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Abstract

Given a finite set X and a proper metric D : X × X → R≥0 defined
on X, we show that every block realization of D can be “embedded”
canonically into the tight span T (D) of D and characterize the subsets of
T (X) that can be obtained in that way as the “canonical image” of the
vertex set of a block realization.

Keywords and Phrases: metric, block realization, tight span, cut points,
cut vertices.

1 Introduction

Given a finite set X and a proper metric D : X × X → R≥0 : (x, y) 7→ xy
defined on X (i.e., a metric for which xy = 0 holds for some x, y ∈ X if and
only if one has x = y), recall that a block realization B of D as defined in
[5] is a weighted block graph (V,E, `), i.e., a triple consisting of two finite sets
V = VB and E = EB and a length-assignment map ` = `B : EB → R>0

such that
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(BR1) E ⊆
(
V
2

)
holds and the graph G = (V,E) is a connected block graph,

(BR2) V contains X and xy = d(x, y) holds, for all x, y ∈ X, for the (necessarily
unique and proper) largest symmetric map d = d` : V × V → R ∪ {+∞}
defined on V×V for which d(u, v) ≤ `(u, v) holds for every edge {u, v} ∈ E,
and

(BR3) every vertex v in V −X has degree at least 3 and is a cut vertex of G.

We will show here that block realizations of D are closely related to the
so-called tight span

T (D) = T (X, D) := {f ∈ RX : ∀x∈Xf(x) = sup
y∈X

(
xy − f(y)

)
}

of D, the metric space associated with D consisting of the union of all compact
faces of the (non-compact) convex polytope

P (D) = P (X, D) := {f ∈ RX : ∀x,y∈X xy ≤ f(x) + f(y)},

endowed with the `∞-metric ‖...‖∞, cf. [13], see also [1]–[12].

Furthermore, defining a triple B = (V,E, `) as above to be a weak block
realization of D if (BR1) and (BR2) hold, and every vertex v in V − X is
a cut vertex of G, but does not necessarily have degree at least 3, we will
show that this relationship with T (D) does not only extend immediately to
weak block realizations, but that these weak realizations present an even more
natural conceptual framework for dealing with it.
We’ll employ the following notational conventions, definitions, and facts:

(N1) Given any simple graph G = (V,E) with vertex set V and edge set E ⊆(
V
2

)
, and any vertex v ∈ V , we denote

(i) by G(v) the connected component of G containing v,

(ii) by π0(G) := {G(u) : u ∈ V } the partition of V into the set of
connected components of G,

(iii) by G − v the graph induced by G on the set V − v := V − {v} so
that (G − v)(u) denotes, for any vertex u ∈ V − v, the connected
component of G − v containing u, and v is a cut vertex of G if and
only if |π0(G− v)| > 1 holds,

(iv) and by [E] the edge set of the smallest block graph with vertex set V
containing the edge set E, i.e., the union of E and the collection of
all 2-subsets e of V for which some “circuit” e1, . . . , em ∈ E exists1

for which e ⊆
⋃m

i=1 ei holds.

1i.e., some family e1, . . . , em of pairwise distinct edges e1, . . . , em ∈ E with ei∩ej = ∅ ⇐⇒
1 < |i− j| < m− 1 for any two distinct indices i, j ∈ {1, . . . , m}.
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(N2) Given any proper finite metric space (V, d) with point set V and metric
d, and a subset E of

(
V
2

)
, note that the metric d coincides with the map

d`E,d
: V × V → R ∪ {+∞} induced on V × V by the length-assignment

map `E,d : E → R : {u, v} 7→ d(u, v) obtained by “restricting” d to E if
and only if E contains the set

E(d) := {{u, v} ∈
(

V

2

)
: ∀w∈V−{u,v} d(u, v) < d(u, w) + d(w, v)}.

Thus, denoting by B(V ) = B(V, d) := (V, [E(d)], `[E(d)],d) the weighted
block graph with vertex set V , edge set [E(d)], and weighting map `[E(d)],d,
the map d`[E(d)],d induced on V × V by B(V ) always coincides with the
input metric d, and any cut point v of (V, d) must therefore also be a cut
vertex of the associated block graph (V, [E(d)]).

(N3) Further, associating the so-called Kuratowski map

kx = kD
x : X → R : y 7→ D(x, y)

(cf. [14]) to a given point x ∈ X, defines an isometry K = KD : x 7→ kx

from the metric space (X, D) into T (D) that maps X bijectively onto the
subset K(X) = K(X, D) consisting of all f ∈ T (D) for which the support
supp(f):={x ∈ X : f(x) 6= 0} is distinct from X: Indeed, given any map
f ∈ T (D) and any x ∈ X, one has kx ∈ T (D) and f(x) = ‖f, kx‖∞ and,
therefore, ‖ky, kx‖∞ = ky(x) = yx for all x, y ∈ X.

We will henceforth identify each point x ∈ X with the corresponding
Kuratowski map kx ∈ T (D) and, thus, think of X as coinciding with the
image K(X) of the map K = KD in T (D), and of the map K = KD as
being the identity on X.

(N4) And finally, recall that a map f ∈ P (D) is either a Kuratowski map or a
cut point of T (D) — that is, f is contained in T (D) and the complement
T (D)−f of the one-point subset {f} of T (D) is disconnected — if and
only if the graph (X, Ef ) with edge set

Ef :=
{
{x, y} ∈

(
X

2

)
: f(x) + f(y) > D(x, y)

}
is disconnected – and it is a cut point of T (D) if and only if the induced
subgraph Γf := (supp(f), Ef ) is disconnected2. Henceforth, we’ll denote
the set of all cut points of T (D) by cut(D), and the union of cut(D) and
K(X) by Cut(D).

Here are our main results
2More specifically (cf. [4]), associating to each connected component A ∈ π0(Γf ) of the

graph Γf the open subset Of (A) := {g ∈ T (D) : f(x) < g(x) for all x ∈ supp(f) − A} of
T (D)−f defines a canonical bijection Of : π0(Γf ) → π0

`
T (D)−f) : A 7→ Of (A) from the set

π0(Γf ) onto the set π0

`
T (D)−f

´
of connected components of the space T (D)−f .
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Theorem 1 (i) Given a weak block realization B = (GB = (VB, EB), `B) of
D, the associated map

ΦB : VB → RX : v 7→
(
fv : X → R: x 7→ dB(x, v)

)
maps VB isometrically onto a finite subset of Cut(D) of T (D), and any point
x ∈ X ⊆ VB onto itself, considered as an element of T (D).
Furthermore, given any v ∈ VB, the map ΦB induces a well-defined surjective
“inverse” mapping π

(v)
0 from π0(Γfv ) onto π0(G − v) that maps any connected

component Γfv (x)
(
x ∈ supp(fv)

)
of Γfv onto the connected component (G −

v)(x) of G− v containing x.

(ii) Conversely, given a finite subset V of Cut(D) that contains X, the
weighted block graph B(V ) = B(V, ‖...‖∞) associated with V considered as a
metric space relative to the `∞-metric ‖...‖∞ restricted to V , is a weak block
realization of D for which the associated map ΦB(V ) coincides with the identity
map IdV on V .

2 Two Lemmata on Block Realizations

In this section, we present two simple observations concerning weak block real-
izations.

Lemma 2.1 Given a weak block realization B = (G = (V,E), `) of a proper
metric D defined on a finite set X, then X ∩C 6= ∅ holds for every vertex v ∈ V
and every connected component C ∈ π0(G− v).

Proof: If X ∩ C were empty, every vertex in C would be a cut vertex of G.
Choose any vertex w ∈ C for which the distance d(w, v) of w to v is maximal.
Since w ∈ C ⊆ V − X must be a cut vertex of G, there exists some vertex
w′ ∈ V in (G − w)(v). But then, d(v, w′) = d(v, w) + d(w,w′) > d(v, w) and,
therefore, also w′ ∈ C — contradicting together our choice of w.

Lemma 2.2 With X, D, and B as in Lemma 2.1, there exist, for any two
vertices u, v in V , some x, y ∈ X such that xy = d(x, y) = d(x, u) + d(u, v) +
d(v, y) holds.

Proof: It suffices to show that there exists some x ∈ X such that d(x, v) =
d(x, u)+d(u, v) holds. Clearly, we may assume that u 6∈ X holds, implying that
u must be a cut vertex of G. Thus, there must exist a connected component C of
G−u with v 6∈ C. So, choosing any x ∈ C∩X, we have d(x, v) = d(x, u)+d(u, v)
as claimed.
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3 Proof of the Main Result

(i) Assume that B = (V,E, `) is weak block realization of D, and consider the
associated metric d = dB induced by ` and E on V and map

Φ = ΦB : V → RX : v 7→
(
fv : X → R: x 7→ d(x, v)

)
.

Clearly, Φ maps every vertex x ∈ X onto the corresponding Kuratowski map,
i.e., we have fx = x ∈ Cut(D) for all x ∈ X ⊆ V . To show that f := fv ∈
Cut(D) also holds in case v ∈ V −X, note first that

f(x) + f(y) = d(x, v) + d(y, v) ≥ d(x, y) = xy

holds for all x, y ∈ X, i.e., we surely have f ∈ P (D). Furthermore, we have

f(x) + f(y) = d(x, v) + d(y, v) = d(x, y) = xy

for all x, y ∈ X for which the connected components (G − v)(x), (G − v)(y)
in π0(G − v) containing x and y, respectively, are distinct. So, the edge set
Ef of the graph Γf cannot contain any edge connecting two vertices x, y with
(G−v)(x) 6= (G−v)(y) implying that Φ induces indeed a well-defined “inverse”
mapping π

(v)
0 from π0(Γf ) onto π0(G− v) that maps any connected component

of Γf of the form Γf (x) for some x ∈ supp(f) onto the connected component
(G− v)(x) of G− v containing x.

Moreover, as every connected component of Γf is of this form for some x in
supp(f) in view of Lemma 2.1, this map must be surjective implying in partic-
ular that #π0(T (D)− f) = #π0(Γf ) ≥ #π0(G− v) must hold for every v ∈ V
for f = fv and that, therefore, f must be a cut point of T (D) for every v ∈ V−X.

Next, note that Φ is non-expansive, i.e.,

‖fu, fv‖∞ ≤ d(u, v)

holds for all u, v ∈ V . Indeed, we have

|fu(x)− fv(x)| = |d(u, x)− d(v, x)| ≤ d(u, v)

for all x ∈ X in view of the triangle inequality applied to d.

Thus, Φ must actually be an isometry as, given any two vertices u, v ∈ V , we
may choose points x, y ∈ X according to Lemma 2.2 so that

xy = d(x, y) = d(x, u) + d(u, v) + d(v, y)

holds. So, the fact that Φ is non-expansive combined with the triangle inequality
implies

xy = d(x, y) = d(x, u) + d(u, v) + d(v, y)
≥ ‖kx, fu‖∞ + ‖fu, fv‖∞ + ‖fv, ky‖∞
≥ ‖kx, ky‖∞ = xy
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which in turn implies that d(u, v) = ‖fu, fv‖∞ must hold for any two vertices
u, v ∈ V .

Together, this implies the first part of Theorem 1.

(ii) To establish the second part, it suffices to note that, given a finite subset
V of Cut(D) that contains X,

• the triple B := B(V, ‖...‖∞) associated with the finite metric space (V, ‖...‖∞)
according to (N2) is, by construction, a connected weighted block graph
whose vertex set contains X,

• the induced metric dB coincides with the input metric ‖...‖∞ implying
that also xy = dB(x, y) must hold for all x, y ∈ X,

• the map ΦB therefore coincides with the identity map IdV on V ,

• and any point v ∈ V − X must, therefore, be a cut vertex of the graph
GV := (V, [E(d)]).

So, B = B(V, ‖...‖∞) must be a weak block realization of D as claimed.

Remark 3.1 In [10], we will characterize all weak block realizations B = (V,E, `)
of D for which VB is, as above, a finite subset V of Cut(D) that contains X and
ΦB coincides with the identity map IdV on V . And we will also characterize
the “proper” block realizations B = (V,E, `) among them.
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