
ar
X

iv
:0

71
2.

27
14

v2
  [

he
p-

th
] 

 2
1 

Ja
n 

20
08

Supergravitons from one loop perturbative

N = 4 SYM

Romuald A. Janika ∗ and Maciej Trzetrzelewskia,b †

a Institute of Physics,
Jagiellonian University,

Reymonta 4, 30-059 Kraków,
Poland

b Department of Mathematics,
Royal Institute of Technology,

KTH 407.76, 100-44 Stockholm,
Sweden.

January 21, 2008

Abstract

We determine the partition function of 1
16

BPS operators in N = 4
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1 Introduction

The AdS/CFT correspondence states an exact equivalence between N = 4
SYM gauge theory and type IIB superstrings in an AdS5 × S5 background
[1]. It provides a fascinating new approach for studying nonperturbative
properties of gauge theory. On the other hand, one can use the gauge the-
ory knowledge to gain insight into the behaviour of (super-)gravity at the
quantum level (see e.g. [2, 3, 4]). In general this is a formidable problem
but progress can be made when studying configurations which preserve some
fraction of supersymmetry. A dictionary between 1

2
BPS operators in gauge

theory and dual geometries has been established in [5]. 1

4
- and 1

8
BPS states

have been discussed from various points of view [6]. Of particular interest
are the 1

16
BPS states [7] due to the existence 1

16
BPS black holes [8]. At

low energies, the gauge theory 1

16
BPS states should correspond to a gas of

1

16
BPS supergravitons, while at high energies these states should account for

the entropy of 1

16
BPS black holes.

In [7] 1

16
BPS states were counted on the gauge theory side at zero coupling.

It was found that the resulting partition function overcounts both the 1

16
BPS

supergraviton partition function (giving a different energy scaling of entropy)
and the 1

16
BPS black hole entropy in the relevant parameter regimes. In

that paper it was suggested that once gauge theory interactions are turned
on, many states which were counted as 1

16
BPS at zero coupling would get

anomalous dimensions, and that the overcounting could be cured.
The aim of this paper is to perform the enumeration of 1

16
BPS operators

in perturbative N = 4 SYM to one-loop order. We do the counting in
the planar limit using the oscillator construction of the one-loop dilatation
operator of [9]. We find exact agreement with the 1

16
BPS supergraviton

partition function.
The plan of the paper is as follows. In section 2 we review the definition

of 1

16
BPS states and fix notation. Then, in section 3, we review the counting

of these states in the free theory, and in section 4 we describe what has to
be done to perform the calculation at one loop. In section 5 we review the
supergravity result for the 1

16
BPS supergraviton partition function. In section

6 we describe in some details the construction of the one loop dilatation
operator and, in the following section, we determine the partition function
of 1

16
BPS operators and perform some checks. In section 8 we compare the

result with the supergravity prediction and finaly, in section 9, we discuss the
possible extension to large but finite N . We close the paper with a summary.
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2 1
16BPS states

In this paper we consider 1

16
BPS states which by definition are annihilated

by the following two supercharges:

Q ≡ Q− 1

2
,1, S ≡ S− 1

2
,1, (1)

where Q† = S and Q− 1

2
,1, S− 1

2
,1 are as in [7]. We would like to calculate the

partition function over these states. To do so it is convinient to introduce
the anticommutator

∆ ≡ 2{S, Q}. (2)

The states annihilated by S and Q are exactly those annihilated by ∆. More-
over these states are in a 1 to 1 correspondence with the cohomology classes
w.r.t. Q.

In general, states in N = 4 SYM can be labeled by the eigenvalue of
the dilatation operator H , two Lorentz spins J1 and J2, and three SU(4)R

charges R1, R2 and R3 (we use the notation of [7]). The anticommutator ∆
can be evaluated in terms of these quantum numbers. We have

∆ = 2{S, Q} = H − 2J1 −
3

2
R1 − R2 −

1

2
R3. (3)

Hence we have to calculate the partition function

Z 1

16
BPS = tr∆=0 x2Hz2J1y2J2vR2wR3 , (4)

where we picked just one possible choice of generating parameters. R1 is of
course fixed by the condition ∆ = 0. The above partition function includes
all single and multitrace operators. It counts all operators annihilated by Q
and S. We thus do not restrict ourselves to operators which are 1

16
BPS but

not 1

8
BPS or higher.

3 Gauge theory at zero coupling

In order to evaluate the partition function in gauge theory it is convenient to
use the oscillator representation, introduced in [9], for all single trace opera-
tors. In this picture, a single trace operator tr O1O2O3 . . . OL is represented
by L sites each occupied by the ‘elementary’ field Oi. Operators Oi are in
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turn represented by states in a Fock space generated by 4 bosonic (a†
1, a

†
2 and

b†1, b
†
2) creation operators, and 4 fermionic ones (c†1, c

†
2, c

†
3, c

†
4). The Fock space

is narrowed by the central charge constraint which relates the total number
of oscillators of various kinds on each site:

na − nb + nc = 2. (5)

For an explicit dictionary between operators and Fock space states see [9].
The Lorentz spins J1, J2 and the SU(4) charges are simply represented

by the total number of various oscillators1:

R1 = nc2 − nc1 ,

R2 = nc3 − nc2 ,

R3 = nc4 − nc3 ,
3
∑

i=1

qi =
1

2
(nc1 + nc2 + nc3 + nc4) − 2nc1,

J1 =
1

2
(na2

− na1
),

J2 =
1

2
(nb2 − nb1). (6)

In the free theory, the free dilatation operator H0 also has a similar repre-
sentation

H0 = na1
+ na2

+
1

2
(nc1 + nc2 + nc3 + nc4). (7)

Consequently, in the free SYM theory, the condition ∆ = 0 can be evaluated
to give

∆λ=0 = 2na1
+ 2nc1 = 0. (8)

Therefore, 1

16
BPS states are exactly the operators which do not have any

a†
1 or c†1 operators in the oscillator representation. Since all the spins and

charges are expressed in terms of the total number of oscillators of various
kinds, it is convenient to keep track of the number of oscillators of each type

1The sum
∑

3

i=1
qi is defined as 3

2
R1 + R2 + 1

2
R3.
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when counting 1

16
BPS operators. We thus consider partition functions of the

form

Z(a2, b1, b2, c2, c3, c4) =
∑

∆=0

a
na2

2 b
nb1

1 b
nb2

2 c
nc2

2 c
nc3

3 c
nc4

4 . (9)

A simple counting over the Fock space states, taking into consideration the
central charge constraint (5), gives for the ‘letter’ partition function (partition
function of operators at each site):

zB =
a2

2 + c2c3 + c2c4 + c3c4

(1 − b1a2)(1 − b2a2)
, (10)

zF =
a2(c2 + c3 + c4) + (b1 + b2 − a2b1b2)c2c3c4

(1 − b1a2)(1 − b2a2)
, (11)

where we made a separation into bosonic and fermionic states.
The partition function of single trace operators then follows from

Zs.t. = −
∞
∑

n=1

φ(n)

n
log
(

1 − zB(xn) − (−1)n+1zF (xn)
)

, (12)

where x stands for generic arguments (e.g. x = (a2, b1, b2, c2, c3, c4) in our
case). Finally, the partition function of multitrace operators (at Nc = ∞) is
given by

Z = exp

(

∞
∑

n=1

1

n

{

ZB
s.t.(x

n) + (−1)n+1ZF
s.t.(x

n)
}

)

. (13)

The above formulas do not take into account finite N effects which appear,
e.g. when certain long traces are equivalent to linear combinations of shorter
multitrace operators (due to the Cayley-Hamilton theorem for finite matri-
ces). For the specific case of free SYM, the method of character expansions
of [10, 11] allows to perform an exact calculation at finite N starting directly
from the letter partition function (10). The resulting fixed N partition func-
tion is given by the formula

Z =

∫

DU exp

{

∞
∑

n=1

(

zB(xn) + (−1)n+1zF (xn)
) tr Un tr U−n

n

}

, (14)
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where the integral is over the unitary group U(N). For the case at hand this
has been analyzed in [7] for large N . For small values of parameters x the
large N limit of (14) does not depend on N (reproducing effectively (13)),
while at a finite value of x (strictly less than 1) the 1

16
BPS partition function

exhibits a behavior log Z ∼ N2.

4 Gauge theory at one loop

At one loop, H = H0 + λδH and the anomalous part is now a nontrivial
operator which acts on each two neighboring sites. The complete one loop
dilatation operator was constructed in [9]. We discuss it in details in section
6 . The condition ∆1−loop = 0 now takes the form

∆1−loop = ∆λ=0 + λδH = 0. (15)

Since at one loop the eigenvalues of δH are rational/radical expressions, for
generic transcendental λ this condition picks out states which satisfy both

the free and one loop conditions separately, i.e. states with na1
= nc1 = 0

which do not get any anomalous dimensions δH at one loop. We thus have
to compute

Z =
∑

na1
=nc1

=0

δH=0

a
na2

2 b
nb1

1 b
nb2

2 c
nc2

2 c
nc3

3 c
nc4

4 . (16)

Note that now the formula (12) no longer holds and we have to identify the
number of operators which do not get anomalous dimensions at one loop for
each L independently.

We first determine the sum over single trace operators for fixed L by
computing the above power series with some truncation on the number of
oscillators. This turns out to give enough information to guess the analyt-
ical form of the generating function. Next, we test the function on various
configurations which were not used in the process of obtaining the analytical
form. The details of this procedure are discussed in section 7.

Summing over L gives the partition function of all single trace operators.
Then (13) may be used to get the partition function of multitrace ones. Let
us note that at one loop we do not have a counterpart of the exact formula
for finite N valid for zero coupling (14). We will, nevertheless, discuss some
aspects of the possible large N behavior at the end of the paper.
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5 Supergraviton partition function

At strong coupling one can calculate the partition function over 1

16
BPS states

using the supergravity/superstring side of the AdS/CFT correspondence.
This has been considered in [7]. We now briefly review these results.

Since the psu(2, 2|4) supersymmetry algebra of the gauge theory is also
the symmetry group of superstrings in AdS5×S5, we have direct counterparts
of Q and S operators and we can use them to define the 1

16
BPS states.

In the low energy regime the partition function should be given by su-
pergravity fields which are annihilated by the Q and S operators. This has
been done in [7] where the single particle partition function

Zsingle
gravitons =

∑

∆=0

x2Hz2J1y2J2vR2wR3, (17)

was calculated with the result

Zsingle
gravitons =

bosons + fermions

denominator
, (18)

denominator = (1 −
x2

w
)(1 − x2v)(1 − x2 w

v
)(1 − x2 z

y
)(1 − x2zy), (19)

bosons = vx2 +
x2

w
+

wx2

v
−

x4

v
−

vx4

w
− wx4 + 2x6 +

x6z

yv

+
vx6z

wy
+

wx6z

y
−

x8z

y
+

x6zy

v
+

vx6zy

w
+ wx6zy

−x8zy + x4z2 + x10z2, (20)

fermions =
x3

y
+ x3y +

x3z

v
+

vx3z

w
+ wx3z − 2x5z + vx7z

+
x7z

w
+

wx7z

v
+

x7z2

y
+ x7z2y. (21)

The full partition function is obtained by summation over the Fock spaces of
these particles using the formula

Zgravitons = exp

(

∞
∑

n=1

1

n

{

Zsingle,bos
gravitons (xn, . . . , wn) + (−1)n+1Zsingle,fer

gravitons (xn, . . . , wn)
}

)

.

(22)
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We note that the above formula is identical in form to the one obtained when
passing from single- to multi-trace operators in gauge theory (13).

It turns out that Zgravitons does not agree with the result from free SYM
theory [7]. In the case when z = y = v = w = 1 even the scaling of the
entropy with energy is different.

Moreover, [7] obtained the partition function for 1

8
BPS states by taking

the limit z → 0. The result again was in disagreement with free SYM, but
matched exactly the calculation made using properties of the chiral ring of
(interacting) SYM.

In section 8 we compare this supergraviton partition function with per-

turbative computations at one loop in SYM.
When energies are large (compared with N) it is expected that the par-

tition function for 1

16
BPS states will have a

log Z ∼ N2, (23)

behavior which should coincide with the one obtained from the 1

16
BPS black

holes (see [7], section 5.3 for explicit formulas). In [7], a similar qualitative
behavior was obtained at zero coupling, although the numerical details did
not match. The motivation for this paper was to investigate how much of
this zero coupling result survives at one loop.

6 The one loop dilatation operator

In this section we review the construction of the one loop dilatation operator
δH in the oscillator picture [9].

The Fock space

Let us consider the space of operators which are traces of L adjoint fields.
We represent each of those fields as a state on one of L sites. Since the trace
is cyclic invariant we restrict ourselves to cyclic invariant states of the Fock
space at the end of the calculation.

A generic state in Fock space is thus a linear combination of states

| s1〉 ⊗ . . .⊗ | sL〉, (24)

where on each site i the state | si〉 is obtained by acting with bosonic
a†

1,i, a
†
2,i, b

†
1,i, b

†
2,i and fermionic c†1,i, c

†
2,i, c

†
3,i, c

†
4,i creation operators on the Fock

8



vacuum | 0〉i. An arbitrary state is labeled by the oscillator occupation num-
bers

| si〉 = | na1,i
, na2,i

, nb1,i
, nb2,i

, nc1,i
, nc2,i

, nc3,i
, nc4,i

〉

= a
† na1,i

1,i a
† na2,i

2,i b
† nb1,i

1,i b
† nb2,i

2,i c
† nc1,i

1,i c
† nc2,i

2,i c
† nc3,i

3,i c
† nc4,i

4,i | 0〉i. (25)

As discussed in section 3, the occupation numbers at each site are constrained
by (5)

na2,i
+ na2,i

− nb1,i
− nb2,i

+ nc1,i
+ nc2,i

+ nc3,i
+ nc4,i

= 2. (26)

The one loop dilatation operator does not change the total number of oscil-
lators of each kind and only moves them from site to site. Therefore it acts
within the space with fixed total number of oscillators of any type for fixed
L. It follows that we can diagonalize δH in subspaces labeled by

[na1
, na2

, nb1 , nb2 , nc1, nc2, nc3 , nc4; L]. (27)

The harmonic action

Let us now review the construction of δH [9], giving more details about the
computer code implementation.

The action of the one-loop dilatation operator introduces an interaction
between only the neighboring sites (the last and the first site are assumed to
be neighbors). For this reason it is enough to consider a pair of such sites

| v〉 =| na1
, na2

, nb1 , nb2 , nc1, nc2, nc3, nc4〉⊗ | ma1
, ma2

, mb1, mb2 , mc1 , mc2, mc3, mc4〉,
(28)

where we dropped the index i ( and i + 1 ) for clarity. Our object is now
to calculate the hamiltonian matrix element between (28) and an arbitrary
other state

| v′〉 =| n′
a1

, n′
a2

, n′
b1

, n′
b2

, n′
c1

, n′
c2

, n′
c3

, n′
c4
〉⊗ | m′

a1
, m′

a2
, m′

b1
, m′

b2
, m′

c1
, m′

c2
, m′

c3
, m′

c4
〉.

(29)
If one is interested in calculating the element 〈v′ | H | v〉 then it turns out
that the harmonic action [9] can be described by the following set of rules

• consider all the possibilities of oscillator hopping from site i → i + 1
and from site i + 1 → i such that the state (28) becomes (29)

9



• to each such possibility associate a number

cn,n12,n21
= (−1)1+n12n21

Γ(1

2
n12 + 1

2
n21)Γ(1 + 1

2
n − 1

2
n12 −

1

2
n21)

Γ(1 + 1

2
n)

, (30)

where n12, n21 are the numbers of oscillators hopping from i → i + 1,
i + 1 → i respectively, n is the total number of quanta at sites i and
i + 1 in the beginning

• include the −1 factors when the fermion oscillators are hopping ”over”
other fermions. In particular, if a fermion is hopping form i = 1 to
i = L or vice versa then all fermions in between (for 1 < i < L) have
to be considered.

• sum over all the possibilities and multiply the result by ‖|v′〉‖
‖|v〉‖

The harmonic action can be implemented in two independent ways. One
is to use the above rules as they are and compute the element 〈v′ | H | v〉
indirectly by evaluating

H | v〉 =
∑

v′

Hv,v′ | v′〉. (31)

Second is to write down the formula for the matrix element 〈v′ | H | v〉 and
compute it explicitly. It turns out to be possible, we have

〈v′ | H | v〉 =

√

∏

t∈T

n′
t!

nt!

∑

t′∈T

mt′
∑

kt′=0

(−1)F cx,y,z

∏

t′′∈T

(

nt′′

nt′′ − n′
t′′ + kt′′

)(

mt′′

kt′′

)

,

T = {a1, a2, b1, b2, c1, c2, c3, c4},

x =
∑

t∈T

nt + mt, y =
∑

t∈T

ǫt|nt − n′
t|+ kt, z =

∑

t∈T

ηt|nt − n′
t|+ kt, (32)

where (−1)F is the fermion number discussed in one of the rules and where
the parameters ǫt, ηt are defined in the following way. ǫt is equal 1 if nt ≥ n′

t

and 0 otherwise, ηt = 1 − ǫt.
The above formula can be justified in the following way. Let us consider

na1
bosons a†

1. We want them to hop form i → i + 1 so that only n′
a1

of
them are left ( clearly we assume that na1

≥ n′
a1

). Since they commute and
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are indistinguishable the number of possibilities coincides with the number of
combinations

(

na1

na1
−n′

a1

)

. Other possibilities are when the number of such hops

is na1
− n′

a1
+ ka1

with ka1
> 0. Then, we have to hop back (from i + 1 → i)

exactly ka1
oscillators a†

1. This can be done in
(

ma1

ka1

)

ways. Therefore, the

net factor for given ka1
is
(

na1

na1
−n′

a1
+ka1

)(

ma1

ka1

)

. To include all the possibilities

we sum over all possible ka1
’s, i.e from 0 to ma1

.
For the other bosonic and fermionic operators a†

2, b†1, b†2, c†1, c†2, c†3, c†4
the analysis in analogous and gives the corresponding factors as in (6). To
include the −1 factors coming from hopping of fermions we weight the sum
(6) with the factor (−1)F .

We have implemented the above construction of the one loop dilatation
operator independently in two different programs and verified that the re-
sults agree. As a further check we reproduced various one loop anomalous
dimensions given in [9].

In order to complete the construction we project the Hilbert space (24) to
the subspace of states which are invariant under cyclic permutations, since
only these states correspond to gauge theory single trace operators.

We start with the hamiltonian matrix H represented in the non-cyclic
invariant basis B (24) constructed as above. Then, we construct a matrix
representation of an operator T which translates the chain by one site. The
cyclic invariant states correspond to eigenvectors v1, . . . , vn, n ≤ #B of
T with an eigenvalue equal 1. Now, we build the projection matrix P =
[v1, . . . , vn] and perform the similarity transformation

H → PHP T ,

on H . The result is the hamiltonian matrix represented in the cyclic invariant
basis.

7 The one loop 1
16

BPS partition function

According to the general discussion in previous sections, the tree level condi-
tion for the 1

16
BPS states contributing to the index is ∆λ=0 = 2na1

+2nc1 = 0
hence from now on we take na1,i

= nc1,i
= 0. Moreover, at one loop

level the condition ∆1−loop = 0 is satisfied only for states which are eigen-
states corresponding to 0 eigenvalue of the one loop dilatation operator. Let
Dna2

,nb1
,nb2

,nc2
,nc3

,nc4
,L be the number of such states in the sector with na2

, nb1 ,

11



nb2 , nc2, nc3, nc4 number of quanta and L sites respectively. The generating
function we are looking for is

Z
1/16th
L (a2, b1, b2, c2, c3, c4) =

∑

na2
,nb1

,nb2
=0,...,∞

nc2
,nc3

,nc4
=0,...,L

Dna2
,nb1

,nb2
,nc2

,nc3
,nc4

,La
na2

2 b
nb1

1 b
nb2

2 c
nc2

2 c
nc3

3 c
nc4

4 ,

(the sum over fermionic variables runs from 0 to L due to the Pauli exclusion
principle). With use of computer code implementation of the rules discussed
in previous section, one can determine the numbers Dna2

,nb1
,nb2

,nc2
,nc3

,nc4
,L

exactly, but of course only for a finite number of configurations. It is by no
means obvious that such data can determine the whole function
Z

1/16th
L (a2, b1, b2, c2, c3, c4). Nevertheless, our analysis shows that the Tay-

lor expansion of the function Z
1/16th
L (a2, b1, b2, c2, c3, c4) coincides with the

expansion of certain rational function. The details of our computation are
below.

For L = 2 we analyzed the configuration with 0 ≤ na2
, nb1 , nb2 ≤ 10 and

0 ≤ nc2 , nc3 , nc4 ≤ 2. There are 11333 = 35937 such possibilities however
only 1494 of them satisfy the central charge constraint.

For L = 3 we took 0 ≤ na2
, nb1 , nb2 ≤ 5 and 0 ≤ nc2, nc3, nc4 ≤ 3.

There are 6343 = 13824 such possibilities among which only 849 satisfy the
central charge constraint.

For L = 4 we analyzed the configuration with 0 ≤ na2
, nb1 , nb2 ≤ 2 and

0 ≤ nc2, nc3, nc4 ≤ 4. There are 3353 = 3375 such possibilities and 279
which satisfy the central charge constraint.

Let us now explain how the partition function was reconstructed from the
above data and consider in detail the case of L = 2. The computer analysis
gives a polynomial

Z
1/16th,cut
L=2 (a2, b1, b2, c2, c3, c4) =

∑

na2
,nb1

,nb2
=0,...,10

nc2
,nc3

,nc4
=0,1,2

Dna2
,nb1

,nb2
,nc2

,nc3
,nc4

,2a
na2

2 b
nb1

1 b
nb2

2 c
nc2

2 c
nc3

3 c
nc4

4 ,

which consists of 1494 terms.
Our strategy to proceed is the following. If the full partition function

Z
1/16th
L=2 (a2, b1, b2, c2, c3, c4) is a rational function then, in particular, so is

Z
1/16th
L=2 (a2, 1, 1, 1, 1, 1). Therefore, the coefficients of Z

1/16th
L=2 (a2, 1, 1, 1, 1, 1)

should be ”easily” recognizable. Indeed, we have

Z
1/16th,cut
L=2 (a2, 1, 1, 1, 1, 1) = 13 + 40a2 + 72a2

2 + 104a3
2 + 136a4

2 + 168a5
2

+200a6
2 + 232a7

2 + 264a8
2 + 296a9

2 + 320a10
2 , (33)

12



which (except for the last term 320a10
2 ) is recognized as the Taylor expansion

of
13 + 14a2 + 5a2

2

(1 − a2)2
.

Next, we turn on the variable b1, i.e. we consider Z
1/16th,cut
L=2 (a2, b1, 1, 1, 1, 1)

and find the corresponding generating function. Then, we proceed analo-
gously with Z

1/16th,cut
L=2 (a2, b1, b2, 1, 1, 1) and find that

Z
1/16th
L=2 (a2, b1, b2, 1, 1, 1) =

6 + 8a2 + 3a2
2 + (3 + 3a2 + a2

2)(b1 + b2) + b1b2

(1 − b1a2)(1 − b2a2)
.

The full a2, b1, b2 dependence is now determined. In order to find the c2, c3,
c4 dependence we do the following. First, due to the Pauli exclusion principle
the fermionic variables cannot be in the denominator (1 − b1a2)(1 − b2a2).
Therefore they enter only in the numerator in the form ci

2c
j
3c

k
3, i, j, k ≤ L. Sec-

ond, the harmonic action is completely symmetric with respect to fermionic
oscillators. This implies that the numerator of Z

1/16th
L=2 (a2, b1, b2, c2, c3, c4) is a

completely symmetric function with respect to c2, c3 and c4.
2. We therefore

write Z
1/16th
L=2 (a2, b1, b2, c2, c3, c4) as

1

(1 − b1a2)(1 − b2a2)

2
∑

n=0

2
∑

m=0

2
∑

l1,l2,l3=0

D̃n,m,l1,l2,l3AnBmσl1,l2,l3(c2, c3, c4), (34)

where
A0 = 1, A1 = a2, A2 = a2

2,

B0 = 1, B1 = b1 + b2, B2 = b1b2,

D̃n,m,l1,l2,l3 are some coefficients to be determined and σl1,l2,l3(c2, c3, c4) are
Schur polynomials 3 defined as

σn1,n2,n3
(x1, x2, x3) =

∣

∣

∣

∣

∣

∣

xn1+2

1 xn1+2

2 xn1+2

3

xn2+1

1 xn2+1

2 xn2+1

3

xn3

1 xn3

2 xn3

3

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

∣

∣

x2
1 x2

2 x2
3

x1 x2 x3

1 1 1

∣

∣

∣

∣

∣

∣

. (35)

2By the same argument the full partition function has to be symmetric in bosonic
variables b1, b2 hence only the combinations b1 + b2, b1b2 appear in the numerator. It is
not obvious why there are no other, higher order, combinations e.g. b3

1 + b3
2. Clearly, this

must be a property of the harmonic action.
3Other bases of symmetric functions, e.g. (c2 + c3 + c4)

i(c2c3 + c3c4 + c4c1)
j(c2c3c4)

k

are possible. However, our choice of Schur polynomials turns out to give simple expression
(36).
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The coefficients can be obtained by comparing the Taylor expansion of (34)

with Z
1/16th,cut
L=2 (a2, b1, b2, c2, c3, c4).

The analysis for L = 3, 4 ( with the sum over l1, l2, l3 in (34) from 0 to L
) is analogous. In this manner we obtain a fairly simple rational generating
functions for L = 2, 3, 4.

Given those three functions, it was possible to guess the partition function
for arbitrary L. The final result turns out to have a particularly simple
expression in terms of Schur polynomials namely

Z
1/16th
L (a2, b1, b2, c2, c3, c4) =

P

(1 − a2b1)(1 − a2b2)
, (36)

P = σL,L,0 + a2σL,L−1,0 + a2
2σL−1,L−1,0

+(b1 + b2)
(

σL,L,1 + a2σL,L−1,1 + a2
2σL−1,L−1,1

)

+b1b2

(

σL,L,2 + a2σL,L−1,2 + a2
2σL−1,L−1,2

)

,

where σn1,n2,n3
= σn1,n2,n3

(c2, c3, c4) is the Schur polynomial (35).
In order to test the above result further, we performed the analysis for

for L = 5 with 0 ≤ na2
, nb1 , nb2 ≤ 2 and 0 ≤ nc2, nc3 , nc4 ≤ 5. There

are 3363 = 5832 such configurations and 414 which satisfy the central charge
constraint. The corresponding generating function indeed confirms (36).

In the remaining part of this section we perform other checks of (36).

The partition function for 1
8BPS states

The 1

8
BPS states are obtained by imposing the additional condition J1 = 0

on the 1

16
BPS states [7]. This is equivalent to setting the corresponding

constraint on the numbers of quanta, namely

na2
= 0. (37)

The central charge condition in this case

2L + nb1 + nb2 = nc2 + nc3 + nc4, (38)

ensures that for given L there is only a finite number of such configurations.
It follows that the corresponding generating function is a polynomial in the
variables b1, b2, c2, c3, c4. Since nc2 , nc3, nc4 ≤ L the numbers nb1 , nb2 are
also bounded, i.e. nb1 , nb2 ≤ L.

14



These simplifications allow us to perform explicit computations of the
generating function for these states for higher L (we did it for L = 6 and
L = 7) and check these results with the general partition function obtained
in the previous section. Indeed, we find that the resulting functions coincide
with (36) after setting a2 = 0, i.e. they are

Z
1/8th
L (b1, b2, c2, c3, c4) = Z

1/16th
L (0, b1, b2, c2, c3, c4)

= σL,L,0(c2, c3, c4) + (b1 + b2)σL,L,1(c2, c3, c4) + b1b2σL,L,2(c2, c3, c4).

Checks for operators with many derivatives

One puzzling feature of the generating function (36) is that the denominators
contain only two factors: (1− a2b1)(1− a2b2). This suggests that the deriva-
tives in 1

16
BPS states are essentially commutative (we will discuss this point

further in section 9) which has a crucial impact on the singularity structure of
the 1

16
BPS partition function. The test of 1

8
BPS states checks the numerator

and does not involve any derivative terms. In order to check for derivatives
we looked at the following configurations for L = 5 and nc3 = nc4 = 5 : i) 7
and 10 a2b1 derivatives, i.e. [0,7,7,0,0,5,5,5], [0,10,10,0,0,5,5,5]; ii) 6 deriva-
tives of both types, i.e. [0,6,6,0,0,5,5,5], [0,6,5,1,0,5,5,5], . . . [0,6,3,3,0,5,5,5],
iii) states with derivatives and an additional c2 oscillator, i.e. [0,5,5,0,1,4,5,5],
[0,5,4,1,1,4,5,5]. In all cases, despite the large number of derivatives we found
only a single 1

16
BPS state in those sectors, which is consistent with (36).

Letter partition function

Finally, let us note that, although we guessed the partition function for 1

16
BPS

states starting from L = 2 and proceeding to L > 2, substituting L = 1 in
(36), we recover the letter partition function (10) which correspond to 1

16
BPS

operators in a U(N) gauge theory. This is another consistency check of our
analytical formula (36).

8 Comparision with supergravity

The one loop 1

16
BPS partition function can be calculated from the length L

partition functions obtained in the previous section in two steps. First, the

15



single trace partition function is obtained through

Zs.t. =
∞
∑

L=1

Z
1/16th
L , (39)

where we sum from L = 1 since we are considering the partition function in
a U(N) gauge theory4. Then, the full 1

16
BPS partition function is obtained

by passing to multitrace operators through

Z = exp

(

∞
∑

n=1

1

n

{

ZB
s.t.(x

n, . . .) + (−1)n+1ZF
s.t.(x

n, . . .)
}

)

. (40)

In this step we are using the fact that only the planar one loop dilatation
operator is considered. So we are in the strict N → ∞ limit.

The first sum (39) can be carried out analytically, and the result is

Zs.t. =
bosons + fermions

denominator
, (41)

where

denominator = (1 − a2b1)(1 − a2b2)(1 − c2c3)(1 − c2c4)(1 − c3c4),

bosons = a2
2 + c2c3 + (c2 + c3)(1 + (a2(b1 + b2) − 1)c2c3)c4

+c2c3(a2b1 + a2b2 − 1 + (1 + b1b2 + a2
2b1b2 − a2(b1 + b2))c2c3)c

2
4,

fermions = (b1 + b2)c2c3c4 + a2
2(b1 + b2)c2c3c4

+a2(c3 + c4 + b1b2c
2
2c3c4(c3 + c4) + c2(c3c4 − 1)(b1b2c3c4 − 1)).

Let us now compare this result with the single particle supergraviton 1

16
BPS

partition function (18). In order to make the comparison possible we express
the variables x, v, w, z in terms of a2, c2, c3, c4 and b1, b2 in terms of y.
Using the definitions (6) and (7) we find that b1 = 1/y, b2 = y and we obtain
the dictionary

x = c
1

3

2 c
1

3

3 c
1

3

4 , (42)

v = c
− 2

3

2 c
1

3

3 c
1

3

4 , (43)

w = c
− 1

3

2 c
− 1

3

3 c
2

3

4 , (44)

z = a2c
− 2

3

2 c
− 2

3

3 c
− 2

3

4 . (45)

4This will turn out to be crucial for comparison with the supergraviton partition func-
tions.
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Remarkably enough, with these substitutions the supergraviton 1

16
BPS parti-

tion function (18) coincides exactly with the one loop single trace 1

16
BPS par-

tition function (41). Thus, the full 1

16
BPS partition functions coincide also,

since the summation over multitrace operators is mathematically equivalent
to summation over the supergraviton Fock spaces (c.f. (22) and (40)).

As a byproduct we note that the resulting 1

8
BPS partition function ob-

tained from the one loop perturbative dilatation operator exactly coincides
with the gauge theory result obtained from the chiral ring reasoning as in
[7].

9 Discussion of large N asymptotics

Ultimately we are interested in the behavior of the partition function of
1

16
BPS states which scales like log Z ∝ N2 and which therefore can account

for the entropy of 1

16
BPS charged black holes in AdS5×S5. In [7] a calculation

in the free theory showed that, for values of the chemical potentials below a
certain value, the partition function has a N → ∞ limit, while above that
value one obtains log Z ∝ N2 scaling. This analysis follows from formula
(14) which is exact for any N .

At one loop, we do not have a similar exact formula since the 1

16
BPS states

are very specific and form just a tiny fraction of all operators made from the
‘letters’ (10). It is thus interesting to understand whether staying within the
N = ∞ phase one can see the transition to the ‘black hole’ phase. Firstly, at
finite N , the number of states is diminished due to trace identities following
from the Cayley-Hamilton theorem. Thus, there is a chance of observing
log Z ∝ N2 at a certain value of the parameters only when the corresponding
N = ∞ partition function has a singularity there or is divergent.

Quite remarkably, our single trace partition function is finite for all ar-
guments less than 1. This is in stark contrast with the free 1

16
BPS partition

function which blows up much earlier (see section 5 in [7]). Let us note that
there, this conclusion was reached from the exact formula (14). However
one can see this behavior studying directly the single trace partition function
(12). We checked that calculating (12) as a power series even for the simplest
case of two noncommutative letters, and studying its radius of convergence
recovers exactly the leading singularity (strictly below 1) which coincides
with the transition point obtained from (14). This experiment gives us confi-
dence that the knowledge of N = ∞ partition function can be a reliable guide
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to the singularity structure and hence to the position of the phase transition.
In order to obtain some rough idea about the structure of the one loop

1

16
BPS states we tried to see whether one can introduce some ‘effective let-

ters’ which would then reproduce the one loop single trace partition function
(41). We define effective letter functions zeff.

B (x) and zeff.
F (x) for bosons and

fermions respectively using the formula

Zs.t. = −
∞
∑

n=1

φ(n)

n
log
(

1 − zeff.
B (xn) − (−1)n+1zeff.

F (xn)
)

. (46)

where on the left hand side we put the generating function of single trace
1

16
BPS operators obtained in the present paper. Here, the most natural

choice of chemical potentials is a2 = x3, c2 = c3 = c4 = x and b1 = b2 = 1
(see [7, 12]). Expanding the l.h.s and r.h.s of (46) it is possible to solve
nonlinear equations for the coefficients of the Taylor expansion of zeff.

B (x)
and zeff.

F (x). We have found unique solutions up to the 28th order of x. All
the coefficients are integers however they become very large and negative
which indicates that any ‘noncommutative’ letters drastically overcount the
1

16
BPS states.
The above experiment suggests that the building blocks of 1

16
BPS states

are predominantly commutative similarly to the building blocks of 1

8
BPS

states as discussed in section 6.1 of [7]. This is further supported by the
structure of the denominator in (41) which essentially means that only the
total number of blocks like a2b1 etc. matters – and not their ordering.

Using the above guiding principle of commutativity we tried to apply the
‘plethystic’ formalism of [13]. In this formalism, the partition function at
finite N can be reconstructed from the N = ∞ one in the following manner.
Suppose that the single trace bosonic and fermionic partition functions at
N = ∞ are given by

ZB
s.t. =

∞
∑

n=0

anx
n, ZF

s.t. =
∞
∑

n=0

bnxn, (47)

then the finite N partition function ZN(x) is obtained from the infinite prod-
uct expansion:

∏∞
n=1

(1 + gxn)bn

∏∞
n=1

(1 − gxn)an
=
∑

N

ZN(x)gN , (48)

which in fact exactly reproduces the finite N structure of 1

8
BPS states ob-

tained from chiral ring arguments taking as input only the N = ∞ result.
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However we do not see any chance of a log Z ∝ N2 behavior when we apply
this formalism to our partition function.

It has been suggested in the literature [14] that the dual states contribut-
ing mainly to the black hole entropy would be of a determinant type. For
fixed N , states which are determinants of some matrices can be expressed as
combinations of multitrace operators. So at least formally, these states are
within the space of states that we consider (which consists of all multitrace
operators).

Our conclusion is that in order to see the log Z ∝ N2 scaling, one has
to use the whole nonplanar one loop dilatation operator the properties of
which probably have a huge impact on the counting of 1

16
BPS states with

very many traces.

10 Summary

In this paper we determined the partition function of 1

16
BPS operators in

planar perturbative N = 4 SYM at one loop. We used the oscillator repre-
sentation of gauge theory operators and of the planar dilatation operator. In
order to obtain the partition function we determined the number of 1

16
BPS

operators for a certain set of restrictions on the number of oscillators and
for operators of lengths less than 5. Then, we reconstructed a generating
function (assuming that it is a rational function) which reproduced all these
results. Subsequently we made numerous further checks by evaluating the
dilatation operator for higher length and larger number of (some) oscillators
and checking the result with the proposed generating function.

The main result that we found is an exact agreement with the parti-
tion function of 1

16
BPS supergravitons in AdS5 × S5. Consequently we also

reproduce exactly, using the one loop perturbative dilatation operator, the
counting of 1

8
BPS states which was previously done on the gauge theory side

using chiral ring reasonings [7].
Using the identification of single particle supergraviton states in terms of

short representations of psu(2, 2|4) (see [7]) and the equality with the gauge
theory partition function extracted in the present work we may identify all
1

16
BPS states as descendents of trZL operators. Thus these states will also

persist to be 1

16
BPS at higher loop orders. In the process of extracting the

partition function from the 1-loop hamiltonian data we did not use in any
way any information about the representation theory of psu(2, 2|4). The
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fact that we recover all states in these multiplets is a further check of this
procedure.

However it is perhaps a bit surprising, in view of the applications to black
hole entropy, that we do not observe any other new primary states (or their
descendants). As a word of caution we note that these might in principle
appear for higher lengths and oscillator occupancy numbers than we could
check. However, given the various checks and consistency with 1

8
BPS and

extrapolation to L = 1 letters we do not think that this is very probable.
The huge reduction of the number of 1

16
BPS states with respect to the free

theory reinstated agreement with supergraviton partition function. However,
the transition to a phase with black hole like scaling which was seen at zero
coupling seems to disappear. The form of our partition function suggests
that the constituents generating the 1

16
BPS states behave much more like

commutative objects than ‘noncommutative letters’. We speculate that in
order to see the black hole phase explicitly from gauge theory, one has to use
the complete nonplanar dilatation operator.

Acknowledgments. RJ thanks Juan Maldacena for pointing out this prob-
lem and Niels Obers, Javier Mas and Adam Rej for interesting discussions.
This work has been supported in part by Polish Ministry of Science and Infor-
mation Technologies grant 1P03B04029 (2005-2008), RTN network ENRAGE
MRTN-CT-2004-005616, the Marie Curie ToK COCOS (contract MTKD-
CT-2004-517186) (RJ) and by the Marie Curie Research Training Network
ENIGMA (contract MRNT-CT-2004-5652) (MT). We would like to thank
the Isaac Newton Institute for hospitality when this work was being finished.

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories
and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor.
Phys. 38 (1999) 1113], [hep-th/9711200];
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory cor-
relators from non-critical string theory,” Phys. Lett. B 428 (1998) 105,
[hep-th/9802109];
E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math.
Phys. 2 (1998) 253, [hep-th/9802150].

20

http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150


[2] D. Berenstein, “Large N BPS states and emergent quantum gravity,”
JHEP 0601 (2006) 125 [arXiv:hep-th/0507203].

[3] G. Mandal, “Fermions from half-BPS supergravity,” JHEP 0508, 052
(2005) [arXiv:hep-th/0502104].

[4] L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V. S. Rychkov,
“Minisuperspace quantization of ’bubbling AdS’ and free fermion
droplets,” JHEP 0508, 025 (2005) [arXiv:hep-th/0505079].

[5] H. Lin, O. Lunin and J. M. Maldacena, “Bubbling AdS space and 1/2
BPS geometries,” JHEP 0410, 025 (2004) [arXiv:hep-th/0409174].

[6] T. W. Brown, P. J. Heslop and S. Ramgoolam, “Diagonal multi-matrix
correlators and BPS operators in N=4 SYM,” arXiv:0711.0176 [hep-th];
F. A. Dolan, “Counting BPS operators in N=4 SYM,” Nucl. Phys. B
790, 432 (2008) [arXiv:0704.1038 [hep-th]];
M. Bianchi, F. A. Dolan, P. J. Heslop and H. Osborn, “N = 4 super-
conformal characters and partition functions,” Nucl. Phys. B 767, 163
(2007) [arXiv:hep-th/0609179].

[7] J. Kinney, J. M. Maldacena, S. Minwalla and S. Raju, “An index for 4
dimensional super conformal theories,” Commun. Math. Phys. 275, 209
(2007) [arXiv:hep-th/0510251].

[8] J. B. Gutowski and H. S. Reall, “Supersymmetric AdS(5) black holes,”
JHEP 0402, 006 (2004) [arXiv:hep-th/0401042];
J. B. Gutowski and H. S. Reall, “General supersymmetric AdS(5) black
holes,” JHEP 0404, 048 (2004) [arXiv:hep-th/0401129];
Z. W. Chong, M. Cvetic, H. Lu and C. N. Pope, “General non-extremal
rotating black holes in minimal five-dimensional gauged supergravity,”
Phys. Rev. Lett. 95, 161301 (2005) [arXiv:hep-th/0506029];
H. K. Kunduri, J. Lucietti and H. S. Reall, “Supersymmet-
ric multi-charge AdS(5) black holes,” JHEP 0604 (2006) 036
[arXiv:hep-th/0601156].

[9] N. Beisert, “The complete one-loop dilatation operator of N = 4 super
Yang-Mills theory,” Nucl. Phys. B 676, 3 (2004) [arXiv:hep-th/0307015].

[10] B. Sundborg, “The Hagedorn transition, deconfinement and N = 4 SYM
theory,” Nucl. Phys. B 573, 349 (2000) [arXiv:hep-th/9908001].

21

http://arxiv.org/abs/hep-th/0507203
http://arxiv.org/abs/hep-th/0502104
http://arxiv.org/abs/hep-th/0505079
http://arxiv.org/abs/hep-th/0409174
http://arxiv.org/abs/0711.0176
http://arxiv.org/abs/0704.1038
http://arxiv.org/abs/hep-th/0609179
http://arxiv.org/abs/hep-th/0510251
http://arxiv.org/abs/hep-th/0401042
http://arxiv.org/abs/hep-th/0401129
http://arxiv.org/abs/hep-th/0506029
http://arxiv.org/abs/hep-th/0601156
http://arxiv.org/abs/hep-th/0307015
http://arxiv.org/abs/hep-th/9908001


[11] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van
Raamsdonk, “The deconfinement and Hagedorn phase transitions in
weakly coupled large N gauge theories,” Comptes Rendus Physique 5,
945 (2004).

[12] P. J. Silva, “Thermodynamics at the BPS bound for black holes in AdS,”
JHEP 0610, 022 (2006) [arXiv:hep-th/0607056];
P. J. Silva, “Phase transitions and statistical mechanics for BPS black
holes in AdS/CFT,” JHEP 0703, 015 (2007) [arXiv:hep-th/0610163].

[13] S. Benvenuti, B. Feng, A. Hanany and Y. H. He, “Counting BPS
operators in gauge theories: Quivers, syzygies and plethystics,”
arXiv:hep-th/0608050;
B. Feng, A. Hanany and Y. H. He, “Counting gauge invariants: The
plethystic program,” JHEP 0703, 090 (2007) [arXiv:hep-th/0701063].

[14] M. Berkooz, D. Reichmann and J. Simon, “A Fermi surface model for
large supersymmetric AdS(5) black holes,” JHEP 0701, 048 (2007)
[arXiv:hep-th/0604023].

22

http://arxiv.org/abs/hep-th/0607056
http://arxiv.org/abs/hep-th/0610163
http://arxiv.org/abs/hep-th/0608050
http://arxiv.org/abs/hep-th/0701063
http://arxiv.org/abs/hep-th/0604023

	Introduction
	116BPS states
	Gauge theory at zero coupling
	Gauge theory at one loop
	Supergraviton partition function
	The one loop dilatation operator
	The one loop 116BPS partition function
	Comparision with supergravity
	Discussion of large N asymptotics
	Summary

