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1 Introduction

The AdS/CFT correspondence provides an important laboratory to explore both gravita-

tional physics as well as strongly coupled dynamics in a class of quantum field theories.

Using this correspondence it is possible to test general lore about quantum field theory in

a non perturbative setting and so learn general lessons about strongly coupled dynamics.

Conversely, it is also possible to use the AdS/CFT duality to convert strongly held convic-

tions about the behaviour of quantum field theories into general lessons about gravitational

and stringy dynamics.

In this paper we use the AdS/CFT correspondence to study the effective description

of strongly coupled conformal field theories at long wavelengths. On physical grounds it

is reasonable that any interacting quantum field theory equilibrates locally at high enough

energy densities, and so admits an effective description in terms of fluid dynamics. The

variables of such a description are the local densities of all conserved charges together with

the local fluid velocities. The equations of fluid dynamics are simply the equations of local

conservation of the corresponding charge currents, supplemented by constitutive relations

that express these currents as functions of fluid mechanical variables. As fluid dynamics

is a long wavelength effective theory, these constitutive relations are usually specified in a

derivative expansion. At any given order, thermodynamics plus symmetries determine the

form of this expansion up to a finite number of undetermined coefficients. These coefficients

may then be obtained either from measurements or from microscopic computations.

The best understood examples of the AdS/CFT correspondence relate the strongly cou-

pled dynamics of certain conformal field theories to the dynamics of gravitational systems

in AdS spaces. In this paper we will demonstrate that Einstein’s equations with a negative

cosmological constant, supplemented with appropriate regularity restrictions and boundary

conditions, reduce to the nonlinear equations of fluid dynamics in an appropriate regime

of parameters. We provide a systematic framework to construct this universal nonlinear

fluid dynamics, order by order in a boundary derivative expansion. Our work builds on

earlier derivations of linearized fluid dynamics from linearized gravity by Policastro, Son

and Starinets [1] and on earlier examples of the duality between nonlinear fluid dynamics

and gravity by Janik, some of the current authors and collaborators [2, 3, 4, 5, 6, 7, 8, 9] (cf,

[10, 11] for some recent work). There is a large literature in deriving linearized hydrodynam-

ics from AdS/CFT, see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

for developments in this area and [30] for a review and comprehensive set of references.

Our results, together with those of earlier papers referred to above, may be interpreted

from several points of view. First, one may view them as a confirmation that fluid dy-

namics is the correct long wavelength effective description of strongly coupled field theory

dynamics. Second, one could assume the correctness of the fluid description and view our

results as providing information on the allowed singularities of ‘legal’ solutions of gravity.
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Finally, our work may be used to extract the values of all coefficients of the various terms

in the expansion of the stress tensor in the fluid dynamical derivative expansion, for the

fluid dual to gravity on AdS5. The universal behaviour of the shear viscosity - a coefficient

of a term in the expansion of the stress tensor to first order in field theory derivatives - in

fluids dual to gravity [22] has already attracted attention and has impacted experimental

analysis of RHIC data [31, 32, 33]. In this paper we work out the universal values of all

coefficients of (nonlinear) two derivative terms stress tensor of the distinguished conformal

fluid dual to gravity on AdS5.

Consider any two derivative theory of five dimensional gravity interacting with other

fields, that has AdS5 as a solution. Examples of such theories include IIB supergravity

on AdS5 ×M where M is any compact five dimensional Einstein manifold with positive

cosmological constant; for example M = S5, T 1,1 and Y p,q for all p, q. The solution space

of such systems has a universal sub-sector; the solutions of pure gravity with a negative

cosmological constant.1 We will focus on this universal sub-sector in a particular long

wavelength limit. Specifically, we study all solutions that tubewise2 approximate black

branes in AdS5, whose temperature and boost velocities vary as a function of boundary

coordinates xµ on a length scale that is large compared to the inverse temperature of the

brane. We investigate all such solutions order by order in a perturbative expansion; the

perturbation parameter is the length scale of boundary variation divided by the thermal

length scale. Within the domain of validity of our perturbative procedure (and subject

to a technical assumption), we establish the existence of a one to one map between these

gravitational solutions and the solutions of the equations of a distinguished system of

boundary conformal fluid dynamics. Implementing our perturbative procedure to second

order, we explicitly construct the fluid dynamical stress tensor of this distinguished fluid

to second order in the derivative expansion.

Roughly speaking, our construction may be regarded as the ‘Chiral Lagrangian’ for

brane horizons. Recall that the isometry group of AdS5 is SO(4, 2). The Poincare algebra

plus dilatations form a distinguished subalgebra of this group; one that acts mildly on

the boundary. The rotations SO(3) and translations R3,1 that belong to this subalgebra

annihilate the static black brane solution in AdS5. However the remaining symmetry gen-

erators – dilatations and boosts – act nontrivially on this brane, generating a 4 parameter

set of brane solutions. These four parameters are simply the temperature and the velocity

of the brane. Our construction effectively promotes these parameters to ‘Goldstone fields’

(or perhaps more accurately collective coordinate fields) and determines the effective dy-

1Recall that the Einstein frame Lagrangian contains no interaction terms that are linear in the non
gravitational fluctuations.

2We will work in AdS spacetimes where the radial coordinate r ∈ (0,∞) and will refer to the remaining
coordinates xµ = (v, xi) ∈ R

1,3 as field theory or boundary coordinates. The tubes referred to in the text
cover a small patch in field theory directions, but include all values of r well separated from the black
brane singularity at r = 0; typically r ≥ rh where rh is the scale set by the putative horizon.

3



namics of these collective coordinate fields, order by order in the derivative expansion, but

making no assumption about amplitudes. Of course the collective coordinates method has

a distinguished tradition in theoretic physics; see for instance the derivation of the Nambu-

Goto action in [34]. Our paper, which applies these methods to black brane horizons, is

strongly reminiscent of the membrane paradigm of black hole physics, and may perhaps be

regarded as the precise version of this paradigm in its natural setting, i.e., AdS spacetime.

Seen from inverse point of view, our construction may be regarded as a map from

solutions of the relativistic fluid dynamics equations on R3,1 to the space of long wavelength,

locally black brane, solutions of gravity in AdS5. That is, we present a systematic procedure

to explicitly construct a metric dual to any solution of the equations of the distinguished

fluid dynamics alluded to above. This metric solves the Einstein’s equations to a given

order in the derivative expansion (one higher than the order to which the equations of fluid

dynamics were formulated and solved), asymptotes to AdS5 with a boundary stress tensor

equal to the fluid dynamical stress tensor, and is regular away from the usual singularity

of black branes (chosen by convention to be at r = 0).

As an important physical input into our procedure, we follow [3, 4, 7] to demand

that all the solutions we study are regular away from the r = 0 curvature singularity of

black branes, and in particular at the the location of the horizon of the black brane tubes

out of which our solution is constructed. We present our construction in the analogue

of Eddington-Finklestein coordinates which extend all the way to the future curvature

singularity. Although we have not yet performed a careful global analysis of our solutions, it

seems rather clear that they each possess a regular event horizon that shields the boundary

from this curvature singularity.

This paper is organized as follows. We begin in § 2 with the basic outline of the

computation expanding on the ideas presented above. In § 3 we outline in detail the logic

and strategy of our perturbative procedure. We then proceed in § 4 to implement our

perturbative procedure to first order in the derivative expansion. In § 5 we extend our

computation to second order in the same expansion. In § 6 we demonstrate the Weyl

invariance of the fluid dynamical stress tensor we obtain, and further use this stress tensor

to compute corrections to the dispersion relation for sound and shear waves in this fluid.

In § 7 we end with a discussion of our results and of future directions.

Note added: After we had completed writing this paper we learnt of related work soon

to appear [35]. The authors of this paper utilize Weyl invariance to constrain the form of

the second order fluid dynamical stress tensor up to 5 undetermined coefficients. They then

use information from linearized gravitational quasinormal mode calculations together with

an earlier computation of Janik and collaborators to determine 3 of these five coefficients.

As far as we have been able to tell, their results are consistent with the full second order

stress tensor (and prediction for quasinormal mode frequencies) presented herein. This is a
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nontrivial check of our results. We thank the authors of [35] for sharing their results with

us prior to publication.

2 Fluid dynamics from gravity

We begin with a description of the procedure we use to construct a map from solutions

of fluid dynamics to solutions of gravity. We then summarize the results obtained by

implementing this procedure to second order in the derivative expansion.

Consider a theory of pure gravity with a negative cosmological constant. With a par-

ticular choice of units (RAdS = 1) Einstein’s equations are given by3

EMN = RMN − 1

2
gMNR − 6 gMN = 0

=⇒ RMN + 4 gMN = 0, R = −20.
(2.1)

Of course the equations (2.1) admit AdS5 solutions. Another class of solutions to these

equations is given by the ‘boosted black branes’4

ds2 = −2 uµ dxµdr − r2 f(b r) uµ uν dxµdxν + r2 Pµν dxµdxν , (2.2)

with

f(r) = 1 − 1

r4

uv =
1√

1 − β2
i

ui =
βi√

1 − β2
i

,

(2.3)

where the temperature T = 1
π b

and velocities βi are all constants, and

P µν = uµuν + ηµν (2.4)

is the projector onto spatial directions. The metrics (2.2) describe the uniform black brane

written in ingoing Eddington-Finkelstein coordinates, at temperature T , moving at velocity

3We use upper case Latin indices {M, N, · · · } to denote bulk directions, while lower case Greek indices
{µ, ν, · · · } refer to field theory or boundary directions. Finally, we use lower case Latin indices {i, j, · · · }
to denote the spatial directions in the boundary.

4The indices in the boundary are raised and lowered with the Minkowski metric i.e., uµ = ηµν uν.
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βi.5

Now consider the metric (2.2) with the constant parameter b and the velocities βi

replaced by slowly varying functions b(xµ), βi(x
µ) of the boundary coordinates.

ds2 = −2 uµ(x
α) dxµ dr − r2 f (b(xα) r) uµ(xα) uν(x

α) dxµ dxν + r2 Pµν(x
α) dxµ dxν . (2.6)

Generically, such a metric (we will denote it by g(0)(b(xµ), βi(x
µ)) is not a solution to

Einstein’s equations. Nevertheless it has two attractive features. Firstly, away from r = 0,

this deformed metric is everywhere non-singular. This pleasant feature is tied to our

use of Eddington-Finkelstein6 coordinates.7 Secondly, if all derivatives of the parameters

b(xµ) and βi(x
µ) are small, g(0) is tubewise8 well approximated by a boosted black brane.

Consequently, for slowly varying functions b(xµ), βi(x
µ), it might seem intuitively plausible

that (2.6) is a good approximation to a true solution of Einstein’s equations with a regular

event horizon. The main result of our paper is that this intuition is correct, provided the

functions b(xµ) and βi(x
µ) obey a set of equations of motion, which turn out simply to be

the equations of boundary fluid dynamics.

Einstein’s equations, when evaluated on the metric g(0), yield terms of first and second

order in field theory (i.e., (xi, v) ≡ xµ) derivatives of the temperature and velocity fields.9

By performing a scaling of coordinates to set b to unity (in a local patch), it is possible to

show that field theory derivatives of either ln b(xµ) or βi(x
µ) always appear together with a

factor of b. As a result, the contribution of n derivative terms to the Einstein’s equations is

suppressed (relative to terms with no derivatives) by a factor of (b/L)n ∼ 1/(T L)n. Here L

is the length scale of variations of the temperature and velocity fields in the neighbourhood

of a particular point, and T is the temperature at that point. Therefore, provided L T ≫ 1,

it is sensible to solve Einstein’s equations perturbatively in the number of field theory

derivatives.10

5 As we have explained above, the 4 parameter set of metrics (2.2) may all be obtained from

ds2 = 2 dv dr − r2 f(r) dv2 + r2 dx2 , (2.5)

with f = 1− 1
r4 via a coordinate transform. The coordinate transformations in question are generated by

a subalgebra of the isometry group of AdS5.
6It is perhaps better to call these generalized Gaussian null coordinates as they are constructed with

the aim of having the putative horizon located at the hypersurface r(xµ) = rh.
7A similar ansatz for a black branes in (for instance) Fefferman-Graham coordinates i.e., Schwarzchild

like coordinates respecting Poincaré symmetry, is singular at r b = 1.
8As explained above, any given tube consists of all values of r well separated from r = 0, but only a

small region of the boundary coordinates xµ.
9As g(0) is an exact solution to Einstein’s equations when these fields are constants, terms with no

derivatives are absent from this expansion.
10Note that the variation in the radial direction, r, is never slow. Although we work order by order in

the field theory derivatives, we will always solve all differential equations in the r direction exactly.

6



In § 3 we formulate the perturbation theory described in the previous paragraph, and

explicitly implement this expansion to second order in 1/(L T ). As we have mentioned

above it turns out to be possible to find a gravity solution dual to a boundary velocity and

temperature profile only when these fields obey the equation of motion

∂µT µν = 0 (2.7)

where the rescaled11 stress tensor stress tensor T µν given by

T µν =(π T )4 (ηµν + 4 uµuν) − 2 (π T )3 σµν

+ (πT )2

(
(ln 2) T µν

2a + 2 T µν
2b + (2 − ln 2)

[
1

3
T µν

2c + T µν
2d + T µν

2e

])
(2.8)

where

σµν = P µαP νβ ∂(αuβ) −
1

3
P µν ∂αuα

T µν
2a = ǫαβγ(µ σν)

γ uα ℓβ

T µν
2b = σµασν

α − 1

3
P µν σαβσαβ

T µν
2c = ∂αuα σµν

T µν
2d = Duµ Duν − 1

3
P µν Duα Duα

T µν
2e = P µα P νβ D

(
∂(αuβ)

)
− 1

3
P µν P αβ D (∂αuβ)

ℓµ = ǫαβγµ uα∂βuγ.

(2.9)

Our conventions are ǫ0123 = −ǫ0123 = 1 and D ≡ uα∂α and the brackets () around the

indices to denote symmetrization, i.e., a(αbβ) = (aαbβ + aβbα)/2.

These constraints are simply the equations of fluid dynamics expanded to second order

in the derivative expansion. The first few terms in the expansion (2.8) are familiar. The

derivative free terms describe a perfect fluid with pressure (i.e., negative free energy den-

sity) π4 T 4, and so (via thermodynamics) entropy density s = 4π4 T 3. The viscosity η of

this fluid may be read off from the coefficient of σµν and is given by π3 T 3. Notice that

η/s = 1/(4π), in agreement with the famous result of Policastro, Son and Starinets [1].

Our computation of the two derivative terms in (2.8) is new; the coefficients of these

terms are presumably related to the various ‘relaxation times’ discussed in the literature

(see for instance [36]). As promised earlier, the fact that we are dealing with a particular

11Throughout this paper T µν = 16π G5 tµν where G5 is the five dimensional Newton and tµν is the
conventionally defined stress tensor, i.e., the charge conjugate to translations of the coordinate v.
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conformal fluid, one that is dual to gravitational dynamics in asymptotically AdS space-

times, leads to the coefficients being determined as fixed numbers. It would be interesting

to check whether the stress tensor determined above fits into the framework of the so called

Israel-Stewart formalism [37] (see [36, 38] for reviews). R. Loganayagam [39] is currently

investigating this issue.

In § 6.1 we have checked that the minimal covariantization of the stress tensor (2.8)

transforms as T µν → e−6φ T µν under the Weyl transformation ηµν → e2φ ηµν , T → e−φ T ,

uα → e−φ uα, for an arbitrary function φ(xµ).12 This transformation (together with the

manifest tracelessness of T µν) ensures Weyl invariance of the fluid dynamical equation

(2.7). Note that we have computed the fluid dynamical stress tensor only in flat space.

The generalization of our expression above to an arbitrary curved space could well in-

clude contributions proportional to the spacetime curvature tensor. The fact that (2.8)

is Weyl invariant by itself is a bit of a (pleasant) surprise. It implies that that the sum

of all curvature dependent contributions to the stress tensor must be independently Weyl

invariant.

3 The perturbative expansion

As we have described in § 2, our goal is to set up a perturbative procedure to solve Ein-

stein’s equations in asymptotically AdS spacetimes order by order in a boundary derivative

expansion. In this section we will explain the structure of this perturbative expansion, and

outline our implementation of this expansion to second order, leaving the details of com-

putation to future sections.

3.1 The basic set up

In order to mathematically implement our perturbation theory, it is useful to regard b and

βi described in § 2 as functions of the rescaled field theory coordinates ε xµ where ε is a

formal parameter that will eventually be set to unity. Notice that every derivative of βi

or b produces a power of ε, consequently powers of ε count the number of derivatives. We

now describe a procedure to solve Einstein’s equations in a power series in ε. Consider the

metric13

g = g(0)(βi, b) + ε g(1)(βi, b) + ε2 g(2)(βi, b) + O
(
ε3

)
, (3.1)

where g(0) is the metric (2.6) and g(1), g(2) etc are correction metrics that are yet to be

determined. As we will explain below, perturbative solutions to the gravitational equations

12R. Loganayagam [39] informs us that he has succeeded in rewriting our stress tensor in a number of
different compact forms, one of which makes its covariance under Weyl transformations manifest.

13For convenience of notation we are dropping the spacetime indices in g(n). We also suppress the
dependence of b and βi on xµ.
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exist only when the velocity and temperature fields obey certain equations of motion. These

equations are corrected order by order in the ε expansion; this forces us to correct the

velocity and temperature fields themselves, order by order in this expansion. Consequently

we set

βi = β
(0)
i + ε β

(1)
i + O

(
ε2

)
, b = b(0) + ε b(1) + O

(
ε2

)
, (3.2)

where β
(m)
i and b(n) are all functions of ε xµ.

In order to proceed with the calculation, it will be useful to fix a gauge. We work with

the ‘background field’ gauge

grr = 0 , grµ ∝ uµ , Tr
(
(g(0))−1g(n)

)
= 0 ∀ n > 0. (3.3)

Notice that the gauge condition at the point xµ is given only once we know uµ(v, xi). In

other words, the choice above amounts to choosing different gauges for different solutions,

and is conceptually similar to the background field gauge routinely used in effective action

computations for non abelian gauge theories.

3.2 General structure of perturbation theory

Let us imagine that we have solved the perturbation theory to the (n − 1)th order, i.e.,

we have determined g(m) for m ≤ n − 1, and have determined the functions β
(m)
i and b(m)

for m ≤ n − 2. Plugging the expansion (3.1) into Einstein’s equations, and extracting the

coefficient of εn, we obtain an equation of the form

H
[
g(0)(β

(0)
i , b(0))

]
g(n)(xµ) = sn. (3.4)

Here H is a linear differential operator of second order in the variable r alone. As g(n) is

already of order εn, and since every boundary derivative appears with an additional power

of ε, H is an ultralocal operator in the field theory directions. It is important to note that

H is a differential operator only in the variable r and does not depend on the variables xµ.

Moreover, the precise form of this operator at the point xµ depends only on the values of

β
(0)
i and b(0) at xµ but not on the derivatives of these functions at that point. Furthermore,

the operator H is independent of n; we have the same homogeneous operator at every

order in perturbation theory.

The source term sn however is different at different orders in perturbation theory. It

is a local expression of nth order in boundary derivatives of β
(0)
i and b(0), as well as of

(n − k)th order in β
(k)
i , b(k) for all k ≤ n − 1. Note that β

(n)
i and b(n) do not enter the nth

order equations as constant (derivative free) shifts of velocities and temperatures solve the

Einstein’s equations.

The expressions (3.4) form a set of 5 × 6/2 = 15 equations. It turns out that four of
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these equations do not involve the unknown function g(n) at all; they simply constrain the

velocity functions b and βi. There is one redundancy among the remaining 11 equations

which leaves 10 independent ‘dynamical’ equations. These may be used to solve for the 10

unknown functions in our gauge fixed metric correction g(n), as we describe in more detail

below.

3.2.1 Constraint equations

By abuse of nomenclature, we will refer to those of the Einstein’s equations that are of

first order in r derivatives as constraint equations. Constraint equations are obtained by

dotting the tensor EMN with the vector dual to the one-form dr. Four of the five constraint

equations (i.e., those whose free index is a µ index) have an especially simple boundary

interpretation; they are simply the equations of boundary energy momentum conservation.

In the context of our perturbative analysis, these equations simply reduce to

∂µT
µν

(n−1) = 0 (3.5)

where T µν

(n−1) is the boundary stress tensor dual the solution expanded up to O (εn−1).

Recall that each of g0, g(1)... are local functions of b, βi. It follows that the stress tensor

T µν

(n−1) is also a local function (with at most n − 1 derivatives) of these temperature and

velocity fields. Of course the stress tensor T µν

(n−1) also respects 4 dimensional conformal

invariance. Consequently it is a ‘fluid dynamical’ stress tensor with n − 1 derivatives, the

term simply being used for the most general stress tensor (with n− 1 derivatives), written

as a function of uµ and T , that respects all boundary symmetries.

Consequently, in order to solve the constraint equations at nth order one must solve

the equations of fluid dynamics to (n − 1)th order. As we have already been handed a

solution to fluid dynamics at order n − 2, all we need to do is to correct this solution to

one higher order. Though the question of how one goes about improving this solution is

not the topic of our paper (we wish only to establish a map between the solutions of fluid

mechanics and gravity, not to investigate how to find the set of all such solutions) a few

words in this connection may be in order. The only quantity in (3.5) that is not already

known from the results of perturbation theory at lower orders are βn−1
i and b(n−1). The

four equations (3.5) are linear differential equations in these unknowns that presumably

always have a solution. There is a non-uniqueness in these solutions given by the zero

modes obtained by linearizing the equations of stress energy conservation at zeroth order.

These zero modes may always be absorbed into a redefinition of β
(0)
i , b(0), and so do not

correspond to a physical non-uniqueness (i.e., this ambiguity goes away once you specify

more clearly what your zero order solution really is).

Our discussion so far may be summarized as follows: the first step in solving Einstein’s
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equations at nth order is to solve the constraint equations – this amounts to solving the

equations of fluid dynamics at (n − 1)th order (3.5). As we explain below, while it is of

course difficult in general to solve these differential equations throughout R3,1, it is easy

to solve them locally in a derivative expansion about any point; this is in fact sufficient to

implement our ultralocal perturbative procedure.

3.2.2 Dynamical equations

The remaining constraint Err and the ‘dynamical’ Einstein’s equations Eµν may be used

to solve for the unknown function g(n). Roughly speaking, it turns out to be possible to

make a judicious choice of variables such that the operator H is converted into a decoupled

system of first order differential operators. It is then simple to solve the equation (3.4)

for an arbitrary source sn by direct integration. This procedure actually yields a whole

linear space of solutions. The undetermined constants of integration in this procedure are

arbitrary functions of xµ and multiply zero modes of the operator (3.4). As we will see

below, for an arbitrary non-singular and appropriately normalizable source sn (of the sort

that one expects to be generated in perturbation theory14), it is always possible to choose

these constants to ensure that g(n) is appropriately normalizable at r = ∞ and non-singular

at all nonzero r. These requirements do not yet completely specify the solution for g(n), as

H possesses a set of zero modes that satisfy both these requirements. A basis for the linear

space of zero modes, denoted gb and gi, is obtained by differentiating the 4 parameter class

of solutions (2.2) with respect to the parameters b and βi. In other words these zero modes

correspond exactly to infinitesimal shifts of β
(0)
i and b(0) and so may be absorbed into a

redefinition of these quantities. They reflect only an ambiguity of convention, and may be

fixed by a ‘renormalization’ prescription, as we will do below.

Summary of the perturbation analysis: In summary, it is always possible to find a

physically unique solution for the metric g(n), which, in turn, yields the form of the nth

order fluid dynamical stress tensor (using the usual AdS/CFT dictionary). This process,

being iterative, can be used to recover the fluid dynamics stress tensor to any desired order

in the derivative expansion.

In § 3.3 and § 3.4 we will provide a few more details of our perturbative procedure,

in the context of implementing this procedure to first and second order in the derivative

expansion.

14Provided the solution at order n − 1 is non-singular at all nonzero r, it is guaranteed to produce a
non-singular source at all nonzero r. Consequently, the non-singularlity of sn follows inductively. We think
is possible to to make a similar inductive argument for for the large r behaviour of the source, but have
not yet formulated this argument precisely enough to call it a proof.
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3.3 Outline of the first order computation

We now present the strategy to implement the general procedure discussed above to first

order in the derivative expansion.

3.3.1 Solving the constraint equations

The Einstein constraint equations at first order require that the zero order velocity and

temperature fields obey the equations of perfect fluid dynamics

∂µT µν

(0) = 0 , (3.6)

where up to an overall constant

T µν

(0) =
1

(b(0))4

(
ηµν + 4 uµ

(0) uν
(0)

)
. (3.7)

While it is difficult to find the general solution to these equations at all xµ, in order to

carry out our ultralocal perturbative procedure at a given point yµ, we only need to solve

these constraints to first order a Taylor expansion of the fields b and βi about the point

yµ. This is, of course, easily achieved. The four equations (3.6) may be used to solve for

the 4 derivatives of the temperature field at yµ in terms of first derivatives of the velocity

fields at the same point. This determines the Taylor expansion of b to first order about yµ

in terms of the expansion, to first order, of the field βi about the same point. We will only

require the first order terms in the Taylor expansion of velocity and temperature fields in

order to compute g(1)(yµ).

3.3.2 Solving the dynamical equations

As described in the previous section, we expand Einstein’s equations to first order and

find the equations (3.4). Using the ‘solution’ of § 3.3.1, all source terms may be regarded

as functions of first derivatives of velocity fields only. The equations (3.4) are then easily

integrated subject to boundary conditions and we find (3.4) is given by

g(1) = g
(1)
P + fb(xi, v) gb + fi(xj, v) gi, (3.8)

where g
(1)
P is a particular solution to (3.4), and fb and fi are a basis for the zero modes of

H that were described in the § 3.2. Plugging in this solution, the full metric g(0) + g(1),

when expanded to order first order in ε, is (3.1)

g = g(0) + ε
(
g

(1)
P + (fb + b(1))gb + (fi + β(1))gi

)
, (3.9)

12



where the four functions of xµ, fb + b(1), fi + β
(1)
i are all completely unconstrained by the

equations at order ε.

3.3.3 The ‘Landau’ Frame

Our solution (3.8) for the first order metric has a four function non-uniqueness in it. As

fb and fi may be absorbed into b(1) and β
(1)
i this non-uniqueness simply represents an

ambiguity of convention, and may be fixed by a ‘renormalization’ choice. We describe our

choice below.

Given g(1), it is straightforward to use the AdS/CFT correspondence to recover the

stress tensor. To first order in ε the boundary stress tensor dual to the metric (3.9)

evaluates to

T µν =
1

b4
(ηµν + 4 uµuν) − 2

b3
T µν

(1) , (3.10)

where

b = b(0) + ε(b(1) + fb)

βi = ε(β
(1)
i + fi)

(3.11)

where T µν

(1) , defined by (3.10), is an expression linear in xµ derivatives of the velocity fields

and temperature fields. Notice that our definition of T µν

(1) , via (3.10), depends explicitly on

the value of the coefficients fi, fb of the homogeneous modes of the differential equation

(3.4). These coefficients depend on the specific choice of the particular solution g
(1)
P , which is

of course ambiguous up to addition of homogenous solutions. Any given solution (3.8) may

be broken up in many different ways into particular and homogeneous solutions, resulting

in an ambiguity of shifts of the coefficients of fb, fi and thereby an ambiguity in T µν

(1) . It is

always possible to use the freedom provided by this ambiguity to set u(0)µ T µν

(1) = 0. This

choice completely fixes the particular solution g
(1)
P . We adopt this convention particular

solution and then simply simply set g(1) = g
(1)
P i.e. choose fb = fi = 0. T µν

(1) is now

unambiguously defined and may be evaluated by explicit computation; it turns out that

T µν

(1) = σµν .

The discussion of the previous paragraph has a natural generalization to perturbation

theory at any order. As the operator H is the same at every order in perturbation theory,

the ambiguity for the solution of g(n) in perturbation theory is always of the form described

in (3.9). We will always fix the ambiguity in this solution by choosing uµ T µν

(k) = 0. The

convention dependence of this procedure has a well known counterpart in fluid dynamics;

it is simply the ambiguity of the stress tensor under field redefinitions of the temperature

and uµ. Indeed this field redefinition ambiguity is standardly fixed by precisely the ‘gauge’

13



choice uµT
µν

(1) = 0. This is the so called ‘Landau frame’ widely used in studies of fluid

dynamics.

We present the details of the first order computation in § 4 below.

3.4 Outline of the second order computation

Assuming that we have implemented the first order calculation described in § 3.3, it is

then possible to find a solution to Einstein’s equations at the next order. In this case care

should be taken in implementing the constraints as we discuss below.

3.4.1 The constraints at second order

The general discussion of § 3.2 allows us to obtain the second order solution to Einstein’s

equations once we have solved the first order system as outlined in § 3.3. However, we

need to confront an important issue before proceeding, owing to the way we have set up

the perturbation expansion. Of course perturbation theory at second order is well defined

only once the first order equations have been solved. While in principle we should solve

these equations everywhere in R3,1, in the previous subsection we did not quite achieve

that; we were content to solve the constraint equation (3.6) only to first order in the Taylor

expansion about our special point yµ. While that was good enough to obtain g(1), in order

to carry out the second order calculation we first need to do better; we must ensure that

the first order constraint is obeyed to second order in the Taylor expansion of the fields

b(0) and β
(0)
i about yµ. That is, we require

∂λ∂µT
µν

(0) (yα) = 0. (3.12)

These equations may be thought of as a set of 16 linear constraints on the coefficients

of the (40+78) two derivative terms involving b(0) and β
(0)
i . We use these equations to

solve for 16 coefficients, and treat the remaining coefficients as independent. This process

is the conceptual analogue of our zeroth order ‘solution’ of fluid dynamics at the point

yµ (described in the previous subsection), obtained by solving for the first derivatives of

temperature in terms of the first derivatives of velocities. Indeed it is an extension of that

procedure to the next order in derivatives. See § 5 for the details of the implementation

of this procedure. In summary, before we even start trying to solve for g(2), we need to

plug a solution of (3.12) into g(0) + g(1) expanded in a Taylor series expansion about yµ.

Otherwise we would be expanding the second order equations about a background that

does not solve the first order fluid dynamics.

14



3.4.2 Nature of source terms

As we have explained above, the Einstein’s equations, to second order, take the schematic

form described in (3.4)

H
[
g(0)(β

(0)
i , b(0))

]
g(2) = sa + sb (3.13)

We have broken up the source term above into two pieces, sa and sb, for conceptual

convenience. sa is a local functional of β
(0)
i and b(0) of up to second order in field theory

derivatives. Terms contributing to sa have their origin both in two field theory derivatives

acting on the metric g(0) and exactly one field theory derivative acting on g(1) (recall that

g(1) itself is a local function of β
(0)
i and b(0) of first order in derivatives). The source term

sb is new: it arises from first order derivatives of the velocity and temperature corrections

β
(1)
i and b(1). This has no analogue in the first order computation.

As we have explained above, β
(0)
i , b(0) are absolutely any functions that obey the equa-

tions (3.6). In particular, if it turns of that the functions β
(0)
i + ε β

(1)
i and b(0) + ε b(1) obey

that equation (to first order in ε) then β
(1)
i and b(1) may each simply be set to zero by an

appropriate redefinition of β
(0)
i and b

(0)
i . This results in a ‘gauge’ ambiguity of the func-

tions β
(1)
i , b(1). In our ultralocal perturbative procedure, we choose to fix this ambiguity

by setting β
(1)
i to zero (at our distinguished point yµ) while leaving b(1) arbitrary.15

3.4.3 Solution of the constraint equations

With the source terms in place, the procedure to solve for g(2) proceeds in direct imitation

of the first order calculation. The constraint equations reduce to the expansion to order ε

of the equation of conservation of the stress tensor

T µν =
1

b4
(4 uµuν + ηµν) − 2 ε

1

b3
σµν (3.14)

with βi = β(0), b = b(0) + ε b(1). These four equations may be used to solve for the four

derivatives ∂µb(1) at xµ. Consequently the constraint equations plus our choice of gauge,

uniquely determined the first order correction of the temperature field β(1) and velocity

field β
(1)
i as a function of the zeroth order solution.

Note that the gauge β
(1)
i (yµ) = 0 may be consistently chosen at any one point yµ,

but not at all xµ. Nonetheless the results for g(2) that we obtain using this gauge will,

when appropriately covariantized be simultaneously applicable to every spacetime point

xµ. The reason for this is that all source terms depend on b(1) and β
(1)
i only through the

expansion to order ε of ∂µT µν = 0 with T µν given by (3.14). Note that this source term is

15 The functions b
(1)
i , β

(1)
i have sixteen independent first derivatives, all but four of which may be fixed

by the gauge freedom. We choose use this freedom to set all velocity derivatives to zero.
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‘gauge invariant’ (recall that ‘gauge’ transformations are simply shifts of b(1) and β
(1)
i by

zero modes of this equation). It follows that g(2) determined via this procedure does not

depend on our choice of gauge, which was made purely for convenience.

3.4.4 Solving for g(2) and the second order stress tensor

Now plugging this solution for b(1) into the source terms it is straightforward to integrate

(3.13) to obtain g(2). We fix the ambiguity in the choice of homogeneous mode in this

solution as before, by requiring T µν

(2) u(0)ν = 0. This condition yields a unique solution for

g(2) as well as for the second order correction to the fluid dynamical stress tensor T µν

(2) ,

giving rise to the result (2.9). We present the details of the second order computation in

§ 5.

In the rest of this paper we will present our implementation of our perturbative proce-

dure described above, to first and second order in the derivative expansion.

4 The metric and stress tensor at first order

In this section we will determine the solution, to first order in the derivative expansion. As

we have described in § 3, the equations that determine g(1) at xµ are ultralocal; consequently

we are able to solve the problem point by point. It is always possible to choose coordinates

to set uµ = (1, 0, 0, 0) and b(0) = 1 at any given point xµ. Making that choice, the metric

(2.6) expanded to first order in derivatives in the neighbourhood of xµ (chosen to be the

origin of R3,1 for notational simplicity) is given by

ds2
(0) = 2 dv dr − r2 f(r) dv2 + r2 dxi dxi

− 2 xµ ∂µβ
(0)
i dxi dr − 2 xµ∂µβ

(0)
i r2 (1 − f(r)) dxi dv − 4

xµ ∂µb(0)

r2
dv2 .

(4.1)

In order to implement the perturbation programme described in the previous section, we

need to find the first order metric g(1) which, when added to (4.1), gives a solution to

Einstein’s equations to first order in derivatives.

The metric (4.1) together with g(1) has a background piece (the first line in (4.1))

which is simply the metric of a uniform black brane. In addition it has small first derivative

corrections, some of which are known (the second line of (4.1)), and the remainder of which

(g(1)) we have to determine. Now note that the background black brane metric preserves

a spatial SO(3) rotational symmetry. This symmetry allows us to solve separately for the

SO(3) scalars, the SO(3) vector and SO(3) symmetric traceless two tensor (5) components

of g(1) and lies at the heart of the separability of the matrix valued linear operator H into

a set of ordinary linear operators.
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In the following we will discuss each of these sectors separately and determine g(1).

Subsequently, in § 4.4 we present the full solution to order ε and proceed to calculate the

stress tensor in § 4.5.

4.1 Scalars of SO(3)

The scalar components of g(1) are parameterized by the functions h1(r) and k1(r) according

to16

g
(1)
ii (r) = 3 r2 h1(r)

g(1)
vv (r) =

k1(r)

r2

g(1)
vr (r) = −3

2
h1(r).

(4.2)

Here g
(1)
ii and g

(1)
vr are related to each other by our gauge choice Tr((g(0))−1g(1)) = 0.

The scalar Einstein’s equations (i.e., those equations that transform as a scalar of

SO(3)) may be divided up into constraints and dynamical equations. The constraint

equations are obtained by contracting Einstein’s equations (the first line of (2.1)) with the

vector dual to the one form dr. The first scalar constraint is

r2 f(r) Evr + Evv = 0 , (4.3)

which evaluates to

∂vb
(0) =

∂iβ
(0)
i

3
. (4.4)

Below, we will interpret (4.4) as the expansion of the fluid dynamical stress energy conser-

vation, expanded to first order. The second constraint equation,

r2 f(r) Err + Evr = 0 , (4.5)

leads to

12 r3 h1(r) + (3r4 − 1) h′
1(r) − k′

1(r) = −6 r2 ∂iβ
(0)
i

3
. (4.6)

To this set of constraints we need add only one dynamical scalar equation,17 the simplest

of which turns out to be

5 h′
1(r) + r h′′

1(r) = 0 . (4.7)

16In the spatial R3 ⊂ R
3,1 we will often for ease of notation, avoid the use of covariant and contravariant

indices and adopt a summation convention for repeated indices i.e., g
(1)
ii =

∑3
i=1 g

(1)
ii .

17We have explicitly checked that the equations listed here imply that the second dynamical equation
is automatically satisfied.
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The LHS of (4.7) and (4.6) are the restriction of the operator H of (3.4) to the scalar

sector. The RHS of the same equations are the scalar parts of the source terms s1. Notice

that H is a first order operator in the variables h′
1(r) and k1(r). Consequently the equation

(4.7) may be integrated for an arbitrary source term. The resulting solution is regular at all

nonzero r provided that the source shares this property, and the growth h1(r) at infinity

is slower than a constant – the behaviour of a non normalizable operator deformation

– provided the source in (4.7) grows slower than 1/r at large r. Once h1(r) has been

obtained k1(r) may be determined from (4.6) by integration, for an arbitrary source term.

Once again, the solution will be regular and grows no faster than r3 at large r, provided

the source in that equation is regular and normalizable. The two source terms of this

subsection satisfy these regularity and growth requirements, and it seems clear that this

result will extend to arbitrary order in perturbation theory (see the next section).

The general solution to the system (4.6) and (4.7), obtained by the integration described

above, is

h1(r) = s +
t

r4
, k1(r) =

2 r3 ∂iβ
(0)
i

3
+ 3 r4 s − t

r4
+ u , (4.8)

where s, t and u are arbitrary constants (in the variable r). In the solution above, the

parameter s multiplies a non normalizable mode (which represents a deformation of the field

theory metric) and so is forced to zero by our boundary conditions. A linear combination of

the pieces multiplied by t and u is generated by the action of the coordinate transformation

r′ = r (1 + a/r4) and so is pure gauge, and may be set to zero without loss of generality.

The remaining coefficient u corresponds to an infinitesimal temperature variation, and is

forced to be zero by our renormalization condition on the stress tensor uµ

(0) Tµν = 0 (see

the subsection on the stress tensor below). In summary, each of s, t, u may be set to zero

and the scalar part of the metric g(1), denoted g
(1)
S , is

(
g

(1)
S

)
αβ

dxαdxβ =
2

3
r ∂iβ

(0)
i dv2. (4.9)

Two comments about this solution are in order. First note that k1(r) is manifestly

regular at the unperturbed ‘horizon’ r = 1, as we require. Second, it grows at large

r like r3. This is intermediate between the r0 growth of finite energy fluctuations and

the r4 growth of a field theory metric deformation. As g(0) + g(1) obeys the Einstein’s

equations to leading order in derivatives, the usual Fefferman-Graham expansion assures

us that the sum of first order fluctuations in g(0) + g(1) must (in the appropriate coordinate

system) die off like 1/r4 compared to terms that appear in the zeroth order metric (this

would correspond to k1(r) constant at infinity). Consequently the unusually slow fall off

at infinity of our metric g(1) must be compensated for by an equal but opposite effect from

a first order fluctuation piece in the second line of (4.1). This indeed turns out to be the
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case. While an explicit computation of the boundary stress tensor dual to (4.1) yields a

result that diverges like r3, this divergence is precisely cancelled when we add g(1) above

to the metric, and the correct value of the stress dual to g(0) + g(1) is in fact zero in the

scalar sector, in agreement with our renormalization condition u(0)µ T µν = 0.

4.2 Vectors of SO(3)

In the vector channel the relevant Einstein’s equations are the constraint r2 f(r) Eri+Evi =

0 and a dynamical equation which can be chosen to be any linear combination of the

Einstein’s equations Eri = 0 and Evi = 0. The constraint evaluates to

∂ib
(0) = ∂vβ

(0)
i , (4.10)

which we will later interpret as a consequence of the conservation of boundary momentum.

In order to explore the content of the dynamical equation (we choose Eri = 0), it is

convenient to parameterize the vector part of the fluctuation metric by the functions j
(1)
i ,

as (
g

(1)
V

)
αβ

dxαdxβ = 2 r2 (1 − f(r)) j
(1)
i (r) dv dxi. (4.11)

The dynamical equation for ji(r) turns out to be

d

dr

(
1

r3

d

dr
j
(1)
i (r)

)
= − 3

r2
∂vβ

(0)
i . (4.12)

The LHS of (4.12) is the restriction of the operator H of (3.4) to the vector sector, and

the RHS of this equation is the projection of s1 to the vector sector. H is of first order in

the variable j(1)′(r) and so may be integrated for an arbitrary source term. The resulting

solution is regular and normalizable provided the source is regular and decays at infinity

faster than 1/r. This condition is obeyed in (4.12); it seems rather clear that it will continue

to be obeyed at arbitrary order in perturbation theory (see the next section).

Returning to (4.12), the general solution of this equation is

j
(1)
i (r) = ∂vβ

(0)
i r3 + ai r

4 + ci (4.13)

for arbitrary constants ai, ci. The coefficient ai multiplies a non normalizable metric defor-

mation, and so is forced to zero by our choice of boundary conditions. The other integration

constant ci multiplies an infinitesimal shift in the velocity of the brane. It turns out (see

below) that a nonzero value for ci leads to a nonzero value for T0i which violates our

19



‘renormalization’ condition, consequently ci must be set to zero. In summary,

(
g

(1)
V

)
αβ

dxαdxβ = 2 r ∂vβi dv dxi. (4.14)

As in the scalar sector above, this solution grows by a factor of r3 faster at the boundary

than the shear zero mode. This slow fall off leads to a divergent contribution to the stress

tensor which precisely cancels an equal and opposite divergence from terms in the expansion

of g(0) to first order in derivatives. As we will see below, the full contribution of g(0) + g(1)

to the vector part of the boundary stress tensor is just zero, again in agreement with our

renormalization conditions.

4.3 The symmetric tensors of SO(3)

We now turn to g
(1)
T , the part of g(1) that transforms in the 5, the symmetric traceless two

tensor representation, of SO(3). Let us parameterize our metric fluctuation by

(
g

(1)
T

)
αβ

dxα dxβ = r2 α
(1)
ij (r) dxi dxj, (4.15)

where αij is traceless and symmetric. The Einstein’s equation Eij = 0 yield

d

dr

(
r5 f(r)

d

dr
α

(1)
ij

)
= −6 r2 σ

(0)
ij , (4.16)

where we have defined a symmetric traceless matrix

σ
(0)
ij = ∂(iβ

(0)
j) − 1

3
δij ∂mβ(0)

m . (4.17)

The LHS of (4.16) is the restriction of the operator H of (3.4) to the tensor sector, and

the RHS of this equation is the tensor part of the source term s1. Note that H is a first

order operator in the variable α
(1)′

ij (r) and so may be integrated for an arbitrary source

term. The solution to this equation with arbitrary source term s(r) is given by (dropping

the tensor indices):

α(1) = −
∫ ∞

r

dx

f(x) x5

∫ x

1

s(y) dy . (4.18)

Note that the lower limit of the inner integral in (4.18) has been chosen to be unity.

Provided that s(x) is regular at x = 1 (this is true of (4.16) and will be true at every order

in perturbation theory),
∫ x

1
s(x) has a zero at x = 1. It follows that the outer integrand

in (4.18) is regular at nonzero x (and in particular at x = 1) despite the explicit zero in

the factor f(x) in the denominator. The solution for α(1) is also normalizable provided the
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source is regular and grows at infinity slower than r3. This condition is obeyed in (4.16)

and is expected to continue to be obeyed at arbitrary order in perturbation theory (see the

next section).

Applying (4.18) to the source term in (4.16) we find that the solution for α
(1)
ij is given

by

(g
(1)
T )αβ dxαdxβ = 2 r2 F (r) σ

(0)
ij dxidxj. (4.19)

with

F (r) =

∫ ∞

r

dx
x2 + x + 1

x(x + 1) (x2 + 1)
=

1

4

[
ln

(
(1 + r)2(1 + r2)

r4

)
− 2 arctan(r) + π

]
(4.20)

At large r it evaluates to

(g
(1)
T )αβ dxαdxβ = 2

(
r − 1

4 r2

)
σ

(0)
ij dxidxj . (4.21)

As in the previous subsections, the first term in (4.21) yields a contribution to the stress

tensor that diverges like r3, but precisely cancels the corresponding divergence from first

derivative terms in the expansion of g(0). However the second term in this expansion yields

an important finite contribution to the stress tensor, as we will see below.

Summary of the first order calculation: In summary, our final answer for g(0) + g(1),

expanded to first order in boundary derivatives about yµ = 0, is given explicitly as

ds2 = 2 dv dr − r2f(r) dv2 + r2 dxi dxi

− 2 xµ ∂µβ
(0)
i dr dxi − 2 xµ ∂µ β

(0)
i r2(1 − f(r)) dv dxi − 4

xµ∂µb
(0)

r2
dv2

+ 2 r2 F (r) σ
(0)
ij dxi dxj +

2

3
r ∂iβ

(0)
i dv2 + 2 r ∂vβ

(0)
i dv dxi.

(4.22)

This metric solves Einstein’s equations to first order in the neighbourhood of xµ = 0

provided the functions b(0) and β
(0)
i satisfy

∂vb
(0) =

∂iβ
(0)
i

3

∂ib
(0) = ∂vβ

(0)
i .

(4.23)

4.4 Global solution to first order in derivatives

In the previous subsection we have computed the metric g(1) about xµ assuming that

b(0) = 1 and β
(0)
i = 0 at the origin. Since it is possible to choose coordinates to set an
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arbitrary velocity to zero and an arbitrary b(0) to unity at any given point (and since our

perturbation procedure is ultralocal), the results of the previous subsection contain enough

information to write down the metric g(1) about any point. A simple way to do this is to

construct a covariant metric18, as a function of uµ and b, which reduces to (4.22) when

b(0) = 1 and β
(0)
i = 0. It is easy to check that

ds2 = −2 uµ dxµdr − r2 f(b r) uµuν dxµdxν + r2 Pµν dxµdxν

+ 2 r2 b F (b r) σµν dxµdxν +
2

3
r uµuν ∂λu

λ dxµdxν − r uλ∂λ (uνuµ) dxµdxν ,
(4.24)

does the job, up to terms of second or higher order in derivatives. Here we have written

the metric in terms of σµν defined in (2.9) and the function F (r) introduced in (4.20).

Furthermore, it is easy to check that the metric above is the unique choice respecting the

symmetries (again up to terms of second or higher order in derivatives). It follows that

(4.24) is the metric g(0) + g(1). It is also easily verified that the covariant version of (4.23)

is (3.6). We will interpret this as an equation of stress energy conservation in the next

subsection.

4.5 Stress tensor to first order

Given the solution to the first order equations, we can utilize the AdS/CFT dictionary to

construct the boundary stress tensor using the prescription of [40] (see also [41]). For the

metric (4.24) it is not difficult to compute the stress tensor; all we need to do is compute

the extrinsic curvature tensor Kµν to the surface at fixed r. By convention, we choose the

unit normal to this surface to be outward pointing, i.e. pointing towards the boundary, in

the definition of Kµν . Using then the definition

T µ
ν = −2 lim

r→∞
r4 (Kµ

ν − δµ
ν ) , (4.25)

on our solution (4.24), we find the result is given simply as

T µν =
1

b4
(4 uµuν + ηµν) − 2

b3
σµν . (4.26)

where σµν was defined in (2.9) and all field theory indices are raised and lowered with the

boundary metric ηµν . As explained in the introduction, this stress tensor implies that the

ratio of viscosity to entropy density of our fluid is 1/(4π). Note that as mentioned previ-

ously, the expression (4.26) is only correct up to first derivative terms in the temperature

18By abuse of notation, we will refer to expressions transformation covariantly in the boundary metric
(chosen here to be ηµν) as covariant. In particular, we are not interested in full bulk covariance as we will
continue to restrict attention to a specific coordinatization of the fifth direction.
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(T = 1/b) and velocities.

5 The metric and stress tensor at second order

In order to obtain the metric and stress tensor at second order in the derivative expansion,

we follow the method outlined in § 3 and implemented in detail in § 4 to leading order.

Concretely, we choose coordinates such that β
(0)
i = 0 and b(0) = 1 at the point xµ = 0.

The metric g(0) + g(1) given in (4.24) may be expanded to second order in derivatives.

This involves Taylor expanding g(0) to second order and g(1) to first order, the second order

analogue of (4.1). As we have explained in § 3.4, at this stage we also make the substitution

b(0) → b(0) + b(1), and treat b(1) as an order ε term, and so retain only those expressions

that are of first derivative order in b(1) (and contain no other derivatives). This process is

straightforward and we will not record the (rather lengthy) resultant expression here. To

this expression we add the as yet undetermined metric fluctuation

g
(2)
αβ dxαdxβ = −3 h2(r) dv dr + r2 h2(r) dxi dxi +

k2(r)

r2
dv2 + 2

j
(2)
i (r)

r2
dv dxi + r2α

(2)
ij dxi dxj .

(5.1)

We plug this metric into Einstein’s equations and obtain a set of linear second order

differential equations that determine h2, k2, j
(2)
i , α

(2)
ij . As in the previous section, SO(3)

symmetry ensures that the equations for the scalars h2, k2, the vectors j
(2)
i , and the tensor

α
(2)
ij do not mix. Moreover, as we have explained in § 3, the equations that determine

these unknown functions are identical to their first order counterparts in the homogeneous

terms, but differ from those equations in the sources. As a result, the only new calculation

we have to perform in order to obtain the metric at second order is the computation of the

source terms. Once these terms are available, the corresponding equations may easily be

integrated, as in the previous section.

Recall that the input metric into Einstein’s equations includes terms that arise out

of the Taylor expansion of g(0) + g(1) that have explicit factors of the coordinates xµ.

Nonetheless, a very simple argument assures us that the source terms in the equations

that determine g(2) must all be independent of xµ. The argument runs as follows: We

have explicitly constructed g(1) in the previous section so that EMN

(
g(0) + g(1)

)
= OMN

where OMN is a local expression constructed out of second order or higher xµ derivatives

of velocity and temperature fields. It follows that xµ dependence of sources, which may be

obtained by Taylor expanding OMN about xµ = 0, occurs only at the three derivative level

or higher. It follows that source terms at the two derivative level have no xµ dependence.

Clearly, this argument has a direct analogue at arbitrary order in perturbation theory.

A crucial input into the argument of the last paragraph was the fact that g(0) + g(1)
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satisfies Einstein’s equations in a neighbourhood of xµ = 0 (and not just at that point).

As we have seen in the previous section, the fact that the energy conservation equation is

obeyed at xµ = 0 allows us to express all first derivatives of temperature in terms of first

derivatives of velocities (see (4.10) and (4.4)). In addition, β
(0)
i and b(0) must be chosen

so that (3.12) is satisfied. The sixteen equations (3.12) can be grouped into sets that

transform under SO(3) as two scalars, three vectors and one tensor (i.e., 5). We will now

explain how these constraints may be used to solve for 16 of the independent expressions

of second order in derivatives of velocity and temperature fields.

In order to do this, let us first list all two derivative ‘source’ terms that can be built

out of second derivatives of b(0) or β
(0)
i , or out of squares of first derivatives of β

(0)
i . These

expressions may be separated according to their transformation properties under SO(3) as

scalars, vectors and tensors and higher order terms. The higher order pieces will not be

of interest to us. An exhaustive list of these expressions that transform in the 1, 3 or 5 is

given in Table 1.19 We define the vector ℓi as the curl of the velocity i.e.,

ℓi = ǫijk ∂jβk , (5.2)

and the symmetric traceless tensor σij has been previously defined in (4.17).

As a simple check on the completeness of expressions in Table 1, notice that the number

of degrees of freedom in those of the tabulated expressions that are formed from a product

of two single derivatives is 5 (in the scalar sector), 5 × 3 (in the vector sector), and 7

× 5 in the tensor sector, leading to a total of 55 real parameters. Together with degrees

of freedom from the two 7s and one 9 that can also be formed from the product of two

derivatives (but will play no role in our analysis) this gives 78 degrees of freedom. This

is in agreement with the expected 1
2
× 12 × 13 =78 ways of getting a symmetric object

from twelve parameters (the first derivatives of the velocity fields). On the other hand, the

genuinely two derivative terms in Table 1 have 3×1+5×3+3×5 = 33 degrees of freedom

which together with a two derivative term that transforms in the 7 (which however plays

no role in our analysis) is the expected number 40 = 10× 4 of two derivative terms arising

from temperature and velocity fields.

Assuming that we have already employed the first order conservation equation (3.6) to

eliminate the first derivatives of b, we have to deal with the constraint equation (3.12) at

the second order. Using the list of second order quantities given in Table 1, it is possible to

show that (3.12) take the form of the following linear relations between these two derivative

19Note that the tensors are symmetric in their indices. The symmetrization as usual is indicated by
parentheses.
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1 of SO(3) 3 of SO(3) 5 of SO(3)

s = 1
b
∂2

vb vi = 1
b
∂i∂vb tij = 1

b
∂i∂jb − 1

3
s δij

s = ∂v∂iβi vi = ∂2
vβi tij = ∂(iℓj)

s = 1
b
∂2b vi = ∂vℓi tij = ∂vσij

S = ∂vβi ∂vβi vi = 9
5
∂jσji − ∂2βi Tij = ∂vβi ∂vβj − 1

3
S δij

S = ℓi ∂vβi vi = ∂2βi Tij = ℓ(i ∂vβj) − 1
3
S δij

S = (∂iβi)
2

Vi = 1
3
(∂vβi)(∂jβ

j) Tij = 2 ǫkl(i ∂vβ
k ∂j)β

l + 2
3
S δij

S = ℓi ℓ
i Vi = −ǫijk ℓj ∂vβ

k Tij = ∂kβ
k σij

S = σij σij
Vi = σij ∂vβ

j
Tij = ℓi ℓj − 1

3
S δij

Vi = ℓi ∂jβ
j Tij = σik σk

j − 1
3
S δij

Vi = σij ℓj Tij = 2 ǫmn(i l
m σn

j)

Table 1: An exhaustive list of two derivative terms in made up from the temperature
and velocity fields. In order to present the results economically, we have dropped the
superscript on the velocities βi and the inverse temperature b, leaving it implicit that these
expressions are only valid at second order in the derivative expansion.

terms:

s =
1

3
s − S +

1

9
S +

1

6
S − 1

3
S

s = s − S +
1

2
S − S

vi =
10

9
vi +

1

9
vi +

1

3
Vi −

1

3
Vi −

2

3
Vi

vi =
10

9
vi +

1

9
vi −

2

3
Vi +

1

6
Vi −

5

3
Vi

vi = −1

3
Vi + Vi

tij = tij + Tij +
1

3
Tij +

1

4
Tij + Tij .

(5.3)
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Given these relations we now proceed to analyze the potential source terms arising from

the metric (4.24) at O (ε2). The analysis, as before, can be done sector by sector – the

computations for the scalar, vector and tensor sectors are given in § 5.1, § 5.2 and § 5.3,

respectively.

5.1 Solution in the scalar sector

Given the general second order fluctuation (5.1), we parameterize scalar components of

g(2) in terms of the functions h2(r) and k2(r) according to

g
(2)
ii (r) = 3 r2 h2(r)

g(2)
vv (r) =

k2(r)

r2

g(2)
vr (r) = −3

2
h2(r) .

(5.4)

As we have explained in the § 4.1, the constraint Einstein’s equations in this sector are

given by the r and v component of the one-form formed by contracting the Einstein tensor

with the vector dual to the one-form dr. The v component of this constraint, i.e. the

second order expansion of (4.3), evaluates to

1

b(0)
∂vb

(1) =
1

b(1)
S . (5.5)

This equation enables us to solve for the first v derivative of b(1) in terms of two derivative

terms made up of β
(0)
i , but imposes no further constraints on b(0), β

(0)
i . (5.5) has a simple

physical interpretation; it is simply the time component of the conservation equation for

the stress tensor (4.26), expanded to second order in derivatives. Consequently (5.5) is the

Navier Stokes equation!

The r component of the constraint, i.e. (4.5), gives us one relation between the functions

h2(r) and k2(r) and their derivatives. As in § 4.1, to this constraint we must add one

dynamical equation. We obtain the following equations

5 h′
2(r) + r h′′

2(r) = Sh(r)

k′
2(r) = Sk(r)

= 12 r3 h2(r) + (3 r4 − 1) h′
2(r) + Ŝk(r) ,

(5.6)
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where

Sh(r) ≡
1

3 r3
S +

1

2
Wh(r) S

Ŝk(r) ≡ −4 r

3
s + 2 r S − 2 r

9
S +

1 + 2 r4

6 r3
S +

1

2
Wk(r) S .

(5.7)

The functions Wh(r) and Wk(r) are given by

Wh(r) =
4

3

(r2 + r + 1)
2 − 2 (3 r2 + 2r + 1) F (r)

r (r + 1)2 (r2 + 1)2 ,

Wk(r) =
2

3

4 (r2 + r + 1) (3 r4 − 1) F (r) − (2r5 + 2r4 + 2r3 − r − 1)

r (r + 1) (r2 + 1)
.

As advertised, it is clear that the differential operator acting on the functions h2(r) and

k2(r) is identical to the one encountered in the first order computation in § 4.1. The

equation (5.6) can be explicitly integrated; to do so it is useful to record the leading large

r behaviour of the source term Sh(r):

Sh(r) →
1

r3
S∞

h ≡ 1

r3

(
1

3
S +

2

3
S

)
. (5.8)

The first equation in (5.6) can be integrated given this asymptotic value to obtain the

leading behaviour of the function h2(r). One finds

h2(r) = − 1

r2
S∞

h +

∫ ∞

r

dx

x5

∫ ∞

x

dy y4

(
Sh(y) − 1

y3
S∞

h

)
. (5.9)

The integral expression above can be shown to be of O (r−5) and hence the asymptotic

behaviour of h2(r) is controlled by sh. Given h2(r), one can integrate up the second

equation of (5.6) for k2(r). The leading large r behaviour of the source term Sk(r) is given

by

Sk(r) → r S∞
k ≡ r

(
−4

3
s + 2 S − 2

9
S − 1

6
S − 14 S

)
, (5.10)

and hence we have

k2(r) =
r2

2
S∞

k −
∫ ∞

r

dx (Sk(x) − xS∞
k ) . (5.11)

In this case the integral makes a subleading contribution starting at O (r−1). As in § 4.1,

we have chosen the coefficients of homogeneous solutions to this differential equation so as

to ensure normalizability and vanishing scalar contribution to the stress tensor (according

to our renormalization conditions).
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5.2 Solution in the vector sector

The analysis of the vector fluctuations at second order mimics the computation described

in § 4.2. The vector fluctuation in g(2) is chosen as described in (5.1) to be

g
(2)
vi =

j
(2)
i

r2
. (5.12)

Once again, the analysis is easily done by looking at the constraint equations which are

obtained by contracting the tensor EMN with the vector dual to dr. The ith constraint

equation evaluates to

18 ∂ib
(1) = 5vi + 5vi + 15 Vi −

15

4
Vi −

33

2
Vi . (5.13)

This equation allows us to solve for the spatial derivatives of b(1) in terms of derivatives of

β
(0)
i and b(0). (5.13) is simply the expansion to second order in derivatives of the conserva-

tion of momentum of the stress tensor (4.26).

To complete the solution in the vector channel, we need to solve for j(2)(r), which can

be shown to satisfy a dynamical equation

d

dr

(
1

r3

d

dr
j
(2)
i (r)

)
= Bi(r). (5.14)

Note that the LHS of this expression has the vector part of the operator H acting on j(2).

Here Bi(r) is the source term which is built out of the second derivative terms transforming

in the 3 of SO(3) given in Table 1.

B(r) =
p(r)B∞ + Bfin

18 r3 (r + 1) (r2 + 1)
(5.15)

with

B∞ = 4 (10v + v + 3 V − 3 V − 6 V)

Bfin = 9 (20v − 5 V + 6 V) ,
(5.16)

and we have introduced the polynomial:

p(r) = 2 r3 + 2r2 + 2 r − 3 . (5.17)

Clearly p(r) determines the large r behaviour of the vector perturbation; asymptotically
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B(r) → 1
9 r3 B∞. Hence, integrating (5.14) we find that j(2)(r) is given as

j
(2)
i (r) = − r2

36
B∞

i +

∫ ∞

r

dx x3

∫ ∞

x

dy

(
Bi(y) − 1

9 y3
B∞

i

)
, (5.18)

where once again we have chosen the coefficients of homogeneous modes in order to main-

tain normalizability and our renormalization condition. As with the first order computation

described in § 4.2, the solution (5.18) makes no contribution to the stress tensor of the field

theory.

5.3 Solution in the tensor sector

Finally, we turn to the tensor modes at second order where we shall recover the explicit

form of the second order contributions to the stress tensor. Our task is now to determine

the functions α
(2)
ij (r) in (5.1). As in § 4.3, in the symmetric traceless sector of SO(3) one

has only the dynamical equation given by

1

2 r

d

dr

[
r5

(
1 − 1

r4

)
d

dr
α

(2)
ij (r)

]
= Aij(r) (5.19)

where

Aij(r) = a1(r)

(
Tij +

1

3
Tij + tij

)
+ a5(r) Tij + a6(r) Tij −

1

4
a7(r) Tij

with the coefficient functions

a1(r) =
3 p(r) + 11

p(r) + 5
− 3 r F (r)

a5(r) =
1

2

(
1 +

1

r4

)

a6(r) =
4

r2

r2 p(r) + 3 r2 − r − 1

p(r) + 5
− 6 r F (r)

a7(r) = 2
p(r) + 1

p(r) + 5
− 6 r F (r) .

(5.20)

The functions F (r) and p(r) are defined in (4.20) and (5.17), respectively.

The desired solution to (5.19) can be found by intergrating the right hand side of the

equation twice and choosing the solution to the homogenous solution such that we retain

regularity20 at r = 1 and appropriate normalizability at infinity. The solution with these

20We have imposed the requirement that all metric functions are well behaved in its neighbourhood of
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properties is

α2
ij(r) = −

∫ ∞

r

dx

x (x4 − 1)

∫ x

1

dy 2 y Aij(y)

The quantity of prime interest to us is the leading large r behaviour of α
(2)
ij . This can

be inferred from the expressions for the coefficient functions given in (5.20) and evaluates

to

α
(2)
ij (r) =

1

r2

(
−1

2
Tij + Tij −

1

4
Tij

)

+
1

2r4

[(
1 − ln 2

2

) (
1

3
Tij + Tij + tij

)
+

ln 2

4
Tij + Tij

] (5.21)

The leading term here will give a divergent contribution to the stress tensor, which is

necessary to cancel the divergence arising from the expansion of g(0) + g(1) to second order.

The subleading piece in (5.21) is the term that will provide us with the second order stress

tensor. Before proceeding to evaluate the stress tensor we present the full solution to

second order, appropriately covariantized.

5.4 Global solution to second order in derivatives

Consider the following metric

ds2 = −2 uµ dxµdr−r2 f(b r) uµuν dxµdxν+r2 Pµν dxµdxν+3 b2 h2(b r) uµ dxµdr+Gµν dxµdxν ,

(5.22)

where we have defined a symmetric tensor Gµν by combing the contributions in the field

theory directions from the first and second order metrics g(0) + g(1)

Gµν = r2
(
2 b F (b r) σµν + b2 α(2)

µν (b r)
)

+
1

r2

(
2

3
r3 ∂λu

λ uµ uν +
k2(b r)

b2

)

+ r2 b2 h2(b r) Pµν +
1

r2

(
−2 r3 Duα +

1

b2
j(2)
α (b r)

)
P α

ν uµ .

(5.23)

The covariant expression for α
(2)
µν is given by (5.19) with the replacements

Tij → (T2d)µν , Tij → (T2c)µν , Tij → ℓµ ℓν −
1

3
Pµν ℓαℓα

Tij → (T2b)µν , Tij → 2 (T2a)µν , tij → (T2e)µν .
(5.24)

r = 1, a regular point in the spacetime manifold. Note that r = 1 will not represent the horizon of our
perturbed solution, but may well lie very near this horizon manifold.
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Further, j
(2)
µ given by (5.18) with Bi(r) → Bν(r), where Bi(r) is given by (5.15) and we

make the following replacements

vi → 9

5

[
P α

ν P βγ ∂γ ∂(βuα) −
1

3
P αβ P γ

ν ∂γ∂αuβ

]
− P αβ ∂α∂βuν , vi → P αβ∂α∂βuν

Vi → ∂αuα Duν , Vi → ǫαβγν uα Duβ ℓγ , Vi → σαν Duα .

(5.25)

Finally, h2(r) and k2(r) are given by (5.9) and (5.11) respectively, and in the functions

Sh(r), Sk(r), S∞
h and S∞

k defined in (5.8) and (5.10) we are required to make the replace-

ments

s → 1

b(0)
P αβ ∂α∂βb

(0)
S → Duα Duα , S → ℓµ Duµ

S → (∂µuµ)2 , S → ℓµ ℓµ , S → σµν σµν .
(5.26)

It may be checked that this metric is the unique (up to terms that differ at third or

higher order in derivatives) covariant expression that reduces to two derivative solution

determined in the previous subsections, in the neighbourhood of any point yµ after making

the coordinate change that sets b(0) = 1 and β
(0)
i = 0 at that point. It follows that (5.22)

is the desired metric g(0) + g(1) + g(2).

5.5 Stress tensor to second order

The stress tensor dual to the solution to second order described in § 5.4 can be obtained

by using the standard formula (4.25). To determine the extrinsic curvature at large r, it

suffices to know the asymptotic form of the metric since we are interested in terms that

have a finite limit as we take r → ∞. Consequently, in order to compute the stress tensor it

is sufficient to replace the various functions of r that have appeared in the computation in

§ 5.1, § 5.2 and § 5.3 by their large r asymptotics. The stress tensor may the be computed

in a straightforward fashion, yielding

(T2)vv = (T2)vi = 0 ,

(T2)ij = − ln 2

4
Tij − Tij +

(
−1 +

ln 2

2

) (
tij + Tij +

1

3
Tij

)
.

(5.27)

The vanishing of (T2)vµ is actually guaranteed by our renormalization condition. It is easy

to check that the covariant form of the expression (5.27) is indeed the stress tensor quoted

in (2.8). This result is the main prediction of our fluctuation analysis to second order in

the derivative expansion.
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6 Second order fluid dynamics

In the previous section we have derived the precise form of the fluid dynamical stress

tensor dual to gravity on AdS5 including all terms with no more than two derivatives. In

this section we initiate a study of the physics of this stress tensor. In § 6.1 below we will

demonstrate that our stress tensor transforms homogeneously under Weyl transformations.

In § 6.2 we compute the dispersion relation for low frequency sound and shear waves that

follows from our stress tensor.

6.1 Weyl transformation of the stress tensor

Thus far we have extracted the stress tensor for a conformal fluid in flat space R3,1. We

would like to ensure that the second order stress tensor we have derived transforms homo-

geneously under Weyl rescaling. In order to check this we perform the obvious minimal

covariantization of our stress tensor to generalize it to a fluid stress tensor about an arbi-

trary boundary metric gµν .
21 and study its Weyl transformation properties.

Consider the Weyl transformation of the boundary metric

gµν = e2φ g̃µν ⇒ gµν = e−2φg̃µν

& uµ = e−φ ũµ , T = e−φT̃ .
(6.1)

It is well known that the first order truncation of the stress tensor (2.8) transforms as

T µν = e−6 φ T̃ µν under this transformation (see for instance Appendix D of [42]). We pro-

ceed to show that this transformation rule holds for the two derivative stress tensor as well.

This transformation property, together with the tracelessness of the stress tensor, ensures

Weyl invariance of the fluid dynamical equations ∇µT µν , appropriate for a conformal fluid.

It follows from (6.1) that P µν = gµν + uµuν = e−2φ P̃ µν . The Christoffel symbols

transform as [42]

Γν
λµ = Γ̃ν

λµ + δν
λ ∂µφ + δν

µ ∂λφ − g̃λµ g̃νσ ∂σφ .

The transformation of the covariant derivative of uµ is given by

∇µuν = ∂µuν + Γν
µλ uλ = e−φ

[
∇̃µ ũν + δν

µ ũσ ∂σφ − g̃µλ ũλ g̃νσ ∂σφ
]
. (6.2)

This equation can be used to derive the transformation of various quantities of interest in

21All metrics in this subsection refer to the metric on the boundary, i.e.., the background spacetime on
which the fluid is propagating.
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fluid dynamics, such as the acceleration aµ, shear σµν , etc..

θ = ∇µu
µ = e−φ

(
∇̃µũµ + 3 ũσ ∂σφ

)
= e−φ

(
θ̃ + 3 D̃φ

)
,

aν = Duν = uµ∇µu
ν = e−2φ

(
ãν + P̃ νσ ∂σφ

)
,

σµν = P λ(µ∇λu
ν) − 1

3
P µν ∇λu

λ = e−3φ σ̃µν ,

ℓµ = uα ǫαβγµ∇βuγ = e−2φ ℓ̃µ

(6.3)

where in the last equation we have accounted for the fact that all epsilon symbols in (2.9)

should be generalized in curved space to their covariant counterparts. The objects with

correct tensor transformation properties scale as metric determinants i.e., ǫαβγδ ∝ √
g,

and ǫαβγδ ∝ 1√
g
, from which it is easy to infer their scaling behaviour under conformal

transformations; in particular, ǫαβγδ = e4φ ǫ̃αβγδ and ǫαβγδ = e−4φ ǫ̃αβγδ.

The Weyl transformation of the two derivative terms that occur in the stress tensor

(2.9) is given by

T µν
A = e−4φ T̃ µν

A , for A = {2a, 2b}
T µν

B = e−4φ
(
T̃ µν

B + δ̃T
µν

B

)
, for B = {2c, 2d, 2e}

(6.4)

where the inhomogeneous terms arising in the Weyl transformation are:

δT µν
2c = 3Dφ

(
∇(µuν) + u(µ aν) − 1

3
θ P µν

)

δT µν
2d = 2 a(µ ∇ν)φ + 2 u(µ aν) Dφ − 2

3
aα ∇αφ

+ 2 u(µ ∇ν)φDφ + uµ uν (Dφ)2 − 1

3
P µν (Dφ)2 + ∇µφ∇νφ − 1

3
P µν ∇αφ∇αφ

δT µν
2e = −∇(µuν) Dφ − 3 u(µaν) Dφ +

1

3
P µν θDφ − 2 a(µ ∇ν)φ +

2

3
P µν aα ∇αφ

− uµ uν(Dφ)2 +
1

3
P µν (Dφ)2 − 2 u(µ ∇ν)φDφ −∇µφ∇νφ +

1

3
P µν ∇αφ∇αφ

(6.5)

While the conformal transformation involves the inhomogeneous terms presented in

(6.5) we need to ensure that the full stress tensor is Weyl covariant. Satisfyingly, these

inhomogeneous terms cancel among themselves in the precise combination that occurs in

(2.8); consequently the linear combination of terms that occurs in the stress tensor trans-

forms covariantly. Note that the cancelation of inhomogeneous terms depends sensitively

on the ratio of coefficients of T2c, T2d and T2e; and so provides a check of our results. Note

33



however that T2a and T2b are separately Weyl covariant. In summary, our result for the

two derivative stress tensor is a linear combination (with precisely determined coefficients)

of three independently Weyl covariant forms, with scaling weight −4 (for upper indices).

Using the transformation of the temperature (6.1) it follow that the full stress tensor

transforms under Weyl transformation as

T µν = e−6φ T̃ µν . (6.6)

R. Loganayagam [39] informs us that he has found a compact way of rewriting our stress

tensor T µν (2.8) that makes the Weyl invariance of each of its three pieces manifest.

6.2 Spectrum of small fluctuations

Consider a static bath of homogeneous fluid at temperature T . Given the two derivative

stress tensor derived above (2.9), it is trivial to solve for the spectrum of small oscillations

of fluid dynamical modes about this background. As the background is translationally

invariant, these fluctuations can be taken to have the form

βi(v, xj) = δβi e
i ω v+i kjxj

T (v, xj) = 1 + δT ei ω v+i kjxj
(6.7)

Plugging (6.7) into the equations of fluid dynamics (2.7), and working to first order in

δβi and δT , these equations reduce to a set of four homogeneous linear equations in the

amplitudes δβi and δT . The coefficients of these equations are functions of ω and ki. These

equations have nontrivial solutions if and only if the matrix formed out of these coefficient

functions has zero determinant. Setting the determinant of the matrix of coefficients to

zero one can find the following two dispersion relations:

Sound mode : ω(k) = ± k√
3

+
ik2

6
± (3 − ln 4)

24
√

3
k3 + O

(
k4

)
, (6.8)

Shear mode : ω(k) =
ik2

4
+

i

32
(2 − ln 2) k4 + O

(
k6

)
, (6.9)

where we have defined the rescaled energy and momenta

ω =
ω

π T
, k =

k

π T
. (6.10)

It would be interesting to check our prediction against the quasinormal mode analysis

of [23].
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7 Discussion

We have demonstrated how to start from a general, stationary black brane solution de-

scribing perfect fluid dynamics and promote the parameters in the gravitational solution to

physical fluctuation modes. This procedure allows us to set up a fluctuation analysis which

can be used to extract the boundary stress tensor of fluids dual to gravity in asymptotically

AdS5 spacetimes, in a derivative expansion. Our procedure is ultralocal: we obtain our

solution by patching together local tubes of the black brane solution into a global solution

of Einstein’s equations. The fact that our solutions tubewise approximate black branes

(see [3, 4, 7] for related observations) is the gravitational analogue of the fact that the

fluid dynamics approximation only works when the fluid is in local equilibrium. We find

this structure of our solutions quite fascinating and feel that it might have the potential

to teach us important lessons about black brane dynamics.

Equation (2.9) is a prediction for the stress tensor of all four dimensional conformal flu-

ids that admit a dual gravitational description. As we have described in the introduction,

there exists an infinite number of examples of conformal field theories with a gravitational

dual that differ substantially in their field content, spectrum of operators, etc. Nonethe-

less, up to an overall normalization, each of these theories has the same fluid dynamical

expansion! Consequently, the fluid dynamics described in this paper has a degree of uni-

versality associated with it. At the one derivative level, the fluid stress tensor has a single

undetermined parameter - the shear viscosity. The value of η that we find is in agreement

with earlier work, η/s = 1/(4 π). This relationship has been shown to have a larger degree

of universality than is apparent from our work; it applies to all field theories, whether

conformal or not, that have a gravitational dual. This relationship has also been conjec-

tured to act as a lower bound on the viscosity of a relativistic field theory. It would be

interesting to investigate whether any of the new two derivative coefficients we have found

in this paper display extended universality features and also whether they are sensitive

to higher derivative terms as discussed recently for the shear viscosity to entropy ratio in

[43, 44].

As we have remarked in § 2, it would be interesting to investigate whether our result

for the stress tensor is consistent with the so called Israel-Stewart formulation of fluid

dynamics [39], a framework that has been employed in several practical investigations of

fluid flows.

Relatedly, we note that recent claims [45] that the RHIC plasma violate the viscosity

to entropy bound referred to above are based on the analysis of RHIC plasma flows using

first order fluid dynamics. However, a satisfactory analysis of these flows should include

contributions from higher order terms in the fluid dynamical expansion. It is possible that

the stress tensor derived in this paper will be useful in this regard.22

22We thank O. Aharony for this suggestion.
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It may be possible to use the formalism presented in this paper to obtain a better

understanding of the formal structure of the fluid dynamical expansion of quantum field

theories. In this context it is useful to recall that the spectrum of regular small oscillations

about a uniform black brane hosts an infinite spectrum of quasinormal modes. In this

paper we have effectively constructed the ‘chiral Lagrangian’ corresponding to those of

the quasinormal fluctuations that are Goldstone modes (and so have zero frequency when

at zero k). The remaining quasinormal modes played no role in our analysis, as they

are nonperturbatively massive in the inverse temperature (ω ∼ T = 1/b). The existence

of these non perturbative modes probably implies that the fluid dynamical expansion is

asymptotic rather than convergent, and might allow us to predict the location of the first

singularity in the Borel transform of this perturbation series.

Recall that metric fluctuation, for any asymptotically AdS5 solution to Einstein’s equa-

tions, decays at large r like 1/r4 relative to the background. The coefficients of this 1/r4

decay are functions of the four field theory coordinates xµ; in a particular gauge these

functions may be identified with the 9 components of the traceless boundary stress tensor.

This stress tensor is constrained to obey the equations of energy momentum conserva-

tion, but is otherwise unconstrained by local analysis. The Fefferman-Graham [46] method

(or equivalently the formalism of holographic renormalization, see [47, 48] for reviews)

demonstrates that any such conserved stress tensor, regarded as a boundary condition to

Einstein’s equations, leads to a unique and well defined power series expansion (in 1/r) of

an asymptotically AdS metric. Local analysis near the boundary thus appears to indicate

that the space of solutions to Einstein’s equations in AdS space is parameterized by the

set of all conserved energy momentum tensors in four dimensions. This would be very

surprising from the dual field theory viewpoint, as a set of four equations does not define

a well posed initial value problem for nine functions.

The results of our paper suggest a (perhaps not unanticipated) resolution to this puzzle.

In the derivative expansion in which we work, all except a four function set of this naive

nine function class of metrics are unacceptably singular and so do not constitute a legal

solution to Einstein’s equations. Generic data result in singularities that develop at a finite

value of r (r = 1/b in our set up) and so are not easily visible in the Fefferman-Graham

expansion, which is guaranteed to work only in an open neighbourhood of the boundary.

The class of boundary stress tensors that generate acceptable metrics are parameterized

by four functions (βi(x
µ) and b(xµ)) rather than nine. These four functions are further

constrained to obey the four equations of stress energy conservation. As four equations

constitute a well defined23 initial value problem for a set of four functions, the set of

23Note that our notion of a well posed PDE system is simply that we do not have an under-constrained
system of equations. We are not making any claim regarding the well posedness of generic initial data; only
initial data in the regime of our perturbation analysis together with the boundary conditions is guaranteed
to lead to regular solutions. The general question of global regularity of Navier-Stokes equation is of course

36



legal solutions to Einstein’s equations are parameterized by data that consists of functions

of 3 spatial rather than 4 spacetime boundary variables, in agreement with field theory

expectations. It would of course be of very great interest to understand how these results

of the previous paragraph generalize beyond the boundary derivative expansion.

In this context it is also relevant to note that the equations of fluid dynamics themselves

develop singularities under certain situations. It would be interesting to investigate the

gravitational dual of this process of singularity formation.24 More generally, the map from

solutions of fluid dynamics to solutions of gravity could allow one to use the insight gained

from the hundred year long study of the equations of fluid dynamics to understand quali-

tatively new gravitational solutions. For example, one might hope that the inhomogeneous

brane solutions discovered in the study of the Gregory-Laflamme transition could admit a

description in terms of an appropriate fluid dynamical system.

As we have described, in this paper we have derived explicit formulae for the metric dual

to any solution of the Navier-Stokes equations. We have not yet investigated the global

structure of the resulting spacetime. It seems very plausible that (under suitable physical

conditions) the spacetimes we have constructed have regular event horizons. The event

horizon is a null surface; we expect it to closely approximate25 the surface r b(xµ) = 1. If

this is the case we should be able to compute an explicit expression for this surface order

by order in perturbation theory. It may then be possible to use our understanding of the

horizon to define a locally positive divergence entropy current (a ‘pullback’ of the natural

vector field of tangents to null generators of the event horizon back onto the boundary

might play a role in such a construction). In the most optimistic scenario such an exercise

could relate classic results about the positivity of null congruence expansions (resulting

from the Raychaudhuri’s equation with the usual proviso of energy conditions) to the

local positivity of entropy production in fluid dynamics; a result that would be of obvious

interest. The language of dynamical horizons26 [49] may well prove to be the appropriate

framework for such a discussion. We hope to return to this intriguing issue in the future.

Recall that the construction presented in this paper yields the gravitational dual of

every solution of the equations of fluid dynamics. Standard field theory lore asserts that

generic field theory evolutions are well described by solutions to the equations of fluid

dynamics in the regime of interest to this paper. Consequently the AdS/CFT correspon-

dence seems to imply that the construction described here yields the generic legal solution

of gravity in AdS5, within its domain of applicability. If our guess of the previous para-

graph is correct – i.e., if all our solutions possess a regular event horizon that shield the

an interesting open problem.
24We thank D. Berenstein for discussions on this question.
25We would like to thank H. Reall for many useful discussions on this point.
26Note that the homogeneous spacetime background being simply the uniform black brane, has a trapped

surface; under the fluctuations we generically expect the trapped surface to be generated earlier in the
radial evolution i.e., at a larger radial coordinate (assuming of course appropriate energy conditions).
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boundary from the singularity – then our results appear to be of relevance to the cosmic

censorship conjecture [50, 51]. However we emphasize that our analysis applies only in a

long wavelength expansion, and so presumably does not apply to several classes of scenarios

that putatively violate this conjecture. More physically, fluid dynamics applies only under

the assumption of local thermal equilibrium. Presumably naked singularities (if they exist)

are dual to ‘far from local equilibrium’ boundary physics.

Several other natural generalizations of the work presented in this paper immediately

suggest themselves. First, the results of our paper are likely to have an analogue for d

dimensional gravitational theories with a negative cosmological constant for every d ≥ 4.

Second, it should be possible to extend the results of our paper to spaces that asymptote

to AdSd+1 in global coordinates (and whose dual description is, therefore, fluid dynamics

on Sd−1 × Rt). More ambitiously, it may be possible to extend the results of our work to

field theories whose spacetime metric asymptotes to

ds2 =
dr2

r2
+ r2 ds2

bdy

for a more general class of metrics ds2
bdy. In particular, the generalization to time dependent

metrics would permit the study of the gravitational dual of forced fluids, a subject of

interest to the study of turbulence. Finally, it should not be difficult to generalize our

study to two derivative theories of gravity interacting with gauge fields. We expect that

the dual description of such a system will be the fluid dynamics of a system with a number

of additional conserved charges (equal to the number of commuting vector fields). Note

however that unlike the uncharged system, this charged fluid dynamics will not be universal

at nonlinear order, as gauged supergravities do not in general admit a consistent truncation

to the Einstein-Maxwell sector. For instance couplings of the form f(φ)FµνF
µν , for an

arbitrary scalar field φ, constitute a source for φ; this is an effect that plays an important

role in studies of the attractor mechanism.

Despite this non universality, IIB supergravity on AdS5 ×S5 (for instance) should be

dual to a completely well defined charged fluid dynamics. It would be of interest to use

the methods of this paper determine the form of this fluid dynamical stress tensor. Among

other things, this exercise would allow us to zero in on the origin of the worrying apparent

discrepancy between the formulas of charged black hole thermodynamics and the formulas

of fluid dynamics, as reported in [9].

It should prove relatively straightforward to generalize the study of this paper to the

fluid dynamics of non conformal backgrounds of gravity. For example, Scherk-Schwarz

compactifications of AdS spaces yield a particularly simple set of gravitational backgrounds

dual to confining gauge theories. Indeed, a moment’s thought is enough to convince oneself

that the deconfined phase fluid dynamical stress tensor of the 2+1 dimensional confining
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gauge theory (dual to Scherk-Schwarz compactified N = 4 Yang Mills) is simply the

dimensional reduction of the stress tensor of d = 4, N = 4 Yang Mills (i.e., the stress tensor

presented in this paper, (2.8)) plus a constant additive piece. This seemingly trival additive

piece is physically very important; it leads to qualitatively new phenomena. For instance,

[52, 53] have plasmaballs and plasmarings; static finite lumps of fluid with a boundary. Such

configurations have qualitatively new classes of excitations; localized collective coordinates

associated with fluctuations of the boundary. These new collective coordinates will interact

with those studied in this paper. If it proves to be technically possible, it would be

fascinating to formulate and study the resulting dynamics.
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