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Abstract. We give an overview and extension of recent results on ergodic
random Schrödinger operators for models on Zd. The operators we consider
are defined on combinatorial or metric graphs, with random potentials, random
boundary conditions and random metrics taking values in a finite set. We show
that normalized finite volume eigenvalue counting functions converge to a limit
uniformly in the energy variable, at least locally. This limit, the integrated
density of states (IDS), can be expressed by a closed Shubin-Pastur type trace
formula. The set of points of increase of the IDS supports the spectrum and its
points of discontinuity are characterized by existence of compactly supported
eigenfunctions. This applies to several examples, including various periodic
operators and percolation models.

1. Introduction

This paper deals with spectral analysis of certain random type operators on
graphs with a Zd-structure. We consider both combinatorial graphs and quantum
graphs. Randomness enters not only via potentials but, more importantly, via
geometry. More precisely, we will consider certain random “perturbations” of our
graph in the combinatorial setting and random boundary conditions and random
lengths in the quantum graph setting. Our results are concerned with existence of
the integrated density of states for such models.

The integrated density of states (IDS) or spectral distribution function is a funda-
mental tool in the study of such random operators. It measures the number of states
(up to a given energy) per unit volume of the underlying system. Accordingly, it
can be obtained as a limit of normalized eigenvalue counting functions. Existence
of this limit in the sense of pointwise convergence or rather vague convergence of
measures is well established for ergodic Schrödinger operators in the continuum
(i.e. on L2(Rd)) and on the lattice (i.e. on `2(Zd)), see for instance the early pa-
pers [Pas80, Shu82, KM82] and the recent surveys [KM07, Ves07]. Some of these
approaches can be modified to give an analogous result for random Schrödinger on
metric graphs [HV07, § 6].

It turns out that existence of the limit can be shown in a much stronger sense
than in the pointwise one, viz in the sense of convergence in the supremum norm.
Thus, the limit exists uniformly in the energy. This is particularly remarkable as
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the limiting object, the IDS, can have many points of discontinuity in the setting
of geometric randomness described above. As such discontinuities are not possible
for random Schrödinger operators on Zd itself, they are an exclusive consequence
of geometric ingredients. In fact, it turns out that they are intimately related
to local features of the geometry viz to existence of compactly supported eigen-
functions. This phenomenon has attracted attention before. For periodic, abelian
graphs it was observed by Kuchment in [Kuc91, Kuc05] (see [DLM+03] for related
material as well). For discrete models it was then studied systematically in the
somewhat different context of aperiodic order in [KLS03], as well as for periodic
and percolation models on quasi-transitive graphs in [Ves05b]. These two types of
results were unified in the recent [LV]. Random operators on graphs based on Zd

allow for a particularly nice treatment of the question of uniform convergence, see
[LMV, GLV07].

This paper deals with the circle of topics just discussed for models with the
abovementioned Zd-structure. In particular, it surveys and extends the results
of [LMV, GLV07]. Examples include several variants of periodic operators and
percolation models. One essential tool in these works is a general ergodic type
result from [LMV]. This result is not about operators, but about Banach space
valued functions which are compatible with a so-called colouring. In order to apply
it, we need a certain finiteness assumption to hold for the number of local geometric
situations in our model. Limitations and extensions of this type of approach are
discussed in the final section.

More generally, the paper is organized as follows. In Section 2 we define colour-
ings of Zd and present the mentioned general ergodic theorem from [LMV], as well
as a random version. In Sections 3, 4 and 5 we apply these results to operators on
combinatorial graphs, metric graphs and metric graphs with random lengths, re-
spectively. This corresponds to three different types of behaviour for the underlying
(counting) functions and allows us to cover examples ranging from periodic opera-
tor to random order, including aperiodic order and percolation. Finally, Section 6
gives an outlook on the interplay between uniform convergence and discontinuities
of the integrated density of states.

The results in Section 3 are taken from [LMV]. The results in Section 4 are
taken from [GLV07]. The results in Section 5 are new.

2. Colourings and Ergodic Theorems

In this section, we introduce some basic set-up and discuss the abstract ergodic
theorem of [LMV] (see [Len02, LS06] for earlier results of the same type). The
theorem is phrased in terms of Banach-space valued functions on patterns. It will
turn out that eigenvalue counting functions of suitable (restrictions of) operators
provide exactly such Banach-space valued functions.

We are concerned with the graph Zd. Thus, the vertex set is given by Zd and
vertices of Euclidean distance 1 are adjacent. There are two groups acting naturally
on this graph. One is the group Γtrans = Zd acting by translations. The other
group is the group Γfull of all graph automorphisms. Note that Γfull is generated
by translations by vectors in Zd and a finite set of rotations. For our results it does
not matter which of the two groups we consider. Thus, we now choose Γ to be Γfull
or Γtrans. The action will be written multiplicatively.
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Let A be a finite set. The set of all finite subsets of Zd is denoted by F . A
map Λ : Zd −→ A is called an A-colouring of Zd. A map P : Q(P ) −→ A with
Q(P ) ∈ F is called an A-pattern. For M ∈ N we denote by CM the cube at the
origin with side length M − 1, i.e.

CM := {x ∈ Zd : 0 ≤ xj ≤M − 1, j = 1, . . . , d}.

The set of all CM , M ∈ N, is denoted by C, and a pattern with Q(P ) ∈ C is called a
cube pattern or a box pattern. The set of box patterns P withQ(P ) = CM is denoted
by PB

0 (M). For a pattern P and Q ∈ F with Q ⊂ Q(P ) we define the restriction
P ∩Q of P to Q in the obvious way by P ∩Q : Q −→ A, x 7→ P (x). For a pattern
P and γ ∈ Γ we define the shifted map γP by γP : γQ(P ) −→ A, γ(y) 7→ P (y).
On the set of all patterns we define an equivalence relation by P ∼ P ′ if and only if
there exists a γ ∈ Γ with γP = P ′. For a cube pattern P and an arbitrary pattern
P ′ we define the number of occurrences of the pattern P in P ′ by

]ΓPP
′ := ]

{
x ∈ Q(P ′) : P ′ ∩

(
x+Q(P )

)
∼ P}.

Given a set Q ⊂ Zd we denote by V ∂
Q ⊂ Q the inner vertex boundary of Q, i.e. the

set of those vertices contained in Q which have a neighbour in the complement
Zd \Q. A sequence (Ql)l∈N of finite subsets of Zd is called a van Hove sequence in

Zd if liml→∞
|V ∂

Ql
|

|Ql| = 0.

Definition 1. A map b : F −→ [0,∞) is called a boundary term if b(Q) = b(t+Q)
for all t ∈ Zd and Q ∈ F , limj→∞ |Qj |−1b(Qj) = 0 for any van Hove sequence (Qj),
and there exists D > 0 with b(Q) ≤ D|Q| for all Q ∈ F .

Definition 2. Let (X, ‖ · ‖) be a Banach space and F : F −→ X be given.
(a) The function F is said to be almost-additive if there exists a boundary term

b such that ∥∥∥∥∥F (∪m
k=1Qk)−

m∑
k=1

F (Qk)

∥∥∥∥∥ ≤
m∑

k=1

b(Qk)

for all m ∈ N and all pairwise disjoint sets Qk ∈ F , k = 1, . . . ,m.
(b) Let Λ : Zd −→ A be a colouring. The function F is said to be Γ-Λ-invariant

if
F (Q) = F (γQ)

whenever γ ∈ Γ and Q ∈ F obey γ(Λ ∩Q) = Λ ∩ (γQ). In this case there exists a
function F̃ on the cubes C with values in X such that

F (γQ) = F̃
(
γ−1

(
Λ ∩ (γQ)

))
for cubes Q ∈ C and γ ∈ Γ.

(c) The function F is said to be bounded if there exists a finite constant C > 0
such that

‖F (Q)‖ ≤ C|Q|
for all Q ∈ F .

Theorem 3. Let A be a finite set, Λ : Zd −→ A an A-colouring and (X, ‖ · ‖)
a Banach space. Let (Qj)j∈N be a van Hove sequence such that for every pattern
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P the frequency νP = limj→∞ |Qj |−1]ΓP (Λ ∩ Qj) exists. Let F : F −→ X be a
Γ-Λ-invariant, almost-additive bounded function. Then the limits

F := lim
j→∞

F (Qj)
|Qj |

= lim
M→∞

∑
P∈PB

0 (M)

νP
F̃ (P )
|CM |

exist in the topology of (X, ‖ · ‖) and are equal.

Remark 4. (a) The theorem is proven in [LMV] for Γ = Γtrans. The proof carries
over to give the result for Γ = Γfull as well.

(b) We have explicit bounds on speed of convergence in terms of speed of con-
vergence of the frequencies. For details we refer to [LMV].

The previous result does not require the context of an ergodic action. Instead
existence of the frequencies is sufficient. Of course, existence of frequencies follows
for ergodic actions. This is discussed next. Let (Ω,P) be a probability space such
that Γ acts ergodically on (Ω,P). A random A-colouring is a map

Λ : Ω −→
⊗
Zd

A with Λ(γ(ω))γ−1x = Λ(ω)x

for all γ ∈ Γ and x ∈ Zd.

Lemma 5. Let (Qj) be an arbitrary van Hove sequence. Then, for almost every
ω ∈ Ω the frequency νP = limj→∞ |Qj |−1]ΓP (Λ(ω) ∩ Qj) exists and is independent
of ω for every cube pattern P .

Proof. For a fixed pattern P the frequency exists for almost every ω by a standard
ergodic theorem. As there are only countably many P the statement follows. �

The random version of Theorem 3 then reads:

Theorem 6. Let A be a finite set, (Λω)ω∈Ω be a random A-colouring and (X, ‖·‖) a
Banach space. Let (Qj)j∈N be a van Hove sequence. Let Fω : F −→ X be a family
of Γ-Λω-invariant, almost-additive bounded functions which is homogeneous, i.e.
Fγ(ω)(γ(Q)) = Fω(Q) for all γ ∈ Γ, Q ∈ F . Then, for almost every ω ∈ Ω the
limits

Fω := lim
j→∞

Fω(Qj)
|Qj |

= lim
M→∞

∑
P∈PB

0 (M)

νP
F̃ (P )
|CM |

exist in the topology of (X, ‖ · ‖) and are equal. In particular, Fω is almost surely
independent of Ω.

Proof. Almost sure existence of the limit is a direct consequence of the previous
lemma and the first theorem of this section. In fact, this theorem gives the explicit
formula for the limit in terms of the function F̃ . This shows that the limit does not
depend on ω almost surely. �

Remark 7. The theorem is similar in appearance to the ”usual” ergodic theorems.
Let us therefore point out the differences: First of all, the result is valid for functions
taking values in a Banach space. This gives quite some additional freedom. In fact,
this freedom will allows us in the next sections to conclude uniform (in the energy)
convergence of the integrated density of states compared to the usual pointwise (in
the energy) results obtained from e.g. subadditve ergodic theorems.
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Moreover, the (proof of the) theorem gives an explicit description of elements
in the probability space for which the limit exists. These elements turn out to be
exactly the typical elements with respect to the randomness viz the elements having
frequencies.

Finally, let us mention that one can even obtain explicit error bounds on speed
of convergence in terms of speed of convergence of the frequencies (see [LMV].

3. Operators on Combinatorial Graphs

In this section we introduce finite (hopping) range equivariant operators for
graph-like structures over Zd. We then use the result of the previous section to
obtain existence of the integrated density of states. Finally, we have a closer look
at three instances of this situation.

We consider situations in which a fixed finite dimensional Hilbert space is at-
tached to each vertex in Zd. In order to model this we need some more notation.
Let H be a fixed Hilbert space with dimension dim(H) <∞ and norm ‖ · ‖. Then,

`2(Zd,H) := {u : Zd −→ H :
∑
x∈Zd

‖u(x)‖2 <∞}

is a Hilbert space. The support of u ∈ `2(Zd,H) is the set of x ∈ Zd with u(x) 6= 0.
For x ∈ Zd, we define the natural projection px : `2(Zd,H) −→ H, u 7→ px(u) :=

u(x). Let ix : H −→ `2(Zd,H) be the adjoint of px. Similarly, for a subset Q ⊂ Zd

we define `2(Q,H) to be the subspace of `2(Zd,H) consisting of elements supported
in Q. The projection of `2(Zd,H) on `2(Q,H) is denoted by pQ and its adjoint by
iQ.

The operators and functions we are interested in are specified in the next two
definitions.

Definition 8. Let A be a finite set, Λ : Zd −→ A a colouring and H : `2(Zd,H) −→
`2(Zd,H) a selfadjoint operator.

(a) The operator H is said to be of finite range if there exists a length Rfr > 0
such that pyHix = 0, whenever x, y ∈ Zd have distance bigger than Rfr .

(b) The operator H is said to be Λ-invariant if there exists a length Rinv ∈ N
such that pyHix = pγyHiγx for all x, y ∈ Zd and γ ∈ Γ obeying

γ
(
Λ ∩

(
CRinv (x) ∪ CRinv (y)

))
= Λ ∩

(
CRinv (γx) ∪ CRinv (γy)

)
.

For a given colouring Λ, a finite-range, Λ-invariant operatorH is fully determined
by specifying finitely many dim(H)× dim(H) matrices pyHix. In particular, such
operators H are bounded.

Definition 9. Let R be the Banach space of right-continuous, bounded func-
tions equipped with the supremum norm. For a selfadjoint operator A on a finite-
dimensional Hilbert space we define its cumulative eigenvalue counting function
n(A) ∈ R by setting

n(A)(λ) := ]{eigenvalues of A not exceeding λ}
for all λ ∈ R, where each eigenvalue is counted according to its multiplicity.

Theorem 10. Let Λ : Zd −→ A be a colouring and (Qj)j∈N a van Hove se-
quence along which the frequencies νP of all patterns P ∈ PB

0 (M) exist. Let
H : `2(Zd,H) −→ `2(Zd,H) be a selfadjoint, Λ-invariant finite-range operator.
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Then, there exists a unique probability measure µH on R with distribution function
NH such that 1

|Qj |n(pQj
HiQj

) converges to NH with respect to the supremum norm
as j →∞.

A proof for this theorem can be found in [LMV]). Here, we only sketch the
idea. We consider the Banach space R of all right continuous bounded real-valued
functions on the real line with the supremum norm. The operator A then gives rise
to a map from F to R viz Q 7→ n(AQ), where AQ denotes the restriction of A to
Q. By assumption on A this map satisfies the assumptions of Theorem 3. Hence,
the desired averages exist by that theorem.

Linear algebra and the uniform convergence just established can be used to derive
the following two corollaries.

Corollary 11. Assume the situation of the theorem and additionally positivity of
the frequency νP for any pattern P occurring in Λ. Then the spectrum of H is the
topological support of µH .

Remark 12. The assumption on positivity of frequencies is necessary in order to
obtain this result. Consider e.g. id on `2(Z) and perform a rank one perturbation
B = 〈δ0, ·〉δ0 at the origin. Then, the IDS of id and of id + B coincide, but their
spectra do not.

Corollary 13. Assume the situation of the previous corollary. Then the following
assertions for λ ∈ R are equivalent:

(i) λ is a point of discontinuity of NH ,
(ii) there exists a compactly supported eigenfunction of H corresponding to λ.

Remark 14. For random Schrödinger operators on Zd the statement of Theorem 10
can be obtained from continuity of the IDS. (More precisely, continuity of the IDS
combined with the well established weak convergence of the eigenvalue counting
measures gives uniform convergence of the IDS). Thus, the statement of Theorem
10 is particularly interesing for situations in which this continuity is not valid. This
non-continuity arises due to local geometric structures as discussed in the previous
corollary. Specific examples where discontinuites of the IDS exist are discussed in
Subsection 3.3.

3.1. Periodic Operators. The setting just described can easily be applied to
periodic operators over Zd. In fact, the additional Hilbert space H gives quite some
freedom to consider situations which are only similar to Zd. This is discussed next.

Let G be a graph with a countable set of vertices (which we again denote by G)
on which Zd acts isometrically, freely and cocompactly. Let us denote by D ⊂ G
a Zd-fundamental domain. Thus D contains exactly one element of each Zd-orbit
in G. By the cocompactness assumption, D is finite. This implies in particular
that the vertex degree of G is uniformly bounded. From now on the fundamental
domain D will be assumed fixed.

Remark 15. A simple example of such a graph is Zd with the natural action of
the group (NZ)d for N ∈ N fixed. Another example would be the Cayley graph
G = Cay(G, S) of a direct product group G = Zd ⊗ F , where F is any finite group
and S is a finite, symmetric set of generators for G. Here the action of Zd on G
is induced by the (obvious) action of Zd on itself. Note that even for trivial F we
obtain infinitely many different graphs, namely the Cayley graphs of Zd.
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We now turn to operators acting on `2(G) and `2(Zd,H). Let A : `2(G) → `2(G)
be a selfadjoint linear operator satisfying the following two conditions:

• A(x, y) = A(γx, γy) for all x, y ∈ G, γ ∈ Zd. (Covariance)
• There exists ρ > 0 with A(x, y) = 0 whenever the graph distance of x and
y exceeds ρ. (Finite range).

The setting developed so far looks different from the setting discussed in the
previous section. To make the connection we proceed as follows. Let A be a set
consisting of one element and let Λ be the trivial colouring. Set H := `2(D), then
dim(H) = |D|. We can now define a unitary operator U : `2(Zd,H) → `2(G) in
the following way: For a ψ ∈ `2(Zd,H) and γ ∈ Zd write ψ(γ) =

∑
i∈D ψi(γ)δi,

where (δi)i∈D is the standard orthonormal basis of `2(D). Then, the coefficients
ψi(γ) are uniquely determined. We set (Uψ)(x) := ψi(γ) where i ∈ D and γ ∈ Zd

are the unique elements such that x = γi. Then, H = U∗AU can easily be seen to
be a Λ-invariant operator of finite range. Moreover, the frequencies of all patterns
(occurring in Λ) are positive (and in fact equal to 1). Thus, all the results of the
previous section apply to H. They can then be used to infer the obvious analogues
for the operator A.

3.2. Set of Visible Points. The set of visible points in Zd is a prominent example
(and counterexample) in number theory and aperiodic order [BMP00, Ple]. In
particular its diffraction theory has been well studied. Still, it seems that the
corresponding nearest-neighbour hopping model had not received attention until
[LMV]. Here, we shortly discuss the result from there.

The set VP of visible points in Zd consists of the origin and all x 6= 0 in Zd with

{tx : 0 < t < 1} ∩ Zd = ∅.

Thus, x 6= 0 belongs to VP, if and only if the greatest common divisor of its
coordinates is 1. The obvious interpretation is that such an x can be seen by an
observer standing at the origin. This gives the name to this set. The characteristic
function

Λ := χVP : Zd −→ A := {0, 1}
of VP provides a colouring. While VP is very regular in many respects, it has
arbitrarily large holes. In particular, existence of the frequencies νP does not hold
along arbitrary van Hove sequences. However, as was shown in [Ple] (see [BMP00]
for special cases as well), the frequencies exist and can be calculated explicitly for
sequences of cubes centred at the origin. Moreover, the frequencies of all patterns
which occur are strictly positive.

Thus, all abstract results discussed above are valid for χVP -invariant operators of
finite range. One relevant such operator is the adjacency operator AVP . We finish
this section by defining this operator: Points x = (x1, . . . , xd) and y = (y1, . . . , yd)
in Zd are said to be neighbours, written as x ∼ y, whenever

d∑
j=1

|xj − yj | = 1.

Then, AVP : `2(Zd) −→ `2(Zd) is defined by

(AVPu)(x) := χVP(x)
∑

y∼x:y∈VP
u(y)



8 M. J. GRUBER, D. H. LENZ, AND I. VESELIĆ

for all x ∈ Zd and all u ∈ `2(Zd).

3.3. Percolation on Combinatorial Graphs. In this section we add some ran-
domness to our model. Thus we obtain random operators which are generated
by a percolation process on the underlying graph. Hamilton operators on perco-
lation subgraphs of combinatorial graphs have been considered in the literature
in theoretical physics [dGLM59, KE72, CCF+86], computational physics [KB02]
(and references therein), and mathematical physics [BK01, KN03, Ves05a, Ves05b,
KM06, MS07, AV08, AV].

Choose Γ = Zd. We start with the deterministic part. Fix a finite range self-
adjoint operator A : `2(Zd) → `2(Zd) which is invariant under the trivial colouring
where every element of Zd has the same colour. Thus, A is Zd periodic.

To define the random part, let (Ω,P) be a probability space and τγ : Ω → Ω, γ ∈
Γ, an ergodic family of measure preserving transformations. Furthermore, let A
be an arbitrary finite subset of R ∪ {+∞} and (ω, x) 7→ V (ω, x) ∈ A a random
field which is invariant under the transformations τγ , γ ∈ Γ. More precisely, for all
γ ∈ Γ, ω ∈ Ω and x ∈ Gd we require V (τγω, x) = V (ω, γx). Next we define random
subsets of Zd and `2(Zd) induced by the random field V . For each ω ∈ Ω define the
subset of vertices Gω := {x ∈ Zd : V (ω, x) < ∞}, the natural projection operator
pω : `2(Gd) → `2(Gω) and its adjoint iω : `2(Gω) → `2(Gd). This gives rise to the
random Hamiltonian

Hω := Aω + Vω, D(Hω) := `2(Gω).

Here, the hopping part is given by

Aω := pωA iω, D(Aω) := `2(Gω).

and Vω is defined by Vω := pωV (ω, ·) iω : `2(Gω) → `2(Gω). We extend this operator
to `2(Zd) by setting it equal to zero on the complement of Gω. The extension
will be denoted by Hω as well. For such operators the existence of the IDS as a
pointwise limit has been established in [Ves05a], and its continuity properties have
been analysed in [Ves05b]. Here, we discuss uniform existence of the integrated
density of states by fitting these operators into the framework presented above.
For each ω ∈ Ω we define a colouring by

Λω : Zd → A, Λω(x) := V (ω, x).

Then, the (Hω) are a Λω-invariant family of operators in the sense of Section 2.
Moreover, it is not hard to see that for any pattern P : Q(P ) → A, Q(P ) ∈ F , the
frequency νP of P in Λω exists almost surely along the van Hove sequence of boxes
Cj , j ∈ N. We can then find a set of full measure in Ω for which the frequencies
of all patterns exist and the frequencies of the occurring patterns are positive. For
such an ω we can then apply Theorem 10 and its two corollaries.

Let us close this section by pointing out two situations to which the results
presented here can be easily extended:
(1) The operator A can be allowed to be (NZ)d periodic. In fact, one can do a
similar analysis for models based on the graphs introduced in Section 3.1.
(2) Instead of site-percolation Hamiltonians one can consider Hamiltonians on
bond -percolation graphs. For the construction of the IDS for such operators, see
[KM06].
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Let us mention that the asymptotics of the IDS at spectral edges for various
percolation models has been analysed in [BK01, KN03, KM06, MS07, AV08, AV].

4. Operators on Metric Graphs

The typical (differential) operators of interest on metric graphs are unbounded,
such that their counting functions are right-continuous, but unbounded. Subtrac-
tion of the counting function of a reference operator yields bounded functions again:
spectral shift functions. Thus we can apply the results of Section 2 to the (bounded)
spectral shift functions, which in turn yields results for the counting functions.

4.1. General Results. We define a metric graph Gd over Zd in the following way.
Let ej , j = 1, . . . , d be the standard basis of the real d-dimensional space Rd.
Each edge e ∈ Ed is determined by ι(e) = x, τ(e) = x + ej for some x ∈ Vd =
Zd, j ∈ 1, . . . , d. We define the metric graph Gd by identifying each edge e of the
combinatorial graph with the interval e = [x, x+ej ], which in turn can be identified
canonically with the interval (0, 1). This procedure induces an orientation on our
graph. However, it turns out that all relevant quantities are independent of the
choice of orientation.

We will also need to consider finite subgraphs G of Gd . By a subgraph we mean
a subset of the edges of Gd together with all adjacent vertices. All functions we
consider live on the topological space Gd (as a subspace of Rd) or subgraphs of it.

The operators we are interested in will be defined on the Hilbert space

L2(Ed) :=
⊕
e∈Ed

L2(e)

and their domains of definition will be subspaces of

W 2,2(Ed) :=
⊕
e∈Ed

W 2,2(e),

where W 2,2(e) is the usual Sobolev space of L2(e) functions whose (weak) deriva-
tives up to order two are in L2(e) as well. The restriction of f ∈ W 2,2(Ed) to an
edge e is denoted by fe. For an edge e = [ι(e), τ(e)] = [x, x+ ej ] and g in W 2,2(e)
the boundary values of g

g(ι(e)) := lim
t↘0

g(x+ tej), g(τ(e)) := lim
t↗1

g(ι(e) + tej)

and the boundary values of g′

g′(ι(e)) := lim
ε↘0

g(x+ εej)− g(x)
ε

and g′(τ(e)) := lim
ε↘0

g(τ(e))− g(τ(e)− εej)
−ε

exist by standard Sobolev type theorems. For f ∈W 2,2(Ed) and each vertex x we
gather the boundary values of fe(x) over all edges e adjacent to x in a vector f(x).
Similarly, we gather the boundary values of f ′e(x) over all edges e adjacent to x in
a vector f ′(x).

Given the boundary values of functions, we can define boundary conditions fol-
lowing [KS99, Har00]. A single-vertex boundary condition at x ∈ V is a choice of
subspace Lx of C4d with dimension 2d such that

η((v, v′), (w,w′)) := 〈v′, w〉 − 〈v, w′〉
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vanishes for all (v, v′), (w,w′) ∈ Lx. An f ∈ W 2,2(Ed) is said to satisfy the single-
vertex boundary condition Lx at x if (f(x), f ′(x)) belongs to Lx. A field of single-
vertex boundary conditions L := {Lx : x ∈ Vd} will be called boundary condition.
Given such a field, we obtain a selfadjoint realization ∆L of the Laplacian ∆ on
L2(Ed) by choosing the domain

D(∆L) := {f ∈W 2,2(Ed) : ∀x : (f(x), f ′(x)) ∈ Lx}

and by letting ∆L act on fe as −f ′′e . This way all so-called graph-local boundary
conditions can be realised, i.e. those which relate boundary values at the same vertex
only. This includes Dirichlet boundary conditions with subspace LD consisting of
all those (v, v′) with v = 0, Neumann conditions with subspace LN consisting of all
those (v, v′) with v′ = 0, and Kirchhoff (also known as free) boundary conditions
LK consisting of all (v, v′) with v having all components equal and v′ having the
sum over its components equal to 0.

Note that a metric graph together with a field of boundary conditions is some-
times called a “quantum graph”, although this means that on a fixed quantum
graph there exist only well-defined operators of fixed order (2 in this case).

Everything discussed so far including existence of limits of functions at the ver-
tices and the notions of boundary condition extends in the obvious way to sub-
graphs. Moreover, for a subgraph G of Gd with edge set E, we write W 2,2(E) :=
⊕e∈EW

2,2(e). The number of edges of a finite subgraph G of Gd is denoted by |E|.

In order to define random operators we need some further data including a
probability space (Ω,P) and an action of (a subgroup of) the automorphism group
of Gd on Ω and maps L, V from Ω into the space of boundary conditions and
potentials, respectively. As discussed at the beginning, for us two groups will be
relevant, the full automorphism group Γfull and the group Γtrans of translations
by Zd. We fix one of them, denote it by Γ and assume that it acts ergodically on
(Ω,P) via measure preserving transformations. To simplify the notation we identify
γ ∈ Γ with the associated measure preserving transformation.

Let us describe the type of random operators we consider in this section:

Assumption 1. Let (Ω,P) be a probability space and Γ ∈ {Γfull,Γtrans} a group
acting ergodically on (Ω,P). Let B be a finite subset of L∞(0, 1) and L a finite set
of boundary conditions. A random potential is a map

(1) V : Ω −→
⊗
e∈Ed

B with V (γ(ω))γ(e) = V (ω)e

for all γ ∈ Γ and e ∈ Ed. A random boundary condition is a map

(2) L : Ω −→
⊗
v∈Vd

L, with L(γ(ω))(γ(x)) = L(ω)(x)

for all γ ∈ Γ and v ∈ Vd.
A family of random operators (Hω) on L2(Ed) can be defined with domain of

definition

D(Hω) := {f ∈W 2,2(Ed) : (f(x), f ′(x)) ∈ L(ω)(x) for all x ∈ Vd}

acting by
(Hωf)(e) := −f ′′e + V (ω)efe
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for each edge e. These are selfadjoint lower bounded operators. A particularly
simple random operator (Hω) is given by the pure Laplacian −∆D with the domain

D(∆) := {f ∈W 2,2(EQ) |∀x ∈ V : (f(x), f ′(x)) ∈ LD}

and −∆ = Hω with V (ω) ≡ 0.

We assume throughout the section that Assumption 1 holds, and for this reason
do not repeat it in every lemma.

Remark 16. While Γfull is not commutative it is a natural object to deal with. In
particular, let us note that the Laplacian without potential and boundary conditions
in all vertices identical to Kirchhoff conditions is invariant under Γfull.

We will need to consider restrictions of our operators to finite subgraphs. These
are finite subgraphs associated to finite subsets of Zd. The cardinality of a finite
subset Q of Zd is denoted by |Q|. We introduce the set of edges

EQ := {e ∈ Ed | ι(e) ∈ Q}
and the set of vertices

VQ := {v ∈ Vd | v adjacent to e for some e ∈ EQ}.
The subgraph (VQ, EQ) will be denoted by GQ. Note that VQ ⊃ Q. The set V i

Q

of inner vertices of GQ is then given by those vertices of GQ all of whose adjacent
edges (in Gd) are contained in GQ. The set of inner edges Ei

Q of GQ is given by
those edges whose both endpoints are inner. The vertices of GQ which are not inner
are called boundary vertices. The set of all boundary vertices is denoted by V ∂

Q .
Similarly, the set of edges which are not inner is denoted by E∂

Q.

The restriction HQ
ω of the random operator Hω to GQ has domain given by

D(HQ
ω ) := {f ∈W 2,2(EQ) |∀x ∈ V i

Q : (f(x), f ′(x)) ∈ L(ω)(x),

∀x ∈ V ∂
Q : (f(x), f ′(x)) ∈ LD}.

This operator is again selfadjoint, lower bounded, and has purely discrete spectrum.
Let us enumerate the eigenvalues of HQ

ω in ascending order

λ1(HQ
ω ) < λ2(HQ

ω ) ≤ λ3(HQ
ω ) ≤ . . .

and counting multiplicities. Then, the eigenvalue counting function nQ
ω on R defined

by
nQ

ω (λ) := ]{n ∈ N | λn(HQ
ω ) ≤ λ}

is monotone increasing and right continuous, i.e. a distribution function, which is
associated to a pure point measure, µQ

ω . Denote by

NQ
ω (λ) :=

1
|EQ|

nQ
ω (λ)

the volume-scaled version of nQ
ω (λ) and note that |EQ| = d|Q| as the edge to vertex

ratio in the graph (Vd, Ed) is equal to d.
For a finite subgraph H of Gd let χH be the multiplication operator by the

characteristic function of H. Denote the trace on the operators on L2(Ed) by Tr[·].
As discussed above, a random Schrödinger (Hω) as well as the pure Laplacian ∆D

can be restricted to the subgraphs GQ induced by finite sets Q of Zd. This yields
the operator HQ

ω and ∆Q
D with spectral counting functions nQ

ω and nQ
D respectively.
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Now, nQ
D decomposes as a direct sum of operators. Thus, denoting the eigenvalue

counting function of the negative Dirichlet Laplacian on ]0, 1[ by nD(λ) (similarly
as NQ

ω above), we have nQ
D = |EQ|nD = d|Q|nD. The associated spectral shift

function is given as

ξQ
ω (λ) := nQ

ω (λ)− d |Q|nD(λ) = d |Q|
(
NQ

ω (λ)− nD(λ)
)
.

The crucial point is that ξω falls into the framework of almost additive F introduced
above. This is shown in the following lemma from [GLV07].

Lemma 17. Let (R, ‖ · ‖∞) be the Banach space of right continuous bounded func-
tions on R. Then, for each ω ∈ Ω the function ξω : F −→ R, Q 7→ ξQ

ω , is a
bounded, Λ(ω) invariant almost additive function.

Remark 18. The need to use a spectral shift function, i.e. the difference between nω

and nD, in the above lemma comes exclusively from the boundedness requirement.
Note that the notion of boundedness depends on the norm of the considered Banach
space, cf. also Lemma 25 below.

The key result is now the following proposition.

Proposition 19. There is a bounded right continuous function Ξ: R → R such that
for a given van Hove sequence (Ql) for almost every ω ∈ Ω the uniform convergence

lim
l→∞

∥∥∥ ξQl
ω

|EQl
|
− Ξ

∥∥∥
∞

= 0

holds.

Proof. Given the lemma above, the proposition is a direct consequence of Theo-
rem 6. �

By identifying the limit above and adding it to the IDS of the Dirichlet operator
(see [GLV07]) we obtain a Shubin-Pastur type formula:

Theorem 20. Let Q be a finite subset of Zd. Then, the function N = NH defined
by

(3) N(λ) :=
1

|EQ|

∫
Ω

Tr
[
χGQ

χ]−∞,λ](Hω)
]
dP(ω)

does not depend on the choice of Q, is the distribution function of a measure µ =
µH , and for any van Hove sequence (Ql) in Zd

lim
l→∞

‖NQl
ω −N‖∞ = 0

for almost every ω ∈ Ω. In particular, for almost every ω ∈ Ω, NQl
ω (λ) converges

as l→∞ pointwise to N(λ) for every λ ∈ R.

While the definition of the IDS involves an ergodic theorem, there are other
spectral features ofHω whose almost sure independence of ω uses only the ergodicity
of the group action. Prominent examples are the spectrum σ(Hω) and its subsets
σpp(Hω), σsc(Hω), σac(Hω), σdisc(Hω), σess(Hω) according to the spectral type.
In fact, by applying the general framework of [LPV07] we immediately infer the
following theorem.

Theorem 21. There exist subsets of the real line Σ, Σpp, Σsc, Σac, Σdisc, Σess

and an Ω′ ⊂ Ω of full measure such that σ(Hω) = Σ and σ•(Hω) = Σ• for all these
spectral types • ∈ {pp, sc, ac, disc, ess} and all ω ∈ Ω′.
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In the following we discuss three types of percolation models. These models
are based solely on random boundary conditions. The potential of the operators
is identically equal to zero. Unlike in the percolation models on combinatorial
graphs “deleted” edges are not removed completely from the graph but only cut
off by Dirichlet boundary conditions. The reason is that removing edges would
mean removing infinite dimensional subspaces from our Hilbert space. This would
result in a spectral distribution function which is not comparable to the one of the
Laplacian with the concerned edge included.

Before giving details we would like to emphasize the following: The examples
below include cases in which the graphs contain infinitely many finite components
giving rise to compactly supported eigenfunctions. In particular, the integrated
density of states has a dense set of discontinuities. In fact, in the subcritical phase
the IDS is a step function, albeit with dense jumps. However, despite all these
jumps our result on uniform convergence does hold!

4.2. Site Percolation on Metric Graphs. The percolation process is defined by
the following procedure: toss a (possibly biased) coin at each vertex and – according
to the outcome – put either a Dirichlet or a Kirchhoff boundary condition on this
vertex. Do this at every vertex independently of all the others. To be more precise,
let p ∈ (0, 1) and q = 1 − p be given. Let A := {LD, LK} and the probability
measure ν := pδLK + (1− p)δLD on A be given. Define Ω as the cartesian product
space ×x∈Vd

A with product measure P := ⊗x∈Vd
ν. Let L be the stochastic process

with coordinate maps L(ω)(x) := ω(x). These data yield a family of random
operators −∆ω := Hω acting like the free Laplacian with domain given by

D(∆ω) = {f ∈W 2,2(E) : (f(x), f ′(x)) ∈ ω(x) ∀x ∈ Vd}.

Intuitively, placing a Dirichlet boundary condition at a vertex means “removing”
it from the metric graph. The 2d formerly adjacent edges do not “communicate”
any longer through the vertex. A fundamental result of percolation theory tells us
that for sufficiently small values of p the percolation graph consists entirely of finite
components almost surely. For these values of p our Laplace operators decouple
completely into sums of operators of the form −∆G for finite connected subgraphs G
of Gd. Here, ∆G acts like the free Laplacian and has Dirichlet boundary conditions
on its deleted vertices (boundary vertices) and Kirchhoff boundary conditions in its
vertices which have not been deleted by the percolation process (interior vertices).
We introduce an equivalence relation on the set of connected subgraphs of Gd with
a finite number of edges by setting G1 ∼ G2 iff there exists a γ ∈ Γ such that
γG1 = G2. For such an equivalence class G we define nG as the eigenvalue counting
function of −∆G for some G ∈ G, and set NG = nG

|EG| . Defining the density νG
of an equivalence class of finite subgraphs of Gd within the configuration ω in the
obvious way, we obtain as integrated density of states for the family Hω

N =
∑
G
νGN

G ,

where the sum runs over all equivalence classes G of finite connected subgraphs
of Gd. Thus, the integrated density of states is a pure point measure in this case
with many jumps. More interestingly, all these jumps remain present (even if their
height is diminished) when we start increasing p. This yields models in which the
operators are not given as a direct sum of finite graph operators but still have lots
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of jumps in their integrated density of states. Related phenomena for combinatorial
Laplacians have been studied e.g. in [CCF+86, Ves05b].

4.3. Edge Percolation on Metric Graphs. The basic idea is to decide for each
edge independently whether Dirichlet boundary conditions are put on both ends or
not. All other boundary conditions are Kirchhoff type. The problem when defining
this edge percolation model is that our stochastic processes are indexed by vertices
rather than edges. We thus have to relate edges to vertices. This is done by going
to each vertex and then tossing a (biased) coin for each j = 1, . . . , d to decide how
to deal with the edge [x, x+ ej ].

More precisely: Let p0 ∈ (0, 1) and p1 = 1−p0 be given. Let A consist of all maps
S from {1, . . . , d} to {0, 1}. Put a probability measure ν on A by associating the
value

∏d
j=1 pS(j) to the element S. Now, Ω is the cartesian product space ×x∈Vd

A
with product measure P := ⊗x∈Vd

ν. To each ω ∈ Ω we associate the operator
−∆ω = Hω which acts like the free Laplacian and has boundary conditions as
follows: The edge e = [x, x + ej ] has Dirichlet boundary conditions on both ends
if the random variable associated to the vertex x has the j-th component equal to
1. Otherwise the boundary condition is chosen to be Kirchhoff. Here, again the
operator decouples completely into operators on finite clusters for small enough
values of p0.

4.4. Site-Edge Percolation on Metric Graphs. Similar to the previous two
models one can consider a percolation process indexed by pairs (x, e) of adjacent
vertices and edges. As in the last model consider a colouring A consisting of all
maps S from {1,−1, 2,−2 . . . , d,−d} to {0, 1}. The probability space and measure
are defined similarly as before. Each ω gives rise to a Laplace operator with the
following boundary conditions: if the −j-th component of the random variable
associated to the vertex x has the value one, then the edge [x− ej , x] is decoupled
from x by a Dirichlet boundary condition. If the j-th component of the same
random variable has value one then the edge [x, x + ej ] is decoupled from x by a
Dirichlet boundary condition. Conversely, those components of the random variable
which are zero correspond to Kirchhoff boundary conditions.

4.5. Operators with Magnetic Fields. Our set-up is general enough to include
magnetic fields as well. To this end, let G be a metric graph and L a choice
of boundary conditions as in Section 4. The most general symmetric first order
perturbation of − d2

dt2 on an edge e ∈ E is, up to zeroth order terms, given by

H(a)e := −
(

d
dt
− ıae

)2

for arbitrary real valued ae ∈ C1(ē), where ē is the closure of the edge e, i.e. identi-
fied with the closed interval [0, 1]. The selfadjoint realization of H(a) corresponding
to L is then given by the domain

D(HL(a)) = {f ∈W 2,2(E) : ∀x ∈ V : (f(x), f ′(x)− ı(af)(x)) ∈ Lx}
as the usual partial integration argument shows; i.e. one has to specify mixed Dirich-
let and (magnetic) Neumann boundary conditions as expected.

Now, simple calculations show that this operator is unitarily equivalent to a
nonmagnetic operator with boundary conditions L̃ = uL, where (uL)x := uxLx for
x ∈ V , and ux is defined as follows: Set ϕe(t) =

∫ t

0
ae(s) ds for each edge e. Then
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ux is a diagonal matrix in C2 deg x, and the entry belonging to an edge e incident
to x is e−ıϕ(ι(e)) = 1 if x = ι(e) and e−ıϕ(τ(e)) if x = τ(e).

Finally, let us note that the above implies that our results for Schrödinger op-
erators with random (or fixed) boundary conditions lead to the same results for
magnetic Schrödinger operators with random (or fixed) magnetic fields, specified
through the phases ϕe(τ(e)) at the endpoints.

4.6. Decorated Graphs over Zd. Just as in Sections 3.1 and 3.3, we may consider
more general graphs: Let G be a metric graph such that the group Γ = Zd acts
isometrically, freely and cocompactly on G. This metric space can be viewed as
the standard graph over Zd, but decorated with compact graphs corresponding to
a fundamental domain D for the Γ-action. Assume that there is an ergodic action
τγ , γ ∈ Γ of the group by measure preserving transformations on the probability
space (Ω,P). Let a random potential V and a random set of boundary conditions
L be given which take on only finitely many values and satisfy the compatibility
conditions (1) and (2), where now the edge set Ed is replaced by the edge set E(G)
of the graph G. This gives rise to a random Schrödinger operator (Hω) defined on
the domain D(Hω) ⊂W 2,2(E(G)) which is determined by boundary conditions Lω.
For a finite cube Q ⊂ Zd set D(Q) :=

⋃
γ∈Q γD and denote by (HQ

ω ) the restriction
of (Hω) to L2(D(Q)). Now we can again define the functions nQ

ω (λ), NQ
ω (λ) and

ξQ
ω (λ) as in Section 4.1. For these objects the results formulated in Section 4.1 hold

true.

5. Random Graph Metrics

In this section we discuss Laplace operators on metric graphs which have random
edge lengths. In this case, even the shift functions will be unbounded. Nevertheless,
there are two ways in which we can apply our results from Section 2: Restrict our
attention to a bounded energy interval on which the shift functions are uniformly
bounded; or use a different global norm, adjusted to the common growth rate of
these functions. In fact, the IDS will have the same growth as the shift function in
this case, which is why there is no loss in working with the IDS directly.

Let us provide, resp. recall, the notation used in this context.
Let 0 < l− ≤ l+ < ∞ and Ã a finite subset of [l−, l+]. Let le : Ω → Ã be

a collection of random variables indexed by the edges e ∈ E. Similarly as in
Section 4.1, for each ω ∈ Ω a metric graph Gd = Gd(ω) is given by the combinatorial
graph (Vd, Ed) and by identifying each edge e ∈ Ed with the interval

(
0, le(ω)

)
.

Recall that there is a group Γ acting by isometries on the set of vertices as well
as on the set of edges. The same group acts ergodically by measure preserving
transformations on the probability space Ω. We assume that the random family of
edge lengths obeys the transformation rule

lγ(e)(γω) = le(ω).

In particular, the distribution of the random variable le is independent of e.
Now we define a colouring of the vertex set. Let A = Ãd. For each ω ∈ Ω define

a colouring map by Λ̃(ω) : Z → A by Λ̃(ω)(v) =
(
le1(ω), . . . , led

(ω)
)
. Here ej is the

edge with ι(ej) = v = (v1, . . . , vd) and τ(ej) = (v1, . . . , vj−1, vj + 1, vj+1, . . . , vd) ∈
Zd.

The value le(ω) denotes the length of the edge e of the metric graph Gd(ω) in
the configuration ω. For each configuration ω we thus obtain a Laplace operator
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Hω on Gd(ω). If Q ⊂ Zd is a cube in the vertex set of Gd(ω) we introduce the
set of edges EQ = {e ∈ Ed | ι(e) ∈ Q} and the set of vertices VQ = {v ∈ Vd |
v adjacent to e for some e ∈ EQ} as above. Note that the sets VQ and EQ are
independent of ω. The subgraph (VQ, EQ) with length function l(ω)|EQ

will be
denoted by GQ := GQ(ω). In this situation we consider again the restriction (with
Dirichlet b.c.) of Hω to GQ(ω) and denote it by HQ

ω , while its eigenvalue counting
function is denoted by nQ

ω : R → R.
Next we show an analogue of Lemma 21 in [GLV07].

Lemma 22. Let a < b ∈ R be given. Let (R, ‖ · ‖∞) be the Banach space of right
continuous bounded functions on [a, b] equipped with the supremum norm. Then,
for each ω ∈ Ω the function nω : F → R, Q 7→ nQ

ω , is a Λ̃(ω)-invariant, almost
additive, bounded function.

Proof. Almost additivity and invariance are shown exactly as in Lemma 21 in
[GLV07]. We show now that nω is bounded in the sense of Definition 1. For the
Dirichlet Laplace operator on [0, l] the eigenvalue counting function nd(l, λ) : R → R
is given by

nd(l, λ) =
⌊
l

π

√
λ

⌋
.

It follows that

(4) nd(l, λ) ≤
√
λ

π
l + 1

Now we can argue again as in Lemma 21 in [GLV07]. First we change all boundary
conditions of HQ

ω to Dirichlet ones. This corresponds to a perturbation operator
of rank at most 2|EQ|. Consequently, it contributes an error term of at most
2|EQ| = 2d|Q|. Subsequently we use for each decoupled edge the estimate (4). It
follows that for λ ∈ [a, b]

(5)

|nQ
ω (λ)| ≤ 2|EQ|+

∑
e∈EQ

N(le, λ)

≤ 2|EQ|+
∑

e∈EQ

(√
λ

π
le + 1

)

= 3|EQ|+
√
λ

π

∑
e∈EQ

le

≤ 3|EQ|+
√
b

π
|EQ|l+

= |Q|d

(
3 +

√
b

π
l+

)
�

Remark 23. The reason why we obtain uniform convergence only on bounded energy
intervals and not on the whole axis is the last step in the proof of Lemma 22. Using
the SSF instead of the IDS we would merely obtain a smaller constant, but the
same qualitative behaviour.

The previous Lemma allow us to prove
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Proposition 24. There is a right continuous function N : R → R such that for
a given van Hove sequence (Ql)and for any bounded interval I ⊂ R the uniform
convergence

lim
l→∞

sup
λ∈I

∣∣∣ nQl
ω

|EQl
|
(λ)−N(λ)

∣∣∣ = 0

holds for almost every ω ∈ Ω.

Proof. By Lemma 22, each nω is invariant, almost additive and bounded. The
family (nω)ω∈Ω is homogeneous by construction, so that Theorem 6 applies. �

Now we present a variant of the above result. We consider a different Banach
space, namely

R̃ := {f : R → R | f is right continuous and sup
R

∣∣f(x)/
√
|x|+ 1

∣∣ <∞}

with the norm supR
∣∣f(x)/

√
|x|+ 1

∣∣. Again we have:

Lemma 25. For each ω ∈ Ω the function nω : F → R̃, Q 7→ nQ
ω , is Λ̃(ω)-invariant,

almost additive and bounded.

Proof. Almost additivity and invariance are shown as before. To show boundedness
we note that from (5) it follows that

sup
λ∈R

|nQ
ω (λ)/

√
|λ|+ 1| ≤ 3|EQ|√

|λ|+ 1
+

√
λ√

|λ|+ 1
|EQ|
π

l+ ≤ const|EQ|

Here const is some constant independent of Q, ω and λ. Recall that |EQ| = d|Q|.
Thus we have proven boundedness. �

Thus the statement of Proposition 24 can be strengthened to

lim
l→∞

sup
λ∈R

∣∣∣( nQl
ω

|EQl
|
(λ)−N(λ)

) 1√
|λ|+ 1

∣∣∣ = 0

for almost every ω ∈ Ω.

6. Outlook: Uniform Convergence and Jumps of the IDS

In this section we provide an outlook beyond the theorems stated in the main
text. This includes a discussion of the relation to other (recent) papers, as well as
some open questions which we plan to address in the future.

Uniform Convergence and Discontinuities of the IDS. Our goal here is to
elaborate on the relationship between the almost sure spectrum of Hω and its IDS.

We start by noting two corollaries of Theorem 10 for the setting of combinatorial
graphs and of Theorem 20 for quantum graphs respectively. Note that in contrast
to Corollaries 11 and 13 we do not require positivity of frequencies, since we are
in the random setting now. We recall the notions of topological support suppµ of
µ = µH and the set Sp(µ) := {λ ∈ R : µ({λ}) > 0} of atoms of µ to the spectrum
of Hω. Note that the set of discontinuities of the IDS is precisely Sp(µ).

Corollary 26. Σ equals the topological support suppµ of µ.
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As usual an f ∈ `2(Zd,H) is said to be compactly supported if f(v) = 0 for all
but finitely many v ∈ V ; f ∈W 2,2(Ed) is said to be compactly supported if fe ≡ 0
for all but finitely many edges e.

Corollary 27. Denote by Σcmp the set of energies λ ∈ R such that there exists
almost surely a compactly supported square integrable eigenfunction fω with Hωfω =
λfω. Then

(6) Sp(µ) = Σcmp.

Remark 28. (a) Note that there are many examples where the IDS has discon-
tinuities: the free Laplacian (i.e. the Schrödinger operator with identically
vanishing potential) with Dirichlet, Neumann, or Kirchhoff boundary con-
ditions; percolation models such as those in Sections 3.3, 4.2, 4.3 and 4.4;
for other percolation and tiling Hamiltonians, and quantum graphs, see also
[CCF+86, KLS03, KS04, Ves05b].

(b) If the randomness entering the potential of the operator is sufficiently strong it
is natural to expect a smoothing effect on the IDS. In fact, in [HV07] for a class
of alloy-type random potentials the Lipschitz-continuity of the IDS was estab-
lished. In [GV08, GHV] we show for a different class of random potentials how
one can estimate the modulus of continuity of the IDS. Such estimates are rel-
evant in the context of spectral localisation for random Schrödinger operators,
see the disussion in [GHV] in this volume.

These corollaries provide a criterion for deducing the existence of discontinuities
of the IDS from uniform convergence (w.r.t. the energy parameter) of the IDS. More
precisely, they prove that (A) implies (B’), where

(A) lim
l→∞

‖NQl
ω −NH‖∞ = 0,

i.e the IDS is uniformly approximated by its finite volume analoga
and

(B’) The IDS has discontinuities precisely at those energies, which are eigenval-
ues of Hω with compactly supported eigenfunctions almost surely.

This line of argument stems originally from [KLS03]. See [LMV, GLV07] for
the present context. It is possible to turn the argument around. More precisely,
property

(B) The positions and the sizes of the jumps of the IDS are approximated by
the analogous data of the finite volume approximands NQl

ω .
implies already (A).

Ideas of this type have been used in [Eck99, Ele03, MSY03]. More recently, in
[LV] it was proven that (B), and hence (A), holds for general ergodic, equivariant,
selfadjoint, finite hopping range operators on discrete structures. The equivariance
of the operator is supposed to hold w.r.t. an amenable group.

Thus for many models it is possible to pursue two different routes to obtain the
same results:

(i) Either one first establishes a Banach-space valued ergodic theorem, implying
(A), and then deduces (B). This was the choice made in the present work.

(ii) Or one first proves the statement (B) about jumps, and then concludes (A).
The latter approach has three advantages:
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• It does not require any finite local complexity property, and thus works even
for random operators where a single matrix element may assume infinitely
many values. (This is e.g. the case for Anderson-percolation Hamiltonians,
cf. [Ves05b].)

• It works for models which are equivariant w.r.t. a non-abelian group, as
long as it is amenable.

• Furthermore, the equivariance group may be discrete (like Zd) or connected
(like Rd).

On the other hand the former approach (i) has the advantage of providing certain
information beyond that obtained from approach (ii). In particular, it allows one
to control

• the set of measure zero where the convergence fails as well as
• the convergence speed in terms of an error estimate.

In certain situations, such as the setting of minimal, uniquely ergodic dynamical
systems, the control of the exceptional set of measure zero implies actually that it is
empty (see [LS06])! Thus convergence holds for all configurations of the randomness
rather than for almost all only.

Absence of Discontinuities. Above we discussed characterisations of the posi-
tions and sizes of jumps of the IDS. This allows in particular to show that several
models have an IDS with (many) discontinuities. Intuitively, the discontinuities are
related to two facts, namely that the models in question

• are not too random, for instance satisfy a finite local complexity condition,
and

• do not satisfy the (appropriate) unique continuation property.

On the other hand, for certain random Hamiltonians where even single matrix
elements have continuous distribution it can be shown that the IDS is Lipschitz-
continuous. These results go under the name of Wegner estimates, cf. [Weg81], and
are well established for operators on `2(Zd) and L2(Rd), see e.g. [KM07, Ves07] for
recent surveys. Meanwhile such bounds have been also established for quantum
graphs in [HV07, GV08, GHV, LPPV].

Furthermore, if a model satisfies an appropriate version of the unique continua-
tion property the IDS has no jumps, regardless of whether the finite local complexity
condition is fulfilled or not (cf. e.g. Proposition 5.2. in [Ves05b]). An example of
such a random operator is the Anderson model for which the continuity of the IDS
was established in [CS83, DS84].

This can be compared nicely to the properties of mixed Anderson-percolation
Hamiltonians. There, due to the dilution of the lattice, the operator does not have
the unique continuation property. For this model it turns out that the IDS has
jumps if and only if the distribution of the matrix elements has atoms (apart form
the point mass at ∞ which corresponds to the deletion of a vertex).

Questions. Let us formulate two questions which concern Banach-space valued
ergodic theorems more general than those formulated in the present review:

• Is it possible to show, using a similar line of argument as in [Len02, LMV],
that a Banach-space valued ergodic theorem holds if the lattice Zd is re-
placed by a finitely generated, discrete group of polynomial growth?
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We plan to address this question in the future. The hope is that —
since such groups are both amenable and residually finite — one can use a
similar covering argument as in [LMV].

• Is there a version of a Banach-space valued ergodic theorem which is ap-
plicable both to models with Zd-equivariance as well as models with Rd-
equivariance, and which provides a unified treatment of the results in [LS06]
and [LMV]? This would mean that one does not need to distinguish be-
tween a discrete and a continuous group action.
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