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Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature
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We examine the mesonic thermal spectrum of the Sakai-Sugimoto model of holographic QCD by
finding the quasinormal frequencies of the supergravity dual. If flavour is added using D8-D̄8 branes
there exist embeddings where the D-brane worldvolume contains a black hole. For these embeddings
(the high-temperature phase of the Sakai-Sugimoto model) we determine the quasinormal spectra
of scalar and vector mesons arising from the worldvolume DBI action of the D-brane. We stress
the importance of a coordinate change that makes the in-falling quasinormal modes regular at the
horizon allowing a simple numerical shooting technique. Finally we examine the effect of finite
spatial momentum on quasinormal spectra.

INTRODUCTION

Gravity dual descriptions [1, 2, 3] of strongly coupled
gauge theories with quarks have recently shed light on
the physics of mesons and chiral symmetry breaking [4].
There has also been considerable interest in studying the
finite temperature behaviour of these systems.

The simplest such dual is the near horizon geometry of
a D3-D7 brane system which describes an N = 2 gauge
theory. The D7 branes can be treated as probes [8] in the
limit where the number of flavours is much less than the
number of colours, Nf ≪ Nc, or the full back reacted ge-
ometry can be found [5, 6, 7]. The meson spectrum in the
probe limit has been computed in [9]. Finite temperature
manifests itself as the presence of a black hole in the dual
space-time [2]. In the infinite volume limit the black hole
geometry is energetically preferred for any temperature
greater than zero. The transition from an AdS space cor-
responds to the analogue of the deconfinement transition
in the pure glue gauge theory (which in a conformal the-
ory occurs as soon as the dimensionful parameter, T, is
introduced). A further first order phase transition has
also been found in this system [10, 11, 12, 13, 14] when
the temperature passes through the scale of the mass of
the mesonic bound states - this corresponds to when the
horizon of the black hole grows to swallow the D7 probe
in the interior of the space. This transition has an as-
sociated small jump in the chiral condensate’s value but
the main physics of the transition appears to be the me-
son fields melting into the thermal background. Once
the D7 brane enters the horizon there are no longer nor-
malizable fuctuations of the D7 brane that generate a
discrete set of meson bound states. Instead there are
quasi-normal modes of the black hole corresponding to
fluctuations of the D7 brane that are pure in-falling at
the horizon. These fluctuations correspond in the dual
gauge theory to excitations of the plasma with a complex
mass parameter - the excitations have both a mass and a

decay time. The spectrum of these quasi-normal modes
has been explicitly computed in [20].

Another interesting model is the Sakai-Sugimoto model
[15, 16] which is based on a (wrapped) D4 D8 D̄8 system.
It is a gravity dual of a non-supersymmetric gauge theory
(which is four dimensional in the IR but five dimensional
in the UV) that dynamically breaks a non-abelian chi-
ral symmetry of its quark fields. The high temperature
phase again corresponds to a transition to a black hole
geometry. The transition occurs when the black hole’s ra-
dius becomes of order the wrapped circumference of the
D4 brane which is also the parameter that determines
the mass gap of the theory. This behaviour is more akin
to what one would expect in QCD than that of the con-
formal theory discussed above.

Massless chiral quarks can be introduced by placing the
probe D8 and D̄8 branes at anti-podal points on the cir-
cle the D4 brane is wrapped on. In the near horizon
limit of the D4 branes these D8 branes choose to join
at the scale of the mass gap breaking the chiral symme-
tries on their world volumes to the diagonal sub-group
and generating a mass gap for the mesonic fluctuations
of the D8s. When the geometry makes the transition at
finite temperature to the black hole background the D8
and D̄8 disconnect and instead lie straight and fall into
the horizon [19]. Chiral symmetry breaking is therefore
restored along with deconfinement.

There is a larger class of embeddings in which the D8
and D̄8 join at a larger radius in the space so there is a
bigger mass gap for the quarks. In [17] we have argued
that these embeddings describe a quark mass in the the-
ory although it has been also argued in the literature
[18] that the chiral symmetry breaking scale is being en-
hanced in these cases by higher dimension operators. The
distinction is not important for what we discuss here - in
these cases there is a further first order transition as the
temperature (horizon) grows through the mass scale of
the mesons. The transition is very much like that of the
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D3-D7 system in that the mesonic fluctuations of the D8
branes are replaced by quasinormal modes of the black
hole. The mesons of the theory have melted into the
plasma.

The mesonic fluctuations of the D8 branes above the
phase transition have been studied in [21]. Here we will
concentrate on the very high temperature phase where
the D8 branes lie straight and fall into the black hole hori-
zon. We will explicitly compute the quasinormal mode
spectrum corresponding to the scalar and vector mesons
of the theory.

As a prelude to this we compute the quasinormal spec-
trum of a Klein-Gordon scalar living on the D8 brane
worldvolume. We apply the idea of regularizing the co-
ordinates for ingoing modes, which has previously been
used in asymptotically-flat spacetimes (see for example
[22]) and in the context of AdS-CFT in [23]. The result
of this is that the ingoing mode is described by a regular
Taylor series at the black hole horizon. We use this as
the initial condition and obtain the quasinormal spectra
by shooting out from the horizon. We wish to stress that
this is a much cleaner numerical process than trying to
match on to oscillating solutions at the horizon. We use
the same method to examine the spectra of modes arising
from the DBI action of an embedded D8 brane. We treat
a scalar fluctuation of the brane in the geometry and a
Lorentz vector arising from the Maxwell field on the D-
brane. Finally we briefly discuss the effect of nonzero
momentum on the spectra and extract the diffusion coef-
ficient from the lowest quasinormal modes of longitudinal
vector excitations in the small k ‘hydrodynamic’ limit.

THE GEOMETRY

The metric of the high temperature Sakai-Sugimoto
model is

ds2 =
(

u
R

)
3

2

(

−f(u)dt2 + dx2
3 + dτ2

)
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(

R
u

)
3

2
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Here f(u) = 1 −
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)3
and the dilaton is e−φ =
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The parameter uT , representing the position of the hori-
zon in the geometry, gives the temperature in the dual

field theory by the relation T = 3
4π

u
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. This is the Hawk-

ing temperature of the black hole.

Let us work in the dimensionless radial coordinate x ≡
u

uT
and measure the Minkowski and τ dimensions in units
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√
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momenta in units ∝ T .
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We will consider the spectrum of modes associated to a
D8 brane. The D8 branes fill the space except for the
τ direction in which they live at a single value of τ =
τ0 - this is the energetically preferred high temperature
configuration [19]. The induced metric on the D8 brane
worldvolume is just (2) with dτ = 0.

REGULAR HORIZON COORDINATES FOR

QUASINORMAL MODES

As a warm up we shall first consider linear fluctuations
of a Klein-Gordon scalar restricted to the worldvolume
of the D8 brane. This is not a physical mesonic state of
the field theory but it exhibits similar quasinormal modes
in the supergravity dual and we use it to illustrate our
calculational technique. The 9D action describing the
fluctuation is

SSF =
1

2

∫

d9x
√−ggab∇aΦ∇bΦ (3)

Here the geometry is given by the induced metric on the
D8 brane.

The equation of motion for the fluctuation is

1√−g
∂a

(√−ggab∂bΦ
)

= 0 (4)

Writing our the equation for a scalar fluctuation with spa-
tial momentum k with respect to the plasma rest frame
and zero S4 spin as Φ ∝ e−iωt+ik·x3 one obtains the equa-
tion

(

x
19

4 f(x)Φ′
)′

+ x
7

4

(

ω2

f(x)
− k2

)

Φ = 0 (5)

Here the prime indicates an x derivative. The large-x

asymptotic of the equation is
(

x
19

4 Φ′
)′

= 0 with solution

Φ ∼ c1 + c2 x− 15

4 . For a normalizable solution we clearly
want the decaying power.

Taking the near horizon limit (x → 1) one finds Φ ∼ (x−
1)±i ω

3 . Since the whole solution is exp(−iωt±iω
3 ln(x−1))

the solutions are ingoing (−) and outcoming (+) waves
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FIG. 1: The lowest five k = 0 Klein-Gordon scalar quasinormal frequencies in the complex ω plane.

which oscillate infinitely many times before reaching the
horizon.

In these coordinates it will be hard to find the full solu-
tion numerically - one needs to shoot out from, or on to,
a highly oscillatory solution near the horizon. A better
way to proceed is to change coordinates to make the in-
falling solution regular at the horizon so numerical meth-
ods can be more easily used. In particular we will shift
coordinates so

t = h − α(x) (6)

To make the infalling solution regular we require

α(x) =
1

3
ln(x − 1) + ... (7)

where the additional terms are regular at the horizon.
One way of satisfying this is to define

∂α

∂x
=

1

x3 − 1
(8)

We then have

dh = dt +
1

x3f(x)
dx (9)

leaving the metric in the new coordinates as

ds2 = −x
3

2 f(x)dh2 + 2x− 3

2 dh dx + x− 3

2 dx2

+x
3

2

(

dx2
3 + dτ2

)

+
√

xdΩ2
4

(10)

The induced metric is the above with dτ = 0. Note that
the near horizon solution of (5) only depended on the
powers of f in the function not the powers of x (which
becomes one in the near horizon limit). These powers
of f will turn out to be the same for all of the modes
we consider below and so this change of coordinates will
suffice to make all infalling modes we look at regular.

We can now recompute the scalar equation of motion and
we find

(

x
19

4 fΦ′
)′

− iω

(

2x
7

4 Φ′ +
7

4
x

3

4 Φ

)

+
(

ω2 − k2
)

x
7

4 Φ = 0

(11)
We note that this is an equation with five singular points
in the complex x-plane. The general solution of such
equations is not given in terms of well-known functions,
nor can one immediately apply the continued fraction
method as used in [24]. Accordingly we use a purely
numerical approach.

There are two criteria for a good solution. Firstly the so-
lution should be a purely ingoing wave at the black hole
horizon since classically a black hole can absorb but not
emit particles. Secondly the solution must be normaliz-
able when integrated over the D-brane worldvolume.

The large-x asymptotic of the equation is the same as
we found in the usual ‘Schwarzschild’ coordinates and so
we choose the decaying power which is normalizable as
x → ∞.

At the horizon we will seek a solution in the form of a
Frobenius series Φ = Σ∞

n=0anzn+s in z ≡ x − 1. Now
substituting this into the differential equation yields the
indicial equation

s

(

s − 2

3
iω

)

= 0 (12)

The solution with s = 0 is regular at the horizon and
corresponds to a purely infalling solution.

Using the regular Taylor series for the infalling solution
as the initial condition we shoot out from the horizon.
By requiring our solution to vanish as x → ∞ we can
find the quasinormal frequencies. They are displayed in
Fig.1.
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FIG. 2: The lowest five k = 0 sigma meson quasinormal frequencies in the complex ω plane.

QUASINORMAL MODES FROM FLAVOUR

BRANES

We will now consider the physical quasinormal modes of
D8 branes, coming from the DBI action.

The presence of the brane corresponds to the inclusion
of a chiral quark field in the gauge theory. Anomaly
cancellation requires quarks to occur in vector like pairs
so there must naturally be a partner D̄8. The quasi-
normal mode spectrum we compute below will therefore
be parity doubled in the gauge theory.

We will again use the coordinates (10) to make infalling
solutions regular at the horizon.

Scalar mesons

We first analyze the scalar mode corresponding to a ge-
ometric fluctuation of the D8 embedding. The DBI La-
grangian for this is

L = e−φ

√

−Det

(

gMN

∂xM

∂ξa

∂xN

∂ξb

)

(13)

We will parameterize the fluctuation as τ = τ0 +
φ(x)e−iωh+ik·x3 representing a mesonic excitation with
spatial momentum k relative to the plasma rest frame
with zero S4 spin. The Lagrangian is (a dot indicates an
h-derivative and a prime an x-derivative)

L = x
5

2

√

1 + x3f(x)φ′2 + 2φ̇φ′ − φ̇2 (14)

Expanding the square root to quadratic order the equa-
tion of motion is

(

x
11

2 fφ′
)′

− iω

(

2x
5

2 φ′ +
5

2
x

3

2 φ

)

+
(

ω2 − k2
)

x
5

2 φ = 0

(15)

Using the regular Taylor series as initial condition we
shoot out from the horizon and requiring our solution to
vanish as x → ∞ we can find the quasinormal frequen-
cies. They are shown in Fig.2.

Vector mesons - transverse

We obtain the quasinormal spectrum for a Maxwell field
on the D8 brane worldvolume, which is dual to the quasi-
normal spectrum of vector mesons. We use the ansatz
Aµ = ξµA(x)eik·x4 which is a Lorentz vector with zero
S4 spin. The equation of motion is

∂a

(

e−φ
√−gF ab

)

= 0 (16)

Fixing the gauge kµξµ = 0 one obtains the equation of
motion for a transversely-polarized Lorentz vector. With
this ansatz the only nontrivial equation is (for example
choosing k2 nonzero and the vector in the 1-direction) for
b = 1, ie ∂a(e−φ

√−gF a1) = 0, giving

(x
5

2 fA′)′−iω

(

2x− 1

2 A′ − 1

2
x− 3

2 A

)

+
(

ω2 − k2
)

x− 1

2 A = 0

(17)
Using the regular Taylor series as initial condition we
shoot out from the horizon and requiring our solution to
vanish as x → ∞ we can find the quasinormal frequen-
cies. They are displayed in Fig.3.

Vector mesons - longitudinal

In the zero-temperature case the transverse mesons ex-
haust the vector spectrum. For finite temperature how-
ever one can also identify a purely electric longitudinal
solution of the supergravity dual Maxwell field. The lon-
gitudinal electric field we deal with is E1 = kA0 + ωA1
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FIG. 3: The lowest five static vector meson quasinormal frequencies in the complex ω plane.

(k points along the 1-axis making the vector potential
curl-free).

There are three relevant equations of motion: first
∂a

(

e−φ
√−gF ax

)

= 0. Writing this out for our choice
of metric one obtains

iωA′
0 + ikg11gxxA′

1 = −g11gx0
(

k2A0 + ωkA1

)

(18)

The second equation is ∂a

(

e−φ
√−gF a0

)

= 0. Writing
this out for our choice of metric one obtains

0 = −
(

e−φ
√−gA′

0

)′ − ike−φ
√−gg11g0xA′

1

−e−φ
√−gg11g00

(

k2A0 + kωA1

) (19)

Finally from ∂a

(

e−φ
√−gF a1

)

= 0 one obtains

0 =
(

e−φ
√−ggxxg11A′

1

)′ − iωe−φ
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1

−
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e−φ
√−ggx0g11 (iωA1 + ikA0)

)′

−e−φ
√−gg00g11

(

ω2A1 + ωkA0

)

(20)
The trick is to form a second order ODE for the gauge
invariant combination E1 = kA0 + ωA1. We do this by
putting the differential equations into such form as the
coefficients of A′′

0 and A′′
1 in the second and third equa-

tions are unity then adding k times the second equation
to ω times the third equation. We patch up the first
derivative terms by adding zero in the form given by (18).

(

iωA′
0 + ikg11gxxA′

1 + g11gx0
(

k2A0 + ωkA1

))

≡ 0
(21)

We add this term with coefficient such that the first
derivative terms add up to a multiple of kA0 + ωA1.

The equation we finally obtain is

E′′
1 + f1E

′
1 + f2E1 = 0 (22)

Here one has
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(23)

and

f2 = −k2

x3 + iω
2x4f

+ ω2

x3f
+

k
x3

(

k
“

ik2

x3
+ω

“
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2xf
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”

− 2iω2

x3f

”

+ω
“

iωk

x3f
− 5k

2x

”

i(ω2−k2f)

)

(24)

After all this work, it is easy to check that this equation
has the same k → 0 limit as the transverse mode - the
quasinormal frequencies are degenerate in this limit. We
also note that by rescaling ω → λ2ω and k → λk and
taking λ → 0 one finds that a normalizable, regular so-
lution to the longitudinal equation exists for k = ω = 0,
which is just E1 = x− 3

2 . This additional mode is not
present in any of the other spectra, and is related to the
hydrodynamic behaviour of the field theory.

FINITE SPATIAL MOMENTUM

We can obtain an effective dispersion relation for our
modes ie a function ω(k). This is done by solving the
wave equations obtained in the previous sections for gen-
eral complex k. Similar computations in the D3/D7 sys-
tem can be found in [26].

Real momentum k corresponds to a state which is a trav-
elling plane wave on the Minkowski spacetime of the dual
field theory. Switching on a finite real k in the equation
and using shooting we have found the behaviour of the
quasinormal frequencies in the complex ω plane. It is
found that the states become more massive and more
stable as k is increased.

The results for the first three quasinormal modes for the
scalar q̄q bound state are plotted in Fig.4. In Fig.5 we
show the first three vector quasinormal modes for the
transverse and longitudinal modes. These are degenerate
for k = 0 but behave differently as k is increased - the
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The equation of the line is y = log 2

3
+ 2x showing the validity of the relation ω = −iDk2 for small k, with D = 2

3
.

main difference is that the longitudinal states become
more stable but less massive relative to the transverse
states for the same k as k is increased.

Finally we note that, as mentioned above, there is an
additional quasinormal mode for the longitudinal elec-
tric field component of the Maxwell field on the flavour
brane. For small k this lies close to the origin and on the
imaginary axis. As shown in for example [25] the diffu-
sion coefficient D for flavoured fundamental matter can
be computed from this state. For small spatial momen-
tum k it obeys the ‘hydrodynamic’ relation ω = −iDk2.
Here we test whether this relation can be obtained using
our ingoing coordinates. The calculation we do is then
the generalization of the calculation done for the vec-
tor meson, including a nonzero spatial momentum, and
examining the gauge-invariant longitudinal electric field
component. In Fig.5 we plot the position of this pole on

the imaginary axis as a function of k. We extract D = 2
3 .

We note our result for the diffusion coefficient is related
to the value obtained in [25] which is found to be D =

1
2πT

. We are measuring in units of
√

R3

uT
so we obtain the

numerical value

D =
1

2π

4π

3
≡ 2

3
(25)

Our result therefore matches that of [25] providing a
check on our numerics (albeit for small ω and k).

CONCLUSION

We have found the quasinormal frequencies for a variety
of different species (the Klein-Gordon scalar, scalar quark



bound states and vector mesons) in the Sakai-Sugimoto
model at high temperature. A crucial part of the analysis
was to change coordinates so that the infalling quasi-
normal modes become regular at the horizon so numerical
shooting becomes straightforward. It is noteworthy that
in these coordinates the equations for the Klein-Gordon
scalar, the scalar q̄q and the transverse vector q̄q all have
the form

(xnfφ′)
′ − iω

(

2xn−3φ′ + (n − 3)xn−4φ
)

+
(

ω2 − k2
)

xn−3φ = 0

(26)

For the Klein-Gordon scalar n = 19
4 , for the sigma n = 11

2
and for the vector n = 5

2 . This means the quasinormal
spectra look extremely similar. The only thing making
the frequencies different is the value of n. The effect of in-
creasing the value of n is to move the quasinormal modes
out from the origin in the complex frequency plane.

We also computed these states at finite real momenta
where the modes become more massive and more stable.
We have obtained the numerical value for the diffusion
coefficient for fundamental flavoured matter and our re-
sult is consistent with the calculation of [25].
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