors are separately traceless and conserved. Then instead of using t = µτ or α = µτ
conditions (t is now part ofAdSn and α – part of Sn) we can fix the residual conformal transformation
freedom “implicitly” by following [14] and demanding as in (2.4) that T±±(X) = µ2 = const. Then
(2.14) implies that

T±±(X) = µ2 , T±±(Y ) = −µ2 . (2.15)

We thus get two decoupled AdSn and Sn sigma models with the constraints (2.15), to which we can
separately apply the Pohlmeyer’s reduction procedure. That eliminates 1+1 out of n + n degrees of
freedom, leaving us with an action for only the (n− 1) + (n− 1) physical degrees of freedom.

Later in section 6 we shall discuss a generalisation of this reduction procedure to the presence of
the superstring fermions when the AdSn and Sn parts are no longer decoupled.

3 Coset sigma model and the corresponding gauged WZW model
with an integrable potential

Let us give a short review of a coset sigma model (of which Sn model is a special case) and the
associated gauged WZW model. This will set up the notation for section 4 where we are going to
construct an explicit change of variables which relates the F/G coset sigma model to certain G/H
gauged WZW model with a potential, giving an explicit realisation of the relationship originally
proposed in [24].

3.1 F/G coset sigma model

Let G be a subgroup of a Lie group F and M = F/G be a coset space. Let us assume that the Lie
algebra f of F is equipped with a positive-definite invariant bilinear form 〈 , 〉; explicitly, let F be a
matrix group and 〈a, b〉 = Tr(ab). In addition let F/G be a symmetric space which is the case when

f = p⊕ g , [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g , (3.1)

where p denotes the orthogonal complement of the algebra g of G in f.
The action of the sigma model on F/G is given by

S = −1
2

∫
d2σ ηab Tr(PaPb) , Pa = (f−1∂af)p , (3.2)

where (...)p denotes the orthogonal projection to p, i.e.

J = f−1df = A+ P , A = Jg ∈ g , P = Jp ∈ p . (3.3)
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The action is invariant under the G gauge transformation f → fg for an arbitrary G valued function
g. Indeed, under this transformation J = f−1df → g−1(f−1df)g + g−1dg so that P transforms
into g−1Pg ensuring the invariance of the Lagrangian. The current J and therefore the action is also
invariant under the global F symmetry f → f0f for any constant f0 ∈ F . Furthermore, the classical
coset sigma model action is invariant under the 2d conformal transformations.

The equations of motion take the form

DaP
a = 0 , Da = ∂a + [Aa, ] , Aa = (f−1∂af)g . (3.4)

Using the light-cone coordinates σ+, σ− they can also be written as

D+P− = 0 , D−P+ = 0 . (3.5)

Indeed, the zero curvature condition for the current J projected to p implies

(∂+J− − ∂−J+ + [J+, J−])p = ∂+P− − ∂−P+ + [A+, P−] + [P+,A−] = 0 , (3.6)

i.e. D+P− −D−P+ = 0. This together with (3.4), i.e. D+P− +D−P+ = 0, then leads to (3.5).7

The nonvanishing components of the stress-tensor are

T++ = −1
2
Tr(P+P+) , T−− = −1

2
Tr(P−P−) . (3.7)

Equations of motion imply the conservation law ∂−T++ = 0 , ∂+T−− = 0 . Then making an appro-
priate conformal transformations one can always set as in (2.4) T±± = µ2.

The Lax representation for the coset sigma model is found from the zero curvature condition dω +
ω ∧ ω = 0 for the Lax connection

ω = dσ+(A+ + `P+) + dσ−(A− + `−1P−) , (3.8)

i.e.
[∂+ +A+ + `P+, ∂− +A− + `−1P−] = 0 , (3.9)

where ` is a spectral parameter. The equations of motion (3.5) follow from (3.9) as the coefficients of
order `−1 and ` terms. The coefficient of the order λ0 term is the g-component of the zero curvature
condition for the connection J = A+ P .

Let us recall also two representations of the Lagrangian of the F/G sigma model. One is to intro-
duce an explicit parametrisation of the coset M = F/G as embedded into F . If xi are coordinates on
M , let dxiJ∗i be a pullback of J to M . Then the Lagrangian in (3.2) takes the form

L = −1
2
ηab∂ax

i∂bx
j Gij(x) , Gij(x) = Tr(J∗i (x)J

∗
j (x)) , (3.10)

where Gij is the metric on the coset space. Note that by choosing a particular parametrisation of the
coset we have fixed the G gauge symmetry. An alternative form of L is found by introducing a gauge
field Aa ∈ g which serves to implement the projection of the f-current on p

L = −1
2
ηabTr[f(∂a + Aa)f

−1 f(∂b + Ab)f
−1] , (3.11)

7Note that the global right F -symmetry is not seen at the level of equations of motion written in terms of currents
because all the currents are explicitly invariant.
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or, equivalently,
L = −1

2
ηabTr[(f−1∂af − Aa) (f−1∂bf − Ab)] . (3.12)

Substituting the equation of motion for A

A = A = (f−1df)g (3.13)

into (3.11) one returns back to the original Lagrangian in (3.2).

3.2 G/H gauged WZW model with an integrable potential

As was suggested in [24] (see also [25]), a sigma model on a symmetric space F/G can be reduced to
a “symmetric space sine-Gordon” model with a Lagrangean formulation in terms of the G

H
left-right

symmetrically gauged WZW model with a gauge-invariant integrable potential.8

The potential is determined by a choice of two elements T+, T− in the maximal abelian subspace a

in the complement p of the Lie algebra g of G in the algebra f of F . The algebra h of the subgroup H
of G should be the centralizer of T± in g: [h, T±] = 0. Then the action is

Sµ(g, A) = SgWZW(g, A)− µ2

∫
d2σ

2π
Tr(T+g

−1T−g) , (3.14)

where SgWZW is the action of the left-right symmetrically gauged WZW model [41] (we omit an
overall level k factor)

SgWZW = −
∫
d2σ

4π
Tr(g−1∂+gg

−1∂−g) +

∫
d3σ

12π
Tr(g−1dgg−1dgg−1dg)

−
∫
d2σ

2π
Tr

(
A+ ∂−gg

−1 − A− g
−1∂+g − g−1A+gA− + A+A−

)
. (3.15)

Here g ∈ G and A± ∈ h (all the fields are assumed to be matrices in a given representation of F or of
its Lie algebra f).

Note that using Polyakov–Wiegmann identity the action (3.15) can be written also in the following
form

SgWZW = SWZW(h−1gh′)− SWZW(h−1h′) , (3.16)
A+ = h−1∂+h , A− = h′−1∂−h

′ . (3.17)

To define the action with T± belonging to the algebra of F it is assumed that g ∈ G is trivially
(diagonally) embedded into F . The action is then invariant under the vector gauge transformations
with parameters taking values in H:

g → hgh−1 , Aa → h(Aa + ∂a)h
−1 , h ∈ H , (3.18)

8This is a special case of a non-abelian Toda theory [27]. Non-abelian Toda models are of the two basic types –
“homogeneous sine-Gordon” and “symmetric space sine-Gordon” [25]. For the first type the gWZW part of the Toda
model corresponds to G

[U(1)]r (r is a rank of G). The models of the second type are reduced theories associated to sigma
models on compact symmetric spaces. They are quantum-integrable but their S-matrix is not known, except for special
cases of SG and CSG models. A review can be found in [43].
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where Aa ∈ h and h−1T±h = T± (since [a, h] = 0).
The equations of motion following from (3.15) are

∂−(g−1∂+g + g−1A+g)− ∂+A−

+ [A−, g
−1∂+g + g−1A+g] + µ2[g−1T−g, T+] = 0 , (3.19)

A+ = (g−1∂+g + g−1A+g)h , A− = (−∂−gg−1 + gA−g
−1)h . (3.20)

Note that g−1T−g ∈ p so that [T+, g
−1T−g] ∈ m, where g = m⊕ h. In particular, the h-component of

the first equation implies that Aa is flat,

∂+A− − ∂−A+ + [A+, A−] = 0 . (3.21)

Let us comment on the classical integrability of the above model (3.14). It is well known that the
equations of motion of the standard WZW model can be written in the Lax form. The same also
applies to gauged WZW model with the above potential. More precisely, using [Aa, T±] = 0 one can
show that equation (3.19) can be written in the Lax form, i.e. it follows from [L+,L−] = 0 where (`
is a spectral parameter)

L+ = ∂+ + g−1∂+g + g−1A+g + `µT+ , L− = ∂− + A− + `−1µg−1T−g , (3.22)

or, equivalently, from the zero curvature equation for the f-valued Lax connection

ω = dσ+(g−1∂+g + g−1A+g + `µT+) + dσ−(A− + `−1µg−1T−g) . (3.23)

While the remaining equations (3.20) (constraints) do not follow from this condition, they may be
considered as consequences of (3.19) in the sense that given a solution to (3.19) one can find a gauge
transformation such that the transformed solution satisfies (3.20).

This is possible because eq. (3.19) has a larger gauge symmetry than the original gWZW model
(3.15): it is invariant under the H ×H gauge symmetry

g → h−1gh̄ , A+ → h−1A+h+ h−1∂+h , A− → h̄−1A−h̄+ h̄−1∂−h̄ , (3.24)

where h and h̄ are two arbitraryH-valued functions. The symmetry of (3.15) is the diagonal subgroup
(with h = h̄) of the extended “on-shell” gauge symmetry (3.24). It turns out that using this extended
symmetry one can fulfil the constraints (3.20). Further details and the proof are relegated to the
Appendix A. We shall also use this observation in section 4 below.

Let us note also that given an automorphism τ of the algebra H preserving the trace one can fix the
H ×H gauge symmetry of the equations of motion in a more general way so that (3.20) is replaced
by

τ(A+) = (g−1∂+g + g−1A+g)h , A− = (−∂−gg−1 + gτ(A−)g−1)h . (3.25)

The corresponding equations (3.19),(3.25) then follow from the Lagrangian (3.14),(3.15) with the
replacement

A− → τ(A−) (3.26)
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in the A−g
−1∂+g and the g−1A+gA− terms. The corresponding gauge symmetry is then g →

h−1 g τ̂(h) where τ̂ is a lift of τ from h to H (see [25, 29]). In this case the left-right symmetri-
cally gauged WZW model is thus replaced by a more general asymmetrically gauged WZW model
[40, 33].

It was observed in [24] that since the field strength ofAa vanishes (3.21) on the equations of motion,
one can choose a gauge where9

A+ = A− = 0 . (3.27)

Then the classical equations (3.19),(3.20) reduce to

∂−(g−1∂+g)− µ2[T+, g
−1T−g] = 0 , (3.28)

(g−1∂+g)h = 0 , (∂−gg
−1)h = 0 . (3.29)

These equations happen to be equivalent to the equations of motion of the reduced F/G model found
in [16, 18, 19].

Various special cases, structure of vacua and solitonic solutions of the equations (3.28),(3.29) were
discussed in [43, 29] and refs. there.

The set of equations (3.28),(3.29) do not directly follow from a local Lagrangian. As was implied
in [24], to get a local Lagrangian formulation of these equations one is to go back to the action (3.15)
on a bigger configuration space involving both g and Aa with the gauge invariance (3.18).

At the same time, one would like also to have a reduced action involving only the independent
degrees of freedom, i.e. generalizing the actions of the SG (2.6) and the CSG (2.7) models.

Below in section 4 we shall explain why and under which conditions the relation between the
equations of the reduced theory corresponding to the F/G coset model and the equations of the
G/H gWZW model proposed in [24] actually works. Then in section 5 we shall suggest how to use
this correspondence to find a local Lagrangian for the physical number of degrees of freedom of the
reduced model.

The main observation will be that there exists an equivalent representation for the classical equa-
tions following from (3.14) (or gauge-equivalent, in the sense of [15], representation of the Lax equa-
tions corresponding to (3.22)) in which they admit an explicit Lagrangean formulation without any
residual gauge invariance, thus generalizing the SG and CSG examples. Instead of the “on-shell”
gauge Aa = 0 used in [24] one can impose an “of-shell” H-gauge on the group element g and then
solve for the gauge field Aa. “Integrating out” Aa then leads to a sigma model for the independent
dim(G/H) number of parameters in g in the same way as in the examples of conformal sigma models
associated to gWZW models [36, 38, 40].10

9This gauge is thus possible only on-shell; to gauge away Aa at the level of the gWZW Lagragian one would need
some additional local gauge invariance.

10Integrating out the gauge field at the quantum level induces also a dilaton [36]; there are also quantum α′ ∼ 1/k
corrections to the sigma model background fields [45, 46, 47]. These will be ignored at the classical level we are restricted
to here.
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4 Reduced theory for F/G coset sigma model:
equations of motion

The strategy to relate the equations of motion of the F/G coset model to those of the G/H gWZW
model will be to impose the so called reduction gauge in the equations of the F/Gmodel (3.5) written
in terms of the independent current components and then to make use of the 2d conformal symmetry
to eliminate one additional degree of freedom. This will allow us to solve all gauge-fixed equations
of motion but the Maurer-Cartan equation explicitly in terms of a new field g taking values in G and
the h-valued gauge field A±. The remaining system of equations (i.e. the components of the Maurer–
Cartan equation in this parametrization) will turn out to be invariant under both the left and the right
H gauge symmetries. We will then prove that one can impose the special gauge conditions under
which the gauge symmetry reduces to that of the H-gauge invariance of the G/H gWZW model and
the equations become equivalent to the ones (3.19),(3.20) following from the gWZW action with an
integrable potential (3.14) described in section 3.2.

4.1 Equation of motion in terms of currents and the reduction gauge

The relation between the reduced F/G model and the G/H gWZW model will apply under certain
special conditions on the structure of the Lie algebras of the groups involved. These conditions that
we will specify below will be satisfied, in particular, in the case of the Sn = SO(n+1)/SO(n) model
(and its AdSn counterpart) which is our main interest here.

Let a be a maximal Abelian subspace of the orthogonal complement p of the algebra g of G in the
algebra f of F . Let h be its centralizer in g. Following [18] we shall assume the following conditions
on the structure of these algebras (which represent a special case of (3.1))

f = p⊕ g , p = a⊕ n , g = m⊕ h , [a, a] = 0 , [h, a] = 0 , (4.1)
[m,m] ⊂ h , [m, h] ⊂ m , [m, a] ⊂ n , [a, n] ⊂ m . (4.2)

Starting with a left-invariant current J = f−1df with f ∈ F we shall use the following notation for
its h, m and p components

Aa = (f−1∂af)h , Ba = (f−1∂af)m , Pa = (f−1∂af)p , (4.3)

i.e. Aa ∈ g in (3.3) is equal to Aa + Ba. The equations of motion of the F/G sigma model (3.5)
written in terms of the current components Aa, Ba, Pa viewed as independent fields then take the
form

D+P− = 0 , D−P+ = 0 , (4.4)
∂+(A− +B−)− ∂−(A+ +B+) + [A+ +B+, A− +B−] = [P−, P+] , (4.5)

where D± = ∂± + [A± +B±, ].
The choice of the reduction gauge [18] is based on the “polar decomposition” theorem which states

that for any k ∈ p there exists g0 ∈ G such that g−1
0 kg0 ∈ a. Using the G gauge freedom of the coset
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model equations of motion one can therefore assume that one of the components of Pa, e.g., P+ is
a-valued. Then D−P+ = 0 implies

∂−P+ = 0 , [B−, P+] = 0 . (4.6)

Here we made use of the condition [m, a] ⊂ n in (4.2). Under a certain regularity condition which
we shall assume (in the case when a is one-dimensional, e.g., for F/G = SO(n + 1)/SO(n), it is
enough to require that P+ 6= 0) the equation [B−, P+] = 0 implies that

B− = 0 . (4.7)

To summarise, by imposing the gauge in which P+ ∈ a and eliminating B− by solving [B−, P+] = 0
(i.e. setting B− to zero) one can bring the system of the F/G model equations of motion (4.4),(4.5)
to the following form:

∂−P+ = 0 , ∂+P− + [A+, P−] + [B+, P−] = 0 , (4.8)
∂−B+ + [A−, B+] = [P+, P−] , (4.9)
∂−A+ − ∂+A− + [A−, A+] = 0 , (4.10)

where (4.9) and (4.10) are m and h projections of (4.5) (we are using the conditions (4.1),(4.2)).
In this reduction gauge the original G gauge symmetry is reduced to H gauge symmetry under

which the current component A± transforms as a gauge potential while B± and P± transform co-
variantly, i.e. as (...) → h−1(...)h. In particular, P+ is invariant because it takes values in a and
[a, h] = 0.

Let us note that (4.10) implies that we can impose the on-shell H gauge where A± = 0. In this
gauge the equations of motion (4.8),(4.9) take the form:

∂−P+ = 0 , ∂+P− = [P−, B+] , ∂−B+ = [P+, P−] . (4.11)

4.2 Fixing conformal symmetry, field redefinition
and relation to G/H gauged WZW model

The first equation ∂−P+ = 0 in (4.8) implies that P+ = P+(σ+). One can then fix one component
of the matrix function P+ using the residual conformal symmetry under which P+dσ

+ = P ′
+dσ

′+.
Since in the reduction gauge P+ belongs to the abelian subspace a of p, then if dim a = 1 (which is
the case, e.g., for the SO(n+ 1)/SO(n) coset of our interest) one can always assume that P+ = µT+

where T+ ∈ a is a constant matrix in f which is a basic element of a (we may also normalize it so
that Tr(T+T+) = −2). This is equivalent to requiring that the corresponding component of the stress
tensor in (3.7) is constant, i.e. T++ = µ2.

Furthermore, we can use the remaining conformal symmetry σ− → σ′−(σ−) to fix the T−− com-
ponent in (3.7) also to be constant as in the original Pohlmeyer’s argument.11 Thus assuming that the

11The conservation equation ∂+T−− = 0 can be seen directly from the second equation in (4.11).
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maximal Abelian subspace a of p = f 	 g is 1-dimensional and using the conformal symmetry we
arrive at

P+ = µ T+ , −1
2
Tr(P−P−) = µ2, (4.12)

T±± = µ2 , µ, T+ = const . (4.13)

The first condition in (4.12) fixes one independent degree of freedom contained in P+ in the case
when dim a = 1 and the second condition reduces by one the number of independent degrees of
freedom in P−. The normalization condition on P− can be solved by

P− = µ g−1T−g , T− = const , (4.14)

where g ∈ G is a new field variable (thus non-locally related to original variable f ∈ F in (4.3)) and
T− is a constant matrix which is a fixed element of a. The existence of such g follows again from the
polar decomposition theorem, and the requirement of T−− = µ2 implies that Tr(T−T−) = −2. In the
case of dim a = 1 which we are considering here it follows that

T+ = T− ≡ T . (4.15)

For generality and to indicate the Lorentz index structure, below we shall often keep the separate
notation for T+ and T−.

The equation for P− in (4.8) written in terms of g in (4.14) then becomes

∂+(g−1T−g) + [A+, g
−1T−g] = 0 , A+ = A+ +B+ . (4.16)

Considering A+ ∈ g as an unknown, the general solution of this equation can be written as

A+ = g−1∂+g + g−1A′
+g , (4.17)

where A′
+ is an arbitrary h-valued function. Indeed, the first term in (4.17) is obviously a particular

solution of (4.16) (since T− = const) while the second term is a general solution of the homogeneous
equation [A+, g

−1T−g] = 0 (given that [A′
+, T−] = 0 since [h, a] = 0). Thus

A+ = (g−1∂+g + g−1A′
+g)h , B+ = (g−1∂+g + g−1A′

+g)m . (4.18)

In terms of the new variables g, A′
+, A− the first two equations of motion in (4.4) or (4.8) are solved

and the remaining equation (4.5) (or (4.9),(4.10) which are its m and h components) then takes the
form

∂−(g−1∂+g + g−1A′
+g)− ∂+A− + [A−, g

−1∂+g + g−1A′
+g] = µ2[T+, g

−1T−g] . (4.19)

As discussed in section 3.2, this equation is equivalent to the equations of motion of the gWZW
theory (3.19),(3.20) in the sense that by an appropriate gauge transformation one can always make
the following constraints satisfied:

A′
+ = (g−1∂+g + g−1A′

+g)h , A− = (g∂−g
−1 + gA−g

−1)h . (4.20)
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After renaming A′
+ as A+ these are exactly the equation of motion (3.19) and the constraints (3.20).12

We have thus shown that the original system of equations of theF/G sigma model (4.8), (4.9),(4.10)
is equivalent to the one described by the equation (4.19) and the constraints (4.20) with the H gauge
symmetry (3.24) with h = h̄. These are the same equations of motion (3.19), the constraints (3.20)
and the gauge symmetry as corresponding to the action (3.14) of theG/H gauged WZW model (3.15)
with the potential ∼ µ2Tr(T+g

−1T−g).
That the reduced equations of motion of the F/G coset model can be related to those of the gWZW

model with an integrable potential was first suggested in [24] (and checked on several examples
including SO(n+ 1)/SO(n), SU(n+ 1)/U(n), and SU(n)/SO(n) cosets). Here we explained why
this correspondence should work in general and specified the necessary conditions on the groups and
the algebras involved.

4.3 Gauge equivalence of Lax representations for the F/G coset and G/H
gauged WZW models

Imposing the reduction gauge in terms of the Lax connections can be achieved in a directly analogous
way. Let ω be an f-valued Lax connection defined in (3.8). The gauge equivalence transformation
ω′ = f−1ωf + f−1df with f ∈ F gives a new system determined by a gauge-equivalent Lax con-
nection ω′. Decomposing ω = ωp + ωg one observes that in the special case of f = g ∈ G the
component ωp transforms as ω′p = g−1ωpg. Using the same polar decomposition argument as dis-
cussed above one concludes that it is always possible to find a G-valued function g such that (cf.
(4.1)) (ωn)+ = (A+ +B+ + `P+)n = 0.

Decomposing ω′ according to f = p⊕m⊕ h

ω′ = dσ+(A+ +B+ + `P+) + dσ−(A− +B− + `−1P−) ,

A± ∈ h , B± ∈ m, P+ ∈ a , P− ∈ p ,
(4.21)

one finds as above that the compatibility condition implies eqs. (4.6), i.e. ∂−P+ = 0 and [P+, B−] =
0; the latter gives again B− = 0. This allows us to relate the Lax connection to that with B− = 0, i.e.

ω′′ = dσ+(A+ +B+ + `P+) + dσ−(A− + `−1P−) , (4.22)

whose flatness condition implies the last two equations in (4.8).13

As for the equations ∂−P+ = 0 and ∂+P− + [A+ + B+, P−] = 0 in (4.8), assuming they are
satisfied, one can again use the conformal transformations to set P+ = µT+ and Tr(P−P−) = −2µ2.
As a result, the Lax connection takes the following form:

ωred = dσ+(A+ +B+ + `µT+) + dσ−(A− + `−1P−) . (4.23)

12More generally one, can conside asymmetrical gauge by introducing the appopriate h-automorphism τ . See the
respective discussion in section 3.2.

13 Note that this reduction is local as B− = 0 is an algebraic consequence of the compatibility condition, i.e. B− is an
auxiliary field.
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Finally, using again the parametrisation P− = µg−1T−g and A+ + B+ = g−1∂+g + g−1A′
+g, one

arrives at
ω = dσ+(g−1∂+g + g−1A′

+g + `µT+) + dσ−(A′
− + `−1µg−1T−g) , (4.24)

whose compatibility condition implies (4.19). It was shown in the previous subsection that by an
appropriate gauge transformation one can also satisfy the on-shell relations (4.20). We thus find the
relation to the Lax representation of the G/H gWZW model (cf. (3.20),(3.23)).

4.4 Reduced equations of Sn = SO(n+ 1)/SO(n) coset model
in the A± = 0 gauge

Let us now turn to the special case of our interest: sigma model with a sphere as a target space. Using
the standard (n+1)× (n+1) matrix representation for F = SO(n+1) and its diagonally embedded
G = SO(n) subgroup we can choose T+ = T− to have only one non-zero upper 2 × 2 block so that
H = SO(n − 1) is also diagonally embedded into G = SO(n) (the conditions (4.1),(4.2) are then
satisfied). In this case we get for P± in (4.12),(4.14)

P+ = µT+ = µ


0 1 . . . 0
−1 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0

 , P− = µ


0 k1 . . . kn
−k1 0 . . . 0
. . . . . . . . . . . .
−kn 0 . . . 0

 . (4.25)

Here g in (4.14) is parametrized by kl and −1
2
Tr(P+P+) = µ2. Also, −1

2
Tr(P−P−) = µ2 is satisfied

provided
n∑
s=1

ksks = 1 . (4.26)

The subalgebras g = so(n) and h = so(n − 1) are canonically (diagonally) embedded into f =
so(n+ 1). In addition to B− = 0 from (4.6),(4.7) we have for B+ = (A+)m (see (4.16))

B+ =


0 0 0 . . . 0
0 0 b2 . . . bn
0 −b2 0 . . . 0
. . . . . . . . . . . . . . .
0 −bn 0 . . . 0

 . (4.27)

In this case the equation ∂+P− + [A+, P−] = [P−, B+] in (4.8) can be solved algebraically for B+

giving (4.27) with

bl =
∂+kl + [A+, k]l√
1−

∑n
m=2 kmkm

, l = 2, . . . , n . (4.28)

Fixing the H = SO(n− 1) on-shell gauge as

A+ = A− = 0 , (4.29)
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the third equation in (4.8) then gives the following reduced system of equations for the remaining
n− 1 unknown functions k2, ..., kn (k1 is determined from (4.26)) [19]

∂−
∂+kl√

1−
∑n

m=2 kmkm
= −µ2kl , l = 2, . . . , n . (4.30)

This is the same reduced system that follows both from the SO(n + 1)/SO(n) coset model [16, 18]
and the SO(n)/SO(n− 1) gWZW model in the A± = 0 gauge [24].

The point g = 1 is an obvious vacuum for eq. (3.19) in the A± = 0 gauge, i.e. a trivial solution of
(3.28),(3.29) with T+ = T−. According to (4.14),(4.25) it corresponds to

k2 = ... = kn = 0 . (4.31)

The massive fluctuations near this vacuum in the gauge (4.29) are described by the H = SO(n − 1)
invariant equation (4.30), i.e.

∂+∂−kl + µ2kl +O(k2
l ) = 0 . (4.32)

It is convenient to rewrite the equation (4.30) in terms of the new variables (ϕ, um) defined so that
(4.26) is satisfied

k1 = cos 2ϕ , kl = ul sin 2ϕ , ulul = 1 , l = 2, . . . , n , (4.33)

getting [19]

∂+∂−ϕ−
1
2

tan 2ϕ ∂+ul∂−ul +
µ2

2
sin 2ϕ = 0 ,

∂+∂−ul + (∂+um∂−um) ul +
2

sin 2ϕ
(cos 2ϕ ∂+ϕ∂−ul +

1

cos 2ϕ
∂−ϕ∂+ul) = 0 .

(4.34)

Besides the obvious SO(n − 1) symmetry these equations are invariant under the following formal
transformation

ϕ → ϕ+
π

2
, µ2 → −µ2 . (4.35)

In the case of F/G = SO(4)/SO(3), i.e. CSG as a reduced model, this formal transformation
relates the two 2d dual reduced models with T-dual target space metrics in the corresponding reduced
Lagrangians [23, 39, 29].14

Let us briefly describe the modifications of the above construction in the case of the AdSn =
SO(2, n−1)/SO(1, n−1) coset model. The vector-space signature is diag(−1,−1, 1, . . . , 1) and the
subgroupG = SO(1, n−1) is diagonaly embedded. In the standard representation of f = so(2, n−1)
the element T+ = T− can be choosen to have the same form as in (4.25) while the condition (4.26)
takes the form k1k1 −

∑n
m=2 kmkm = 1. Equation (4.30) is then replaced by

∂−
∂+kl√

1 +
∑n

m=2 kmkm
= −µ2kl , l = 2, . . . , n . (4.36)

14In this case of SO(3)/SO(2) gWZW model this duality is also related with the vector (g → h−1gh) or the axial
(g → hgh) gauging [45, 44].
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Finally, introducing instead of (4.33) the parametrization

k1 = cosh 2φ , kl = ul sinh 2φ , ulul = 1 , l = 2, . . . , n , (4.37)

one arrives at the system (4.34) for φ, ul with the obvious replacement of cosϕ, sinϕ, tanϕ with
coshφ, sinhφ, tanhφ. The two systems of equations are thus related by the replacement ϕ = iφ,
as one would expect from the standard analytic continuation argument. Remarkably, the variables ul
satisfy the same normalization condition in the Sn and the AdSn cases and both systems are invariant
under the same H = SO(n− 1) symmetry. Note also that in the AdSn case the linearized equations
(4.32) have exactly the same form leading to the same massive fluctuations near the vacuum g = 1.

Instead of using the parametrization of P− in terms of kl in (4.25) we may start with a particular
choice of g ∈ G which then determines P− according to (4.14). Parametrising g ∈ G = SO(n)
by the generalized Euler angles and expressing P− in terms of them one arrives at a certain multi-
field generalisation of the sine-Gordon equation which is just another form of (4.34) (ϕ introduced
in (4.33) corresponds then to the first Euler angle). In the SO(3)/SO(2) case this gives the standard
sine-Gordon equation

g =

(
cos 2ϕ sin 2ϕ
− sin 2ϕ cos 2ϕ

)
, k1 = cos 2ϕ , k2 = sin 2ϕ , (4.38)

∂+∂−ϕ+
µ2

2
sin 2ϕ = 0 . (4.39)

In the SO(4)/SO(3) case we can parametrize g ∈ SO(3) as

g = g2g1g2 , g1 = exp (2ϕR1) , g2 = exp (χR2) , (4.40)

R1 =

 0 1 0
−1 0 0
0 0 0

 , R2 =

 0 0 0
0 0 1
0 −1 0

 . (4.41)

The corresponding components of the unit vector ks in (4.25),(4.33) are

k1 = cos 2ϕ , k2 = sin 2ϕ cosχ , k3 = sin 2ϕ sinχ . (4.42)

The equations of motion (4.34) take the form

∂+∂−ϕ−
1

2
tan 2ϕ ∂+χ∂−χ+

µ2

2
sin 2ϕ = 0 ,

∂+∂−χ+
2

sin 2ϕ

(
cos 2ϕ ∂+ϕ ∂−χ+

1

cos 2ϕ
∂−ϕ ∂+χ

)
= 0 .

(4.43)

These equations can be brought to the standard complex sine-Gordon form by a (nonlocal) change of
variables (which may be interpreted as a gauge change in (3.19),(3.20)). Indeed, replacing χ by θ via

∂+θ =
cos2 ϕ

cos 2ϕ
∂+χ , ∂−θ = cos2 ϕ ∂−χ , (4.44)

19



we get [19]:

∂+∂−ϕ−
sinϕ

cos3 ϕ
∂+θ∂−θ +

µ2

2
sin 2ϕ = 0 ,

∂+∂−θ +
2

sin 2ϕ
(∂+ϕ∂−θ + ∂−ϕ∂+θ) = 0 ,

(4.45)

which follow from the local CSG Lagrangian (2.7). If we replace eq. (4.44) by the transformation

∂+θ̃ = − sin2 ϕ

cos 2ϕ
∂+χ , ∂−θ̃ = sin2 ϕ ∂−χ , (4.46)

we get instead of (4.45) the equations that follow from the analog of (2.7) with T-dual target space
metric: ds2 = dϕ2 + cot2 ϕ dθ̃2. Both the corresponding “dual” Lagrangian and its equations of
motion are related, respectively, to (2.7) and (4.45) by the transformation (4.35). The fields θ in
(4.44) and θ̃ in (4.46) are related of course by the 2d duality transformation.

In general, the equations (4.30) found in the A± = 0 gauge do not follow from a local Lagrangian
for the field km (apart from the n = 2, i.e. the SG case). In particular, this applies to the system
(4.43): one needs a nontrivial field redefinition (4.44) (which is consistent only on the equations of
motion for ϕ) to get a Lagrangean system (4.45).

Such a non-local field redefinition may be interpreted as corresponding to a change of theH gauge.
A way to get a Lagrangean system of the reduced equations is to fix the H gauge not on A± (as was
done in [24] and above in this section) but on g, i.e. to solve the equations for A± in terms of the
gauge-fixed g. We shall discuss this procedure in the next section.

5 Lagrangian of reduced theory: Sn = SO(n + 1)/SO(n) model

As we have seen in section 4, the reduced equations of motion of the F/G coset model are in general
gauge-equivalent to the equations of motion of the G/H gWZW model with a specific integrable
potential. To get a Lagrangean formulation of the reduced theory corresponding to the F/G model
(or, equivalently, to the bosonic string on Rt × F/G in the conformal gauge) we may then start with
the associated G/H gWZW model, fix an H-gauge on g ∈ G and solve for the auxiliary gauge field
A±. This will produce a classically-equivalent integrable system. Here we shall concentrate on the
example of the Sn sigma model.

5.1 General structure of the reduced Lagrangian

In the case of F/G = Sn, i.e. G/H = SO(n)/SO(n − 1) we will end up with an integrable theory
represented by an (n–1)- dimensional sigma model with a potential15

L = Gmk(x) ∂+x
m∂−x

k − µ2U(x) . (5.1)

15The absence of the antisymmetric Bmn coupling has to do with the symmetric gauging of the maximal diagonal
subgroup.
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The special cases are the n = 2 (2.6) and n = 3 (2.7) examples discussed above. Here xm are the
n− 1 (= dimG− dimH) independent components of g left over after the H gauge fixing on g.

In contrast to the metric of the usual geometric (or “right”) coset SO(n)/SO(n − 1) = Sn−1

the metric Gmk in (5.1) found from the symmetrically gauged G/H = SO(n)
SO(n−1)

gWZW model will
generically have singularities and no non-abelian isometries.16

Following [42] we may call these geometries resulting from conformal SO(n)
SO(n−1)

gWZW models
as “conformal cosets” or “conformal spheres”, with the notation Σn−1. Instead of Rmk = c Gmk

for a standard sphere their metric Gmk satisfies Rmk + 2∇m∇kΦ = 0 where Φ is the corresponding
dilaton resulting from integrating out Aa. The explicit expressions forGmk were worked out for a few
low-dimensional cases: Σ2 [36], Σ3 [37, 38, 40] and Σ4 [44].

The potential (“tachyon”) term in (5.1) originates directly from the µ2 term in (3.14). It is a relevant
(and integrable) perturbation of the gWZW model and thus also of the “reduced” geometry, so that it
should satisfy (see also [48])

1√
Ge−2Φ

∂m(
√
Ge−2ΦGmk∂k)U −M2U = 0 . (5.2)

Below we shall comment on details of the derivation of the metric Gmk and write down explicitly the
reduced Lagrangian (5.1) for the new non-trivial cases of n = 4, 5, i.e. for the string on Rt × S4 and
Rt × S5, which generalize the n = 3 CSG model (2.7).

The H gauge fixing on g and elimination of Aa from the SO(n)
SO(n−1)

gWZW Lagrangian (3.14) can be
done by generalizing the discussion of the n = 4 case in [38]. The first step is the parametrisation of
g in terms of the generalized Euler angles. Let us define the 1-parameter subgroups corresponding to
the SO(n+ 1) generators Rm+1,m (m = 0, 1, ..., n− 1)

gm(θ) = eθRm , (Rm)ji = (Rm+1,m)ji ≡ δjmδm+1,i − δmiδ
j
m+1 . (5.3)

Then T± = T in (3.14) is equivalent to the generator R0 corresponding to g0

T = R0

and the generators of the subgroup H = SO(n − 1) which commutes with T contain Rm+1,m with
m = 2, ..., n−1. A generic element ofG = SO(n) can be parametrized as g = gn−1(θn−1)...g2(θ2)g1(θ1)h,
where h belongs to H . A convenient H gauge choice is then [38]

g = gn−1(θn−1)...g2(θ2)g1(2ϕ)g2(θ2)...gn−1(θn−1) , (5.4)

so that ϕ ≡ 1
2
θ1, θ2, ..., θn−2 are n − 1 coordinates on the coset space Σn−1, with ϕ playing a distin-

guished role.
With this choice of the parametrisation it turns out that the potential U in (3.14),(5.1) has a universal

form for any dimension n: it is simply proportional to cos 2ϕ as in the SG (2.6) or CSG (2.7) cases.
Indeed, since [T±, gk] = 0 for k> 2, one finds

Tr(T+g
−1T−g) = Tr(T+g

−1
1 T−g1) = 2 cos 2ϕ . (5.5)

16While the gauge A± = 0 preserves the explicit SO(n− 1) invariance of the equations of motion, fixing the gauge on
g and integrating out Aa breaks all non-abelian symmetries (the corresponding symmetries are then “hidden”).
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The metric and the dilaton resulting from integrating out the H gauge field Aa satisfy

ds2 = Gmkdx
mdxk = dϕ2 + gpq(ϕ, θ)dθ

pdθq ,
√
G e−2Φ = (sin 2ϕ)n−1 , (5.6)

so that the equation (5.2) is indeed solved by17

U = −1

2
cos 2ϕ , M2 = −4n . (5.7)

Let us now make few remarks.
As was already mentioned, the reduced model (5.1) has no antisymmetric tensor coupling term.

The antisymmetic tensor contribution could originate either from the WZ term in the WZW action in
(3.15) or in the process of solving for the gauge field Aa. It turns out that both contributions vanish if
the gauge condition (5.4) is used. Details of the proof are given in the Appendix B

The obvious “vacuum” configurations, i.e. extrema of the potential U are θp = const and ϕ =
π
2
n, n = 0, 1, 2, .... The metric gpq(ϕ, θ) in (5.6) may, however, be singular near such points, i.e. they

may not be reachable in a given coordinate system and more detailed analysis may be required.
One should keep in mind that the gWZW action (3.14) is the most general and universal definition

of the theory, while special gauges and parametrizations may have their drawbacks and may not apply
globally. For example, the elimination of the gauge fields A± from (3.19) or the gWZW action (3.15)
requires solving the constraints in (3.20), i.e. A+ = (g−1A+g + g−1∂+g)h and A− = (gA−g

−1 +
g∂−g

−1)h. The corresponding operator (1 − Adg)h is singular near some points g (e.g., g = 1)
implying that in their vicinity one should use a different gauge or do not directly solve for A±.

For example, one may consider an asymmetrically gauged WZW model (see (3.26)) correspond-
ing to a more general on-shell gauge (3.25); in this case one should use (5.4) with the left-hand-side
factor gn−1(θn−1)...g2(θ2) replaced by τ̂(gn−1(θn−1)...g2(θ2)) where τ̂ is the lift of the automorphism
in (3.25). However, in the case when h is simple (e.g., for the SO(5)/SO(4) coset) such an automor-
phism can always be represented as τ(A) = h−1

τ Ahτ for some hτ ∈ H; therefore it can not be used
to remove the degeneracy of the operator in the A+A− part of the action.18

Finally, let us note that both the gauge fixing and the eliminating of A± can be implemented at
the level of the Lax connection, leading to the Lax formulation of the reduced model in terms of the
generalized Euler angles, i.e. ensuring the integrability of the reduced model (5.1).

Let us now turn to specific examples.

5.2 Examples of reduced Lagrangians for Sn models

Let us first show how to get the Lagrangian (2.7) of the CSG model directly from the SO(3)
SO(2)

gWZW
model (3.14). The equation for A+ following from (3.15) reads:

A+ = (g−1∂+g + g−1A+g)h . (5.8)

17We fix the overall normalisation constant in the WZW action so that α′k = 1.
18The nonsingular metrics known to arise in the SG and CSG cases are due to the fact that h = 0 in the CS case and

h = U(1) in the CSG case. As we will see below, the nonsingular metric in the CSG case is obtained by utilizing the
automorphism τ(A) = −A. This automorphism does not, however, apply to the case of a non-abelian h.
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In the SO(3)
SO(2)

gWZW case we have from (5.4) g = g2(θ)g1(2ϕ)g2(θ) so that

(g−1∂+g)h = (1 + cos 2ϕ)R2∂+θ , ∂−gg
−1 = (1− cos 2ϕ)R2∂−θ ,

A+ =
1 + cos 2ϕ

1− cos 2ϕ
R2∂+θ .

(5.9)

One finds also

−1

2
Tr(g−1∂+gg

−1∂−g) = 2(1 + cos 2ϕ)∂+θ∂−θ + 4∂+ϕ∂−ϕ ,

Tr(A+∂−gg
−1) = −2

(1 + cos 2ϕ)2

1− cos 2ϕ
∂+θ∂−θ . (5.10)

Using (5.5) one finally obtains the Lagrangian

L̃ = ∂+ϕ∂−ϕ+ cot2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ . (5.11)

This Lagrangian is dual to that in (2.7), i.e. the two are related by 2d duality θ → θ̃. As was already
mentioned above, the CSG Lagrangian (2.7) is directly obtained if we start with the asymmetrically
(“axially”) gauged WZW model with τ(A−) = −A−.19 Alternatively, the two dual models are related
by the formal transformation (4.35).

The explicit form of the Σn−1 metric (5.6) with n = 2, 3, 4 as found directly from the action (3.14)
with (5.4) is thus

ds2
n=2 = dϕ2 , ds2

n=3 = dϕ2 + cot2 ϕ dθ2 , (5.12)

ds2
n=4 = dϕ2 + cot2 ϕ (dθ2 + tan θ3 cot θ2 dθ3)

2 + tan2 ϕ
dθ2

3

sin2 θ2

. (5.13)

After a change of variables (x = cos θ2 cos θ3, y = sin θ3) we get the metric on Σ3 [38]

(ds2)n=4 = dϕ2 +
cot2 ϕ dx2 + tan2 ϕ dy2

1− x2 − y2
. (5.14)

Thus in the case of n = 4 (i.e. for the string on Rt × S4) we find from (5.14),(5.7) that the reduced
theory is described by the following Lagrangian (cf. (2.7))

L̃ = ∂+ϕ∂−ϕ+
cot2 ϕ ∂+x ∂−x+ tan2 ϕ ∂+y ∂−y

1− x2 − y2
+
µ2

2
cos 2ϕ . (5.15)

An equivalent form of the metric of Σ3 (5.14) was found in [40]

(ds2)n=4 =
db2

4(1− b2)
− 1 + b

4(1− b)

dv2

v(v − u− 2)
+

1− b

4(1 + b)

du2

u(v − u− 2)
, (5.16)

19In this case the parametrization (5.4) takes the form g = τ̂(g2)g1g2 = g2(−θ)g1(2ϕ)g2(θ).
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as one can see by setting b = cos 2ϕ, u = −2y2, v = 2x2. The metric-dilaton background for
Σ4 (i.e. n = 5) case was obtained in similar coordinates (b, u, v, w) in [44]. Setting b = cos 2ϕ,
w = cosα, v = cos β we get

(ds2)n=5 = dϕ2 + tan2 ϕ
du2

(cos β − u)(u− cosα)

+ cot2 ϕ (cos β − cosα)

[
dα2

4(u− cosα)
+

dβ2

4(cos β − u)

]
. (5.17)

Together with the cos 2ϕ potential (5.7) this metric thus defines the reduced model for the string on
Rt × S5.

5.3 Reduced model for a bosonic string in AdSn × Sn

One can similarly find the reduced Lagrangians for the F/G = AdSn = SO(2, n− 1)/SO(1, n− 1)
coset sigma models related to the above ones by an analytic continuation. These reduced models
describe strings in AdSn × S1 spaces in the conformal gauge with the residual conformal symmetry
fixed, e.g., by choosing the S1 angle α equal to µτ (cf. (2.15)).

As was already discussed at the end of section 2, the reduced model for strings on AdSn × Sn can
then be obtained by simply combining the reduced models for strings on AdSn×S1 and on R×Sn.20

For example, in the case of a string in AdS2 × S2 we then find the sum of the sine-Gordon and
sinh-Gordon Lagrangians (cf. (2.6),(2.13))

L̃ = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ) . (5.18)

For a string in AdS3 × S3 we get (cf. (2.7))

L̃ = ∂+ϕ∂−ϕ+ tan2 ϕ ∂+θ∂−θ + ∂+φ∂−φ+ tanh2 φ ∂+χ∂−χ+
µ2

2
(cos 2ϕ− cosh 2φ) . (5.19)

Similar bosonic actions are then found for a string in AdS4×S4 and in AdS5×S5: one is to “double”
(5.15) and its analog corresponding to (5.17).21

Expanding (5.18) near ϕ = φ = 0 we get two massive fluctuation modes. Doing similar expansion
near the trivial vacuum in the case of (5.19) it may seem that only two modes (ϕ and φ) get masses µ,
but, in fact, all 2+2 bosonic modes become massive. Indeed, as is clear from the form of kinetic terms
in (5.19), the expansion near the point where all angles are zero is singular. This is like expanding

20Note that this is not the same as the reduced theory for the coset sigma model with F/G = AdSn×Sn = [SO(2, n−
1)/SO(1, n − 1)] × [SO(n + 1)/SO(n)]: in the latter case we would set, following [14], the components of the total
stress tensor to be equal to a constant, while for a string in AdSn × Sn the total stress tensor should vanish. The reduced
theory for coset sigma model F/G = AdSn × Sn case is of course formally equivalent to the reduced theory for a string
on AdSn × Sn × S1.

21A “mnemonic” rule to get, e.g., the AdSn counterparts of Sn Lagrangians in (2.7),(5.15) is to change ϕ → iφ and to
change the overall sign of the Lagrangian.
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near r = 0, ϕ = 0 on the disc ds2 = dr2 + r2dϕ2; instead, one is first to do a transformation
to “cartesian” coordinates and then expand. Since ϕ and φ play the role of the “radial” directions
in the 2+2 dimensional space22 their µ2

2
(cos 2ϕ − cosh 2φ) potential gives mass to all 4 “cartesian”

fluctuations. In the CSG case this is the transformation that puts the Lagrangian (2.7) into the familiar
form L̃ = ∂aψ∂aψ∗

1−ψψ∗ − µ2ψψ∗ where ψ = sinϕ eiθ.
The analogous conclusion should be true also in the general AdSn × Sn case with n > 3 though

there a direct demonstration of this in the gauge where A± are solved for is complicated by the
degeneracy of the metric gpq in (5.6). As we have already seen in (4.32),(4.30), in the Sn case all the
(n−1) fluctuation modes near the trivial vacuum get mass µ if we start with the classical equations of
the reduced theory in the A+ = A− = 0 gauge. Since the mass spectrum should be gauge-invariant,
the same should be true also in other gauges/parametrizations.

Thus in the AdS5×S5 case we should get 4+4 massive bosonic modes. Similar conclusion will be
reached for the fermionic fields discussed in the next section (see (6.54)): all 8 dynamical fermionic
modes will also have mass µ. The “free” spectrum will thus be the same as in the “plane-wave” limit
of [7].

6 Pohlmeyer reduction of the AdS5 × S5 superstring model

TheAdS5×S5 superstring can be described in terms of the Green-Schwarz version of the PSU(2,2|4)
SO(1,4)×SO(5)

(or, equivalently, PSU(2,2|4)
Sp(2,2)×Sp(4) ) coset sigma model [2]. In the conformal gauge its bosonic part is the

direct sum of the AdS5 and S5 sigma models. Below we shall apply the idea of the Pohlmeyer reduc-
tion to the whole action including the fermions. The important new element will be the κ-symmetry
gauge fixing, reducing the number of the fermionic degrees of freedom to the same 8 (or 16 real
Grassmann components) as of the bosonic ones after the solution of the conformal gauge constraint.

We shall derive the corresponding reduced Lagrangian that generalizes the bosonic Lagrangian
discussed in section 5 above. We shall find that it is invariant under the 2d Lorentz symmetry.23

Later in section 7 we will also consider a simpler AdS2×S2 model which is described by a similar
action for the PSU(1,1|2)

SO(1,1)×SO(2)
coset. In this case the reduced Lagrangian happens to be invariant under

the N = 2 (i.e. (2,2)) 2d supersymmetry, and is the same as the N = 2 supersymmetric sine-Gordon
Lagrangian.

6.1 Equations of motion in terms of currents in conformal gauge

Let us start with some relevant definitions and notation. The Lie superalgebra psl(2m|2m; C) can be
identified with the quotient of sl(2m|2m; C) by the central subalgebra of elements proportional to the
unit matrix (which belongs to sl(2m|2m; C) since its supertrace vanishes). We are interested in its real
form psu(m,m|2m) which is defined by the condition M∗ = −M , where ∗ is an appropriate antilin-
ear anti-automorphism. This superalgebra corresponds to the Lie supergroup F̂ = PSU(m,m|2m).

22Recall also that they are related to the Lagrange multipliers for the embedding coordinates discussed in section 2 so
we are then expanding near a point where the two Lagrange multipliers have constant “vacuum” values.

23 This is similar to what happened in the expansion near the S5 geodesic to quadratic order (i.e. plane-wave limit) in
the light-cone gauge [7], but here the action contains all interaction terms, i.e. is no longer truncated at the quadratic level.
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We shall consider the superalgebra f̂ = psu(m,m|2m) with m = 2 or m = 1 which admits a Z4

grading [54]24

f̂ = f̂0 ⊕ f̂1 ⊕ f̂2 ⊕ f̂3 , [̂fi, f̂j] ⊂ f̂i+jmod 4 . (6.1)

In this matrix realisation one also has i{̂fl, f̂m} ⊂ f̂l+m+2 mod 4, where {A,B} = AB + BA. 25 For
details see Appendix C.

The left-invariant current f−1∂af, f ∈ F̂ can then be decomposed as

Ja = f−1∂af = Aa +Q1a + Pa +Q2a , A ∈ f̂0, Q1 ∈ f̂1, P ∈ f̂2, Q2 ∈ f̂3 . (6.2)

Here A corresponds to the algebra of the subgroup G defining the F̂ /G coset (i.e. G = Sp(2, 2) ×
Sp(4) isomorphic to SO(1, 4)×SO(5) in the AdS5×S5 case), P is the bosonic “coset” component,
and Q1, Q2 are the fermionic (odd) currents.

Using this Z4 split the Lagrangian density of the AdS5 × S5 GS superstring [2] can be written as
follows [54, 55, 3, 56]26

LGS =
1
2
STr(γabPaPb + εabQ1aQ2b) , (6.3)

where γab =
√
−ggab. Written in terms of currents this coset action has bosonic gauge symmetry

with f̂0-valued gauge parameter. In addition to the reparametrisations it is also invariant under the
local fermionic κ-symmetry [2, 57, 58]

δκJa = ∂aε+ [Ja, ε] , (δκγ)
ab =

1

m
STr

(
W ([ika1(−), Q

b
1(−)] + [ika2(+), Q

b
2(+)])

)
,

ε = ε1 + ε2 = {P(+)a, ik
a
1(−)}+ {P(−)a, ik

a
2(+)} ,

(6.4)

where27 k1(−) and k2(+) take values in the degree 1 and degree 3 subspaces of u(m,m|2m) respectively
(it is assumed that k1(+) = k2(−) = 0). W = diag(1, . . . , 1,−1, . . . ,−1) is the parity automorphism
(see Appendix C), and the (±) components are defined as:

V a
(±) =

1
2
(γab ∓ εab)Vb . (6.5)

A detailed discussion of the κ-invariance can be found in the Appendix D.
In what follows we shall assume the conformal gauge condition γab = ηab. Then (using the stan-

dard light-cone worldsheet coordinates σ+, σ−) the only nonvanishing components of the metric are
γ+− = γ−+ = 1 while ε+− = −ε−+ = 1. For any vector Va one then has

V(+)+ = V+ , V(+)− = 0 , V(−)+ = 0 , V(−)− = V− . (6.6)

In the conformal gauge the Lagrangian (6.3)

LGS = STr[P+P− +
1
2
(Q1+Q2− −Q1−Q2+)] (6.7)

24It appears that all the steps of the reduction procedure discussed below are formally valid for any value of m.
25Note that for A,B representing elements of psu(m,m|2m) their symmetrized commutator i{A,B} belongs to

u(m,m|2m) but not necessarily to psu(m,m|2m).
26Here the overall sign is consistent with having physical signs for the bosonic AdS5 and S5 Lagrangians.
27Note that the definition of ε in (6.4) involves the symmetrized commutator so that the projection from u(m,m|2m)

to psu(m,m|2m) is assumed.
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leads to the following equations of motion [3]

∂+P− + [A+, P−] + [Q2+, Q2−] = 0 ,

∂−P+ + [A−, P+] + [Q1−, Q1+] = 0 ,

[P+, Q1−] = 0 , [P−, Q2+] = 0 .

(6.8)

Formulated in terms of the current components J± = A± +P± +Q1± +Q2±, they should be supple-
mented by the Maurer-Cartan equation

∂−J+ − ∂+J− + [J−, J+] = 0 . (6.9)

In addition, one needs to take into account the conformal gauge (Virasoro) constraints

STr(P+P+) = 0 , STr(P−P−) = 0 . (6.10)

Our aim below is to perform the Pohlmeyer-type reduction of the above system (6.8)–(6.10). The
bosonic part of the model is identical to that of the F/G sigma model where the bosonic group F ⊂ F̂

has f̂0 ⊕ f̂2 as its Lie algebra and G has Lie algebra f̂0. In the psu(2, 2|4) case of our interest f̂0 ⊕ f̂2
is isomorphic to su(2, 2) ⊕ su(4) or so(2, 4) ⊕ so(6) while f̂0 is isomorphic to sp(2, 2) ⊕ sp(4) or
so(1, 4)⊕so(5) (in the psu(1, 1|2) case f̂0⊕ f̂2 = su(1, 1)⊕su(2) and f̂0 = sp(1, 1)⊕sp(2)). Because
of the direct sum structure of the algebras one is allowed to use the reduction gauge separately for
each sector, just like in the purely bosonic case.

Performing the reduction, requires, besides partially fixing the G-gauge symmetry, to fix also the
κ-symmetry gauge. As we shall discuss below, this can be achieved in two steps. First, we shall
impose the partial κ-symmetry gauge condition28

Q1− = 0 , Q2+ = 0 , (6.11)

and then apply the same procedure as in the case of the Pohlmeyer reduction in the bosonicAdSn×Sn
case. The resulting reduced system will be still invariant under a residual κ-symmetry which can be
fixed by an additional gauge condition. That will finally make the number of the fermionic degrees
of freedom the same as the number of the physical bosonic degrees of freedom (as in the familiar
examples of the light-cone gauge-fixed superstring in the flat space or in the pp-wave space).

It will turn out that the resulting system of reduced equations of motion (that originate in particular
from the Maurer-Cartan equations and thus are first order in derivatives) will follow from a local
Lagrangian containing only first derivatives of the fermionic fields. The bosonic part of the reduced
Lagrangian will coincide with the gauged WZW Lagrangian with the same potential as in the bosonic
model discussed in section 5.

The possibility to make the gauge choice (6.11) can be readily justified as in the flat-space case by
using an explicit coordinate parametrization of the currents, i.e. by solving first the Maurer-Cartan
equations (6.9). Here we would like to use a different logic treating all equations for the currents on
an equal footing. Then one way of demonstrating that the required κ-symmetry gauge choices are
allowed will rely on using the consequences of the reduction gauge in the bosonic part of the model.
For that technical reason below we shall discuss the reduction and the κ-symmetry gauges in parallel.

28This choice was suggested by R. Roiban, see also [21].
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6.2 Reduction gauge and κ-symmetry gauge

As a first step we shall define a decomposition f̂2 = a⊕ n where a is the subspace of elements of the
form a1T

1 + a2T
2 such that T 1 and T 2 are represented by matrices with nonvanishing upper left and

lower right blocks only (i.e. T 1 is in su(2, 2) and T 2 is in su(4) parts of psu(2, 2|4)). More precisely,
we shall choose

T 1 =
i

2
diag(t, 0) , T 2 =

i

2
diag(0, t) , (6.12)

where

psu(2, 2|4) case: t = diag(1, 1,−1,−1) , psu(1, 1|2) case: t = diag(1,−1) . (6.13)

Let us also introduce the matrix
T = T 1 + T 2 , (6.14)

which will play an important role in what follows. It induces the decomposition

f̂ = f̂‖ ⊕ f̂⊥ , ζ‖ ∈ f̂‖ , χ⊥ ∈ f̂⊥ , (6.15)

P ‖ζ‖ = ζ‖ , P ‖χ⊥ = 0 , P ‖ = −[T , [T , · ]] . (6.16)

This decomposition can also be written with the help of the projector to f̂⊥1 ⊕ f̂⊥3 given by

P⊥χ⊥ = χ⊥ , P⊥ζ‖ = 0 , P⊥ = −{T , {T , · }} . (6.17)

Let us note that any ζ ∈ f̂‖ can be written as ζ = [T , λ] (and χ ∈ f⊥ can be written as χ = {T , ν}).
In particular, [T , {T , ζ}] = {T , [T , ζ]} = 0 for any ζ ∈ f̂. Moreover, STr(ζ‖χ⊥) = 0 for any ζ‖ ∈ f̂‖

and χ⊥ ∈ f̂⊥, i.e. this is an orthogonal decomposition.
The decomposition f̂ = f̂‖ ⊕ f̂⊥ generalizes the bosonic decomposition (4.1) to the superalgebra

case. In particular, in the bosonic sector one can easily make the following identifications:29

a = f̂⊥2 , n = f̂
‖
2 , h = f̂⊥0 , m = f̂

‖
0 , (6.18)

while the commutation relations (4.2) follow from the Z4-grading and the following properties:30

[̂f⊥, f̂⊥] ⊂ f̂⊥ , [̂f‖, f̂⊥] ⊂ f̂‖ , [̂f‖, f̂‖] ⊂ f̂⊥ . (6.19)

The first two properties are obvious, while checking the last one requires using the following identities

{A, [B,C]} = {[A,B], C}+ [A, {B,C}] , {A, {B,C}} = [[A,B], C] + {B, {A,C}} . (6.20)

Let us now turn to the gauge symmetry. Because the gauge algebra f̂0 is a direct sum of the subalge-
bras represented by upper-left and lower-right nonvanishing block matrices the gauge transformations

29Let us note that one can not define analogous decomposition in terms of T± for the SO(n)/SO(n − 1) coset in the
standard representation used in Section 4 as T± in this representation do not induce the decomposition (cf. the explicit
form (4.25)).

30These can be considered as defining an additional Z2-grading on f̂ with f̂⊥ and f̂‖ being, respectively, the degree 0
and degree 1 subspaces.
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are independent. It follows that by applying the polar decomposition theorem in each sector indepen-
dently one can partially fix the f̂0 gauge symmetry in order to put P+ into the form

P+ = p1T
1 + p2T

2 , (6.21)

where p1, p2 are some real functions. Indeed, the components of the gauge parameter taking values in
the upper-left and lower-right diagonal blocks are independent so that we can apply the same logic as
in the bosonic case in section 4.1 to each block separately. The Virasoro constraint STr(P+P+) = 0
in (6.10) then implies p2

1 − p2
2 = 0, so that, e.g., p1 = p2 = p+ and thus

P+ = p+ T , T = T 1 + T 2 . (6.22)

Applying the polar decomposition theorem to P− and using the second Virasoro constraint in (6.10)
one finds that P− can be represented as follows

P− = p− g
−1Tg , (6.23)

where p− is a real function and g is aG-valued function (recall thatG is the Lie subgroup correspond-
ing to the Lie subalgebra f̂0 ⊂ f̂, i.e. Sp(2, 2)× Sp(4) in the PSU(2, 2|4) case). In what follows we
shall assume that the functions p+ and p− do not have zeroes.

Now we are ready to argue that using the κ-symmetry (6.4) one can choose the gauge (6.11), i.e.
Q1− = Q2+ = 0, provided the fermionic equations of motion as well as the Virasoro constraints
are satisfied. This basically follows from the fact that in the gauge where P+ = p+T the equation
[P+, Q1−] = 0 implies that Q1− takes values in f̂⊥1 like the parameter ε1 = i{P+, k1−} so that this
gauge invariance can be used to putQ1− to zero; an analogous argument can then be given forQ2+. A
complication is that the κ-transformation (6.4) does not in general preserve both the conformal gauge
and the reduction gauge and that makes the precise argument more involved. A detailed proof of the
possibility to fix (6.11) taking all this into account is given in Appendix D.

In the gauge Q1− = Q2+ = 0 the equations of motion (6.8) become

∂+P− + [A+, P−] = 0 , ∂−P+ + [A−, P+] = 0 , (6.24)

while the Maurer-Cartan equation (6.9) splits into

∂+A− − ∂−A+ + [A+,A−] + [P+, P−] + [Q1+, Q2−] = 0 ,

∂−Q1+ + [A−, Q1+]− [P+, Q2−] = 0 ,

∂+Q2− + [A+, Q2−]− [P−, Q1+] = 0 .

(6.25)

In the reduction gauge where P+ = p+T and P− = p−g
−1Tg the second equation ∂−P++[A−, P+] =

0 in (6.24) and the fact that A− is block-diagonal imply that the same is true for the upper-left block
projection ∂−P 1

++[A1
−, P

1
+] = 0. The latter implies ∂−Tr1(P+P+) = 0 and thus also ∂−Tr2(P+P+) =

0, where Tr1 and Tr2 are, respectively, the traces in the upper-left and the lower-right diagonal blocks
(in this notation STr = Tr1 − Tr2). Since Tr1T

2 6= 0 this leads to ∂−p+ = 0. As in the bosonic case,
using an appropriate conformal transformation σ+ → σ′+(σ+) one can then set p+ equal to some
real constant µ. Following the bosonic construction one then observes that the first equation in (6.24)
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leads to ∂+Tr1(P−P−) = 0. The conformal symmetry σ− → σ′−(σ−) allows one to set p− = µ.
Thus finally we get

P+ = µ T , P− = µ g−1Tg , µ = const , (6.26)

which is the direct counterpart of the reduction gauge in the bosonic case (cf. (4.12),(4.14)). Note
that in terms of the notation used in the bosonic case here we have

T+ = T− = T . (6.27)

Let us recall that the variable g belongs to G, i.e to the subgroup whose Lie algebra is f̂0. There is a
natural arbitrariness in the choice of g since P− is invariant under g → hg if h is taking values in the
subgroup of elements commuting with T . This description thus has an additional gauge symmetry
which we shall use later.

By analogy with the bosonic case in addition to the decomposition f̂2 = a ⊕ n we make use of
the decomposition f̂0 = m ⊕ h where h is the centralizer of a in f̂0 (recall that a is the subspace of
elements of the form a1T

1 + a2T
2).31 In the present case it is useful to identify h = f̂⊥0 and m = f̂

‖
0

so that the required decomposition of the entire superalgebra is induced by a single element T as was
observed in (6.18). Accordingly, we split

A+ = (A+)h + (A+)m , A− = A− + (A−)m , A− ≡ (A−)h ∈ h . (6.28)

The second equation in (6.24) then implies (A−)m = 0 while the first one can be solved for A+ as
follows

A+ = g−1∂+g + g−1A+g , (6.29)

where A+ is a new field taking values in h.

In this way we have constructed a new parametrisation of the system in the reduction gauge: all
the bosonic currents are now expressed in terms of the G-valued field g, h-valued field A±, and in
addition we have the fermionic currents Q1+, Q2−. The equations (6.25) then take the form:

∂−(g−1∂+g + g−1A+g)− ∂+A− + [A−, g
−1∂+g + g−1A+g]

= − µ2[g−1Tg, T ] + [Q1+, Q2−] ,
(6.30)

∂−Q1+ + [A−, Q1+] =µ[T ,Q2−] ,

∂+Q2− + [g−1∂+g + g−1A+g,Q2−] =µ[g−1Tg,Q1+] .
(6.31)

These equations are invariant under the following H × H gauge symmetry (H is the group whose
algebra is h):

g → h−1gh̄ , A+ → h−1A+h+ h−1∂+h , A− → h̄−1A−h̄+ h̄−1∂−h̄ , (6.32)
Q1+ → h̄−1Q1+h̄ , Q2− → h̄−1Q2−h̄ . (6.33)

31In the case of our interest, i.e. f̂ = psu(2, 2|4), the algebra h is [su(2)⊕ su(2)]⊕ [su(2)⊕ su(2)], i.e. is isomorphic
to so(4)⊕ so(4).
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Let us note that this symmetry is large enough to choose the gauge A+ = A− = 0. This can be shown
by a simplified version of the argument given in Appendix E. In particular, there is also a choice of a
partial gauge in which A+ and A− are components of a flat connection, i.e. F+− = 0.

The equations (6.30),(6.31) admit a Lax representation. Moreover, they can be derived from a local
Lagrangian provided one uses the following parametrisation of the fermionic currents in terms of the
new fermionic variables q1, q2 via Q1+ = g−1(∂+q1 + [A+, q1])g , Q2− = ∂−q2 + [A−, q2], and
imposes the appropriate gauge condition on A±. This gauge condition is analogous to the constraints
(3.20) in the purely bosonic case. However, the resulting Lagrangean system is not completely sat-
isfactory, in particular, it contains second (instead of usual first) derivatives of the fermions and thus
will not be discussed below.

6.3 Gauge-fixing residual κ-symmetry

Besides the gauge symmetry (6.32),(6.33), the equations (6.30),(6.31) are also invariant under the
residual κ-symmetry which can be used to eliminate some parts of the fermionic currents. To identify
this symmetry let us first introduce the new fermionic variables Q1+, Q2− → Ψ1,Ψ2:

Ψ1 = Q1+ , Ψ2 = gQ2−g
−1 . (6.34)

The equations of motion (6.30),(6.31) then take the form

∂−(g−1∂+g + g−1A+g)− ∂+A− + [A−, g
−1∂+g + g−1A+g]

= − µ2[g−1Tg, T ]− [g−1Ψ2g,Ψ1] ,
(6.35)

D−Ψ1 = µ[T , g−1Ψ2g] , D+Ψ2 = µ[T , gΨ1g
−1] , D± = ∂± + [A±, ] . (6.36)

Projecting the fermionic equations (6.36) to f̂⊥1 ⊕ f̂⊥3 gives

D−(Ψ1)
⊥ = 0 , D+(Ψ2)

⊥ = 0 . (6.37)

Let us choose the gauge where (cf. the remark made below (6.33))

A+ = A− = 0 . (6.38)

Then the solution of (6.37) has the form (Ψ1)
⊥ = ψ1(σ

+) and (Ψ2)
⊥ = ψ2(σ

−).
Let us now describe the residual fermionic symmetry of the equations (6.35),(6.36). Under the

infinitesimal transformation

Ψ1 → Ψ1 + ε1 , Ψ2 → Ψ2 + ε2 , g → g + gh , (6.39)

with ε1 ∈ f̂1, ε2 ∈ f̂3, and h ∈ f̂0 these equations are invariant provided

∂−∂+h+ [g−1∂+g, h]− µ2[[g−1Tg, h], T ]

+ [g−1Ψ2g, ε1] + [g−1ε2g,Ψ1] + [[g−1Ψ2g, h],Ψ1] = 0 , (6.40)

D−ε1 = µ[T , g−1ε2g + [g−1Ψ2g, h]] , D+ε2 = µ[T , gε1g
−1 + g[h,Ψ1]g

−1] . (6.41)
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Projecting the fermionic equations on f̂⊥ one finds that ∂−ε⊥1 = 0 and ∂+ε
⊥
2 = 0, implying ε⊥1 =ε⊥1 (σ+)

and ε⊥2 = ε⊥2 (σ−). Let us consider then the projection of the fermionic equations on f̂
‖
1 ⊕ f̂

‖
3 together

with the bosonic equation (6.40) as a system of equations on ε‖1, ε
‖
2, h with ε⊥1 (σ+) and ε⊥2 (σ−) treated

as given functions (note that their derivatives do not enter these equations). This system of partial
differential equations is not overdetermined and is linear in derivatives so that it has a solution for
any ε⊥1 (σ+) and ε⊥2 (σ−), thus giving a symmetry transformation of the equations (6.35),(6.36). The
symmetry parameters ε⊥1 and ε⊥2 can, in fact, be identified as parameters of the residual κ-symmetry
in (6.4) as32

ε⊥1 = ∂+{µT , ik1−} , ε⊥2 = ∂−{µT , igk2+g
−1} , (6.42)

while the additional terms are needed to maintain the gauge conditions we have chosen. Finally, using
(6.37), i.e. ∂−Ψ⊥

1 = 0 and ∂+Ψ⊥
2 = 0 one concludes that Ψ⊥

1 ,Ψ
⊥
2 can be put to zero by the residual

κ-transformations. In what follows we shall thus assume the gauge where

Ψ⊥
1 = Ψ⊥

2 = 0 . (6.43)

The remaining fermionic degrees of freedom can be parametrized as follows

Ψ
R

=
1
√
µ

Ψ
‖
1 , Ψ

L
=

1
√
µ

Ψ
‖
2 , (6.44)

taking values in h
‖
1 and h

‖
3 respectively (see (6.16),(6.17)). As we shall see below the additional

factor µ−
1
2 in (6.44) will simplify the structure of the 2d Lorentz invariant Lagrangian description of

the resulting system (cf. (6.26)). The gauge transformations of the new fermionic variables read as
follows

Ψ
R
→ h̄−1Ψ

R
h̄ , Ψ

L
→ h−1Ψ

L
h . (6.45)

The equations of motion (6.35),(6.36) written in the gauge (6.43) are

∂−(g−1∂+g + g−1A+g)− ∂+A− + [A−, g
−1∂+g + g−1A+g]

= − µ2[g−1Tg, T ]− µ[g−1Ψ
L
g,Ψ

R
] ,

(6.46)

[T ,D−Ψ
R
] = −µ(g−1Ψ

L
g)‖ , [T ,D+Ψ

L
] = −µ(gΨ

R
g−1)‖ . (6.47)

These equations and the gauge symmetries (6.32),(6.45) define the reduced system of equations of
motion for the superstring on AdS5 × S5 (or on AdS2 × S2).

The new dynamical field variables g,Ψ
L
,Ψ

R
and A+, A− are components of the currents, i.e. they

are non-locally related to the original AdS5 × S5 sigma model fields (coordinates on the supercoset).
Note also that the bosonic equations are second-order while the fermionic equations are first-order in
derivatives, as it should be for a standard 2d boson-fermion system.

Finally, let us mention that one can see explicitly that the reduced system (6.46) and (6.47) is
integrable. The corresponding Lax pair encoding the equations (6.46) and (6.47) is

L− = ∂− + A− + `−1√µg−1Ψ
L
g + `−2µg−1Tg ,

L+ = ∂+ + g−1∂+g + g−1A+g + `
√
µΨ

R
+ `2µT .

(6.48)

To show that the compatibility conditions [L−,L+] = 0 imply the equations of motion (6.46) and
(6.47) one needs to use (6.16),(6.44), i.e. that [T , [T ,Ψ

L,R
]] = −Ψ

L,R
.

32Note that in the gauge (6.11) the residual κ symmetry is determined by k1, k2 satisfying ∂−k1− = 0 and ∂+k2+ +
[g−1∂+g, k2+] = 0.
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6.4 Reduced Lagrangian: 2d Lorentz symmetry, massive spectrum
and possible 2d supersymmetry

Remarkably, it turns out that the equations of motion (6.47) and (6.46) follow from the following
local Lagrangian:

Ltot = LgWZW + µ2 STr(g−1TgT )

+ 1
2
STr (Ψ

L
[T ,D+Ψ

L
] + Ψ

R
[T ,D−Ψ

R
]) + µ STr

(
g−1Ψ

L
gΨ

R

)
, (6.49)

where LgWZW represents the G/H gWZW model (3.15) with33

G

H
=

Sp(2, 2)

SU(2)× SU(2)
× Sp(4)

SU(2)× SU(2)

Note Ltot is explicitly H gauge-invariant under (6.32),(6.45) with h = h̄.34 The dimension of the
bosonic target space here is the same as the dimension of the G/H coset, i.e. 4+4=8. The fermionic
fields contain 8+8 independent real Grassmann components (describing 8 dynamical degrees of free-
dom).

The variations over g and Ψ
L
,Ψ

R
indeed lead to (6.46),(6.47). Thus in order to show that the

reduced model (6.46),(6.47) is described by (6.49) one is to demonstrate that the constraint equations
that arise from varying this action with respect to A± represent an admissible gauge condition for the
equations of motion.35 These constraints read as

A+ = (Â+)h , Â+ ≡ g−1∂+g + g−1A+g −
1
2
[[T ,Ψ

R
],Ψ

R
] , (6.50)

A− = (Â−)h , Â− ≡ g∂−g
−1 + gA−g

−1 − 1
2
[[T ,Ψ

L
],Ψ

L
] . (6.51)

In the Appendix E we show that they can be satisfied by an appropriate on-shell gauge transforma-
tion. Note that once these constraints are satisfied the original H × H “on-shell” gauge symmetry
(6.32),(6.45) of the equations of motion having independent h and h̄ parameters reduces to the H
gauge symmetry with h = h̄ which is the “off-shell” gauge symmetry of the Lagrangian (6.49).36

Let us now discuss several properties of this reduced action.
The Lagrangian (6.49) is formulated in terms of the left-invariant F̂ current variables (cf. (6.26),

(6.44)) that are “blind” to the original F̂ = PSU(2, 2|4) symmetry. Note that since the original coset
33Here LgWZW is given by (3.15) with Tr replaced by the −STr. The minus sign is needed to compensate for the

definition of the supertrace which includes the Sm sector with a minus sign (the use of supertrace in the first two bosonic
terms means of course just the sum of the reduced models for the AdS5 and the S5 parts). The corresponding reduced
action Stot =

∫
d2σ
2π Ltot is real (as can be seen by applying the conjugation ∗ defined in Appendix C to the expression

under the trace).
34As was already mentioned above, our reduction procedure formally applies and leads to the Lagrangian (6.49) if one

starts with any psu(m,m|2m); in particular, the m = 1 case corresponds to AdS2 × S2 superstring model.
35Note that in the AdS2 × S2 case the subalgebra h is empty and so this step is trivial.
36 More generally, similarly to the purely bosonic case, one can consider an asymmetric gauge determined by an

automorphism τ of h preserving the supertrace. In this case the residual gauge transformations are g → h−1gτ̂(h),
Ψ

R
→ τ̂(h−1)Ψ

R
τ̂(h) with transformations of the remaining variables unchanged. The Lagrangian of the asymmetrically

gauged model is given by (6.49) with A− in A− g−1∂+g − g−1A+gA− terms in (3.15) replaced with τ(A−).
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F̂ /G = PSU(2, 2|4)/[Sp(2, 2) × Sp(4)] has the purely bosonic factor G, the reduced action (6.49)
has only the bosonic global and gauge symmetries, i.e. it has no target-space supersymmetry (but
may have 2d supersymmetry, see below).

It is interesting to notice that the Lagrangian (6.49) can be rewritten as

Ltot = L̂gWZW + Ladd , Ladd = STr
[
P+P− +

1
2
(Q1+Q2− −Q1−Q2+)

]
. (6.52)

Here L̂gWZW is the G/H bosonic gWZW Lagrangian supplemented with the “free” fermionic terms
1
2
STr (Ψ

L
[T ,D+Ψ

L
] + Ψ

R
[T ,D−Ψ

R
]) while Ladd stands for the sum of the remaining µ dependent

terms in (6.49). Here we restored the original notations for the current components, i.e. used that
P+ = µT, P− = µg−1Tg (see (6.26)), that Q1+ = Q2− = 0 due to the κ-symmetry gauge condi-
tion (6.11), and that Q1+ = Ψ

R
, Q2− = g−1Ψ

L
g in (6.34). Remarkably, Ladd = µ2 STr(g−1TgT ) +

µ STr (g−1Ψ
L
gΨ

R
) is thus nothing but the original superstring Lagrangian (6.7) rewritten in terms

of the new variables g,Ψ
R
,Ψ

L
. At the same time, the equations following from L̂gWZW encode the

Maurer-Cartan equations (6.25) for the F̂ currents. It is then clear that once the conformal gauge
(Virasoro) constraints are imposed, Ltot describes, at least at the level of the corresponding equations
of motion and up to the various gauge transformations and fixing the values of the conserved quanti-
ties in terms of µ, the same field configurations as the original superstring sigma-model Lagrangian
(6.3),(6.7). An interesting question is whether one can implement a similar argument ‘off-shell” or
even at the quantum level in terms of path-integral transformations.37

Despite the fact that the 2d Lorentz invariance may appear to be broken by various gauge choices
made above and that Ψ

L
and Ψ

R
originated from the 2d vector components of the fermionic currents

(cf. (6.34),(6.44)) it is remarkable that it is still possible to assign the fermions the SO(1, 1) Lorentz
transformation rules of the components of the left and right 2d Majorana-Weyl spinors. Then the
Lagrangian (6.49) becomes invariant under the standard 2d Lorentz symmetry

σ+ → Λσ+ , σ− → Λ−1σ− , Ψ
L
→ Λ1/2Ψ

L
, Ψ

R
→ Λ−1/2Ψ

R
, (6.53)

with g and A± having the usual scalar and vector transformation laws. Choosing a parametrisation
for the matrix variables Ψ

L
and Ψ

R
which satisfy the “parallel” constraint in (6.44),(6.16)38 one can

put the fermion kinetic terms in (6.49) into the familiar form ψ
L
∂+ψL

+ ψ
R
∂−ψR

+ ....

As in the case of the bosonic reduced theory the classical conformal invariance of the original
superstring sigma model in the conformal gauge is broken by the µ-dependent interaction terms in
(6.49): the residual conformal diffeomorphism symmetry was used (cf. (6.26)) to perform the reduc-
tion procedure. This breaking is “spontaneous” being due to the presence of the “background field”
T = T+ = T−. This is similar to what happened in the light-cone gauge in the plane-wave model [7]

37A natural idea is to start with the original superstring sigma model path integral in the conformal gauge (i.e. with
the delta-function insertions δ(T++)δ(T−−)), fix the κ-symmetry gauge and change variables from coset coordinates to
PSU(2, 2|4) currents. The L̂gWZW term in the path integral action may then appear due to this change of variables. This
procedure can work only if the original path integral represents a 2d conformal theory: in the reduction procedure we used
the residual conformal symmetry.

38The “parallel” subspace is formed by anti-diagonal matrices with fermionic 2× 2 blocks.
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where the mass terms (proportional to the light-cone momentum, i.e. appearing from the ∂x+ terms)
were spontaneously breaking the classical conformal invariance of the original sigma model action.

Again as in the bosonic case discussed in section 5, the form of the reduced Lagrangian expressed
in terms of only “physical” bosonic and fermionic fields may be found by imposing an H gauge
fixing condition on g and then integrating out the H gauge field components A±. This leads to a
sigma-model with 4+4 dimensional bosonic part (5.1) supplemented by the fermionic terms, with the
following general structure (cf. (5.1))

L̃ = G(x)∂+x∂−x− µ2U(x) + ψ
L
D+ψL

+ ψ
R
D−ψR

+ F (x)ψ
L
ψ

L
ψ

R
ψ

R
+ 2µH(x)ψ

L
ψ

R
. (6.54)

Here x stands for 8 real bosonic fields in (5.1) (i.e. for the independent variables in gauge-fixed
g which parametrize G/H) and ψ

L
, ψ

R
– for 8+8 independent real Grassmann fields which are the

components of the matrices Ψ
L
,Ψ

R
. The quartic fermionic term originates from the D± terms in

(6.49) upon integrating out A± (D± in (6.54) are the standard x-dependent covariant derivatives).
As discussed below, the structure of (6.49) looks very similar to that of the supersymmetric gWZW
model modified by the bosonic potential and the fermionic “Yukawa” terms, and so the presence of
the quartic fermionic terms in (6.54) may be interpreted as reflecting the curvature of the target space.

Let us now discuss the vacuum structure and the corresponding mass spectrum of the reduced
model (6.49). Since [T,H] = 0 the obvious vacuum solution of the equations of motion (6.46),(6.47)
for (6.49) corresponds to g being any constant element h0 of H , i.e.

gvac = h0 = const , (A+)vac = (A−)vac = 0 , (Ψ
L
)vac = (Ψ

R
)vac = 0 , (6.55)

i.e. the space of vacua is equivalent to H = [SU(2)]4. By a global H transformation we can always
set h0 = 1, i.e. the mass spectrum should not depend on h0. Expanding the equations of motion
(6.46),(6.47) near g = 1, i.e. g = 1 + v + ..., and projecting to the algebra of H and its complement
in g we find a massive equation for v ∈ m ≡ f

‖
0 (i.e. v = [[T, v], T ], see (6.16)) as well as F+− = 0.39

That all bosonic coset directions get mass µ was mentioned already in section 5.3 and follows also
directly from the equations of motion in the A+ = A− = 0 on-shell gauge in the parametrization used
in (4.30),(4.32). The linearized bosonic and fermionic equations are thus

∂+∂−v + µ2v = 0 , (6.56)
[T , ∂−Ψ

R
] + µΨ

L
= 0 , [T , ∂+Ψ

L
] + µΨ

R
= 0 → ∂+∂−Ψ

L,R
+ µ2Ψ

L,R
= 0 , (6.57)

where we used that [T, [T,Ψ
L,R

]] = −Ψ
L,R

(see (6.16),(6.44)). The 8+8 independent real Grassmann
components of the fermionic matrix fields thus represent 8 massive 2d Majorana fermions having the
same mass µ as the bosonic modes. The corresponding fermionic Lagrangian is then

ψ
L
∂+ψL

+ ψ
R
∂−ψR

− 2µψ
L
ψ

R
+ ... ,

39Equivalently, expanding the action (6.49) to quadratic order in fluctuations the A+A− term will cancel while the term
linear in A+, A− will project v to the coset part m of the algebra g.
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where the mass term originates from the last “Yukawa” term in (6.49),(6.54).40

The small-fluctuation spectrum we get is thus formally the same as in the plane-wave limit [7].
In contrast to the case of the original AdS5 × S5 superstring expanded near the S5 geodesic in the
light-cone gauge where one scatters “magnons” which are small fluctuations of the superstring co-
ordinates and the remaining symmetry is [PSU(2|2)]2 [11, 10], here we scatter the fluctuations of
the current components which are invariants of the original supergroup PSU(2, 2|4). The manifest
global symmetry of the S-matrix corresponding to (6.49) in the vacuum (6.55) appears to be just the
bosonic H = [SU(2)]4 one.41

Indeed, while the Lagrangian (6.54) obtained by integrating out the H gauge fields does not have
manifest non-abelian global symmetry, it is natural to expect that the tree-level S-matrix for scattering
of the massive excitations near the vacuum (6.55) can be extracted directly from the classical equa-
tions of motion (6.46),(6.47). The latter admit larger on-shell H × H gauge symmetry allowing us
to choose the A+ = A− = 0 gauge in which the global H-symmetry of the remaining non-linear
equations and thus of the resulting (gauge-independent) S-matrix becomes manifest. The same H
symmetry is expected also to be present in the full quantum S-matrix.42

Let us now comment on the meaning of the parameter µ which plays a crucial role in our reduction
procedure and sets the mass scale.43 µ entered first through the conditions P+ = µT, P− = µg−1Tg
(4.12),(6.26) on the ± components of the coset-space part of the current that solve the conformal
gauge constraints. In the vacuum (6.55) we thus have (cf. (6.12),(6.13))

(P+)vac = (P−)vac = µ T , T =
i

2
diag(1, 1,−1,−1; 1, 1,−1,−1) . (6.58)

Thus µ determines the scale while T – the structure of the background values of the coset currents.
The corresponding charges (defined assuming the world sheet is a cylinder) thus have both the AdS5

and S5 non-zero components. Though P± are invariants of PSU(2, 2|4) their non-zero vacuum values
appear to translate, in particular, into the non-zero values of the quadratic Casimirs for SO(2, 4) and
SO(6) group. This suggests again a close relation to the BMN limit.44

In general, to relate the reduced or “current” formulation of the theory to the original AdS5 ×
S5 superstring model (6.3) (and thus to gauge theory within the AdS/CFT duality) one would need
to supplement the quantum theory based on (6.49) by a list of “observables” which are intrinsic
to the AdS5 × S5 string in its original coordinate-space formulation. This list should include, in
particular, the components of the PSU(2, 2|4) charges. They cannot be computed directly without

40This and other points discussed in this section can be illustrated on the AdS2 × S2 example discussed in the next
section (see, e.g., (7.16) below where one is to expand near ϕ = φ = 0).

41If we start with the closed string picture with the sigma model defined on a cylinder R × S1 we need to take the
µ → ∞ limit (which “decompactifies” the spatial world sheet direction) to define the scattering matrix. An interesting
question then is how to generalize the relativisic (cf. [11]) S-matrix for the CSG model [52] to the full reduced model for
AdS5 × S5 .

42The S-matrix should also have higher hidden symmetries presumably related to those of the S-matrix in [11]; we
thank R.Roiban for a discussion of this point.

43We thank S. Frolov for asking this question and useful discussions.
44In a certain sense, our reduction procedure may then be interpreted as an “invariant version” of the expansion near

the BMN vacuum.
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supplementing the reduced action with a linear problem for the associated Lax pair, but according to
the above remarks about the vacuum values of currents in (6.58) we are guaranteed to have at least
some components of the AdS5 and S5 charges to be non-zero in the vacuum (6.55) of the reduced
theory.

Finally, let us discuss possible 2d supersymmetry of the action corresponding to (6.49). As was
already mentioned above, the number (8) of independent bosonic degrees of freedom in the reduced
Lagrangian (6.54) matches that of the fermionic ones (8+8), exactly as in a 2d supersymmetric model.
Moreover, we saw that the spectrum of small fluctuations near the vacuum state (6.56),(6.57) is also
supersymmetric.

The structure of (6.49) is essentially that of a supersymmetric gWZW model [60, 61],

LSgWZW = LgWZW + ψ
L
D+ψL

+ ψ
R
D−ψR

, (6.59)

modified by the µ-dependent interaction terms. If we first set µ = 0, i.e. ignore the potential and
Yukawa interaction terms in (6.49), then we should expect to find the same (1,1) supersymmetry as
found in the component description of supersymmetric gWZW model [60, 61], i.e.

δg ∼ ε
L
ψ

R
g + ε

R
gψ

L
, δψ

R
∼ ε

L
(g−1D+g)G/H

, δψ
L
∼ ε

R
(gD−g

−1)
G/H

, δA± = 0 . (6.60)

Here ε
L

and ε
R

are parameters of the (1,0) and (0,1) supersymmetries.
For this to work the fermions should transform under the H gauge transformation as elements of

the coset part of g, i.e. m = f̂
‖
0, considered as a representation of the gauge algebra h = f̂⊥0 . It

appears, however, that for the case of psu(2, 2|4) the fermions Ψ
R
,Ψ

L
take values in f̂

‖
1,2 which is,

in general, a different representation of the gauge algebra h. More precisely, f̂
‖
1 and f̂

‖
0 considered as

representations of h are inequivalent representations related by an appropriate automorphism τ of the
gauge algebra h.45 In the absence of µ-dependent terms in (6.49) one can of course modify the gauge
transformation law of the fermions by replacing, e.g., A− with its image under that automorphism
τ(A−) in the kinetic term for Ψ

R
. This does not, however, directly apply for µ 6= 0; for example, the

gauge invariance of the fermionic interaction term µSTr(g−1Ψ
L
gΨ

R
) in (6.49) determines the gauge

transformation law of the fermions in terms of that of the field g.
We leave the question whether the full (6.49) in the psu(2, 2|4) case does have a 2d supersymmetry,

i.e. if it can be identified with a supersymmetric extension of the corresponding bosonic non-abelian
Toda theory, for a future investigation.46 Our conjecture is that the answer is yes and the supersym-
metry should be the extended (2,2) one.47

45One can see that f̂
‖
1 and f̂

‖
0 are inequivalent by, e.g., observing that for a subalgebra h1 represented by the upper-left

block matrices there are no invariant vectors in f̂
‖
1,2 but all the elements from f̂

‖
0 represented by lower-right block matrices

are invariant. The automorphism τ simply interchanges su(2) factor in the upper left block with the su(2) factor in the
lower-right block in the matrix representation of h.

46Supersymmetric extensions of generic non-abelian Toda theories were not previously discussed in the literature (apart
from the complex sine-Gordon case [49, 50]). For some references on supersymmetric extensions of sigma models with
potentials and, in particular, of abelian Toda models see [62, 63].

47The conditions for existence of the (2,2) supersymmetry in the (1,1) supersymmetric G/H gWZW model (i.e. in our
µ = 0 case) were discussed in [61] (see also [64, 65]).
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As we shall show in the next section in a similar but simpler case of theAdS2×S2 superstring model
where psu(2, 2|4) is replaced by the psu(1, 1|2) superalgebra (with trivial h so that the complication
of extending the supersymmetry from the “free” to µ 6= 0 level is absent) the corresponding reduced
Lagragian (6.49) is indeed invariant under the (2,2) supersymmetry.

An interesting question related to the existence of (2,2) supersymmetry is about finiteness property
of the quantum theory defined by (6.49). A (supersymmetric) gWZW model corresponds to a (su-
per)conformal theory, but including potential terms may in general introduce UV divergences. These
divergences should cancel out if this model has (2,2) supersymmetry. We conjecture that this is in-
deed the case; then this reduced model has a chance to be useful for a quantum description of the
AdS5 × S5 superstring.

7 Example: reduced model for superstring in AdS2 × S2

as N = 2 super sine-Gordon model

Let us now specialise the construction of the previous section to the simplest case of AdS2 × S2

superstring model [66, 54] where f̂ = psu(1, 1|2). As we shall see below, here the reduced La-
grangian (6.49),(6.54) is equivalent to that of the N = 2 supersymmetric sine-Gordon theory. This
demonstrates the existence of the (2,2) world-sheet supersymmetry in the reduced version of this GS
superstring model. Assuming one may consider the reduced theory as a legitimate starting point for
the quantisation, this also implies the UV finiteness of the AdS2 × S2 superstring and its quantum
integrability.

7.1 Explicit parametrisation of psu(1, 1|2)

The bosonic subspaces f̂0 and f̂2 in (6.1) here are represented by block-diagonal matrices of the form

f =

(
A 0
0 B

)
, ΣA†Σ = −A , B† = −B , (7.1)

with A,B being traceless 2 × 2 matrices and Σ given by (C.16), i.e. A ∈ su(1, 1) and B ∈ su(2).
The subspace f̂0 is formed by matrices satisfying also

−KAt0K = A0 , −KBt
0K = B0 , (7.2)

with K = Σ in (C.16). It is usefull to parametrise these matrices as

A0 =

(
0 φ
φ 0

)
, B0 =

(
0 iϕ
iϕ 0

)
, (7.3)

where φ, ϕ are real. The elements of the subspace f̂2 are determined by the additional conditions

KAt2K = At2 , KBt
2K = Bt

2 , (7.4)
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A2 =

(
ib ic
−ic −ib

)
, B2 =

(
iq r
−r −iq

)
, (7.5)

where b, c, q, r are real. For the fermionic subspace f̂1 the reality condition together with MΩ = iM
(see Appendix C) imply

M =

(
0 X
Y 0

)
, KY tK = iX , iΣY † = X . (7.6)

Since Σ = K gives Y + = −Y tK, f̂1 can be parametrized as

Y1 =

(
iα iβ
γ δ

)
, X1 =

(
α iγ
−β −iδ

)
. (7.7)

For f̂3 we have KY tK = −iX and iΣY † = X giving Y † = Y tK and

Y3 =

(
λ ν
iρ iσ

)
, X3 =

(
iλ ρ
−iν −σ

)
. (7.8)

The fixed element T = T 1 + T 2 in (6.14),(6.27) can be chosen in the form:

T =
1
2


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 . (7.9)

The subspaces f̂
‖
1 and f̂

‖
3 defined in (6.16) are then represented by (7.7) and (7.8) with

α = δ = 0 , λ = σ = 0 . (7.10)

The field g ∈ G introduced in (6.23) takes values in the direct product of two one-dimensional
subgroups of SU(1, 1)× SU(2) isomorphic to SO(1, 1) and SO(2); it can be parametrized as

g = exp

(
A0 0
0 B0

)
=


coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 cosϕ i sinϕ
0 0 i sinϕ cosϕ

 . (7.11)

7.2 Reduced Lagrangian

Let us write down the explicit form of the reduced Lagrangian (6.49) using the parametrisation in-
troduced above. Here the subgroup H is trivial so that A+ = A− = 0. The “kinetic” WZW term is
simply

1
2
STr(g−1∂+gg

−1∂−g) = ∂+φ∂−φ+ ∂+ϕ∂−ϕ . (7.12)

The potential term in (6.49) is

µ2STr(g−1TgT ) = −µ
2

2
(cosh 2φ− cos 2ϕ) . (7.13)
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The fermionic terms in (6.49) are

1
2
STr(Ψ

R
[T , ∂−ΨR]) = Tr(∂−Y1[T

1, X1]) = −Tr(∂−X1[T
2, Y1]) = β∂−β + γ∂−γ ,

1
2
STr(Ψ

L
[T , ∂+Ψ

L
]) = Tr(∂+Y3[T

2, X3]) = −Tr(∂+X3[T
2, Y3]) = ν∂+ν + ρ∂+ρ ,

(7.14)

µSTr(gΨ
R
g−1Ψ

L
) = µTr(g1X1g

−1
2 Y3)− Tr(g2Y1g

−1
1 X3)

= − 2µ[coshφ cosϕ (βν + γρ) + sinhφ sinϕ (βρ− γν)] ,
(7.15)

where we have used the explicit form of the diagonal blocks T 1 = T 2 = i
2
diag(1,−1) = i

2
Σ in (7.9).

Thus the final expression of the corresponding reduced Lagrangian (6.49) in terms of the two
bosonic φ, ϕ and the four fermionic β, γ, ν, ρ field variables is given by (cf. (5.18))48

Ltot = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ)

+ β∂−β + γ∂−γ + ν∂+ν + ρ∂+ρ

− 2µ [coshφ cosϕ (βν + γρ) + sinhφ sinϕ (βρ− γν)] . (7.16)

7.3 Equivalence to N = 2 supersymmetric sine-Gordon model

The bosonic part of the AdS2 × S2 reduced Lagrangian in (5.18),(7.16) happens to be exactly the
same as the bosonic part of the N = 2 supersymmetric sine-Gordon Lagrangian [53]. Furthermore,
the number of the fermionic fields in (7.16) is the same as in the N = 2 SG theory. This suggests that
the AdS2 × S2 reduced model (7.16) may have a hidden N = 2 world-sheet supersymmetry.

Indeed, (7.16) is equivalent to the N = 2 SG theory. A generic N = 2 (i.e. (2,2)) superfield
Lagrangian is

L =

∫
d4ϑ Φ̂∗Φ̂ + [

∫
d2ϑ W (Φ̂) + h.c.] ,

Φ̂ = Φ + ϑ1ψL
+ ϑ2ψR

+ ϑ1ϑ2D ,

(7.17)

where Φ̂ is a chiral N = 2 superfield, Φ = ϕ + iφ is a complex scalar and ψ
L
, ψ

R
are complex

fermions. In components

L = ∂+Φ∂−Φ∗ − |W ′(Φ)|2 + ψ∗
L
∂+ψL

+ ψ∗
R
∂−ψR

+
[
W ′′(Φ)ψ

L
ψ

R
+W ∗′′(Φ∗)ψ∗

L
ψ∗

R

]
. (7.18)

The sine-Gordon choice is

W (Φ) = µ cos Φ , |W ′(Φ)|2 =
µ2

2
(cosh 2φ− cos 2ϕ) . (7.19)

Splitting ψ
L

, ψ
R

into the real and imaginary parts

ψ
L

= ν + iρ , ψ
R

= −β + iγ , (7.20)

48As expected, the Lagrangian is real (the fermionic fields are real).
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we indeed find the agreement between (7.18) and (7.16).

Let us note that it is possible to write down the N = 2 supersymmetry transformations of the fields
in (7.16) in terms of the original matrix parametrisation used in (6.49). Let us consider separately
the (2,0) and (0,2) supersymmetries. To describe the (2,0) transformation let us introduce a matrix
fermionic parameter ε

L
taking values in f̂1 in (6.1) and satisfying in addition [T , ε

L
] = 0. This ensures

that ε
L

contains two independent fermionic parameters (α and δ in the parametrisation (7.7)). The
(2,0) supersymmetry transformation of the matrix fields in (6.49) then reads as

δε
L
g = g[T , [Ψ

L
, ε

L
]] , δε

L
Ψ

L
= [g−1∂+g, εL

] , δε
L
Ψ

R
= µ[T , gε

L
g−1] . (7.21)

In checking the invariance of the action we have to use (besides the Z4 grading and definition of ε
L

)
that [T , [T ,Ψ

L
]] = −Ψ

L
, [[T , [Ψ

L
, ε

L
]],Ψ

L
] = 0 , etc. The (0,2) transformation with parameter ε

R

looks similarly.

The (2,0) supersymmetry transformation law (7.21) can be formally generalized to the algebraically
analogous models described by (6.49) provided f̂⊥1 contains a nontrivial element commuting with the
entire gauge algebra h. Indeed, suppose ε

L
belongs to f̂⊥1 and is satisfying in addition [ε, h] = 0 for any

h ∈ h = f̂⊥0 (in other words, ε
L

should belong to the centraliser of h in f⊥1 ). Then the supersymmetry
transformation reads

δε
L
g = g[T , [Ψ

R
, ε

L
]] , δε

L
Ψ

R
= [(g−1D+g)

‖, ε
L
] , δε

L
Ψ

L
= µ[T , gε

L
g−1] ,

δε
L
A+ = 0 , δε

L
A− = µ[(g−1Ψ

L
g)⊥, ε

L
] ,

(7.22)

where the superscript ‖ or ⊥ denotes the projection to f̂‖ or f̂⊥ respectively. Note that for µ 6=
0 the field A− starts transforming under the supersymmetry.49 Since the action is invariant under
the exchange + � −, L � R, and g � g−1 one finds also the “right” counterpart of the “left”
supersymmetry (7.22) with ε

L
→ ε

R
where ε

R
is taking values in f̂⊥3 and is annihilated by h.

In the case of psu(1, 1|2) the subalgebra h is empty and ε
L

is an arbitrary element of the two-
dimensional space f̂⊥1 (and similarly ε

R
∈ f̂⊥3 ) so that (7.22) defines a consistent (2,0) (and also (0,2))

supersymmetry transformation. However, in the case of psu(2, 2|4), none of the elements in f̂1,2
commute with the entire h so that (7.22) does not directly apply (cf. the discussion at the end of
section (6.4)). The existence of 2d supersymmetry of (6.49) in the AdS5 × S5 case thus remains an
interesting open question.50

Let us finally mention that the complex sine-Gordon model (2.7) also admits an N = 2 supersym-
metric version [49, 50]. The same applies to its “double” in (5.19) which has 2+2 dimensional target
space which is a direct sum of the two Kähler spaces. We expect that the corresponding N = 2 model
should be equivalent to the reduced model for the superstring on AdS3 × S3 [67] with (5.19) as its
bosonic part.

49In checking the invariance of the action one is to use the algebraic properties [[T , Ψ
R
],Ψ

R
] ∈ f̂⊥0 , [[ε

L
,Ψ

R
],Ψ

R
] ∈

f̂⊥0 , which follow upon the application of the projectors to f̂‖,⊥ and the use of the identities (6.20).
50Among other interesting questions let us mention also the construction of reduced models for non-critical AdSn

superstrings [56, 68] and their possible world-sheet supersymmetry.
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Appendix A: Proof of gauge equivalence in section 3.2

Here we provide some details of the argument in section 3.2. Let us introduce the following combi-
nations

Â+ = g−1∂+g + g−1A+g , Â− = g∂−g
−1 + gA−g

−1 (A.1)

Under the gauge transformations (3.24) Â± transform as follows:

Â+ → h̄−1Â+h̄+ h̄−1∂+h̄ , Â− → h−1Â+h+ h−1∂−h . (A.2)

It follows from the commutation relations [h,m] ⊂ m and [h, h] ⊂ h that their h projections also
transform in the same way. Then the constraints (3.20) take the form

A+ = (Â+)h , A− = (Â−)h . (A.3)

They are not invariant under the transformations (A.2) unless h = h̄. Using (3.24) one can then set

(Â+)h = A+ = (g−1∂+g + g−1A+g)h . (A.4)

This condition can be satisfied by applying the transformation (3.24) with h = 1. Under this trans-
formation A+ is unchanged while (Â+)h = (g−1∂+g + g−1A+g)h transforms as an H connection, so
it is possible to find h̄ so that transformed value of (Â+)h is equal to A+.

42



Next, once (Â+)h = A+, eq. (3.19) implies that A+, A− are components of a flat 2d connection,
i.e. satisfy (3.21).51 This, together with the equation on g contained in (3.19) and the remaining part
of gauge invariance (3.24) allows one to show that the second relation in (3.20) can also be satisfied.

Indeed, let us show that one can find such h0 that the transformation (3.24) with h = h0 and h̄ = 1
preserves A+ = (Â+)h and transforms A− and g so that A− = (Â−)h (note that Â− is unchanged
under such transformation). It is enough to find h0 in any admissible gauge that can be reached by the
gauge transformation with h = h̄ (both conditions (Â+)h = A+ and (Â−)h = A− are invariant under
such gauge transformations). Without loss of generality we can choose this gauge to beA+ = A− = 0
(this gauge can always be reached by a gauge transformation with h = h̄). In this gauge the equation
(3.19) and the constraint (Â+)h = A+ take the form (3.28) and the first equation in (3.29) respectively.
Equation (3.28) can be written equivalently as

∂+(g∂−g
−1) = µ2[T−, gT+g

−1] , (A.5)

implying ∂+(g∂−g
−1)h = 0. This means that (g∂−g

−1)h is a function of σ− only and therefore can
be represented as (g∂−g

−1)h = h0∂−h
−1
0 for some H-valued function h0(σ

−). By performing the
gauge transformation with h̄ = 1 and h = h0 one then arrives at (Â−)h = (g∂−g

−1)h = 0 while still
satisfying A± = 0 and (Â+)h = 0.

Appendix B: Vanishing of the antisymmetric tensor coupling
in the reduced Lagrangian in section 5.1

Here we provide details of the argument mentioned at the end of section 5.1 that the reduced La-
grangian (5.1) does not contain a WZ-type term. Indeed, all possible antisymmetric tensor contribu-
tions that may result from integrating out the gauge field of the gWZW model vanish.

Let us consider the following automorphism of the orthogonal matrix group and its Lie algebra:

M̃ i
j = M i

j(−1)i+j , M̃N = M̃Ñ . (B.1)

It is easy to check that

TrM̃ = TrM , det M̃ = detM , M̃−1 = M̃−1 , M̃T = M̃T . (B.2)

If g has the gauge-fixed form (5.4) then g̃ = g−1: this is obviously correct for any gk = eθkRk because
R̃k = −Rk while g−1 has the same form with all gk replaced with g−1

k .
The integrand of the WZ term in (3.14),(3.15) then satisfies

Tr(g−1dgg−1dgg−1dg) = Tr( ˜(g−1dgg−1dgg−1dg))

= Tr(gdg−1gdg−1gdg−1) = −Tr(g−1dgg−1dgg−1dg) , (B.3)

and thus should vanish.

51Note that contrary to the discussion before (3.21) now we do not assume that both constraints (3.20) are satisfied.
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Another possible contribution may originate from the gauge field dependent term in the gWZW
Lagrangian (3.15)

LA = Tr
(
A+∂−gg

−1 − A− g
−1∂+g − g−1A+gA− + A+A−

)
, (B.4)

where A± should be replaced by the solutions of their equations of motion

A+ = (g−1∂+g + g−1A+g)h , A− = (g∂−g
−1 + gA−g

−1)h . (B.5)

This gives
LA = Tr

(
A+∂−gg

−1) = −Tr(A− g
−1∂+g) . (B.6)

It follows from the explicit form of Eqs. (B.5) that there exists a function A(g, ∂g) such that

A+(g, ∂+g) = A(g, ∂+g) , A−(g, ∂−g) = A(g−1, ∂−g
−1) . (B.7)

Moreover, assuming the analyticity in g one finds

˜A(g, ∂±g) = A(g−1, ∂±g
−1) , (B.8)

provided g̃ = g−1. In particular, this holds in the gauge (5.4)).
Since A± are linear in ∂±g the vanishing of the antisymmetric part of the metric is equivalent to

LA(g, ∂+g, ∂−g) = LA(g, ∂−g, ∂+g). Assuming g̃ = g−1 one gets

LA(g, ∂−g, ∂+g) = Tr(A(g, ∂−g)∂+gg
−1) = Tr( ˜A(g, ∂−g−1)∂+gg−1)

= Tr(A(g−1, ∂−g
−1)∂+g

−1g) = −Tr(A−g
−1∂+g) = LA(g, ∂+g, ∂−g) . (B.9)

This shows that the antisymmetric tensor contribution to the reduced Lagrangian indeed vanishes in
the gauge (5.4).

Appendix C: Matrix superalgebras: definitions and notations

Here we summarize some basic definitions and notation used in sections 6 and 7.
Let Λ be a Grassmann algebra. The algebra Mat(n, l; Λ) is that of (n+ l)× (n+ l) matrices over Λ

whose diagonal block entries are even elements of Λ while off-diagonal block entries are odd.52 The
super-transposition st is defined as follows:(

A X
Y B

)st

=

(
At −Y t

X t Bt

)
, (MN)st = N stM st . (C.1)

Note that in general (M st)st 6= M . More precisely, (M st)st = WMW where W is the parity
automorphism given by

W = diag(1, . . . , 1,−1, . . . ,−1) . (C.2)

52This corresponds to considering even matrices. In general one can also allow for both even and odd ones; this would
lead to additional sign factors in the equations below.
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A real form of a complex matrix Lie (super)algebra can be described in terms of an antilinear anti-
automorphism ∗ satisfying

(MN)∗ = M∗N∗ , (M∗)∗ = M , (aM)∗ = āM∗ , a ∈ C . (C.3)

The real subspace of elements satisfying M∗ = −M is then a real Lie superalgebra.
We are interested in the case of n = l, i.e. Mat(n|n,Λ). Suppose first that the corresponding ∗

operation is defined on Λ so that (a∗)∗ = a and (ab)∗ = a∗b∗ = (−1)|a||b|b∗a∗ where |a| denotes the
Grassmann parity of a. Let us extend ∗ to arbitrary supermatrices according to(

A X
Y B

)∗

=

(
Σ−1A†Σ −iΣ−1Y †

−iX†Σ B†

)
, (C.4)

where † applied to the block denotes standard hermitian conjugation, i.e. transposition combined with
the ∗-conjugation of entries. It is useful to represent it as

M∗ = Σ−1M †Σ , Σ =

(
Σ 0
0 1

)
,

(
A X
Y B

)†

=

(
A† −iY †

−iX† B†

)
. (C.5)

It is easy to see that ∗ is involutive provided Σ2 = 1 and Σ† = Σ. Note that (MN)† = N †M † and
(M †)† = M . Note also that (M †)st = W (M st)†W where W is the parity automorphism introduced
above. Let us also note that the ∗ conjugation induces the real form of the respective Lie group.
Namely, the condition g∗ = g−1 selects the real subgroup of the complex group. It is obviously
compatible with the conjugation for the Lie algebra due to the representation g = eM andM∗ = −M .

To define Z4 anti-automorphism let us first consider the following automorphism(
A X
Y B

)Ω

= −
(
K−1AtK −K−1Y tK
K−1X tK K−1BtK

)
, (C.6)

where K is some matrix required to satisfy K2 = ±1 and Kt = ±K−1. It is useful to represent Ω as
follows

MΩ = −K−1M stK , K =

(
K 0
0 K

)
, (C.7)

so that we have the property
(MN)Ω = −NΩMΩ . (C.8)

A Lie superalgebra fC admits a Z4 automorphism if it can be decomposed into a direct sum of
eigenspaces of Ω-anti-automorphism

fC = fC0 ⊕ fC1 ⊕ fC2 ⊕ fC3 , (C.9)

where fCl denotes the eigenspace with eigenvalue il, i.e.

MΩ = imM , ([M,N ])Ω = im+n[M,N ] , M ∈ fCm, N ∈ fCn . (C.10)

To see under which conditions Ω is compatible with the reality condition we note that

−K−1(Σ−1M †Σ)stK = −((K−1Σ−1MΣK)†)st

= −W (Σ−1K−1M stKΣ)†W = (−i)mWΣ−1M †ΣW , (C.11)
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where we used
Kst = ±K−1 , Σ† = Σ−1 = Σ , (C.12)

and also assumed that

[Σ, K] = 0 , K† = ±K−1 , Σst = Σ . (C.13)

If in addition the eigenvectors with odd m belong to the off-diagonal blocks (which is the case for
psl(2m|2m) superalgebra) one finds

(−i)mWΣ−1M †ΣW = imΣ−1M †Σ , (C.14)

so that (M∗)Ω = imM∗ provided MΩ = imM . This proves that Z4 grading restricts to the real form
implying its decomposition (6.1).

The explicit form of Σ and K in the case of psu(2, 2|4) is53

Σ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , K =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 . (C.15)

In the case of psu(1, 1|2) we take54

Σ =

(
1 0
0 −1

)
, K =

(
1 0
0 −1

)
, (C.16)

which satisfy all the conditions above.

Appendix D: κ-symmetry transformations and gauge fixing in section 6

To prove that the gauge condition Q1− = Q2+ = 0 (6.11) is reachable it is useful to introduce
the tangent frame field eaα so that the 2d metric is expressed as gab = eaαe

b
βη

αβ where ηαβ is the
tangent-space metric. We shall use the standard local frame where in the± basis η+− = η−+ = 1 and
η++ = η−− = 0. The frame components of the currents are defined in the standard way as Jα = eaαJa.

In terms of this parametrization the Lagrangian density for the superstring sigma-model can be
written as (cf. (6.3))

LGS = STr
[
P+P− +

1
2
(Q1+Q2− −Q1−Q2+)

]
e+ ∧ e− . (D.1)

Recall that the ± components of the currents are defined as J± = f−1ea±∂af . 55 The WZ term can
be written also as Q1 ∧Q2 and does not of course depend on the frame field. Using eαa instead of γab

introduces a local 2d Lorentz invariance (with the corresponding the new gauge degree of freedom

53Here we follow the notation of [57, 58].
54 This choice is different from the one used in [54].
55Note that here we use ± for the light-cone frame components contrary to the genuine light-cone components in the

conformal gauge in the main text. They of course coincide if one chooses the adapted frame and σ± coordinates.
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entering through eαa ). The analog of the Virasoro constraints in this formulation are the equations
of motion obtained by varying the action with respect to the frame field. Note the following useful
relations:

∂

∂ea
−
LGS = e+a STr(P+P+) e+ ∧ e− , ∂

∂ea
−
LGS = e−a STr(P−P−) e+ ∧ e− , (D.2)

where e+ ∧ e− = dσ1 ∧ dσ2(det eaα)
−1.

The variation of the Lagrangian under the κ-transformation of the currents δκJa = ∂aε + [Ja, ε]
with ε = ε1 + ε2 = {P+, ik1−}+ {P−, ik2+} is given by:

δJκLGS = 2 STr
(
[P+, Q1−]{P+, ik1−}+ [P−, Q2+]{P−, ik2+}

)
e+ ∧ e−

= 2STr
(
P+P+[Q1−, ik1−] + P−P−[Q2+, ik2+]

)
e+ ∧ e− . (D.3)

The last expression can be rewritten as

δJκLGS =
1

2m

(
STr(P+P+)STr(W [Q1−, ik1−])+STr(P−P−)STr(W [Q2+, ik2+])

)
e+∧e− , (D.4)

where m is the integer in the definition of psu(m,m)|2m).
To show thus (e.g. for the first term) it is convenient to use the gauge (6.21) where P+ = p1T

1 +
p2T

2. The matrices T 1, T 2 ∈ f̂2 are defined in (6.12),(6.13) for m = 1, 2 (and can be obviously
generalized to other m). In this gauge P+P+ = −1

4
(p2

111 + p2
212) where 11 and 12 are matrices with

unit upper-left and lower-right blocks respectively so that one finds

STr (P+P+[Q1−, ik1−]) =
1

4m
STr(P+P+)STr(W [Q1−, ik1−]) (D.5)

where W is the parity automorphism (C.2) and we used that STr([Q1−, ik1−]) = 0 and p2
1 − p2

2 =
− 2
m

STr(P+P+).
The variation δJκLGS can be compensated by the following variation of the frame field

δκe
a
− = − 1

2m
ea+STr(W [Q1−, ik1−]) , δκe

a
+ = − 1

2m
ea−STr(W [Q2+, ik2+]) . (D.6)

In particular, for the variation of the metric gab = eaαe
b
βη

αβ = ea+e
b
− + ea−e

b
+ one finds

δκg
ab =

1

m

[
ea+e

b
+STr(W [ik1−, Q1−]) + ea−e

b
−STr(W [ik2+, Q2+])

]
. (D.7)

This can be rewritten in terms of the tangent components as

δκg
ab =

1

m
√
−g

[
STr(W [ikb1(−), Q

a
1(−)]) + STr(W [ikb2(+), Q

a
2(+)])

]
, (D.8)

where we have used that (cf. (6.5)) V a
(±) =

√
−gea∓V± = (det e)−1ea∓V±. Taking into account the fact

that δκ
√
−g = 0 one indeed finds that this variation determines the variation of γab =

√
−ggab given

in (6.4).
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Let us now turn to the question of κ-symmetry gauge fixing in terms of the current components.
The κ-variation of the frame components of the current is

δJα = (δκe
a
α)Ja + eaα(∂aε+ [Ja, ε]) = (δκe)

a
αe

β
aJβ + eaα∂aε+ [Jα, ε] . (D.9)

The fermionic equations of motion written in terms of the frame components ± of the currents take
exactly the same form as in the usual “light-cone” coordinates (cf. last line in (6.8))

[P+, Q1−] = 0 , [P−, Q2+] = 0 . (D.10)

As we have seen above the same applies to the Virasoro constraints expressed in terms of the frame
components:

STr(P+P+) = 0 , STr(P−P−) = 0 . (D.11)

Under the gauge transformation with G-valued gauge parameter the components P± transform as
P± → g−1

0 P±g0. Using the Virasoro constraints and applying exactly the same argument as in the
discussion of the reduction gauge in terms of the original light-cone components in section 6.2 one
can assume that P+ = p+T and P− = p−g

−1Tg where p± are some real functions and g is aG-valued
function.

In this gauge the κ-transformation of the component Q1− becomes

δκQ1− = (δκe)
a
−e

α
aQ1α + ea−∂aε+ [A−, ε1] + [P−, ε2] + [Q1−, h] , (D.12)

where h = h(J, ε1, ε2) is the f̂0-valued parameter of the compensating gauge transformation needed to
maintain the gauge condition P+ = p+T . In fact, in this gauge [P−, ε2] = 0 because ε2 = i{P−, k2+}
and [T , {T ,M}] = 0 vanishes for any matrix M . The term with the κ-symmetry transformation of
the frame field is given explicitly by

(δκe)
a
−e

α
aQ1α = f+

−Q1+ , f+
− =

1

2m
STr(W [ik1−, Q1−]) . (D.13)

The transformation (D.12) then takes the form (cf. (6.4))

δQ1− = ea−∂aε1 + [A−, ε1] +Q1+f
+
− + [Q1−, h] . (D.14)

Applying the decomposition f̂ = f̂⊥ ⊕ f̂‖ to the κ-symmetry transformation of Q1− in the reduction
gauge where P+ = p+T one observes that ε1 takes values in f̂⊥1 (cf. (6.4)) and at the same time the
equation [P+, Q1−] = 0 implies that Q1− is also f̂⊥1 -valued. Because (D.14) is the symmetry of the
equation [P+, Q1−] = 0 preserving the structure of P+, the variation δQ1− also belongs to f̂⊥1 . One
then concludes that Q1− can be put to zero by an appropriate choice of f̂⊥1 -valued ε1. This in turn
implies that such ε1 can be represented as i{P+, k1−}.

Note that once Q1− is set to zero, any transformation with an arbitrary ε2 = i{P−, k1+} and ε1 =
i{P+, k1−} satisfying ea−∂aε1 + [A−, ε1] = 0 preserves Q1− = 0 because f+

− in (D.13) also vanishes
when Q1− = 0. This statement is invariant under the f̂0-gauge transformations and therefore holds
in any f̂0-gauge. Analogous considerations for Q2+ in the gauge where P− = p−T show that one
can also set Q2+ = 0. Finally, using a local Lorentz transformation and choosing the appropriate
coordinates σ± one can bring eαa to the standard form where the only nonvanishing components are
e++ = e−− = 1. We then arriving at the gauge choice (6.11) for the two components of the fermionic
currents.
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Appendix E: Details of gauge fixing in section 6.4

In order to show that the reduced model of section 6.2 is indeed described by (6.49) one is to demon-
strate that the constraint equations that arise from varying this action with respect to A± represent an
admissible gauge condition for the equations of motion (6.35),(6.36). To see this let us introduce the
following quantities (cf. (A.1))

Â+ = g−1∂+g + g−1A+g −
µ

2
[[T ,Ψ

R
],Ψ

R
] , (E.1)

Â− = g∂−g
−1 + gA−g

−1 − µ

2
[[T ,Ψ

L
],Ψ

L
] . (E.2)

Under the gauge transformation (6.32), (6.45) they transform as follows

Â+ → h̄−1Â+h̄+ h̄−1∂+h̄ , Â− → h−1Â+h+ h−1∂−h . (E.3)

Their h projections (Â±)h obviously have the same transformations properties. The variation of the
action (6.49) with respect to A± gives

A+ = (Â+)h , A− = (Â−)h . (E.4)

The first equation in (6.35) can be written (upon using the other two equations) as

∂−Â+ − ∂+A− + [A−, Â+] + µ2[g−1Tg, T ]− µ

2
[T , [D−Ψ

R
,Ψ

R
]] = 0 , (E.5)

or, equivalently, as

∂+Â− − ∂−A+ + [A+, Â−] + µ2[gTg−1, T ]− µ

2
[T , [D−Ψ

L
,Ψ

L
]] = 0 . (E.6)

Since ([T , u])h = 0 (note that [T , u] ∈ f̂‖ while h = f̂⊥0 ) and projecting this equation on h one finds
that A− and (Â+)h are the two components of a flat connection. Repeating the argument used in the
bosonic case one then concludes that one can setA+ = (Â+)h by an appropriate gauge transformation
with h = 1. In this gauge A− and A+ are then components of a flat connection and can be put to zero
by a gauge transformation with h = h̄.

In the gauge A+ = A− = 0 the equation (E.6) implies:

∂+(Â−)h = 0 , (E.7)

where we again made use of the fact that ([T , u])h = 0 for any u ∈ f̂0⊕ f̂2. Then (Â−)h is a function of
σ− only and therefore can be set to zero by a gauge transformation with h̄ = 1 and h = h(σ−). As in
the bosonic case such a gauge transformation does not spoil the conditions A+ = A− = (Â+)h = 0.
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