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Abstract

We study the relation between Donaldson–Thomas theory of Calabi–Yau threefolds and
a six-dimensional topological Yang–Mills theory. Our main example is the topological U(N)
gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use
equivariant localization techniques on its noncommutative deformation. As a result the gauge
theory localizes on noncommutative instantons which can be classified in terms of N -coloured
three-dimensional Young diagrams. We give to these noncommutative instantons a geometrical
description in terms of certain stable framed coherent sheaves on projective space by using a
higher-dimensional generalization of the ADHM formalism. From this formalism we construct
a topological matrix quantum mechanics which computes an index of BPS states and provides
an alternative approach to the six-dimensional gauge theory.
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1 Introduction

Topological field and string theories that arise form a topological twist of a physical model
capture the BPS sector of their physical counterparts. They have been used successfully in the
last decades to compute certain classes of nonperturbative effects, thereby considerably improving
our understanding of the quantum world. Topological theories also have a deep relation with
mathematics as they relate BPS quantities to geometrical invariants of the underlying manifold.
For example, topological string theory is equivalent to certain enumerative problems for Calabi–
Yau threefolds and it computes invariants such as the Gopakumar–Vafa, Gromov–Witten and
Donaldson–Thomas invariants. These invariants play a key role in the mirror symmetry conjecture
which is by now one of the best understood examples of duality in string theory (see [1] for a
review). On the other hand, these invariants enter directly in the computation of the entropy of
a class of supersymmetric black holes that arises in string theory compactifications on a Calabi–
Yau manifold via the Ooguri–Strominger–Vafa (OSV) conjecture and provide some computational
control on the enumeration of quantum gravity microstates [2].

Donaldson–Thomas invariants count bound states of D0–D2 branes with a single D6-brane
wrapping a Calabi–Yau threefold. The geometrical object that describes this configuration is called
an ideal sheaf and the Donaldson–Thomas invariants can be roughly thought of as “volumes” of
the moduli spaces of ideal sheaves. When the Calabi–Yau space is toric the topological string
theory has a reformulation in terms of the classical statistical mechanics of a melting crystal [3].
In this setting the Donaldson–Thomas invariants enumerate atomic configurations in the melting
process. Just like the Gopakumar–Vafa invariants, Donaldson–Thomas theory computes certain
F-terms in the low energy effective action of the string theory compactification [4]–[6]. Indeed,
it is conjectured that the Donaldson–Thomas invariants are equivalent to the Gopakumar–Vafa
and Gromov–Witten invariants as they arise from different expansions of the same topological
string amplitude. This conjecture is known to be true in the toric setting [7]. The melting crystal
picture also has an interpretation as a sum over fluctuating Kähler geometries [8]. This sum can
be explicitly rewritten as a path integral of an auxiliary six-dimensional topological gauge theory.
This theory localizes on the moduli space of solutions of the Donaldson–Uhlenbeck–Yau equations
which can be thought of as generalized higher-dimensional instantons. The proposal of [8] consists
in identifying the instanton counting problem associated to this gauge theory with the Donaldson–
Thomas enumeration of ideal sheaves.

Accordingly, Donaldson–Thomas theory is reduced to six-dimensional instanton calculus. To
this end one can adopt the approach envisaged by Nekrasov in the four-dimensional case and apply
the techniques of equivariant localization in topological field theories [9]. Roughly, Nekrasov’s
formalism consists of a noncommutative deformation of the gauge theory that resolves certain
singularities of the instanton moduli space and a particular redefinition of the BRST charge that
localizes the instanton measure on pointlike configurations. The BRST charge is now an equivariant
differential with respect to the natural toric action on the C

2 target space and as a result integration
over the instanton collective coordinates is reduced to a sum over pointlike instantons via the
equivariant localization formula. These ideas were applied to the six-dimensional gauge theory
under consideration on a generic toric Calabi–Yau threefold in [8], with the main difference being
the appearance of degenerate gauge field configurations which wrap rational curves. The gauge
theory partition function can in this way be successfully matched with the melting crystal partition
function.

The full picture is thus consistent, and gives strong support to the equivalence between the
six-dimensional gauge theory on the D6-brane and Donaldson–Thomas theory. Nevertheless, a
direct link is still lacking. The equivalence becomes clear only after the gauge theory partition
function is matched with the topological vertex amplitude. It would be desirable to have a direct
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understanding of Donaldson–Thomas theory in the gauge theoretic picture and in particular to
investigate the ideal sheaf counting problem in terms of the gauge theory variables. Moreover,
the fact that we are now dealing with a gauge theory poses two pressing questions. Firstly, it is
natural to consider a higher rank generalization of the problem which corresponds to introducing
an arbitrary number N of D6-branes in the picture. While this is conceptually simple the relation
(if any) with the usual topological string theory is rather obscure. We expect that a resolution
of this puzzle may shed some new light on the black hole microstate counting problem. Secondly,
topological string amplitudes have modular transformation properties that allows one to carry the
information about the enumerative invariants along the various regions of the Calabi–Yau moduli
space. In particular, knowledge of the Gromov–Witten invariants at the large radius point is
enough to compute them, say, at orbifold points [10]. One may wonder how this property is seen
in Donaldson–Thomas theory given that the gauge theory is naturally defined at the large radius
point.

The aim of this paper is to investigate in detail the aforementioned proposals and conjectures,
and to make a first step towards the resolution of the outlined problems. In particular, we will
explore the random partition combinatorics of the nonabelian theory and its formulation in terms
of a topological vertex. Partial results in this direction were described in [11], as well as in [12].
We work mainly on flat space in the Coulomb branch of a U(N) gauge theory. In this case we
are able to set up a general formalism that we hope could be applied to more general settings.
We attack the problem in two independent but intimately connected ways. As a start we define
and evaluate the partition function of the noncommutative deformation of the gauge theory. The
noncommutative gauge theory localizes onto a sum over critical points that are classified in terms
of N -coloured three-dimensional Young diagrams. The fluctuation factor around each critical point
has the form of a ratio of functional determinants that can be computed by direct evaluation. The
result is a simple generalization of the MacMahon function which captures the counting of BPS
states for a configuration of D6-branes widely separated in the transverse directions.

We give a purely geometric interpretation of these noncommutative instantons. Under a certain
set of plausible assumptions we can relate the noncommutative gauge field configurations with the
stable framed moduli space of certain coherent sheaves on P

3, a compactification of the target space
C

3. The main technical tool is the use of Beilinson’s spectral sequence to parametrize a coherent
sheaf on P

3 with a set of matrix equations. We show that a special class of such sheaves arise as the
cohomology of certain nonlinear monads on P

3. The matrix equations are naturally interpreted as
a higher-dimensional generalization of the ADHM formalism. This construction provides a direct
relationship between the gauge theory and Donaldson–Thomas theory, and should be compared
to the recent construction by Diaconescu [13] for the local Donaldson–Thomas theory of curves in
terms of ADHM quiver sheaves.

From this generalized ADHM language we construct a topological matrix quantum mechanics
that dynamically describes the stable coherent sheaves. In the string theory language this model
corresponds to the effective action on the gas of D0-branes that are bound to the D6-branes (in
the presence of a suitable B-field) [14]. Equivalently, we may think of the matrix model as arising
from the quantization of the collective coordinates around each instanton solution. In either way
the matrix model recovers the classification of the critical instanton configurations in terms of N -
coloured three-dimensional Young diagrams via the special properties of the linear maps in the
generalized ADHM equations. The computation of the instanton fluctuation factors is reduced to
the evaluation of an appropriate equivariant index associated with the topological matrix model.
The results agree with the direct computation done in the original noncommutative gauge theory.

As an application of our formalism we compute the partition function of the rank N gauge
theory in the Coulomb branch on a generic toric Calabi–Yau manifold. The result is the N -th
power of the abelian partition function with an N dependent sign shift. This shift is consistent
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with the expected shift in the topological string coupling constant when the amplitude is related
to the D-brane charges at the attractor point of the BPS moduli space. In particular, our results
should provide a testing ground for the OSV conjecture with many D6-branes. Although the gauge
theory provides essentially the same Donaldson–Thomas invariants, the Gromov–Witten theory is
new and involves an additional expansion parameter, the rank N of the gauge group.

It is instructive to compare at the outset with the analogous problem in four dimensions.
Since the six-dimensional gauge theory we consider is maximally supersymmetric, it is tempting to
believe that its dynamics are qualitatively similar to the well-studied N = 4 supersymmetric U(N)
Yang-Mills theory in four dimensions which is a topological twist of the N = 2 Seiberg–Witten
theory. In that case the partition function is independent of the vevs of the scalar fields, and hence
of the gauge symmetry breaking pattern, because it always computes the Euler characteristic of
the (compactified) instanton moduli space. More precisely, for the N = 2 Seiberg–Witten theory,
which computes the low energy effective action, one can use holomorphy properties to argue that
the prepotential is a generic solution [9], even when some of the Higgs field eigenvalues coincide.
By using the equivalence between Donaldson–Witten theory and Seiberg–Witten theory [15], this
shows (modulo subtleties associated to wall-crossing phenomena) that it is enough to localize the
gauge theory onto the Cartan subgroup, and indeed a direct computation of Donaldson–Witten
invariants for SU(N) gauge group gives no newer information than the U(1)N−1 Seiberg–Witten
theory computation.

However, there is no reason to expect that the infrared dynamics of the six-dimensional gauge
theory is similar. Moreover, at present it is not known what is the rigorous stability condition to
place on higher-rank sheaves over three-dimensional Calabi–Yau manifolds in order to construct a
well-behaved compactification of the moduli space. Due to our lack of understanding of this moduli
space, there is no guarantee that the instanton configurations that we localize onto span the appro-
priate moduli space of nonabelian gauge field configurations. For the gauge theory on C

3 we have
good control over the instanton moduli space and an explicit construction (with the caveat that we
have not rigorously defined the appropriate compactification of the instanton moduli space). We
argue in the following that in this case the allowed sheaves are those provided by the noncommuta-
tive deformation, and give an explicit algebro-geometric description including appropriate stability
conditions. For more general toric threefolds, our computations merely provide a localization of
the full nonabelian Donaldson–Thomas theory onto those sheaves which are invariant under the
equivariant action of the maximal torus of the gauge group. For more general symmetry breaking,
the sheaves should carry a nontrivial framing (as proposed in [13]) and the fixed point locus need
not consist of isolated points. Usage of the localization formulas in this case would require the much
more complicated integration over degenerate fixed point submanifolds of moduli space weighted
by the Euler class.

This paper is organized as follows. In Section 2 we review the geometrical setting of the
six-dimensional gauge theory and its equivariant deformation. Section 3 is devoted to the non-
commutative deformation of the gauge theory and the evaluation of the partition function on flat
(noncommutative) space. Section 4 is devoted to geometrical aspects and contains the derivation
of our ADHM-like formalism. This formalism is used in Section 5 to construct a topological matrix
quantum mechanics that computes an index of BPS states. In Section 6 we compute the partition
function of the rank N gauge theory in the Coulomb branch on a generic toric Calabi–Yau manifold.
Section 7 contains some further discussion and applications of our results.

2 Topological NT = 2 Yang–Mills theory in six dimensions

In this section we will collect some known results concerning the six-dimensional gauge theory
which captures the physics of the Kähler quantum foam. This theory has been studied in the
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literature both as a cohomological field theory [16] and in the balanced formalism [17], i.e. with
NT = 2 topological charges. In order to keep the discussion completely general we will consider the
U(N) gauge theory defined on a toric threefold, but for concrete applications we will often specify
to an abelian U(1) or U(1)N theory on C

3. Some of the results reviewed here are also valid in the
more general context of a generic Kähler manifold.

2.1 The cohomological gauge theory

The gauge theory in question can be defined through a topological twist of the maximally super-
symmetric Yang–Mills theory in six dimensions. One starts with N = 1 U(N) supersymmetric
Yang–Mills theory in ten dimensions and dimensionally reduces on a six-dimensional Kähler mani-
fold X with U(3) holonomy. After the twist the bosonic spectrum of the theory consists of a gauge
field Ai, a complex Higgs field Φ and (3, 0)-form ρ = ρ3,0 along with their complex conjugates, all
taking values in the adjoint representation of the U(N) gauge group. In the fermionic sector we
can twist the spin bundle with the canonical line bundle over X and obtain explicitly an isomor-
phism between fermions and differential forms [18]. The spectrum consists of a complex scalar η,
one-forms ψ1,0 and ψ0,1, two-forms ψ2,0 and ψ0,2, and finally three-forms ψ3,0 and ψ0,3 for a total
of 16 degrees of freedom matching those of the bosonic sector. The resulting supersymmetric gauge
theory is cohomological and has two topological charges. It can therefore be studied as a balanced
topological field theory as in [19]. The bosonic part of the action has the form

S =
1

2

∫

X
Tr

(
dAΦ ∧ ∗dAΦ +

[
Φ , Φ

]2
+

∣∣F 2,0
A + ∂ †

Aρ
∣∣2 +

∣∣F 1,1
A

∣∣2
)

+
1

2

∫

X
Tr

(
FA ∧ FA ∧ k0 + ϑ

3 FA ∧ FA ∧ FA

)
, (2.1)

where dA = d + i [A,−] is the gauge-covariant derivative, ∗ is the Hodge operator with respect to
the Kähler metric of X, FA = dA+A∧A is the gauge field strength, k0 is the background Kähler
two-form of X, and ϑ is the six-dimensional theta-angle which will be identified later on with the
topological string coupling gs.

In [8] the U(1) gauge theory has been given a suggestive interpretation as a Kähler quantum
foam. One starts with a path integral which represents a sum over Kähler geometries with quantized
Kähler class k = k0 + gs FA. Expanding the Kähler gravity action

∫
X k ∧ k ∧ k and gauge fixing

the residual symmetry gives precisely the NT = 2 topological gauge theory. In this interpretation
it is essential that the gauge field curvature FA is a representative of the Chern class of a complex
line bundle over X. For higher rank gauge groups U(N), N > 1 a characterization of the gauge
theory as a gravitational theory is not known.

The gauge theory has a BRST symmetry and hence localizes onto the moduli space of solutions
of the fixed point equations

F 2,0
A = ∂ †

Aρ ,

F 1,1
A ∧ k0 ∧ k0 +

[
ρ , ρ

]
= l k0 ∧ k0 ∧ k0 ,

dAΦ = 0 . (2.2)

The right-hand side of the second equation is a quantum correction coming from the magnetic
charge of the gauge bundle, where l is a constant. The solutions of these equations minimize the
action (2.1) and we will therefore call them generalized instantons or just instantons. We will be
interested in the set of minima where the field ρ is set to zero. This is always possible on a Calabi–
Yau background, because of the uniqueness of the holomorphic three-form in that case. Then the
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first two equations reduce to the Donaldson–Uhlenbeck–Yau (DUY) equations which are conditions
of stability for holomorphic bundles over X with finite characteristic classes.

We will generically denote an appropriate compactification of the moduli space of solutions to
the first two equations of (2.2) with M, or with M(N, c1, ch2, ch3) labelling the solutions by their
rank and Chern classes when we want to be more explicit about their topology, or by M(X) when
we want to stress the role of the underlying variety X on which the gauge theory is defined. We will
also include in M those configurations that solve (2.2) where the gauge field is possibly singular on
X. More precisely, we will not restrict attention to holomorphic bundles but in principle consider
also coherent sheaves of OX -modules over X of rank N . It is not clear that this compactification
always exists for a generic threefold as very little is known about these moduli spaces, and we may
expect the singular loci to be intractable. This lack of a geometrical understanding is a major
obstacle in carrying out the localization program. We will see in the rest of this paper how some
progress can be made in specific situations.

2.2 Local geometry of the instanton moduli space

The moduli space M is a highly singular and badly behaved complex variety. When N = 1 and
c1 = 0 this problem has been cured in [7, 8], and with an appropriate compactification there is an
isomorphism M(1, 0, ch2, ch3) ∼= Ik(X,β) with the moduli space of ideal sheaves over X with fixed
two-homology class β and holomorphic Euler characteristic k as defined for example in [7]. This
moduli space is also isomorphic to the Hilbert scheme of points and curves in X, Hilb

k(X,β). In
the following we will keep the rank N arbitrary as we can formally consider a nonabelian gauge
theory. In principle one could try to formulate the Donaldson–Thomas theory as a localization
problem for a gauge theory in arbitrary rank. However, one should face the difficult technical
problem of integrating over the appropriately compactified moduli space. We can hope to make
computational progress in the Coulomb phase of the gauge theory where the gauge symmetry is
completely broken down to the maximal torus U(1)N by the Higgs field vacuum expectation values
and the moduli space essentially reduces to N copies of the Hilbert scheme where localization
techniques can and have been successfully applied. A precise geometric characterization of M is
not known and lies beyond the scope of this paper. In particular, integration over M is ill-defined
and requires appropriate homological tools to be dealt with. For our practical purposes we will
ignore these (important) issues and base our analysis on gauge theory techniques. It will be enough
to know that for N = 1 a perfect obstruction theory can be developed and a virtual fundamental
class of M has been defined [20]. In Section 4 we will explore a sheaf theoretical description of the
moduli space M for N ≥ 1 in the case X = C

3.

From the gauge theory perspective we are dealing with holomorphic bundles and pairs (A, ρ).
The first step in understanding the moduli space M is to characterize its local geometry. For this,
we introduce the instanton deformation complex [8]

0 //Ω0,0(X, ad g)
C // Ω0,1(X, ad g) ⊕ Ω0,3(X, ad g)

DA //Ω0,2(X, ad g) //0 , (2.3)

where Ω•,•(X, ad g) denotes the bicomplex of complex differential forms taking values in the adjoint
gauge bundle over X, and the maps C and DA represent a linearized complexified gauge trans-
formation and the linearization of the first equation in (2.2) respectively. A precise definition can
be found in [8, 21]. This complex is elliptic and its first cohomology represents the holomorphic
tangent space to M at a point (A, ρ), T(A,ρ)M. The degree zero cohomology represents reducible
pairs (A, ρ), whereby the gauge field A is a reducible connection which we assume vanishes.

On the other hand, in general there is also a finite-dimensional second cohomology that measures
obstructions and is customarily called the obstruction or normal bundle N. It is associated with
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the kernel of the conjugate operator D†
A. Since this is the operator that enters in the kinetic term

for the antighost fields, the terminology “antighost bundle” is used for N in the physics literature
as its fibres are spanned by the antighost zero modes. It is precisely this bundle which provides
an “integration measure” on the moduli space. On general grounds the fermionic BRST symmetry
localizes the partition function of the topological gauge theory onto the moduli space M (once a
topological sector is chosen by fixing a critical point). There are nevertheless remaining fermionic
terms to be integrated over. In particular, there is a four-fermion interaction schematically of
the form Rψ ψ ψ ψ where ψ collectively denotes the Fermi fields. A careful analysis of the BRST
transformations and of the on-shell action shows that this term produces an integral representative
of the Euler characteristic of the antighost bundle over the moduli space [8, 19]. Equivalently,
matching the Fermi zero modes with the fermionic path integral measure brings down the pfaffian
of the curvature R.

As the detailed analysis is quite involved, we will just denote this integral symbolically as
∫

M

e(N) . (2.4)

It is difficult to give a precise definition of this integral and to evaluate it. For this one needs
rather sophisticated tools such as a perfect obstruction theory and to deal with the relevant virtual
fundamental class of M. There is, however, one special case where we can make computational
progress in the evaluation of (2.4) without developing this abstract formalism. This is the case
when the ambient variety is X = C

3. In this case one can use localization techniques to evaluate
the integrals (2.4). Since β is necessarily trivial in this case (equivalently ch2 = 0), the relevant
moduli space for N = 1 can be identified with the Hilbert scheme Hilb

k(C3) = (C3)[k] consisting of
zero-dimensional subschemes in C

3. For k > 3 this moduli space generically contains branches of
varying dimension and so is not even a manifold. However, the localization formulas of Section 2.3
below make sense nevertheless and we will use them to define the integrals (2.4).

2.3 The equivariant model

If the moduli space M were smooth and compact, then we could proceed to evaluate the integrals
(2.4) by choosing an appropriate representative of the cohomology class e(N). However, this is not
the case as moduli spaces of instantons suffer from non-compactness problems arising both from
singularities where instantons shrink to zero size as well from the non-compactness of the ambient
space X on which the gauge theory is defined. In field theoretical terms, we can think of diver-
gences coming from the first problem as associated with small distances while the second problem
reflects the need for an infrared regularization. The ultraviolet behaviour improves substantially by
introducing a noncommutative deformation of the gauge theory that provides a natural compacti-
fication of the instanton moduli space. We will define and study the deformed instanton calculus
in the ensuing sections, but for the time being we will assume that this problem has been solved.

A direct evaluation of the integrals (2.4) is still a formidable problem. A particularly powerful
approach is to use equivariant localization. In our problem we will assume that the gauge theory
is defined on a toric threefold X. It carries the action of a non-compact three-torus T

3, and we
further assume that this action lifts to the moduli space M. Working T

3-equivariantly means that
we restrict our attention to critical gauge field configurations that are T

3-invariant. A practical way
to implement this scheme is to modify the gauge theory so that the BRST differential on the space
of fields becomes an equivariant differential, so that an infinitesimal T

3 rotation can be undone by
a gauge transformation.

When X = C
3, a physical realization of the equivariant modification with respect to the toric

isometry is to put the gauge theory on the “Ω-background”. For the present gauge theory this
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procedure was developed in [8]. If we think of our cohomological gauge theory as arising from a
topological twist of maximally supersymmetric Yang–Mills theory in six dimensions, then working
equivariantly is equivalent to replacing the original scalar BRST operator Q used for the twist with
a linear combination of the scalar and vector supercharges Qi given by

QΩ = Q+ ǫa Ωa
ij x

iQj . (2.5)

Here ǫa, a = 1, 2, 3 are formal parameters of the T
3 action and Ωa = Ωa

ij x
j ∂

∂xi
are vector fields

which generate the SO(6) rotational isometries of R
6 ∼= C

3. We will restrict to the U(3) holonomy
subgroup that preserves the natural, translationally-invariant Kähler two-form of C

3. Then the toric
symmetry group T

3 is the maximal torus of this U(3). The result is a topological deformation of the
gauge theory, augmenting the action by a QΩ-exact term, which depends explicitly on the vector
fields Ωa. Since the BRST charge QΩ is a linear combination of supercharges, perturbative bosonic
and fermionic contributions cancel, and the partition function is saturated by instantons. The key
point here is that, in the Coulomb phase, the Ω-deformation localizes the instanton measure onto
point-like instanton configurations which are invariant under T

3 rotations. The critical points of the
deformed gauge theory action are thus isolated. Due to localization, the semiclassical approximation
is exact and the full path integral reduces to a sum over contributions from isolated point-like
instantons.

This deformation turns the evaluation of the integrals (2.4) into a problem that is both well-
defined and computationally accessible by equivariant localization techniques. In addition, the Ω-
background acts as an infrared regularization and the equivariant volumes of the instanton moduli
spaces are finite. In the gauge theory action (2.1) the Ω-background modifies, among other things,
the kinetic term for the Higgs field to

Tr
(
dAΦ − ıΩFA

)
∧ ∗

(
dAΦ − ıΩFA

)
(2.6)

where ıΩ is contraction with the vector field that generates the toric isometries. This modifies the
third equation of (2.2) to

dAΦ = ıΩFA , (2.7)

which manifestly minimizes the action on the Ω-background. The Higgs potential and the fermionic
terms are also affected by the Ω-background, but we will not need their precise forms.

The discussion of Section 2.2 above can be carried out in an equivariant setting with minor
modifications and the suitable version of the integral (2.4) can be now evaluated with equivariant
localization techniques. This will be done explicitly in the following sections for the Coulomb phase
of the gauge theory. For the moment let us just sketch the idea behind the procedure, glossing
over many details. In the equivariant model on X = C

3 with the natural T
3 action, the Euler class

e(N) is an element of the U(N) × T
3 equivariant cohomology of the moduli space M, where the

gauge group U(N) acts by rotating the trivialization of the instanton gauge bundle at infinity in
C

3. Its equivariant integral
∮
M

e(N) is the localization of the pushforward of e(N) ∈ H•
U(N)×T3(M)

in H•
U(N)×T3(pt) = C

[
SymN (C); ǫa

]
under the collapsing map M → pt onto a point, where the

symmetric product SymN (C) = C
N/SN parametrizes the complex conjugacy classes of U(N).

These classes can be labelled by elements a = (a1, . . . , aN ) of the Cartan subalgebra u(1)⊕N ∼= R
N .

Denoting ξ = (a, ǫa), there is a moment map

µ[ξ] = µU(N)[a] + µT3 [ǫa] : M −→
(
u(1)⊕N

)∗ ⊕ Lie
(
T

3
)∗

(2.8)

and an invariant symplectic two-form ω on M such that the U(N)×T
3 action on M is hamiltonian,

dµ[ξ] = −ıVξ
ω , (2.9)
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where Vξ is the vector field on M representing the toric action generated by ξ.

Using (2.9) we can represent e(N) by a cohomologically equivalent equivariant differential form,
and hence replace

∮
M

e(N) by an ordinary integral over the moduli space,
∫
M

e(N)∧ exp(ω+µ[ξ]).
We may then appeal to the Duistermaat–Heckman localization formula

∫

M

ωn

n!
e−µ[ξ] =

∑

f∈M

Vξ(f)=0

e−µ[ξ](f)

n∏
i=1

wi[ξ](f)

, (2.10)

where n = dimC M and the sum on the right-hand side runs over the fixed points of the toric action.
The parameters wi[ξ] are the weights of the toric action on the tangent space to the critical points
on M. The Duistermaat–Heckman theorem assumes that the toric action on the ambient space X
lifts to the moduli space and that its critical points are isolated. This is precisely what happens
in the case where the gauge theory is defined on the Ω-background. One just needs to evaluate
the integrand at each critical point and sum over all critical points with the appropriate weights.
Thus in practice the evaluation of (2.4) in the equivariant model simply relies on being able to
exhibit a complete classification of the critical points of the toric action. This will be explored in
the following sections.

The assumptions made above on the instanton moduli space are not generally satisfied. To
deal with such situations there is a powerful generalization of the Duistermaat–Heckman formula,
the Atiyah–Bott localization formula for virtual classes. This formalism can be applied in the case
at hand, and has been done in [7] for rank one sheaves. In the gauge theory setting, however, it
is easier to deal with the equivariant localization as if the Duistermaat–Heckman formula and its
supersymmetric generalizations were still reliable. In fact, the general story is a bit more involved
than what we have been discussing thus far. When dealing with gauge theory on a toric manifold
one must deal with the localization procedure more carefully. Now the T

3-invariant configurations
are not necessarily point-like and the partition function localizes into a sum of contributions coming
from the points and curves which are fixed by the toric action. Each of these contributions can be
expressed as an integral over the instanton moduli space, or more precisely over one of its connected
components. Then one can deal with the integrals over the component moduli spaces as outlined
above.

In [8] the cohomological gauge theory on a toric threefold X was expressed as a sum over
contributions coming from the vertices of the underlying toric graph ∆(X), which correspond to
point-like generalized instantons with action

∫
X TrFA∧FA∧FA. These contributions are connected

by gauge field configurations fibred over the rational curves which connect the fixed points in the
toric diagram, with action

∫
X Tr k0 ∧ FA ∧ FA. This procedure can be summarized as a set of

gluing rules which are completely analogous to those of the melting crystal reformulation of the
topological A-model string theory, whereby the framing conditions to be imposed when matching
the contributions from two different vertices of the crystal get mapped into a set of asymptotic
boundary conditions for the gauge field configurations, or equivalently a framing of the generalized
instanton gauge bundle at infinity.

3 Noncommutative gauge theory

In this section we will consider another deformation of the six-dimensional maximally super-
symmetric gauge theory which simplifies explicit computations. This deformation resolves the
small instanton singularities of the moduli space M and enables explicit construction of instanton
solutions. Moreover it provides a compactification of the instanton moduli space that is very nat-
ural from a gauge theoretical perspective. Its geometric interpretation will be elucidated in the
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next section. For the time being we consider the U(N) gauge theory defined on X = C
3 ∼= R

6,
and deform it on the noncommutative space R

6
θ. This is equivalent to regarding the gauge theory

as an infinite-dimensional matrix model where the fields are replaced by operators acting on a
separable Hilbert space [22]–[24]. In this case there is a single patch in the geometry and only
six-dimensional point-like instantons contribute to the partition function. In particular, there is no
contribution from four-dimensional instantons stretched over rational curves P

1, which are absent
in this geometry. As the detailed calculations in the following are somewhat technical, let us start
by summarizing the main results of this section.

3.1 Statement of results

We localize the noncommutative gauge theory with respect to the equivariant action of the abelian
group T

3×U(1)N on C
3. The resulting instanton expansion of the partition function is a generating

function for Donaldson–Thomas invariants given by

Z
U(1)N

DT

(
C

3
)

=
∑

~π

(−1)(N+1) |~π| q|~π| (3.1)

where q = − e iϑ = e−gs . The sum runs through N -coloured, three-dimensional random partitions
~π = (π1, . . . , πN ) with |~π| = |π1|+ · · ·+ |πN | boxes. The set of components πl of fixed size kl = |πl|
is in correspondence with the Hilbert scheme Hilb

kl(C3) of kl points in C
3, which consists of ideals

of codimension kl in the polynomial ring C[z1, z2, z3]. The generating function (3.1) is a sum over
torus invariant configurations of U(N) noncommutative instantons, which in the equivariant model
consists of contributions from k = |~π| instantons on top of each other at the origin. In the abelian
case N = 1 one recovers the anticipated MacMahon function

M(q) =

∞∏

n=1

1(
1 − qn

)n , (3.2)

the generating series for ordinary three-dimensional partitions. Whenever N is odd, the sign is
independent of the partitions and the partition function closely resembles the abelian result. On
the other hand, when N is even the partition function counts invariants with an alternating sign.
In Sections 4 and 5 we will connect this result to the counting of torsion-free sheaves on C

3, while
some physical applications will be described in Section 7.

3.2 Noncommutative instantons

The coordinates xi of R
6
θ satisfy the Heisenberg algebra

[
xi , xj

]
= i θij , i, j = 1, . . . , 6 , (3.3)

where θ = (θij) is a constant real antisymmetric 6 × 6 matrix which we assume is nondegenerate.
Using an SO(6) rotation, we can choose coordinates such that θ assumes its Jordan canonical form

θ =




0 θ1
−θ1 0

0 θ2
−θ2 0

0 θ3
−θ3 0




. (3.4)
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The algebra of “functions” on R
6
θ will be denoted A.

The instanton equations on the noncommutative background can be simplified by introducing
the covariant coordinates

Xi = xi + i θij Aj , (3.5)

and their complex combinations

Zi = 1√
2θi

(
X2i−1 + iX2i

)
for i = 1, 2, 3 . (3.6)

Using the Heisenberg commutation relations (3.3) to represent derivatives as inner derivations of
the algebra A, the instanton equations (2.2) can then be rewritten in the form

[
Zi , Zj

]
+ ǫijk

[
Z†

k , ρ
]

= 0 ,

[
Zi , Z†

i

]
+

[
ρ , ρ†

]
= 3 1N×N ,

[
Zi , Φ

]
= 0 (3.7)

where i, j, k = 1, 2, 3. The combination of the noncommutative deformation with the Ω-background
parametrized by ǫi, i = 1, 2, 3 changes the last equation in (3.7) to

[
Zi , Φ

]
= ǫi Z

i (no sum on i) . (3.8)

For the remainder of this paper we will always set the (3, 0)-form field ρ to zero, as we work on a
Calabi–Yau geometry. Then T

3-invariance of the (unique) holomorphic three-form constrains the
equivariant parameters of the Ω-background by the equation

ǫ1 + ǫ2 + ǫ3 = 0 . (3.9)

These sets of equations can be solved by three-dimensional harmonic oscillator algebra. Defining
αi = 1√

2θi
(x2i−1 + ix2i), the commutation relations (3.3) are equivalent to

[αi, αj ] = 0 and
[
αi , α

†
j

]
= δij . (3.10)

The unique irreducible representation of this algebra is provided by the Fock module

H = C
[
α†

1 , α
†
2 , α

†
3

]
|0, 0, 0〉 =

⊕

n1,n2,n3∈N0

C|n1, n2, n3〉 , (3.11)

where |0, 0, 0〉 is the Fock vacuum with αi|0, 0, 0〉 = 0 for i = 1, 2, 3, and the orthonormal basis
states |n1, n2, n3〉 are connected by the action of the creation and annihilation operators subject
to the commutation relations (3.10). The operators (3.6) may then be taken to act on the Hilbert
space

HW = W ⊗ H (3.12)

where W ∼= C
N is a Chan–Paton multiplicity space of dimension N , the number of D6-branes (and

the rank of the gauge theory). The space W carries the nonabelian degrees of freedom and we
understand Zi and Φ as N ×N matrices of operators acting on H, i.e. as elements of the algebra
MN×N (C)⊗A. In the supersymmetric matrix model where the matrices are operators acting on the
Hilbert space (3.12), we only need to focus on the operators Zi, Φ and their hermitean conjugates
since we are interested in the class of minima where all other fields, including the twisted fermions,
are set to zero. For example, the vacuum solution with FA = 0 is given by

Zi = αi 1N×N ,
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Φ =
3∑

i=1

ǫi α
†
i αi 1N×N . (3.13)

For U(1) gauge theory, other solutions are found with the solution generating technique, de-
scribed for example in [25, 26]. Fix an integer n ≥ 1 and consider a partial isometry Un which
projects all states |i, j, k〉 with i+ j + k < n out of the Fock space H. It obeys

U †
n Un = 1 − Πn and Un U

†
n = 1 (3.14)

where Πn is the projector

Πn =
∑

i+j+k<n

|i, j, k〉〈i, j, k| . (3.15)

We may then build a solution from the vacuum (3.13) of the form

Zi = Un αi f(N )U †
n ,

Φ = Un

3∑

i=1

ǫi α
†
i αi U

†
n , (3.16)

where f is a real function of the total number operator

N =
3∑

i=1

α†
i αi . (3.17)

The function f(N ) is found by substituting this ansatz into the instanton equations to generate
a recursion relation. With the initial condition f(0) = f(1) = · · · = f(n − 1) = 0 and the finite
action condition f(r) → 1 as r → ∞, one then finds the solution

f(N ) =

√
1 − n (n+ 1) (n + 2)

(N + 1) (N + 2) (N + 3)
(1 − Πn) . (3.18)

The topological charge of the noncommutative U(1) instantons defined by

k := ch3 = − i
6 θ1 θ2 θ3 Tr HFA ∧ FA ∧ FA = 1

6 n (n+ 1) (n + 2) (3.19)

is the number of states in H with N < n, i.e., the number of states removed by the operator Un,
or equivalently the rank of the projector (3.15).

3.3 Nonabelian solutions

We will now make some comments on how to generalize the U(1) solutions described above to
generic U(N) gauge group. One can start, for example, from the noncommutative u(3)-valued in-
stanton gauge field configuration constructed in [27], which is a smooth deformation of the canonical
connection on the Stiefel bundle over P

3, written in local coordinates on a patch C
3 of the projective

space P
3. To describe this solution, we set all θi := θ, i = 1, 2, 3 for simplicity, and consider the

exterior derivative d as a vector space morphism d : A → Ω1
A
, where the sheaf of one-forms Ω1

A

over A is the bimodule A⊕6. Introduce elements

ψi =
√

6θ k
(
dαi − 2θ αi

(
γ2 + γ

√
1 + 3θ

)−1
α†

j dαj
)
γ−1 (3.20)
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of Ω1
A

for i = 1, 2, 3, where γ : H → H is the invertible operator

γ =
√

2θN + 1 + 3θ . (3.21)

From these operators one can construct a gauge field regarded as a morphism of A-modules

FA : HW0 −→ HW0 ⊗A Ω2
A , (3.22)

where HW0 is the module W0⊗H with W0
∼= C

3 the fibre space of the Stiefel bundle, and the sheaf
of two-forms over A is the bimodule Ω2

A
= A⊕15. It is given by the 3 × 3 matrix of Fock space

operators
FA =

(
ψi ∧ ψ†

j

)
(3.23)

which, in the basis of Ω2
A

generated by (3.20), has components

F 2,0
A = 0 and

(
F 1,1

A

)
ij

= eij (3.24)

where eij are the standard 3 × 3 matrix units. The corresponding covariant coordinates Zi
0 thus

obey the commutation relations

[
Zi

0 , Z
j
0

]
= 0 and

[
Z0,i , Z

†
0,j

]
= 3eij , (3.25)

and consequently they solve the noncommutative DUY equations in (3.7) for U(3) gauge group
with instanton charge k. See [27] for the detailed expressions for the covariant coordinates Zi

0.

The desired N × N covariant coordinates Zi may be realized in terms of the U(3) solution
Zi

0 above by appealing to the Hilbert hotel argument, following [28]. For this, we introduce a
lexicographic ordering N

3
0 ∼ N0 on the Fock space H so that |n1, n2, n3〉 = |q〉 with q ∈ N0, and fix

an orthonormal basis ~ρa, a = 0, 1, 2 of the fibre space W0. Then ~ρa ⊗ |q〉 is an orthonormal basis
for HW0 and there is a one-to-one correspondence ~ρa ⊗ |q〉 ↔ |3q + a〉 of basis states. Similarly,
by fixing an orthonormal basis ~λa, a = 0, 1, . . . ,N − 1 of the U(N) representation space W ∼= C

N ,
there is a one-to-one correspondence ~λa ⊗ |q〉 ↔ |N q + a〉 for the corresponding orthonormal basis
of HW . Let us now introduce the rectangular N × 3 unitary isomorphism U : HW0 → HW by the
formula

U =

2∑

a=0

N−1∑

b=0

∞∑

q,r=0
3q+a=N r+b

|N r + b〉〈3q + a| =

2∑

a=0

N−1∑

b=0

∞∑

q,r=0
3q+a=N r+b

~λb ~ρa
† ⊗ |b〉〈a| . (3.26)

Starting from the U(3) solution of the noncommutative gauge theory above, one then constructs
the U(N) solutions

Zi = U Zi
0 U

† . (3.27)

Of course, these nonabelian solutions only constitute a subset of the full BPS solution space. More
general solutions will contain appropriate versions of the function f(N) which featured into the
solution of the noncommutative DUY equations when N = 1, and which reflect extra free moduli
such as the size and relative orientation of the D0-branes on top of each other at the origin of
X = C

3 (as exhibited explicitly in [25] for the four-dimensional case). However, in the following we
will not need the details of this solution. We will only need to know that, even in the nonabelian
case, the solution is parametrized by specific partial isometry operators as in Section 3.2 above.
Some further aspects of the generic U(N) noncommutative instantons in six dimensions will be
described in the next section.
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3.4 Three-dimensional coloured partitions

A key feature of the solution of the six-dimensional cohomological gauge theory will be its inter-
pretation as a statistical theory of three-dimensional random partitions. To see random partitions
emerging, let us diagonalize the field Φ using the U(N) gauge symmetry to get

Φ =




Φ1

Φ2

. . .

ΦN


 . (3.28)

This transformation induces a Vandermonde determinant det(ad Φ) in the path integral measure
(3.39) below. One can now classify the fixed points of the nonabelian gauge theory by generalizing
the arguments of [8, 29]. We are prescribed to compute the path integral over configurations of the
Higgs field whose asymptotic limit is a = diag(a1, . . . , aN ) ∈ u(1)⊕N . With this choice of boundary
condition the noncommutative field Φ has the form

Φ = a ⊗ 1H + 1N×N ⊗ ΦH (3.29)

on (3.12), up to a function that goes to zero at infinity faster that any power of xi. Note that this
boundary condition only holds on X = C

3. Nontrivial geometries require a more involved gluing
together of different C

3 patches, as we discuss in Section 6. The degeneracies of the asymptotic
Higgs vevs breaks the gauge group U(N) → ∏

l U(kl) with

∑

l

kl = N . (3.30)

Correspondingly, the Chan–Paton multiplicity spaceW decomposes into irreducible representations
W =

⊕
l Wl with dimCWl = kl.

With our choice of the equivariant action of T
3 × U(1)N , the gauge theory will localize onto

the maximal torus. Consequently the Higgs vevs al may all be assumed distinct and the vacuum is
the one with maximal symmetry breaking kl = 1 for l = 1, . . . ,N . This means that the full Hilbert
space (3.12) splits into a sum of N “abelian” Hilbert spaces H, each one “coloured” by the Higgs
vev al. The theory localizes on noncommutative U(1) instantons that are in correspondence with
maps of the full Hilbert space onto the subspace

HI =

N⊕

l=1

Ial

[
α†

1 , α
†
2 , α

†
3

]
|0, 0, 0〉 , (3.31)

where Ial
are ideals in the polynomial ring C[z1, z2, z3]. Each partial isometry Un satisfying (3.14)

identifies the Fock space (3.11) with a subspace of the form in (3.31), with I the ideal of codimension
k consisting of polynomials f ∈ C[z1, z2, z3] for which

Πn · f
(
α†

1 , α
†
2 , α

†
3

)
|0, 0, 0〉 = 0 . (3.32)

These ideals are generated by monomials zi zj zk and are in one-to-one correspondence with three-
dimensional partitions. Thus in complete analogy with the four-dimensional case [9, 29, 30], the
solutions correspond to three-dimensional (plane) partitions with the triples (i, j, k) in (3.15) cor-
responding to boxes of the partition. More precisely, the solution can be found in terms of coloured
partitions

~π = (π1, . . . , πN ) , (3.33)
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which are rows of N ordinary three-dimensional partitions πl labelled by al. We will explain this
correspondence in more detail in Section 5.

A specific class of observables of the gauge theory is given by the trace of powers of the Higgs
field Φ. Since the gauge theory is cohomological all the interesting observables (including the
integral of the Chern character over C

3) can be expressed through these quantities by means of
descendent relations. In particular, for the solution associated to the sum of ideals I = Ia1⊕· · ·⊕IaN

corresponding to the three-dimensional coloured partition (3.33), this produces the normalized
character

χI(t) =
(
1 − e t ǫ1

) (
1 − e t ǫ2

) (
1 − e t ǫ3

)
Tr HI

e t Φ (3.34)

=

N∑

l=1

e t al

(
1 −

(
1 − e t ǫ1

) (
1 − e t ǫ2

) (
1 − e t ǫ3

) ∑

(i,j,k)∈πl

e t (ǫ1 (i−1)+ǫ2 (j−1)+ǫ3 (k−1))
)
.

This construction has a heuristic interpretation in terms of D-branes. Localizing the gauge the-
ory onto the Cartan subalgebra is equivalent to displacing the N D6-branes in the four-dimensional
extended space outside the Calabi–Yau manifold X. The vevs of the Higgs field correspond to the
positions of neighbouring D-branes relative to one another. This means that there are N separated
D6-branes, each one with its own bound state of D0-branes corresponding to a six-dimensional
instanton through anomalous couplings to Ramond–Ramond fields on the D6-brane worldvolume.
The D0-branes are indexed by the boxes of the three-dimensional partition πl and the “colour”
of the partition is the information relative to which D6-brane they are bound to. kl D0-branes
bound to a D6-brane labelled by al are described by a three-dimensional partition with kl boxes
in the l-th sector of the Hilbert space and correspond to a charge kl instanton on the worldvolume
of the D6-brane in position al. It should be stressed though that this geometric interpretation is
somewhat naive and if the instanton measure has a nontrivial dependence on the Higgs vevs al,
then this could reflect open string degrees of freedom stretching between different D6-branes.

3.5 Instanton weight

We will now examine the noncommutative instanton contributions to the partition function of the
U(N) topological gauge theory on C

3 in the vacuum of maximal symmetry breaking. Proceeding
with localization the contribution of an instanton associated to a collection of ideals I comes with
the weight factor

exp
(
− ϑ

48π3
Tr HI

FA ∧ FA ∧ FA

)
= exp

( iϑχ
(3)
I

ǫ1 ǫ2 ǫ3

)
, (3.35)

where χ
(3)
I

is the coefficient of t3 in the power series expansion of the character (3.34) about t = 0.
Using (3.9) one finds

χ
(3)
I

=
N∑

l=1

(
− a3

l

6
+ ǫ1 ǫ2 ǫ3

∑

(i,j,k)∈πl

1
)
. (3.36)

The first term is independent of the partitions πl and can be dropped as a universal perturbative
contribution. The second term yields, for each l, the total number of boxes kl = |πl| in the partition
πl, which coincides with the topological charges (3.19) of the corresponding noncommutative U(1)
instantons. Thus for the weight of an instanton we obtain

e iϑ |~π| (3.37)
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in the sector of instanton charge

k = |~π| =
N∑

l=1

|πl| (3.38)

given by the total number of boxes in the coloured partition.

3.6 Instanton measure

In addition to the weight there is also a contribution from the determinants representing quantum
fluctuations around the instanton solutions. In the noncommutative gauge theory the ratio of
fluctuation determinants is represented by [8]

det (ad Φ) det (ad Φ + ǫ1 + ǫ2) det (ad Φ + ǫ1 + ǫ3) det (ad Φ + ǫ2 + ǫ3)

det (ad Φ + ǫ1 + ǫ2 + ǫ3) det (ad Φ + ǫ1) det (ad Φ + ǫ2) det (ad Φ + ǫ3)
(3.39)

where Φ is in general nonabelian and given by (3.29). The origin of this ratio will be explained in
more detail in Section 5. In the following we will compute the instanton measure explicitly. The
ratio of determinants can be written as

exp
(
−

∫ ∞

0

dt

t
Tr HI

e t Φ Tr HI
e−t Φ

(
1 − e t ǫ1

) (
1 − e t ǫ2

) (
1 − e t ǫ3

))
(3.40)

which can be recast as an index-like quantity

Z
U(1)N

I (~π) = exp
(
−

∫ ∞

0

dt

t

χI(t)χI(−t)(
1 − e t ǫ1

) (
1 − e t ǫ2

) (
1 − e t ǫ3

)
)

=: e−IU(1)N (~π) , (3.41)

where ~π is the coloured partition corresponding to the given BPS state.

First, we review the abelian case N = 1 in some detail. Let us break up the integral IU(1)(π)

in (3.41) into three contributions IU(1)(π) = I
U(1)
vac + I

U(1)
1 (π) + I

U(1)
2 (π) given by

IU(1)
vac =

∫ ∞

0

dt

t

1(
1 − e t ǫ1

) (
1 − e t ǫ2

) (
1 − e t ǫ3

) ,

I
U(1)
1 (π) =

∑

(i,j,k)∈π

∫ ∞

0

dt

t

(
− e t (ǫ1 i+ǫ2 j+ǫ3 k) + e−t (ǫ1 i+ǫ2 j+ǫ3 k)

)
, (3.42)

I
U(1)
2 (π) =

∑

(i,j,k)∈π
(i′,j′,k′ )∈π

∫ ∞

0

dt

t
e t (ǫ1 (i−i′ )+ǫ2 (j−j′ )+ǫ3 (k−k′ ))

×
(
e t ǫ1 − e−t ǫ1 + e t ǫ2 − e−t ǫ2 + e t ǫ3 − e−t ǫ3

)
.

The integral I
U(1)
vac is the universal vacuum contribution from the empty partition and will be

dropped in the following. Evaluating the remaining integrals we obtain

I
U(1)
1 (π) = iπ

∑

(i,j,k)∈π

sgn(ǫ1 i+ ǫ2 j + ǫ3 k) , (3.43)

I
U(1)
2 (π) = iπ

∑

(i,j,k)∈π
(i′,j′,k′ )∈π

(
sgn

(
ǫ1 (i− i′ + 1) + ǫ2 (j − j′ ) + ǫ3 (k − k′ )

)

+ sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ + 1) + ǫ3 (k − k′ )

)
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+ sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ ) + ǫ3 (k − k′ + 1)

))
.

Since we are interested only in the exponentials of these integrals, the value ± 1 of the signum
function is irrelevant (we count e± iπ = −1). Thus we have

e−I
U(1)
1 (π) = (−1)|π|−diag ,

e−I
U(1)
2 (π) = (−1)3|π|

2−diag , (3.44)

where diag denotes the “diagonal” terms for which the signum functions combine to give zero and
have to be subtracted since they give a factor +1 instead of −1. The direct counting of how many
diagonal terms are present for a given partition π is a bit complicated, and moreover one has to
take into account the constraint (3.9). Instead, we will use induction to prove the result

e−I
U(1)
1 (π)−I

U(1)
2 (π) = (−1)|π| (3.45)

for any three-dimensional partition π.

Consider first the partition π = (1, 1, 1) consisting of a single box, so that |π| = 1. In this

case one has e I
U(1)
1 (π) = 1, e I

U(1)
2 (π) = −1 and e−I

U(1)
1 (π)−I

U(1)
2 (π) = −1, so this partition satisfies

(3.45). Suppose now that for some partition π, eq. (3.45) is true. In the induction step we increase
the number of boxes in this partition by one (in such a way that we still obtain a valid partition).
Denote the new partition with the extra box at a given position (a, b, c) by π∗. One has |π∗|−|π| = 1,
and so we have to prove that

e−I
U(1)
1 (π∗)−I

U(1)
2 (π∗)+I

U(1)
1 (π)+I

U(1)
2 (π) = −1 . (3.46)

For the first integral we have

I
U(1)
1 (π∗) − I

U(1)
1 (π) = i π sgn(ǫ1 a+ ǫ2 b+ ǫ3 c) . (3.47)

For the second integral, after some algebra we obtain

I
U(1)
2 (π∗) − I

U(1)
2 (π)

= 6|π| + 3 − min(a, b− 1, c− 1) − min(a− 1, b, c) − min(a− 1, b, c − 1)

− min(a, b− 1, c) − min(a− 1, b− 1, c) − min(a, b, c − 1) . (3.48)

From these results it is easy to establish (3.46), proving the induction step.

Putting everything together, the abelian instanton measure is given by

Z
U(1)
I (π) = ZU(1)

vac (−1)|π| . (3.49)

Dropping the perturbative vacuum contribution and combining this result with the weight (3.37),
the full instanton contribution to the U(1) partition function is given by

Z
U(1)
DT

(
C

3
)

=
∑

π

(
− e i ϑ

)|π|
= M(q) . (3.50)

This is the known Donaldson–Thomas partition function on C
3.

This construction can be easily generalized to the case where the full nonabelian gauge sym-
metry is broken to U(1)N . Using the character (3.34), the exponent IU(1)N

(~π) of the fluctuation
determinant (3.41) can again be written as the sum of three integrals

IU(1)N

vac =

∫ ∞

0

dt

t

1(
1 − e t ǫ1

) (
1 − e t ǫ2

) (
1 − e t ǫ3

)
N∑

l,n=1

e t (al−an) , (3.51)
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I
U(1)N

1 (~π) =

∫ ∞

0

dt

t

N∑

l,n=1

e t (al−an)

×
(
−

∑

(i,j,k)∈πl

e t (ǫ1 i+ǫ2 j+ǫ3 k) +
∑

(i,j,k)∈πn

e−t (ǫ1 i+ǫ2 j+ǫ3 k)
)
,

I
U(1)N

2 (~π) =

∫ ∞

0

dt

t

N∑

l,n=1

e t (al−an)
∑

(i,j,k)∈πl

(i′,j′,k′ )∈πn

e t (ǫ1 (i−i′ )+ǫ2 (j−j′ )+ǫ3 (k−k′ )

×
(
e t ǫ1 − e−t ǫ1 + e t ǫ2 − e−t ǫ2 + e t ǫ3 − e−t ǫ3

)

where as before πn, πl denote components of the coloured partition (3.33) and an, al are components
of the classical value of the Higgs field (3.28). Evaluating the integrals, the non-trivial contributions
can be written as

I
U(1)N

1 (~π)diag = iπ

N∑

l=1

∑

(i,j,k)∈πl

sgn(ǫ1 i+ ǫ2 j + ǫ3 k) ,

I
U(1)N

1 (~π)offdiag = iπ

N∑

l,n=1
l 6=n

∑

(i,j,k)∈πl

sgn(ǫ1 i+ ǫ2 j + ǫ3 k + aln) ,

I
U(1)N

2 (~π)diag = iπ

N∑

l=1

∑

(i,j,k)∈πl

(i′,j′,k′ )∈πl

(
sgn

(
ǫ1 (i− i′ + 1) + ǫ2 (j − j′ ) + ǫ3 (k − k′ )

)

+ sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ + 1) + ǫ3 (k − k′ )

)

+ sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ ) + ǫ3 (k − k′ + 1)

))
,

I
U(1)N

2 (~π)offdiag = iπ

N∑

l,n=1
l<n

∑

(i,j,k)∈πl

(i′,j′,k′ )∈πn

(
sgn

(
ǫ1 (i− i′ + 1) + ǫ2 (j − j′ ) + ǫ3 (k − k′ ) + aln

)

+ sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ + 1) + ǫ3 (k − k′ ) + aln

)

+ sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ ) + ǫ3 (k − k′ + 1) + aln

)

− sgn
(
ǫ1 (i− i′ − 1) + ǫ2 (j − j′ ) + ǫ3 (k − k′ ) + aln

)

− sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ − 1) + ǫ3 (k − k′ ) + aln

)

− sgn
(
ǫ1 (i− i′ ) + ǫ2 (j − j′ ) + ǫ3 (k − k′ − 1) + aln

))
, (3.52)

where we have broken up the integrals into diagonal and off-diagonal components in the summations
over the colour indices, and denoted aln := al − an.

In the U(1)N phase one has aln 6= 0 for all 1 ≤ l 6= n ≤ N , for otherwise the gauge symmetry
would be enhanced. Then one can always choose the infrared regulators ǫ1 and ǫ2 such that
ǫ1M + ǫ2 L+ aln 6= 0 for any pair of integers M,L, in addition to the Calabi–Yau condition (3.9).
This ensures that the signum functions containing these vevs are never zero. It is easy to see that
in this case one has

e−I
U(1)N

1 (~π)diag = e−
P

l I
U(1)
1 (πl) ,
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e−I
U(1)N

1 (~π)offdiag =

N∏

l,n=1
l 6=n

(−1)|πl| ,

e−I
U(1)N

2 (~π)diag = e−
P

l I
U(1)
2 (πl) ,

e−I
U(1)N

2 (~π)offdiag = 1 , (3.53)

and hence the full contribution is given by

e−I
U(1)N

1 (~π)−I
U(1)N

2 (~π) = e−P

l (I
U(1)
1 (πl)+I

U(1)
2 (πl))

( N∏

l,n=1
l 6=n

(−1)|πl|
)
. (3.54)

Using the abelian result (3.45) to get

e−I
U(1)
1 (πl)−I

U(1)
2 (πl) = (−1)|πl| , (3.55)

we arrive finally at the instanton measure

e−I
U(1)N

1 (~π)−I
U(1)N

2 (~π) = (−1)N |~π| . (3.56)

Combining this result with the weights (3.37) leads to the partition function (3.1).

4 Matrix equations and moduli of stable coherent sheaves

The purpose of this section is two-fold. Firstly, we will recast the BPS solutions of the non-
commutative gauge theory explicitly in purely commutative terms, by relating the counting of
noncommutative instantons to the counting of a special class of stable coherent sheaves in three
dimensions. This gives a geometrical explanation for and generalizes the natural gauge theoretical
identification between the compactified instanton moduli space M(X) and the Hilbert scheme of
points Hilb

k(X) in the abelian case N = 1 when the underlying variety is X = C
3. Secondly,

we will exhibit an ADHM-like parametrization of the equations defining M(C3), analogous to the
four-dimensional case. This will naturally bridge the noncommutative gauge theory formalism with
the topological matrix quantum mechanics that we will introduce in the next section. This matrix
model is equivalent to a quantization of the collective coordinates of the gauge theory around an
instanton solution, and it will provide an alternative means for analysing the six-dimensional coho-
mological gauge theory. As before, we begin by summarizing the main results of this section before
plunging into the detailed technical calculations.

4.1 Statement of results

There are natural mappings between isomorphism classes of the following three objects:

(A) U(N) noncommutative instantons on C
3 of topological charge ch3 = k.

(B) Linear maps Bi ∈ End(V ), i = 1, 2, 3, I ∈ Hom(W,V ) and J,K ∈ Hom(V,W ) which solve
the “ADHM-type” matrix equations

[B1, B2] + I J = 0 ,
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[B1, B3] + I K = 0 ,

[B2, B3] = 0 ,

3∑

i=1

[
Bi , B

†
i

]
+ I I† − J† J −K†K = 3 1V (4.1)

on finite-dimensional hermitean vector spaces V ∼= C
k and W ∼= C

N , modulo the natural
action of U(V ) given by

Bi 7−→ g Bi g
−1 , I 7−→ g I , J 7−→ J g−1 and K 7−→ K g−1 . (4.2)

(C) Rank N torsion-free sheaves E on P
3 with ch3(E) = k, fixed trivializations on three lines at

infinity, vanishing H1(P3,E(−2)), and satisfying certain stability conditions.

These three classes are not equivalent but rather represent alternative characterizations of one
another. The map from (A) to (B) follows from a rewriting of the noncommutative DUY equations
in (3.7) using special properties of projective modules over the noncommutative space R

6
θ [22].

The map from (C) to (B) follows from detailed calculations in sheaf cohomology which rewrites the
sheaves E as the cohomology of certain complexes of sheaves on P3. It canonically identifies both the
D0-brane and D6-brane Chan–Paton spaces V ⊂ H and W as certain sheaf cohomology groups. In
particular, W is associated with the framing of E. The last equation of (4.1) is a stability condition.
Combined with the linear maps φ ∈ End(V ), P ∈ Hom(W,V ) solving the matrix equations

[B1, φ] = ǫ1B1 ,

[B2, φ] − P J = ǫ2B2 ,

[B3, φ] − P K = ǫ3B3 , (4.3)

which come from the noncommutative Higgs fields Φ obeying (3.8), it will be used in the next
section to formalize the connection between the equivariant model and the statistical mechanics of
three-dimensional random partitions.

4.2 Linear algebra of noncommutative instantons

In the previous section we described charge k noncommutative instantons in six dimensions as
elements of the algebra MN×N (C) ⊗ A acting on the free module W ⊗ A ∼= A⊕N of rank N over
the noncommutative algebra A. The K-theory of the algebra A is the abelian group Z ⊕ Z, with
positive cone N0 ⊕ N0. Thus every projective module Ek,N over A is labelled by a pair of positive
integers k,N , which represent exactly the instanton number and rank respectively. Explicitly, one
has [22]

Ek,N = H
⊕k ⊕ A

⊕N (4.4)

where as before H is the Fock space (3.11). The key to obtaining a set of matrix equations which
describes six-dimensional noncommutative instantons is the existence of a natural isomorphism
Ek,N

∼= A⊕N of A-modules.

A connection ∇ : Ek,N → Ek,N ⊗A Ω1
A

induces a decomposition of the covariant coordinates
Zi ∈ EndA(Ek,N ) with respect to the splitting (4.4) as

Z1 =

(
B1 I0
I ′ R1

)
, Z2 =

(
B2 J ′

J0 R2

)
and Z3 =

(
B3 K ′

K0 R3

)
. (4.5)
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Using irreducibility of the Fock module H, we note that the rank one free module A can be
decomposed into countably many copies of H as A =

⊕
n∈N0

Pn · A, where Pn = |n〉〈n| is an
orthogonal system of projectors onto one-dimensional subspaces. For each n ∈ N0, the mapping
Pn ·f 7→ 〈n|f establishes an isomorphism Pn ·A ∼= H of A-modules. Using this identification, in (4.5)
we regard Bi ∈Mk×k(C) as linear operators acting on a finite-dimensional hermitean vector space
V ∼= C

k, while Ri ∈ EndA(W ⊗ A) with W ∼= C
N the finite-dimensional Chan–Paton multiplicity

space as in the previous section. The off-diagonal entries in eq. (4.5) are operators

I0, J
′,K ′ ∈ HomA(W ⊗ A, V ) and I ′, J0,K0 ∈ HomA(V,W ⊗ A) . (4.6)

In the following we will use the gauge choice I ′ = J ′ = K ′ = 0.

Then the first instanton equation of (3.7) yields the sets of equations

[B1, B2] + I0 J0 = 0 and [R1, R2] − J0 I0 = 0 ,

[B1, B3] + I0K0 = 0 and [R1, R3] −K0 I0 = 0 ,

[B2, B3] = 0 and [R2, R3] = 0

(4.7)

along with

R1 J0 − J0B1 = 0 , R1K0 −K0B1 = 0 and I0R2 −B2 I0 = 0 (4.8)

plus
R3 J0 − J0B3 = R2K0 −K0B2 and I0R3 −B3 I0 = 0 . (4.9)

The second instanton equation in (3.7) yields the sets of equations

3∑

i=1

[
Bi , B

†
i

]
+ I0 I

†
0 − J†

0 J0 −K†
0 K0 = 3 1V ,

3∑

i=1

[
Ri , R

†
i

]
− I†0 I0 + J0 J

†
0 +K0K

†
0 = 3 1W⊗A ,

I0R
†
1 − J†

0 R2 −K†
0 R3 = B†

1 I0 −B2 J
†
0 −B3K

†
0 . (4.10)

Let us now decompose the off-diagonal operators in eq. (4.5) as

I0 = I ⊗ ψI ∈ HomA

(
W ⊗ A

⊕N , V
) ∼= Hom(W,V ) ⊗ EndA

(
A

⊕N
)

(4.11)

with I ∈Mk×N(C) and

J0 = J ⊗ ψJ ,K0 = K ⊗ ψK ∈ HomA

(
V , W ⊗ A

⊕N
) ∼= Hom(V,W ) ⊗ EndA

(
A

⊕N
)

(4.12)

with J,K ∈ MN×k(C), where the elements of MN×N (C) ⊗ A satisfy ψI ψJ = ψI ψK = 1W⊗A. In
this way we arrive, from (4.7) and (4.10), at the matrix equations (4.1).

We have thus found that the set of ADHM-type data

(Bi; I, J,K) ∈ Hom(V, V )⊕3 ⊕ Hom(W,V ) ⊕ Hom(V,W )⊕2 (4.13)

can be used to characterize the noncommutative instantons. However, this set of data is not likely
to be complete, i.e. a solution to the set of matrix equations (4.1) need not yield a solution
(Ri;ψI , ψJ , ψK) to the remaining equations in (4.7)–(4.10). One can also reformulate the equivari-
ant equations (3.8) of the Ω-background as matrix equations by writing the adjoint scalar field Φ
in the block form

Φ =

(
φ P0

P ′ ̺

)
(4.14)
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with respect to the splitting of the projective module (4.4). Then the matrix equations for the
k × k matrix φ in the gauge P ′ = 0 are given by (4.3) with P0 = P ⊗ ψI . In the next section these
equations will be interpreted as the compensation of the toric action T

3 by a gauge transformation
in an associated topological matrix model.

Finally, let us see how to explicitly map solutions of the matrix equations (4.1) onto noncommu-
tative instanton solutions on the free module A⊕N . The partial isometry equations (3.14) identify

the k-dimensional subspace V := kerUn. In particular, the linear operator U †
1 has a trivial kernel,

while U1 has a one-dimensional kernel which is spanned by the vacuum vector |0, 0, 0〉. It follows
that as A-modules there is a natural isomorphism kerUn

∼= H⊕k and hence one can identify the
projective module (4.4) with

Ek,N
∼= ker(Un) ⊕ A

⊕N . (4.15)

We may now define an invertible mapping µ : Ek,N
≈−→ A⊕N by

µ(ξ, f) = ξ + U †
n · f and µ−1(f) =

(
Πn(f) , Un · f

)
. (4.16)

Under this isomorphism of projective A-modules, the image of an arbitrary covariant coordinate
Z ∈ EndA(Ek,N ) represented as

Z =

(
B I
J R

)
(4.17)

is the element of EndA(A⊕N ) ∼= MN×N (C) ⊗ A given by

µ(Z) = ΠnBΠn + Πn I
† I Un + U †

n J J
† Πn + U †

nRUn . (4.18)

An explicit construction of the data (4.13) for U(3) gauge group may be done by an elementary
extension of the construction of [31] for the four-dimensional noncommutative U(2) ADHM data.
The U(3) noncommutative instanton solutions of [27] can be written in the form A = Ψ† dΨ,
where Ψ ∈ HomA(W0 ⊗ A,Ek,3). These solutions can again be extended to generic U(N) gauge
group following the technique explained in Section 3.3. We will not explore further details of this
construction in this paper.

4.3 Beilinson spectral sequence

In the remainder of this section we will show that the matrix equations (4.1) provide a geometrical
interpretation of the noncommutative instantons satisfying the six-dimensional DUY equations on
C

3. For this, we will generalize an analogous construction in four dimensions exhibited by Nakajima
in [32] (see also [33] and [34]). Since it is more convenient to work with compact spaces, we regard
an instanton on C

3 as a holomorphic bundle on P
3 with a trivialization at infinity. To compactify

the instanton moduli space we include all semistable torsion free sheaves on P
3 with a trivialization

condition at infinity and the appropriate topological quantum numbers of an instanton on C
3. This

allows for singularities of the instanton gauge field on C
3, with the singularity locus the support

where the torsion free sheaves fail to be holomorphic vector bundles.

We are thus interested in the framed moduli space of torsion free sheaves given by

MN,k

(
P

3
)

=





E = torsion free sheaf on P
3

rank(E) = N , c1(E) = 0
ch2(E) = 0 , ch3(E) = k

E
∣∣
p∞

∼= O⊕N
p∞





/
isomorphisms (4.19)
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where p∞ is the plane at infinity. Since C
3 ∼= P

3/P2, in projective coordinates one has explicitly
p∞ = [0 : z1 : z2 : z3] ∼= P

2. The moduli space (4.19) corresponds to the counting of D0–D6 bound
states on C

3 in a suitable B-field background, as we demonstrate explicitly in the next section.
Following [32], we will use the Beilinson spectral sequence to parametrize a generic torsion free sheaf
E and then show that this spectral sequence degenerates into a complex of sheaves on P

3 which is
related to solutions of the matrix equations (4.1). The Beilinson theorem in our case implies that
for any torsion free sheaf E on P

3 there is a spectral sequence with s-th term Ep,q
s which converges

to E if p+ q = 0 and to zero otherwise.

The Beilinson spectral sequence can be constructed by starting with the product space P
3 ×P

3

and the canonical projections onto the first and second factors

P3 × P3

p1

||yyy
yyyyyyyyy

yy

p2

##FF
FF

FF
FF

FF
FF

FF
F

P
3

P
3 .

(4.20)

Then for any coherent sheaf E on P
3 one has the projection formula

p1 ∗
(
p∗2E ⊗ O∆

)
= p1 ∗

(
p∗2E

∣∣
∆

)
= E (4.21)

where ∆ ∼= P
3 ⊂ P

3 × P
3 is the diagonal. In the following we will use the notation

E1 ⊠ E2 := p∗1E1 ⊗ p∗2E2 (4.22)

for the exterior product over P
3 × P

3 of two sheaves E1,E2 on P
3.

The next step consists in replacing the structure sheaf O∆ of the diagonal with an appropriate
projective resolution, which we will take to be given by the Koszul complex. Consider the short
exact sequence which defines the tangent bundle to P

3 by

0 //OP3 //OP3(1)⊕4 //TP3 //0 . (4.23)

If we tensor this sequence with OP3(−1) we get the short exact sequence

0 //OP3(−1) //O
⊕4
P3

//Q //0 , (4.24)

which defines the universal quotient bundle Q = TP3 ⊗ OP3(−1) and its dual Q∗ = Ω1
P3 ⊗ OP3(1)

where Ω1
P3 is the sheaf of one-forms on P

3. Then the Koszul complex is given by [35]

0 −→ ∧3 (
OP3(−1) ⊠ Q∗ )

−→ ∧2 (
OP3(−1) ⊠ Q∗ )

−→ OP3(−1) ⊠ Q∗ −→
−→ OP3×P3 −→ O∆ −→ 0 . (4.25)

From this complex we can construct a spectral sequence by taking an injective resolution of the
hyperdirect image of eq. (4.21), and replacing O∆ with its Koszul resolution. More details can be
found in [35, Chapter 2 §3.1] and [32, Chapter 2]. By introducing

Cp :=
∧−p(

OP3(−1) ⊠ Q
∗ )

(4.26)

the double complex can be expressed as the Fourier–Mukai transform

R
•p1 ∗

(
p∗2E ⊗C•) , (4.27)
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where R
• is the right derived functor in the bounded derived category of coherent sheaves on P

3.
Note that each term of the Koszul resolution has the form

Cp = F
p
1 ⊠ F

p
2 . (4.28)

The Beilinson theorem then implies that for any coherent sheaf E on P
3 there is a spectral

sequence Ep,q
s with E1-term

Ep,q
1 = F

p
1 ⊗Hq

(
P

3 , E ⊗ F
p
2

)
(4.29)

which converges to

Ep,q
∞ =

{
E(−r) , if p+ q = 0 ,

0 , otherwise
(4.30)

for each fixed integer r ≥ 0, where we denote E(−r) := E ⊗O
P3

OP3(−r). Explicitly, the first term
is given by

Ep,q
1 = Hq

(
P

3 , E(−r) ⊗ Ω−p
P3 (−p)

)
⊗ OP3(p) (4.31)

for p ≤ 0. The E1-term complexes of the spectral sequence can be summarized in the diagram

E−3,3
1

d1 // E−2,3
1

d1 // E−1,3
1

d1 // E0,3
1

E−3,2
1

d1 // E−2,2
1

d1 // E−1,2
1

d1 // E0,2
1

E−3,1
1

d1 // E−3,1
1

d1 // E−1,1
1

d1 // E0,1
1

E−3,0
1

d1 // E−2,0
1

d1 // E−1,0
1

d1 // E0,0
1 //

OO

p

q

(4.32)

where all other entries are zero for dimensional reasons and the only nonvanishing differential

d1 : Ep,q
1 −→ Ep+1,q

1 (4.33)

is determined by the morphisms in the Koszul complex (4.25). The double complex (4.32) is an
object of the derived category. Our goal in the following is to reduce it to an object of the stable
category of coherent sheaves on P

3. Physically, this can be thought of as the stabilization of a
topological B-model brane to a Type IIA D6-brane wrapping P

3.

The last ingredient we will need comprises a few short exact sequences that will play an impor-
tant role in explicit computations. They are given by

0 //OP3(−1)
×z0 //OP3

z0=0 //Op∞
//0 , (4.34)

0 //Ω1
P3

//OP3(−1)⊕4 //OP3 //0 , (4.35)

0 //Ω2
P3

//OP3(−2)⊕6 //Ω1
P3

//0 , (4.36)

0 //Ω3
P3

//OP3(−3)⊕4 //Ω2
P3

//0 . (4.37)

The first sequence defines the plane at infinity p∞ = [0 : z1 : z2 : z3] ∼= P
2, while the other three

sequences are the Euler sequences for differential forms on P
3 obtained via truncation of the Koszul

complex.
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The final stage consists in imposing suitable boundary conditions on the sheaf E. The appropri-
ate boundary conditions were found in [8] and consist in imposing that the sheaf E restricted to the
projective plane P

2 at infinity corresponds to a four-dimensional instanton, viewed as an asymptote
of the corresponding three-dimensional partition. By this we mean that it has the same cohomolog-
ical properties as the torsion free sheaves on P

2 studied in [32]. This condition should be imposed
separately along each of the three complex “directions” in C

3, i.e. the six-dimensional generalized
instantons should behave in a different way when zi → ∞, i = 1, 2, 3, corresponding to generically
distinct two-dimensional Young diagrams (partitions). The three corresponding projective planes
at infinity are given in homogeneous coordinates by p1

∞ = [z0 : 0 : z2 : z3], p
2
∞ = [z0 : z1 : 0 : z3]

and p3
∞ = [z0 : z1 : z2 : 0], and each one contains a line ℓi∞ at infinity defined by z0 = 0. We then

impose the boundary condition that E is trivial separately on each one of these three lines. With
this choice of trivializations one automatically has c1(E) = 0, and the sheaves E|pi

∞
have quantum

numbers
c1

(
E|pi

∞

)
= 0 and ch2

(
E|pi

∞

)
= c2

(
E|pi

∞

)
= ki . (4.38)

These are torsion free sheaves on P
2 of rank N trivialized on a line ℓi∞ which represent framed

four-dimensional instantons of charge ki. By T-duality, they correspond to D6–D2 bound states on
P

3 of D2-brane charge ki.

The vacuum moduli space (4.19) is recovered by setting ki =
∫
pi
∞

ch2(E) = 0. These are the

boundary conditions appropriate to the gauge theory on C
3 and will be the case studied in this

section and in Section 5. In Section 6 we will need the more general non-trivial asymptotics (4.38).
We will now impose this boundary condition in three steps, dealing with the different terms of the
spectral sequence.

4.4 Homological algebra

The first step is to determine E−3,q
1 and E0,q

1 . These terms can be treated simultaneously because
Ω3

P3
∼= OP3(−4). Let us tensor the sequence (4.34) by E(−r) to get

0 //E(−r − 1) //E(−r) //E(−r)
∣∣
p∞

//0 , (4.39)

where we have used the fact that OP2 is a locally free sheaf to set Tor1(E(−r)|p∞ ,Op∞) = 0.
Applying the snake lemma one finds the associated long exact sequence in cohomology

0 //H0
(
P

3 , E(−r − 1)
)

//H0
(
P

3 , E(−r)
)

//H0
(
P

2 , E(−r)
∣∣
p∞

)

//H1
(
P

3 , E(−r − 1)
)

//H1
(
P

3 , E(−r)
)

//H1
(
P

2 , E(−r)
∣∣
p∞

)

//H2
(
P

3 , E(−r − 1)
)

//H2
(
P

3 , E(−r)
)

//H2
(
P

2 , E(−r)
∣∣
p∞

)

//H3
(
P

3 , E(−r − 1)
)

//H3
(
P

3 , E(−r)
)

//0 .

(4.40)

Since E|p∞ is a sheaf on P
2 which is trivial when restricted on a projective line P

1 ⊂ P
2, we are

in the same situation as in [32, Chapter 2]. It follows that

H0
(
P

2 , E(−r)
∣∣
p∞

)
= 0 for r ≥ 1 , (4.41)
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H2
(
P

2 , E(−r)
∣∣
p∞

)
= 0 for r ≤ 2 . (4.42)

By imposing this condition on the cohomology long exact sequence (4.40) we find

H3
(
P

3 , E(−r − 1)
)

= H3
(
P

3 , E(−r)
)

for r ≤ 2 , (4.43)

H0
(
P

3 , E(−r − 1)
)

= H0
(
P

3 , E(−r)
)

for r ≥ 1 . (4.44)

By Serre’s vanishing theorem [35], Hq(P3,E(m)) = 0 is trivial for m ≫ 0 and q 6= 0. Combined
with Serre duality this implies

H3
(
P

3 , E(−r)
)

= 0 for r ≤ 3 , (4.45)

H0
(
P

3 , E(−r)
)

= 0 for r ≥ 1 . (4.46)

The second step is to determine E−1,q
1 . Let us start by tensoring the exact sequence (4.34) with

E(−r) ⊗ Ω1
P3(1) to get

0 //Ω1
P3(1) ⊗ E(−r − 1) //Ω1

P3(1) ⊗ E(−r) //
(
Ω1

P3(1) ⊗ E(−r)
) ∣∣

p∞
//0 . (4.47)

Since
(
Ω1

P3(1) ⊗ E(−r)
) ∣∣

p∞
is a sheaf defined on p∞ ∼= P

2 which trivializes on a line P
1 ⊂ P

2, we

are again exactly in the situation of [32, Chapter 2] and hence

H0
(
P

2 , (Ω1
P3(1) ⊗ E(−r))

∣∣
p∞

)
= 0 for r ≥ 1 ,

H2
(
P

2 , (Ω1
P3(1) ⊗ E(−r))

∣∣
p∞

)
= 0 for r ≤ 1 . (4.48)

From the corresponding long exact sequence in cohomology we have

H2
(
P

2 , (Ω1
P3(1) ⊗ E(−r))

∣∣
p∞

)
//H3

(
P

3 , Ω1
P3(1) ⊗ E(−r − 1)

)

//H3
(
P

3 , Ω1
P3(1) ⊗ E(−r)

)
//0 .

(4.49)

By imposing the conditions (4.48) and (4.43) we get

H3
(
P

3 , Ω1
P3(1) ⊗ E(−r)

)
= 0 for r ≤ 2 . (4.50)

We get other conditions by tensoring the Euler sequence for one-forms (4.35) with E(−r) to get

0 //E(−r) ⊗ Ω1
P3(1) //E(−r)⊕4 //E(−r + 1) //0 . (4.51)

The corresponding long exact cohomology sequence is

0 //H0
(
P

3 , E(−r) ⊗ Ω1
P3(1)

)
//H0

(
P

3 , E(−r)
)⊕4 //H0

(
P

3 , E(−r + 1)
)

//H1
(
P

3 , E(−r) ⊗ Ω1
P3(1)

)
//H1

(
P

3 , E(−r)
)⊕4 //H1

(
P

3 , E(−r + 1)
)

//H2
(
P

3 , E(−r) ⊗ Ω1
P3(1)

)
//H2

(
P

3 , E(−r)
)⊕4 //H2

(
P

3 , E(−r + 1)
)

//H3
(
P

3 , E(−r) ⊗ Ω1
P3(1)

)
//H3

(
P

3 , E(−r)
)⊕4 //H3

(
P

3 , E(−r + 1)
)

//0 .

(4.52)
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From the first line of this sequence, by imposing (4.46) we get

H0
(
P

3 , Ω1
P3(1) ⊗ E(−r)

)
= 0 for r ≥ 1 . (4.53)

The third and final step is to determine E−2,q
2 . From the Euler sequence for three-forms (4.37)

we get
0 //E(−r − 2) //E(−r − 1)⊕4 //E(−r) ⊗ Ω2

P3(2) //0 . (4.54)

Let us look at the corresponding long exact sequence in cohomology. It contains, in particular, the
line

0 //H3
(
P

3 , E(−r − 2)
)

//H3
(
P

3 , E(−r − 1)
)⊕4

//H3
(
P

3 , E(−r) ⊗ Ω2
P3(2)

)
//0 .

(4.55)

By imposing the condition (4.45) one gets

H3
(
P

3 , E(−r) ⊗ Ω2
P3(2)

)
= 0 for r ≤ 2 . (4.56)

The only short exact sequence that we haven’t yet used is the Euler sequence for two-forms
(4.36) from which it follows that

0 //E(−r) ⊗ Ω2
P3

//E(−r − 2)⊕6 //E(−r) ⊗ Ω1
P3

//0 . (4.57)

The corresponding long exact cohomology sequence yields

0 //H0
(
P

3 , E(−r) ⊗ Ω2
P3

)
//H0

(
P

3 , E(−r − 2)
)⊕6 //H0

(
P

3 , E(−r) ⊗ Ω1
P3

)

//H1
(
P

3 , E(−r) ⊗ Ω2
P3

)
//H1

(
P

3 , E(−r − 2)
)⊕6 //H1

(
P

3 , E(−r) ⊗ Ω1
P3

)

//H2
(
P

3 , E(−r) ⊗ Ω2
P3

)
//H2

(
P

3 , E(−r − 2)
)⊕6 //H2

(
P

3 , E(−r) ⊗ Ω1
P3

)

//H3
(
P

3 , E(−r) ⊗ Ω2
P3

)
//H3

(
P

3 , E(−r − 2)
)⊕6

//H3
(
P

3 , E(−r) ⊗ Ω1
P3

)
//0 .

(4.58)

By using (4.46) and (4.53) we get

H0
(
P

3 , E(−r) ⊗ Ω2
P3(2)

)
= 0 for r ≥ 1 . (4.59)

If we collect all the results obtained so far, we see that the values r = 1, 2 are rather special
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since then all the cohomology groups H0 and H3 vanish and the spectral sequence becomes

0 0 0 0

E−3,2
1

d1 // E−2,2
1

d1 // E−1,2
1

d1 // E0,2
1

E−3,1
1

d1 // E−3,1
1

d1 // E−1,1
1

d1 // E0,1
1

0 0 0 0 //

OO

p

q

(4.60)

A great deal of information can now be obtained with the help of the Riemann–Roch theorem
which computes the Euler character

χ(F) =

3∑

q=0

(−1)q dimC H
q
(
P

3 , F
)

=

∫

P3

ch(F) ∧ td
(
P

3
)

(4.61)

for any sheaf F on P
3. We are interested in the cases where F is E(−r), E(−r) ⊗ Ω1

P3(1) and
E(−r) ⊗ Ω2

P3(2). Using (4.19) we parametrize the Chern character of E as

ch(E) = N + k ξ3 (4.62)

where ξ = c1(OP3(1)) is the hyperplane class which generates the complex cohomology ring of the
projective space P

3.

The pertinent values of the Chern and Todd characteristic classes may be computed from the
exact sequences (4.34)–(4.37) and are given by

ch
(
OP3(−r)

)
= e−r ξ ,

ch
(
Ω1

P3

)
= 3 − 4ξ + 2ξ2 − 2

3 ξ
3 ,

ch
(
Ω2

P3

)
= 3 − 8ξ + 10ξ2 − 22

3 ξ
3 ,

td
(
P

3
)

= 1 + 2ξ + 11
6 ξ

2 + ξ3 . (4.63)

To apply the Riemann–Roch formula (4.61) we use the multiplicativity property of the Chern
character ch(E1 ⊗E2) = ch(E1)∧ ch(E2) and the fact that only the top form components ξ3 survive
the integration over P

3. We will only need to deal with the case r = 2 explicitly below, for which
the relevant results are

χ
(
E(−3)

)
= k ,

χ
(
E(−2) ⊗ Ω2

P3(2)
)

= 3k +N ,

χ
(
E(−2) ⊗ Ω1

P3(1)
)

= 3k ,

χ
(
E(−2)

)
= k . (4.64)

4.5 Nonlinear Beilinson monad

We will now impose an additional condition on the sheaf E which ensures that the spectral sequence
becomes a four-term complex and that the Euler characteristics computed in eq. (4.64) above are
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the stable dimensions (rather than virtual dimensions) of the vector spaces which appear in the
complex. The condition we impose kills all the H1 cohomology groups and simplifies the spectral
sequence in the case r = 2. It is given by

H1
(
P

3 , E(−2)
)

= 0 . (4.65)

This is the same condition which is placed on the holomorphic bundles over P
3 that are used in

the twistor construction of framed instantons in four dimensions [33]. It is also similar to the one
defining the admissable sheaves of [36].

If we look at the long exact sequence (4.40) for r = 2 with the condition (4.41) and impose
(4.65), we immediately see that

H1
(
P

3 , E(−3)
)

= 0 . (4.66)

Moreover, if we consider the sequence (4.52) with r = 2 and impose both (4.46) and (4.65) we find

H1
(
P

3 , E(−2) ⊗ Ω1
P3(1)

)
= 0 . (4.67)

Finally, let us look at the cohomology sequence (4.58) for r = 0. By imposing (4.65) as well as
(4.53) one finally finds

H1
(
P

3 , E(−2) ⊗ Ω2
P3

)
= 0 . (4.68)

The condition (4.65) thus automatically kills the Ep,1
1 line and the spectral sequence reduces to

0 0 0 0

E−3,2
1

d1 // E−2,2
1

d1 // E−1,2
1

d1 // E0,2
1

0 0 0 0

0 0 0 0 //

OO

p

q

(4.69)

This is our candidate for a generalized ADHM-like complex. The cohomology computations above
also serve to show that the spectral sequence degenerates at the E2-term. If we remember the
Beilinson theorem, then we can write the cohomology of the differential complex in (4.69) as

0 0 0 0

E−3,2
∞ = 0 E−2,2

∞ = E(−2) E−1,2
∞ = 0 E0,2

∞ = 0

0 0 0 0

0 0 0 0 //

OO

p

q

(4.70)

Equivalently, we have the complex

0 //V ⊗ OP3(−3)
a //B ⊗ OP3(−2)

b //C ⊗ OP3(−1)
c //D ⊗ OP3(0) //0 , (4.71)
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where we have defined the complex vector spaces

V = H2
(
P

3 , E(−3)
)
,

B = H2
(
P

3 , E(−2) ⊗ Ω2
P3(2)

)
,

C = H2
(
P

3 , E(−2) ⊗ Ω1
P3(1)

)
,

D = H2
(
P

3 , E(−2)
)
. (4.72)

It is straightforward to show that there is a natural identification D = V . Using the vanishing
cohomology groups above, the long exact sequence (4.40) truncates for r = 2 to

0 //H1
(
P2 , E(−2)

∣∣
p∞

)
//H2

(
P

3 , E(−3)
)

//H2
(
P

3 , E(−2)
)

//0 . (4.73)

Since the four-dimensional instanton numbers in (4.38) are given by [32] ki = dimC H
1(P2,E(−2)|pi

∞
),

for the vacuum moduli space (4.19) one has H1(P2,E(−2)|p∞) = 0 and hence

H2
(
P

3 , E(−3)
)

= H2
(
P

3 , E(−2)
)
. (4.74)

A similar argument provides a natural identification

C = V ⊕ V ⊕ V . (4.75)

Indeed, using (4.40) with r = 1 identifies V = H2(P3,E(−1)), since H2(P2,E(−1)|p∞) = 0 exactly
as above [32]. Then the exact sequence (4.52) with r = 2 implies (4.75).

By (4.70), the cohomology of the complex (4.71) gives the sheaf E(−2). To get a complex whose
cohomology is simply E all we have to do is tensor by OP3(2) to get the equivalent complex

0 //V ⊗ OP3(−1)
a //B ⊗ OP3

b //V ⊕3 ⊗ OP3(1)
c //V ⊗ OP3(2) //0 . (4.76)

The crucial point is that the complex vector spaces appearing here are finite dimensional. If we
look at eqs. (4.64), then one has dimC V = k and dimCB = 3k +N .

Looking back at eq. (4.70), we see that the only non-trivial cohomology group of the complex
(4.76) is the coherent sheaf

E = ker(b)
/

im(a) . (4.77)

In particular, the map c is an epimorphism, a is a monomorphism, and ker(c) = im(b). Using this
last condition, we can truncate (4.76) to a three-term complex by replacing V ⊕3 ⊗OP3(1) with the
locally free kernel sheaf Kc := ker(c), which describes the sheaf E as the cohomology of a nonlinear

monad

M• : 0 //V ⊗ OP3(−1)
a //B ⊗ OP3

b //Kc
//0 (4.78)

with dimC V = k and dimCB = 3k + N , for which the map b is an epimorphism and a is a
monomorphism with b a = 0.

Since E is the only nonvanishing cohomology of the complex (4.78), we can compute its Chern
character through

ch(E) = ch(B ⊗ OP3) − ch
(
V ⊗ OP3(−1)

)
− ch(Kc) . (4.79)

By comparing with (4.62) and (4.63), we see that the bundle Kc on P
3 has non-trival characteristic

classes in all degrees determined entirely by the instanton number k. In particular, one has

rank(Kc) = 2k and c1(Kc) = k . (4.80)
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One also finds from (4.79) that Kc cannot be of the form K ⊗ OP3(1) for some 2k-dimensional
hermitean vector space K, reflecting the nonlinearity of the monad (4.78).

One can adapt the proof of [35, Lemma 4.1.3] to show that the complex (4.76) determines the
sheaf E uniquely up to isomorphism. This is equivalent to the requirement that

Extq
(
Kc , OP3(−1)

)
= Extq(Kc,OP3) = 0 (4.81)

for all q, which follows from the fact that the kernel sheaf is locally free and guarantees that
the nonlinear monad (4.78) is unique up to isomorphism. In the following we will find it more
convenient to work instead with the equivalent four term complex (4.76).

4.6 Barth description of nonlinear monads

We will now give a description of the moduli space (4.19), under the conditions spelled out above,
in terms of linear algebra by generalizing the Barth description of linear monads [33]. This will
contain as a special case the matrix equations (4.1) describing the six-dimensional noncommutative

instantons. For this, we regard the morphism c in (4.76) as an element of (V ∗)⊕3 ⊗ V ⊗ W̃ , where

W̃ = H0(P3,OP3(1)) is the vector space spanned by the homogeneous coordinates z0, z1, z2, z3 of
P

3. The map c can then be written as

c = c0 z0 + c1 z1 + c2 z2 + c3 z3 , (4.82)

where ci : V ⊕3 → V are constant linear maps. Similarly, we can represent the morphisms a and b
of the four-term complex (4.76) as

a = a0 z0 + a1 z1 + a2 z2 + a3 z3 and b = b0 z0 + b1 z1 + b2 z2 + b3 z3 (4.83)

where ai : V → B and bi : B → V ⊕3 are constant linear maps. The monadic condition b a = 0 then
implies that

bi ai = 0 and bi aj + bj ai = 0 (4.84)

for each i, j = 0, 1, 2, 3 with i < j. On the other hand, the condition ker(c) = im(b) implies that

ker(ci) = im(bi) and ci bj + cj bi = 0 . (4.85)

Restricting the complex (4.76) to the line at infinity ℓ∞ = [z0 : z1 : 0 : 0] ∼= P
1 ⊂ P

3 we get

0 //V ⊗ OP3(−1)
∣∣
ℓ∞

a∞ //B ⊗ OP3

∣∣
ℓ∞

b∞ //V ⊕3 ⊗ OP3(1)
∣∣
ℓ∞

c∞ //V ⊗ OP3(2)
∣∣
ℓ∞

//0 (4.86)

where a∞ = a0 z0 + a1 z1, b∞ = b0 z0 + b1 z1 and c∞ = c0 z0 + c1 z1. The kernel sheaf Kb = ker(b)
is locally free, and one has the exact sequence of sheaves

0 //V ⊗ OP3(−1)
∣∣
ℓ∞

a∞ //Kb

∣∣
ℓ∞

//E
∣∣
ℓ∞

//0 (4.87)

where the third arrow comes from the projection onto (4.77). Using the associated long exact
sequence in cohomology, along with Hq(P1,OP1(−1)) = 0, q = 1, 2 and E|ℓ∞ ∼= O

⊕N
ℓ∞

, we conclude

that H1(P1,Kb|ℓ∞) = 0 and H0(P1,Kb|ℓ∞) ∼= H0(P1,E|ℓ∞) ∼= Ep where Ep is the fibre of E at some
point p ∈ ℓ∞. We set

W = H0
(
P

1 , Kb|ℓ∞
)
. (4.88)

This is a complex vector space of dimension rank(E) = N and a choice of basis for W corresponds
to a choice of trivialization for E|ℓ∞ . More general framing data, for which E|ℓ∞ can contain a sum
of non-trivial line bundles, are considered in [13].
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Similarly, from the exact sequence

0 //Kb

∣∣
ℓ∞

//B ⊗ OP3

∣∣
ℓ∞

b∞ //V ⊕3 ⊗ OP3(1)
∣∣
ℓ∞

c∞ //V ⊗ OP3(2)
∣∣
ℓ∞

//0 , (4.89)

along with H0(P1,OP1) = C and H1(P1,Kb|ℓ∞) = 0, we obtain

0 //W //B
b∞ //V ⊕3 ⊗H0

(
P

1 , OP1(1)
) c∞ //V ⊗H0

(
P

1 , OP1(2)
)

//0 . (4.90)

Using the identifications H0(P1,OP1(1)) = Cz0 ⊕Cz1 and H0(P1,OP1(2)) = Cz2
0 ⊕Cz0 z1 ⊕Cz2

1 , we
can rewrite (4.90) as

0 // W // B
(b0

b1
)

// V ⊕6
γ0,1 // V ⊕3 // 0 , (4.91)

where generally we define

γi,j :=



ci 0
cj ci
0 cj


 : V ⊕3 ⊕ V ⊕3 −→ V ⊕ V ⊕ V (4.92)

for 0 ≤ i < j ≤ 3. It follows that W = ker(b0) ∩ ker(b1) and that γ†0,1 : (V ∗)⊕3 → (V ∗)⊕6 is
injective.

Let us now apply the same argument to the dual complex

0 //V ∗ ⊗ OP3(−2)
∣∣
ℓ∞

c†∞ //(V ∗)⊕3 ⊗ OP3(−1)
∣∣
ℓ∞

b†∞ //B∗ ⊗ OP3

∣∣
ℓ∞

a†
∞ //V ∗ ⊗ OP3(1)

∣∣
ℓ∞

//0

(4.93)
whose cohomologies before restriction to ℓ∞ are Hom(E,OP3) and Ext1(E,OP3), where we have
used Ext1(OP3(2),OP3) = 0. After tensoring with OP1(1), this yields the exact sequence

0 // H0
(
P

1 , ker(c†∞)
)

// (V ∗)⊕3
(b0

b1
)
†

// B∗ ⊕B∗ α†
0,1 // (V ∗)⊕3 // 0 (4.94)

which implies that the linear map

α0,1 :=

(
a0 a1 0
0 a0 a1

)
: V ⊕ V ⊕ V −→ B ⊕B (4.95)

is injective. Using the exact sequence (4.91) along with dimC B = 3dimC V +dimCW , we can thus
identify

B = V ⊕ V ⊕ V ⊕W . (4.96)

Furthermore, since
ker(b0)

/
im(a0) = E[1:0:0:0] = W = ker(b0) ∩ ker(b1) (4.97)

one has im(a0) ∩ ker(b1) = 0. It follows that b0 a1 = −b1 a0 : V → V ⊕3 is injective.

Using the monadic conditions b0 a1 + b1 a0 = 0 and b0 a0 = 0 = b1 a1, we can choose bases for
the vector spaces V , W , B and C = V ⊕3 such that the injection b0 a1 is given by

b0 a1 =




0k×k

0k×k

1k×k


 (4.98)
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along with

a0 =




0k×k

1k×k

0k×k

0N×k


 and b0 =




1k×k 0k×k 0k×k 0k×N

0k×k 0k×k 0k×k 0k×N

0k×k 0k×k 1k×k 0k×N


 ,

a1 =




0k×k

0k×k

1k×k

0N×k


 and b1 =




0k×k 0k×k 0k×k 0k×N

−1k×k 0k×k 0k×k 0k×N

0k×k −1k×k 0k×k 0k×N


 . (4.99)

Using the conditions ker(c0) = im(b0), ker(c1) = im(b1) and c0 b1 + c1 b0 = 0 we can then write the
maps

c0 =
(
0k×k 1k×k 0k×k

)
and c1 =

(
1k×k 0k×k 0k×k

)
. (4.100)

Using the equations b2 a0 + b0 a2 = 0 = b2 a1 + b1 a2 and b3 a0 + b0 a3 = 0 = b3 a1 + b1 a3, together
with c2 b0 + c0 b2 = 0 = c2 b1 + c1 b2 and c3 b0 + c0 b3 = 0 = c3 b1 + c1 b3, we can parametrize the
remaining linear maps in the form

a2 =




B′
1

B1

B2

J


 and b2 =



C1 −B′

1 0k×k 0k×N

C2 0k×k B′
1 0k×N

C3 −B2 B1 I


 ,

a3 =




B3

B′
2

B′
3

K


 and b3 =



C ′

1 −B3 0k×k 0k×N

C ′
2 0k×k B3 0k×N

C ′
3 −B′

3 B′
2 I ′


 (4.101)

with Bi, B
′
i, Ci, C

′
i ∈Mk×k(C), J,K ∈MN×k(C) and I, I ′ ∈Mk×N (C), along with

c2 =
(
−C2 C1 −B′

1

)
and c3 =

(
−C ′

2 C ′
1 −B3

)
. (4.102)

It remains to satisfy the remaining equations in (4.84) and (4.85). From the last three equations
b2 a2 = 0 = b3 a3 and b2 a3 + b3 a2 = 0 of the monadic condition we get the respective sets of matrix
relations

B′
1B1 = C1B

′
1 and B3B

′
2 = C ′

1B3 ,

B′
1B2 = − C2B

′
1 and B3B

′
3 = −C ′

2B3 ,

[B1, B2] + I J = − C3B
′
1 and [B′

2, B
′
3] + I ′K = −C ′

3B3

(4.103)

along with

B3B1 +B′
1B

′
2 = C1B3 + C ′

1B
′
1 ,

B3B2 +B′
1B

′
3 = −C2B3 − C ′

2B
′
1 ,

[B2, B
′
2] + [B′

3, B1] − I K − I ′ J = C3B3 + C ′
3B

′
1 . (4.104)

On the other hand, from the remaining conditions c2 b2 = 0 = c3 b3 we get the respective additional
matrix equations

[C1, C2] = B′
1 C3 and [C ′

1, C
′
2] = B3C

′
3 ,

B′
1B2 = − C2B

′
1 and B3B

′
3 = −C ′

2B3 ,

B′
1 I = 0 and B3 I

′ = 0 ,

(4.105)
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while from c2 b3 + c3 b2 = 0 we find

[C1, C
′
2] + [C ′

1, C2] = B3C3 +B′
1C

′
3 ,

B3B2 +B′
1B

′
3 = −C2B3 +C ′

2B
′
1 ,

B3B1 +B′
1B

′
2 = C1B3 + C ′

1B
′
1 ,

B3 I = −B′
1 I

′ . (4.106)

To investigate the solution space of the somewhat complicated system of matrix equations
(4.103)–(4.106), we should recall that the boundary conditions appopriate to the six-dimensional
generalized instantons on C

3 require trivializations on three independent lines P
1 ⊂ P

3. We will
choose the remaining two lines to be given in homogeneous coordinates by [z0 : 0 : z2 : 0] and
[0 : z1 : z2 : 0]. We then restrict the complex (4.76) to these lines exactly as before. By an identical
analysis to that given above one arrives at analogous constraints on the kernels and ranges of
the linear maps involved, which then imposes additional restrictions on the matrices satisfying
eqs. (4.103)–(4.106) above.

For instance, the injectivity of the linear maps b0 a2 and b1 a2 lead respectively to the kernel
constraints

ker(B′
1) ∩ ker(B2) = 0 and ker(B′

1) ∩ ker(B1) = 0 , (4.107)

which automatically guarantees all other vanishing conditions on the maps ai and bi. Likewise,
injectivity of γ†0,2 and γ†1,2 lead respectively to the range constraints

im(B′
1) ∩ im(C2) = 0 and im(B′

1) ∩ im(C1) = 0 . (4.108)

Finally, the framing data determine isomorphisms between the Chan–Paton space (4.88) and the
two subspaces of vectors:

• (v,w) ∈
(
ker(B′

1) ∩ ker(C2)
)
⊕W for which B2(v) = I(w); and

• (v,w) ∈ V ⊕W for which B1(v) = −I(w).

We interpret these extra constraints as stability conditions on the linear maps satisfying the matrix
equations (4.103)–(4.106). The issue of stability will be discussed further in Section 4.7 below and
in Section 5.

To illustrate the use of these extra conditions, suppose that a vector v ∈ V satisfies the equation
B′

1B1(v) = C1B
′
1(v). Then by (4.108) one has B1(v) = B′

1(v) = 0, and hence v = 0 by (4.107).
This implies that the linear map B′

1B1 − C1B
′
1 : V → V is bijective, which contradicts the first

equation of (4.103). Thus we set B′
1 = 0. Then (4.103) implies the first equation of the set

(4.1). It is straightforward to find that the next two equations of (4.1) follow similarly, after
some identifications amongst the various matrices. As in Section 4.2, there are generically more
moduli and equations than needed to identify a torsion free sheaf on C

3 with the set of matrix
equations (4.1). The role of these extra moduli will be explained in Section 5.2.

4.7 Stability

There is a natural free action of the group GL(k,C) on the data (Bi, B
′
i, Ci, C

′
i, J,K, I, I

′) of Sec-
tion 4.6 above, of the form in (4.2) with g ∈ GL(k,C). As in the case of linear monads [35], one
can show that any isomorphism of a complex (4.76) which preserves the trivializations on the lines
ℓi∞ and the choice of bases for the vector spaces V , W , B and C made above has this form. We can
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restrict the complex (4.76) to C
3 = P

3 \ P
2 by setting z0 = 1 and replacing OP3(−r) by OC3 every-

where. Then on the fibre at z = (z1, z2, z3) ∈ C
3, the morphisms a, b and c induce homomorphisms

of vector spaces

V
σz //

V ⊕ V ⊕ V
⊕
W

τz //V ⊕ V ⊕ V
ηz //V . (4.109)

Following the analog statement for linear monads on P
d [36], one can show that whenever N ≥ 3

the cohomology sheaf (4.77) is nondegenerate, and hence that the cohomology of a generic complex
(4.76) is a torsion free sheaf on P

3 with the stated properties. Then from (4.107), along with
suitable identifications of the various matrices, it follows that the localized maps az ∈ Hom(V,B)
are injective for all z ∈ P

3. On the other hand, surjectivity of cz ∈ Hom(C, V ) and exactness
ker(cz) = im(bz) for all z ∈ P

3, together with (4.108) and appropriate matrix identifications, pre-
sumably implies a certain algebraic stability condition analogous to the four-dimensional case [32].
Using stability along with the fact that B2 and B3 commute, one can repeat the proof of [32,
Proposition 2.7] step by step to show that in the abelian case the maps

J = K = 0 for N = 1 (4.110)

and the cohomology sheaf (4.77) is isomorphic to the ideal I given in the description of the Hilbert
scheme Hilb

k(C3) in terms of instantons in noncommutative gauge theory on C
3 presented in the

previous section. The algebraic stability condition also follows from the last matrix equation in
(4.1) which encodes the noncommutative deformation. We will see this explicitly in the next section
wherein we shall make the instanton complex (4.109) equivariant with respect to the toric action
following [32, Chapter 5] and [37], and utilize the powerful localization techniques of a suitably
defined topological matrix model. This is tantamount to introducing the matrix equations (4.3) of
the Ω-background.

5 Topological matrix quantum mechanics

In this section we will carry on with the case X = C
3 to avoid complications coming from

a non-trivial topology of the ambient space. In this context the gauge theory computes bound
states of D6 and D0 branes with a suitable B-field turned on. As in the four-dimensional case
there are two ways of doing the instanton counting computation. One way is to write down the
noncommutative gauge theory directly, solve for the critical points and compute the fluctuation
determinants around each critical point, as we did in Section 3. The other way is to consider the
effective field theory of a gas of k D0-branes coupled to the D6-branes. This is equivalent to a
topological matrix quantum mechanics on the resolved moduli space. For instance, we may think
of this field theory as arising from quantization of the collective coordinates around a fixed point of
the original gauge theory. In the static limit, relevant for considerations involving the BPS ground
states, this gives rise to an ADHM-like formalism which provides a dynamical realization of the
matrix equations describing the torsion free sheaves of the previous section. This will nicely tie
the computation in terms of noncommutative instantons into one involving the abelian category of
holomorphic D-branes (coherent sheaves).

The set of fields and equations of motion involved in the matrix quantum mechanics can be nicely
interpreted as a representation of a quiver with relations, an oriented graph consisting of nodes
and arrows together with linear combinations of paths in the graph. To provide a representation of
the quiver diagram in the category of complex vector spaces, one associates a set of vector spaces
to the nodes and linear maps (“fields”) to the arrows which respect the relations (“constraints”).
In the large volume limit one can represent a D-brane configuration, viewed as an object in the
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abelian category of coherent sheaves, as a representation of a quiver. This ties in nicely with
the varieties naturally associated to quivers that were introduced by Nakajima to study ordinary
instanton moduli spaces.1 One may regard the quiver construction presented in the following
as a generalization of this formalism to study moduli spaces of solutions of the DUY equations.
Physically we are left with a supersymmetric quantum mechanics that lives on the moduli space
of the quiver variety, whose supersymmetric ground states correspond to BPS bound states in the
original D-brane picture. The quiver quantum mechanics that describes the BPS states of the D6–
D0 system with an appropriate B-field turned on was introduced in [12]. The connection between
the supersymmetric quantum mechanics and the noncommutative gauge theory description of the
D6–D0 system was suggested originally in [14], where it was also shown that this system is non-
supersymmetric in the absence of a B-field. This means that the noncommutative deformation is
crucial for obtaining stable instanton solutions and that a description involving torsion free sheaves
is unavoidable in this context.

Ultimately the quiver approach and the noncommutative gauge theory give equivalent descrip-
tions of the same physical problem, but it is important to bear in mind that in the noncommutative
computation one is expanding the gauge theory path integral around critical points and computing
the quantum fluctuations around the classical solutions. On the other hand, the matrix quantum
mechanics already contains the fluctuation factors. By fixing the number of D0-branes to be k (and
likewise the rank of the matrices), we are automatically working in what from the gauge theory
perspective would be the charge k instanton sector. The quiver matrix model computes directly
the equivariant volume of this moduli space. Finally, one takes back this information to the gauge
theory. In the gauge theory, by expanding around any critical point one is left with a matrix model
on the instanton moduli space. This is what the quiver matrix model computes.

In this section we will begin by briefly reviewing the typical computation of ratios of fluctuation
determinants in cohomological field theory, following the treatment of [38], and then apply this
formalism to the quiver matrix quantum mechanics. To compute the quiver partition function we
will also give a classification of the critical points of the matrix model. The path integral localizes
onto fixed points of the toric action and each fixed point is given by a solution of the equations
(4.1). The equivariant character of the complex (4.109) at a fixed point represents the linearized
contribution of the fixed point to the partition function. Finally, the computation will be completed
by using the localization formula. We will obtain exact agreement with the results coming from
noncommutative gauge theory, reproducing in particular the partition function (3.1).

5.1 Cohomological field theory formalism

Let us start with a set of equations ~E = ~0. In our applications these will either be the ADHM-
like equations of the previous section or the six-dimensional DUY equations of Section 3. These
equations will be functions of some complex fields which we denote collectively by Xi and are
assumed to transform in the adjoint representation of some U(k) gauge symmetry group. To
construct a supersymmetric field theory one needs to supplement these fields with superpartners
to form multiplets (Xi,Ψi) with BRST transformations

QXi = Ψi and QΨi = [φ,Xi] . (5.1)

TheXi are coordinates on the field space, which after imposing the constraints and gauge invariance
becomes the moduli space, and Ψi are their differentials.

1The original motivation was to understand moduli spaces of four-dimensional instantons on singular varieties,
but the formalism can be extended to smooth spaces as well and was indeed used in [32].
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To these fields we add the Fermi multiplet of antighosts and auxiliary fields (~χ, ~H ) associated
with the equations ~E = ~0. Schematically, the bosonic part of the action contains a term

Sbos = i Tr ~E · ~H + Tr ~H2 , (5.2)

which on-shell gives ~H = − i
2
~E and Sbos = 1

4 Tr ~E 2. Because of this, the multiplet (~χ, ~H ) has

the same quantum numbers as the equations ~E. Finally, one adds the gauge multiplet (φ, φ, η)
necessary to close the BRST algebra, where φ is the generator of gauge transformations which is
related to the Higgs field Φ of the noncommutative gauge theory via the decomposition (4.14).
Their BRST transformations are given by

Qφ = 0 , Qφ = η and Qη =
[
φ , φ

]
. (5.3)

We will split the set of equations ~E into two sets (~Ec = ~0,Er = 0) of complex and real equations,
respectively, which play a role analogous to the F-term and D-term conditions. The latter condition
can be regarded as a stability condition.

We will also want to work equivariantly with respect to some toric action T
d. Let us choose

the rotations Xi → Xi e− i ǫi for some parameters ǫi that generate the toric action. The BRST
transformations are then modified to

QXi = Ψi and QΨi = [φ,Xi] − ǫiXi , (5.4)

where as usual the transformation of the fermions reflects the infinitesimal transformation of Xi

under the symmetry group U(k) × T
d. Let us consider now the Fermi multiplet (~χc, χr, ~Hc,Hr)

associated with the equations (~Ec,Er). The equations ~Ec transform as an adjoint field under U(k)
and as e i ǫc under the toric action, where ǫc denotes some linear combination of the toric parameters
ǫi that may be different for each equation. The second equation Er again transforms in the adjoint
representation of U(k) but is invariant under the toric action. These conditions determine the
BRST transformation rules for the Fermi multiplets to be

Qχc,i = Hc,i and QHc,i = [φ, χc,i] − ǫc,i χc,i ,

Qχr = Hr and QHr = [φ, χr] ,
(5.5)

where the label i runs over the set of equations of ~Ec. Finally, the gauge multiplet transforms again
as in (5.3).

The action of the cohomological gauge theory can be represented as

S = Q Tr
(
η

[
φ , φ

]
− ~χ · ~E + g ~χ · ~H + Ψi

[
Xi , φ

])
(5.6)

and the path integral localizes onto the solutions of the equations ~E = ~0. Note that the path
integral is independent of the coupling constant g, as usual in cohomological gauge theories. Let
us now explicitly evaluate the path integral. The first step is to use the U(k) gauge invariance to
diagonalize the gauge generator φ. This produces a Vandermonde determinant det (adφ) in the
path integral measure. Then one would like to integrate out the fields ~χ, which appear quadratically
in the action. However, this is not immediately possible. By looking at the BRST transformations
(5.5) we see that the mass matrix of χr, Tr ~χc · [φ, ~χc], can have zero modes (while this is not the
case for ~χc if ǫc,i are generic). To cure this problem we add the term

t1Q Tr χr φ (5.7)
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to the action and take the limits t1 → ∞ and g → ∞ with g ≪ t1. This is a legitimate procedure
since the quantum field theory is topological and independent of t1. But in this way the resulting
action has no kinetic term for the fermions, and so we add it by hand via the term

t2Q Tr
(
Xi Ψ

†
i −X†

i Ψi

)
. (5.8)

Again this is legitimate since we are adding a BRST-exact term to the action and so the path
integral will not change.

We can now proceed in three steps:

• Take the limit t1 → ∞. The relevant part of the action is

t1 Tr
(
Hr φ+ χr η

)
(5.9)

and these fields can be trivially integrated out. This means that in the following expressions
we can neglect them since their contributions to the path integral are suppressed in the
t1 → ∞ limit.

• Now take the limit g → ∞. The relevant part of the action is quadratic in ~χc (and in ~Hc).
We can integrate them out and the result is a factor

det (adφ− ǫc,i) (5.10)

for each of the fields χc,i. Note that we get a determinant and not its square root since χc,i is a
complex field. The determinant is in the numerator since the field χc,i obeys Fermi statistics.

• Finally, we take the limit t2 → ∞ and integrate out the fields Xi (and Ψi) which now appear
quadratically in the action. We obtain a factor

1

det (adφ− ǫi)
(5.11)

for each of the fields. Again we get determinants since Xi are complex fields, but now in the
denominator since they are bosonic.

We have dropped various normalization factors coming from the gaussian integrals that involve the
couplings g, t1 and t2, which as expected cancel between the bosonic and fermionic integrations,
and some ratio of the toric parameters ǫi which depends on the choice of equivariant action. It is
important to remember that we still have the Cartan subalgebra integral over the diagonal field φ
left to do.

When the equations are the ADHM-like or the DUY equations the resulting integral represents
the instanton fluctuation factor in the charge k instanton sector. In this approach k is fixed and
is the rank of the matrices Xi. The fluctuation determinant has the following structure. In the
numerator there appear the Vandermonde determinant and a determinant due to the equations
~Ec = ~0. In the denominator the factors are related to the fields Xi and reflect their quantum
numbers. The determinant is of the form (constraint)/(fields) and this structure generalizes to any
topological matrix quantum mechanics [39]. We will make extensive use of this in the following.2

2The Vandermonde determinant is not really a constraint but in a certain sense is related to the equation Er = 0.
Recall that it arises when one uses gauge invariance to diagonalize φ.
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5.2 Quiver matrix quantum mechanics

We are now ready to systematically construct the topological quiver quantum mechanics of [12]
and compute its path integral. We introduce two vector spaces V and W of complex dimensions
dimC V = k and dimC W = N . In the noncommutative gauge theory the space V is an “internal”
finite-dimensional subspace of the Fock module H, represented geometrically by sheaf cohomology
groups in (4.72), while W is an “external” Chan–Paton space determined geometrically by framing
data through the sheaf cohomology group (4.88). In the quiver description they represent the
spaces where the fields of the matrix quantum mechanics take values. In the D-brane picture V
is spanned by the gas of k D0-branes, while W represents the N (spectator) D6-branes. In this
description we fix the topological sector and restrict attention to instantons of charge k. As in the
previous sections we will keep the number N of D6-branes arbitrary for formal considerations, but
concrete computations will require an explicit choice of gauge symmetry breaking pattern.

The fields of the quiver are given by

Xi = (B1, B2, B3, ϕ, I) ,

Ψi = (ψ1, ψ2, ψ3, ζ, ρ) . (5.12)

The matrices Bi arise from 0–0 strings and represent the position of the coincident D0-branes
inside the D6-branes. One may regard the fields (B1, B2, B3, ϕ) as arising from the reduction to
zero dimensions of the six-dimensional Yang–Mills multiplet (Z1, Z2, Z3, ρ). On the other hand, the
field I describes open strings stretching from the D6-branes to the D0-branes and is characteristic
of the quiver formalism. It characterizes the size and orientation of the D0-branes inside the D6-
branes, and is required to make the system supersymmetric. Thus the bosonic fields are defined as
linear maps

(B1, B2, B3, ϕ) ∈ Hom(V, V ) ,

I ∈ Hom(W,V ) . (5.13)

The matrices Bi and I originate in the noncommutative gauge theory through the decompositions
of the covariant coordinates (4.5) and of the Higgs field (4.14). As we will localize below onto the
maximal torus of the U(N) gauge group, we can neglect the remaining fields J and K using (4.110).

The fields Bi and ϕ all lie in the adjoint representation of U(k) where k is the number of
D0-branes (or the instanton number). From the dimensional reduction, we can identify their
transformation properties under the toric T

3 action as

Bi 7−→ Bi e− i ǫi ,

ϕ 7−→ ϕ e− i (ǫ1+ǫ2+ǫ3) . (5.14)

We will frequently use the notation ǫ = ǫ1 + ǫ2 + ǫ3 (with ǫ = 0 when we wish to make the Calabi–
Yau condition (3.9) explicit). On the other hand, I is a U(k) × U(N) bifundamental field where
N is the number of D6-branes (or the rank of the six-dimensional gauge theory). Under the full
symmetry group U(k) × U(N) × T

3 it transforms as

I 7−→ gU(k) I g
†
U(N) e− i ε . (5.15)

The transformation of I under the toric action T
3 is not fixed by any constraint. In the following

we will argue that ε = 0 (although the precise value of the toric parameter ε is not important for
the evaluation of the path integral).
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The corresponding BRST transformations read

QBi = ψi and Qψi = [φ,Bi] − ǫiBi ,

Qϕ = ζ and Qζ = [φ,ϕ] − ǫ ϕ ,

QI = ρ and Qρ = φ I − I a − ε I ,

(5.16)

where a = diag(a1, . . . , aN ) is a background field which parametrizes an element of the Cartan
subalgebra u(1)⊕N . In the noncommutative gauge theory on the D6-branes, a plays the role of the
vev of the Higgs field µ(Φ), defined by a mapping analogous to (4.18). In the present approach the
fields a and φ parametrize distinct D6 and D0 brane gauge transformations. From (5.16) it follows
that they are only related to each other on-shell at the BRST fixed points. Figure 1 depicts the
relevant fields that will enter into the quiver description of the Hilbert scheme below.

WV
φ

I

3

2

1

B

B

B

Figure 1: Quiver description of the Hilbert scheme Hilb
k(C3).

For the bosonic fields we will consider the equations of motion

Ei : [Bi, Bj ] + ǫijk
[
B†

k , ϕ
]

= 0 ,

Er :

3∑

i=1

[
Bi , B

†
i

]
+

[
ϕ , ϕ† ]

+ I I† = r ,

EI : I† ϕ = 0 . (5.17)

The equations Ei and EI are relations for the quiver depicted in Fig. 1, while the equation Er is
a cyclic vector for the representation of the quiver in the moduli space of coherent sheaves. The
Fayet–Iliopoulos parameter r > 0 is determined by the noncommutative deformation of the original
gauge theory and it determines the mass of the D0–D6 fields in terms of the asymptotic B-field
required to preserve supersymmetry in the D6–D0 bound states.

The extra field ϕ and equation EI can in fact be seen to arise from the extra moduli and matrix
equations that we found in (4.103)–(4.106), e.g. by identifying B′

1 = ϕ†. Its appearence there
is natural since the projective space P

3 is not Calabi–Yau. They can also be seen to arise from
the noncommutative instanton equations (3.7) by decomposing the field ρ similarly to (4.14) with
ϕ ∈ EndA(H⊕k). For the quiver matrix model appropriate to the dynamics on C

3, however, one
should set ϕ = 0 and arrive at the system of matrix equations (4.1). These extra moduli can also
play the role of the extra fields required when considers non-trivial asymptotic boundary conditions,
such as those of (4.38), as we do in the next section.

We now have to add the Fermi multiplets (~χ, ~H ), which contain the antighost and auxiliary
fields ~χ = (χ1, χ2, χ3, χr, ξ) and ~H = (H1,H2,H3,Hr, h). As we stressed earlier, the auxiliary fields
are determined by the equations ~E on-shell and so must carry the same quantum numbers. This
implies that the antighosts are defined as maps

(χ1, χ2, χ3, χr) ∈ Hom(V, V ) ,
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ξ ∈ Hom(V,W ) , (5.18)

since ξ corresponds to the equation EI which maps a vector in V to a vector in W .

Let us take a closer look at the defining equations (5.17). As in Section 5.1 above, the complex
equations Ei live in the adjoint representation of U(k) but transform under the toric action with a
factor e− i (ǫ−ǫi). The real equation Er lives in the adjoint representation of U(k) and is invariant
under the toric action. Finally, the equation EI transforms under U(k) × U(N) × T

3 as

I† ϕ 7−→ e i (ε−ǫ) gU(N) I
† g†U(k) gU(k) ϕg

†
U(k) = e i (ε−ǫ) gU(N) I

† ϕg†U(k) . (5.19)

We now have all the ingredients necessary to write down the BRST transformations for the remain-
ing fields as

Qχi = Hi and QHi = [φ, χi] − (ǫ− ǫi)χi ,

Qχr = Hr and QHr = [φ, χr] ,

Qξ = h and Qh = a ξ − ξ φ+ (ε− ǫ) ξ ,

(5.20)

to which we add the gauge multiplet to close the algebra (5.3).

The action that corresponds to this system of fields and equations is given by

S = Q Tr
(
χ†

i (Hi − Ei) + χr (Hr − Er) + ξ† (h− EI) + ψi

[
φ , B†

i

]

+ ζ
[
φ , ϕ†] + ρφ I† + η

[
φ , φ

]
+ h.c.

)
. (5.21)

This action is topological and the path integral can be treated as we did in the Section 5.1 above.
The critical points are determined by the zeroes of the BRST charge. We are interested in the class
of minima where ϕ vanishes (and the fermions are set to zero). The fixed point equations are then

(Bi)ab (φa − φb − ǫi) = 0 ,

Ia,l (φa − al − ε) = 0 (5.22)

where we have diagonalized both φ (producing a Vandermonde determinant det(adφ) in the path
integral measure) and a by U(k) and U(N) gauge transformations, respectively. We will give a
more precise classification of the fixed points in terms of three-dimensional partitions in Section 5.3
below.

Regardless of what the structure of the fixed point set is, we can write down directly the
fluctuation determinants with the general rules outlined in Section 5.1 above. The fields give
a contribution in the denominator determined by their quantum numbers, while the constraints
similarly appear in the numerator. The main difference from the noncommutative gauge theory is
that now we have an additional field and an additional constraint. Putting everything together we
get the partition function

Z =

∮ k∏

i=1

dφi
det (adφ) det (adφ+ ǫ1 + ǫ2) det (adφ+ ǫ1 + ǫ3) det (adφ+ ǫ2 + ǫ3)

det (adφ+ ǫ) det (adφ+ ǫ1) det (adφ+ ǫ2) det (adφ+ ǫ3)

× det
(
− φ⊗ 1W + 1V ⊗ a + (ε− ǫ)

)

det (φ⊗ 1W − 1V ⊗ a − ε)
(5.23)

where we have again dropped several factors including the volume of the gauge group. As in the
noncommutative gauge theory, the ratio of determinants formally cancels up to a sign when ǫ = 0.
Thus the integration in (5.23) is ill-defined as a Lebesgue integral and must be defined via an
appropriate contour integration.
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At this point one should proceed to evaluate the integral of φ over the Cartan subalgebra
u(1)⊕k. This is the main difference from the noncommutative gauge theory, even though the ratios
of determinants formally look alike. In the noncommutative gauge theory the ratio of determinants
is a function of only the equivariant parameters, since there we compute the determinants by
taking products of eigenvalues of operators over the Hilbert space H. Here things are different, as
we are really dealing with a finite-dimensional k×k matrix model, and the ratio is a function of the
eigenvalues of φ. The integral over the maximal torus of the group U(k) still has to be performed and
it requires an appropriate prescription to pick an integration contour which encircles the relevant
poles. Note that the fixed points of the toric action appear as poles in the denominator. The
evaluation of (5.23) by residues is in fact equivalent to the use of the localization formula applied
to the equivariant Euler characteristic of the complex (4.109), a fact that will be exploited in the
following.

It is amusing to note that the analogous problem was solved in four dimensions by lifting the
theory to five dimensions (with the fifth dimension compactified), where a natural prescription for
the contour integral can be found [39, 40]. The rationale behind this procedure is that an instanton
counting problem in four dimensions can be lifted to a soliton counting problem in five dimensions.
It is tempting to speculate that the ratio of determinants in (5.23) (and in more general instances)
may have a clearer origin in the context of topological M-theory on the product of a Calabi–Yau
threefold with S

1.

5.3 Fixed points and three-dimensional partitions

We will now clarify how the matrix quantum mechanics equations (5.22) can be solved in terms
of plane partitions. We will focus on the abelian case where the parametrization of the Hilbert
scheme allows for an explicit classification of the fixed points. In this framework we can show
explicitly how the melting crystal picture is encoded in the matrix model formalism and thus how
the gravitational quantum foam emerges naturally from the gauge theory variables. The following
analysis is a generalization of the arguments of [32]. We will go through the argument in two steps.
First we will recover the Hilbert scheme of points by the matrix quantum mechanics equations of
motion. Then we will show how to construct a three-dimensional partition given a fixed point in
the Hilbert scheme and viceversa.

Consider the Hilbert scheme of k points in C
3 given by

Hilb
k
(
C

3
)

=
{
ideals I ⊂ C[B1, B2, B3]

∣∣ dimC C[B1, B2, B3]/I = k
}
. (5.24)

Then we claim that

Hilb
k
(
C

3
) ∼=





(B1, B2, B3, I)

[B1, B2] = [B1, B3] = [B2, B3] = 0
Stability: there is no proper
subspace S ⊂ C

k such that
Bi(S) ⊂ S and im(I) ⊂ S





/
GL(k,C) (5.25)

where Bi ∈ End(Ck) and I ∈ Hom(C,Ck). In the quiver language one has C = W and C
k = V .

The action of the gauge group GL(k,C) is given in (4.2).

The correspondence can be seen as follows. Suppose we are given an ideal I ∈ Hilb
k(C3).

Then we can define V = C[B1, B2, B3]/I, and Bi ∈ End(V ) to be given as multiplication by Bi

mod I and I ∈ Hom(C, V ) by I(1) = 1 mod I. Then all the Bi commute since they are realized
as multiplication and the stability condition holds since products of the Bi’s times 1 span the
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whole of the polynomial ring C[B1, B2, B3]. Conversely, suppose we are given a quadruple of maps
(B1, B2, B3, I). We introduce the map

µ : C[B1, B2, B3] −→ C
k

f 7−→ f(B1, B2, B3)I(1) (5.26)

which is well-defined since the Bi’s commute. Consider now the subspace im(µ) ⊂ C
k. This

subspace is Bi-invariant since it is the subspace spanned by the Bi themselves and im(I) ⊂ im(µ).
Then the stability condition implies im(µ) = C

k. This means that the map µ is surjective. Then
I := kerµ is an ideal with dimC C[B1, B2, B3]/I = k. Explicitly, one has

I =
{
f(z) ∈ OC3

∼= C[B1, B2, B3]
∣∣ f(B1, B2, B3)I(1) = 0

}
. (5.27)

This ideal is isomorphic to the rank one cohomology sheaf (4.77). By restricting the complex
(4.76) with N = 1 to C

3 = P
3 \ P

2 as before, the image of (4.77) in OC3 induced by the localized
maps az and bz with J = K = 0, and suitable matrix identifications in Section 4.6, is precisely
the ideal (5.27). The proof parallels [32, Proposition 2.7]. As an explicit example, the charge 2
abelian instanton moduli space is M1,2(C

3) ∼= C
3 × OP2(−1), where the first factor is the space

of 2 × 2 matrices (B1, B2, B3) which parametrize the center of mass of the instantons, while the
second factor is the resolution of the relative position singularity at the origin which gives the size
and orientation of the instanton configuration.

We have thus constructed an explicit correspondence between elements of the Hilbert scheme
and commuting matrices (with a stability condition) which correspond to the quiver quantum
mechanics. We will now consider a fixed point and show that it can be parametrized by a three-
dimensional partition. We consider a torus T

3 acting on C
3 with generators (t1, t2, t3). This action

lifts to the Hilbert scheme. A fixed point given by (B1, B2, B3, I) is characterized by the condition
that an equivariant rotation is equivalent to a gauge transformation

t1B1 = g B1 g
−1 ,

t2B2 = g B2 g
−1 ,

t3B3 = g B3 g
−1 ,

I = g I (5.28)

with g ∈ GL(k,C). We use the weight decomposition

V =
⊕

i,j,k∈Z

V (i− 1, j − 1, k − 1) (5.29)

with
V (i− 1, j − 1, k − 1) =

{
v ∈ V

∣∣ g−1 v = ti−1
1 tj−1

2 tk−1
3 v

}
. (5.30)

The notation has been chosen such that V (0, 0, 0) denotes the subspace spanned by gauge-invariant
vectors.

Consider a generic triple of integers (i, j, k). According to the definition (5.30) the only non-
vanishing components of the maps (B1, B2, B3, I) with respect to the splitting (5.29) are given
by

B1 : V (i, j, k) −→ V (i− 1, j, k) ,

B2 : V (i, j, k) −→ V (i, j − 1, k) ,
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B3 : V (i, j, k) −→ V (i, j, k − 1) ,

I : W −→ V (0, 0, 0) . (5.31)

This can be seen as follows. By the stability condition the vector space V is spanned by elements
of the form Bp

1 B
q
2 B

m
3 I(1) with p, q,m ∈ N0. In particular, the subspace V (0, 0, 0) is spanned by

I(1) and is one-dimensional. Consider now acting on the vector I(1) that generates this space with,
say, B1. This gives the vector B1I(1). Now we see that

g−1
(
B1I(1)

)
= g−1B1 g g

−1 I(1) = t−1
1 B1 I(1) (5.32)

due to (5.28). This means that B1I(1) ∈ V (−1, 0, 0). The more general cases in (5.31) are treated
similarly.

To make contact with the fixed point equation we parametrize the gauge group by the k × k
matrix φ and diagonalize it at the fixed points. We also write ti = e− i ǫi . The defining equation
in (5.30) can be satisfied by picking the k eigenvalues of φ and setting them equal to

φ(i,j,k);l = al + ǫ1 (i− 1) + ǫ2 (j − 1) + ǫ3 (k − 1) . (5.33)

Using (5.31), this reproduces the expected result from (5.22). Then this weight decomposition of
the vector space V is equivalent to the classification of the fixed points as done in the previous
sections. At each fixed point the eigenvalues of φ are determined by the weights of the toric action.
Following [32] we will now see how the definition (5.30) implies that the allowed values of φ (i.e.
the allowed non-trivial spaces V (i− 1, j − 1, k − 1)) are in correspondence with plane partitions.

We note that V (i, j, k) = 0 if one of (i, j, k) is strictly positive. Only negative or zero values are
allowed. If we generalize this reasoning to vectors of the form Bp

i I(1) we conclude that

dimC V (i, 0, 0) ≥ dimC V (i− 1, 0, 0) ,

dimC V (0, j, 0) ≥ dimC V (0, j − 1, 0) ,

dimC V (0, 0, k) ≥ dimC V (0, 0, k − 1) , (5.34)

and that these dimensions can only be either zero or one. Intuitively, we are “constructing” the
exterior boxes of the three-dimensional partition and each box is represented by a non-trivial vector
space. Now we will go to the boxes in the interior by using the commutativity relations [Bi, Bj ] = 0.
We will proceed by induction.

The commutativity relation [B1, B2] = 0 ensures that the configurations

V (i, j − 1, k) ∼= C
B1 //V (i− 1, j − 1, k) 6= 0

V (i, j, k) ∼= C

B2

OO

//0

OO (5.35)

and

0 //V (i− 1, j − 1, k) 6= 0

V (i, j, k) ∼= C

OO

B1

//V (i− 1, j, k) ∼= C

B2

OO (5.36)
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are impossible, where the notation V (i, j, k) ∼= C stands for the assumption that these spaces are
one-dimensional. On the other hand, the diagram

V (i, j − 1, k) ∼= C
B1 //V (i− 1, j − 1, k)

V (i, j, k) ∼= C

B2

OO

B1

//V (i− 1, j, k) ∼= C

B2

OO (5.37)

implies that V (i− 1, j − 1, k) has dimension 0 or 1. We can think of B1 and B2 as the “directions”
of the base of the three-dimensional partitions. Then these conditions tell us that the base is a
usual Young tableau oriented as in [32].

Now we have to put boxes on top of this “base” Young tableau. What are the allowed configu-
rations? The equation [B1, B3] = 0 implies that the two diagrams

V (i, j, k − 1) ∼= C
B1 //V (i− 1, j, k − 1) 6= 0

V (i, j, k) ∼= C

B3

OO

//0

OO (5.38)

and

0 //V (i− 1, j, k − 1) 6= 0

V (i, j, k) ∼= C

OO

B1

//V (i− 1, j, k) ∼= C

B3

OO (5.39)

are forbidden. Again the commutativity of

V (i, j, k − 1) ∼= C
B1 //V (i− 1, j, k − 1)

V (i, j, k) ∼= C

B3

OO

B1

//V (i− 1, j, k) ∼= C

B3

OO (5.40)

implies that dimC V (i − 1, j, k − 1) is either 1 or 0. Finally, the equation [B2, B3] = 0 forbids the
two configurations

V (i, j, k − 1) ∼= C
B2 //V (i, j − 1, k − 1) 6= 0

V (i, j, k) ∼= C

B3

OO

//0

OO (5.41)

and

0 //V (i, j − 1, k − 1) 6= 0

V (i, j, k) ∼= C

OO

B2

//V (i, j − 1, k) ∼= C ,

B3

OO (5.42)

while the commutativity of

V (i, j, k − 1) ∼= C
B2 //V (i, j − 1, k − 1)

V (i, j, k) ∼= C

B3

OO

B2

//V (i, j − 1, k) ∼= C

B3

OO (5.43)
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implies that dimC V (i, j − 1, k − 1) is either 1 or 0.

By induction this implies that each vector space V (i, j, k) in (5.29) is either one-dimensional or
zero-dimensional. Moreover, the allowed configurations correspond to three-dimensional partitions
where we put each box in the position of a one-dimensional vector space. For example, we can
construct the partition starting from a two-dimensional Young tableau lying on the plane (B1, B2).
On top of each position (i, j) corresponding to a box of the tableau we put πi,j boxes. The diagrams
above corresponding to the equations [B1, B3] = [B2, B3] = 0 tell us that we can pile the boxes
only in the “correct” way, so that

πi,j ≥ πi+r,j+s for r, s ≥ 0 (5.44)

with k =
∑

i,j≤0 πi,j. Pictorially, the diagram

V (0,0,−2) //V (0,−1,−2)

V (0,0,−1)

wwppppppppppp

OO

//V (0,−1,−1)

OO

V (−1,0,−1) V (0,0,0)

B3

OO

B1wwppppppppppp

B2 //V (0,−1,0)

wwnnnnnnnnnnnn

//

OO

V (0,−2,0)

wwooooooooooo

//V (0,−3,0)

V (−1,0,0)

xxqqqqqqqqqq

OO

//V (−1,−1,0) //V (−1,−2, 0)

V (−2,0,0)

(5.45)

is a simple plane partition. Note that one has to specify from the beginning which vector spaces
are non-trivial in order to get a partition.

This construction easily generalizes to the nonabelian theory in the broken phase U(1)N . In this
situation we can assume that the relevant moduli space splits into a direct sum of sectors labeled by
the Higgs vevs al, each one essentially identical to the Hilbert scheme of points. Consequently, the
classification above of the fixed points can be easily generalized by simply adding a label al (colour)
to each vector space, Val

(i, j, k). This agrees with the classification suggested in [11], while in [12]
the equations of the topological matrix model have been interpreted in terms of skew partitions
with N “corners” on the interior boundary. In the string picture this corresponds to a situation
in which the N D6-branes are well separated in the transverse space. The D0-brane bound states
with each of the D6-branes give N copies of the melting crystal configuration.

Note that in this framework the role played by I (representing the 0–6 open strings) is to simply
label the colour of the three-dimensional partition. In our approach we use the N non-trivial com-
ponents I(1)(0,0,0);l labelled by the Higgs vevs al to build N individual three-dimensional partitions.
Notice also that the k non-vanishing components of Bi and I at a fixed point, corresponding to
the number of boxes of the associated three-dimensional Young diagram, are fixed completely by
the matrix equations (4.1). This follows from the fact that the matrices in the last equation of
(4.1) (the D-term constraint) are all k×k and the diagonal components yield exactly k constraints.
Thus the fixed points are indeed isolated.

Geometrically, these coloured partitions can be understood as fixed points in the framed moduli
space (4.19) as follows. There is a natural action of the torus T

3×U(1)N on MN,k(P
3) induced by the

T
3-action on the toric manifold P

3 and the action of the maximal torus U(1)N on W ⊗Op∞ , where
W =

⊕
l Wl decomposes into irreducible representations Wl

∼= C of U(1). Then the T
3 × U(1)N

fixed points on MN,k(P
3) are the coherent, torus invariant sheaves E~π = Ia1⊕· · ·⊕IaN

with pointlike
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support Z = Za1 ⊔ · · · ⊔ ZaN
at the origin of C

3, where Ial
is a T

3-invariant ideal sheaf supported
on the T

3-fixed zero-dimensional subscheme Zal
⊂ C

3 = P
3 \ p∞ such that Ial

|p∞ ∼= Wl ⊗ Op∞ . In
particular, the weight decomposition (5.29) coincides with H0(OZ).

5.4 Quiver variety for Donaldson–Thomas data

At this stage we have provided a classification of the critical points in the abelian theory that can
be easily generalized to the U(1)N picture. To complete the localization program we have to now
compute the quantum fluctuation factor around each critical point. This can be done explicitly in
our ADHM-type formalism since it provides a direct parametrization of the compactified instanton
moduli space. The heuristic structure of “fields” and “constraints” that we have exploited above
to write down the ratio of determinants in (5.23) can be made precise in terms of an equivariant
index that counts BPS states. Geometrically, we will provide a description of the (virtual) tangent
space around each fixed point (the “fields”), and on top of it we build the normal bundle (the
“constraints”). This finally gives the last missing piece of information needed to use the localization
formula. We will assume that the gauge symmetry is broken down to the maximal torus U(1)N

and recover the abelian theory as a particular case.

Recall that in the quiver description above the two vector spaces V and W with dimC V = k
and dimCW = N represent respectively the gas of k D0-branes and the N D6-branes. Naively,
the bosonic fields are elements (5.13), while the fermionic fields associated with the equations
of motion live in (5.18). However, this is not really what we need since we have to compute
contributions coming from the fixed points and each fixed point is characterized by the fact that
the equivariant transformation mixes with the linear transformations of the vector spaces V and
W . To make this apparent we introduce a three-dimensional T

3-module Q that acts on V . At a
fixed point f ∈ M we have to supplement the conditions (5.13) and (5.18) with the information
that a gauge transformation is equivalent to an equivariant rotation. Let us take the three-torus
to be T

3 = (t1 = e i ǫ1, t2 = e i ǫ2, t3 = e i ǫ3), and introduce the following notation. Ti is the
one-dimensional module generated by ti, Ti Tj is generated by ti tj and T1 T2 T3 by t1 t2 t3, and
similarly for the dual modules T ∗

i := T−1
i . We write El for the module over T

3 × U(1)N generated
by el = e i al . For brevity we omit tensor product symbols between the T -modules.

With this notation, at the fixed points of the T
3 ×U(1)N action, which correspond from above

to coloured partitions ~π = (π1, . . . , πN ), we decompose the vector spaces

V~π =
N∑

l=1

el
∑

(i,j,k)∈πl

ti−1
1 tj−1

2 tk−1
3 ,

W~π =
N∑

l=1

el (5.46)

as T
3×U(1)N representations viewed as polynomials in t1, t2, t3 and el, l = 1, . . . ,N . For each l, the

sum over boxes of πl in V~π is the trace of the T
3-action (i.e. the T

3-character) on C[B1, B2, B3]/Ial
.

Taking into account the action of the torus on the vector space V we can write

B1 ∈ Hom(V~π, V~π) ⊗ T−1
1 ,

B2 ∈ Hom(V~π, V~π) ⊗ T−1
2 ,

B3 ∈ Hom(V~π, V~π) ⊗ T−1
3 ,

ϕ ∈ Hom(V~π, V~π) ⊗ (T1 T2 T3)
−1 ,
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I ∈ Hom(W~π, V~π) . (5.47)

It is important to stress that these decompositions only hold at the fixed points and not generically
on the instanton moduli space. We have chosen I as before to be invariant under the toric action.
This amounts to setting ε = 0, which we will see later on is consistent with the known abelian case.
Similarly for the constraints (again at the fixed points)

χ1 ∈ Hom(V~π, V~π) ⊗ T−1
1 T−1

2 ,

χ2 ∈ Hom(V~π, V~π) ⊗ T−1
1 T−1

3 ,

χ3 ∈ Hom(V~π, V~π) ⊗ T−1
2 T−1

3 ,

χr ∈ Hom(V~π, V~π) ,

ξ ∈ Hom(V~π,W~π) ⊗ T−1
1 T−1

2 T−1
3 . (5.48)

We will call an element

(B1, B2, B3, ϕ, I) ∈
(
Q⊗ Hom(V, V )

)
⊕

(∧3Q⊗ Hom(V, V )
)

⊕ Hom(W,V ) (5.49)

a Donaldson–Thomas datum, where

Q = T−1
1 + T−1

2 + T−1
3 ,

∧2Q = T−1
1 T−1

2 + T−1
1 T−1

3 + T−1
2 T−1

3 ,
∧3Q = detQ = T−1

1 T−1
2 T−1

3 . (5.50)

Recall that there is a natural GL(k,C) action on this data. If we impose the stability condition
on (5.49), then this group action is free. Then we may define the geometric invariant theory
quotient of the subspace of (5.49) given by µ−1

c (0)//GL(k,C), where µc = (Ei,EI) is a complex
moment map. This is the quiver variety for Donaldson–Thomas data. This can also presumably
be defined by relaxing stability and taking instead a hyper-Kähler quotient of the data (5.49) given
by µ−1

c (0) ∩ µ−1
r (r)//U(k), where µr = Er is a real moment map. However, like the other moduli

spaces considered in this paper, we are not aware of any scheme (or stack) construction on this set.

5.5 Localization formula and character

Let (B1, B2, B3, ϕ, I) be a Donaldon–Thomas datum corresponding to the fixed point ~π. Let us
study the local geometry of the instanton moduli space around this fixed point. Consider the
complex

Hom(V~π, V~π)
σ //

Hom(V~π, V~π) ⊗Q
⊕

Hom(W~π, V~π)
⊕

Hom(V~π, V~π) ⊗ ∧3Q

τ //
Hom(V~π, V~π) ⊗ ∧2Q

⊕
Hom(V~π,W~π) ⊗

∧3Q .

(5.51)

The map σ is an infinitesimal (complex) gauge transformation

σ(φ) =




φB1 −B1 φ
φB2 −B2 φ
φB3 −B3 φ
φ I − I a

φϕ− ϕφ




, (5.52)
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while the map τ is the differential of the equations that define the moduli space [Bi, Bj] = 0 given
by

τ




Y1

Y2

Y3

s
Y4




=




[B1, Y2] + [Y1, B2]
[B1, Y3] + [Y1, B3]
[B2, Y3] + [Y2, B3]

s† ϕ+ I† Y4


 , (5.53)

where one can think of Yi as δBi and so on.

The complex (5.51) is the matrix quantum mechanics analog of the instanton deformation
complex (2.3). In a similar way, its first cohomology is a local model of the Zariski tangent space
to the moduli space, while its second cohomology parametrizes obstructions. This is exactly the
information we need to integrate (2.4). We want to apply the Duistermaat–Heckman localization
formula (2.10), or better its supersymmetric generalizations [37], to the integral (2.4). This involves
the ratio of the top Chern class of the obstruction bundle over the weights coming from the tangent
space. For what concerns the computation of the Chern classes we can decompose the tangent
and normal bundles over the moduli space as Whitney sums of line bundles by using the splitting
principle as TM =

⊕
i Li and N =

⊕
i Qi. Accordingly, the equivariant Chern polynomials are

given by

c(TM) =

n∏

i=1

(
c1(Li) +wi[TM]

)
,

c(N) =
n∏

i=1

(
c1(Qi) + wi[N]

)
, (5.54)

where the local weights wi in general depend on the toric parameters (ǫ1, ǫ2, ǫ3,a). The same
information is contained in the equivariant Chern characters

ch(TM) =
n∑

i=1

e c1(Li)+wi[TM] ,

ch(N) =

n∑

i=1

e c1(Qi)+wi[N] . (5.55)

The Chern classes of the line bundles do not contribute to the localization formula since they
have to be evaluated at a point (and the critical points are isolated). Then we can use directly the
above expansions to extract the relevant weights to be used in the localization formula. In practise
this is accomplished via the transform [9, 37]

n∑

i=1

ni e wi 7−→
n∏

i=1

wni

i . (5.56)

This means that all the relevant data that enter in the localization formula are already contained
in the equivariant index of the complex (5.51). To be precise the index computes the virtual sum
H1⊖H0⊖H2 of cohomology groups. We assume that H0 vanishes, which is equivalent to restricting
attention to irreducible connections. Using (5.56) we see then that the equivariant index computes
exactly the inverse of the ratio of the weights that enter in the localization formula. The equivariant
index is given in terms of the characters of the representation evaluated at the fixed point as

χ~π

(
C

3
)[k]

= V ∗
~π ⊗ V~π ⊗

(
T−1

1 + T−1
2 + T−1

3 + T−1
1 T−1

2 T−1
3

)
+W ∗

~π ⊗ V~π

49



−V ∗
~π ⊗ V~π ⊗

(
1 + T−1

1 T−1
2 + T−1

1 T−1
3 + T−1

2 T−1
3

)
− V ∗

~π ⊗W~π ⊗ T−1
1 T−1

2 T−1
3

= W ∗
~π ⊗ V~π − V ∗

~π ⊗W~π

t1 t2 t3
+ V ∗

~π ⊗ V~π
(1 − t1) (1 − t2) (1 − t3)

t1 t2 t3
. (5.57)

In the abelian case, W ∼= C and we can formally set W = 1. Then the character (5.57)
reproduces exactly the vertex character computed in [7]. It is not clear what is the precise relation
of the above construction with the more geometric approach of [7], since in the gauge theory picture
there are several matter fields which do not figure into the computations of [7]. Nevertheless, it
is reassuring that we can reproduce the result of [7] without resorting to the evaluation of virtual
fundamental classes but only with arguments well rooted in our physical intuition. It would be
very interesting to understand in the language of [7] what the meaning is of the vector space W .
A final remark about the equivariant transformation of I, i.e. the choice ε = 0. This can be now
justified since it is the choice that reproduces the abelian character.

From this discussion we can immediately write down the partition function

Z
U(1)N

DT

(
C

3
)

=
∑

~π

Z~π e i ϑ |~π| , (5.58)

where Z~π is what the matrix integral (5.23) computes and is given by (5.57) through the rule
(5.56). However, its explicit form is not very illuminating. To obtain a more manageable form let
us simplify the character a bit. We begin by looking at the abelian theory with N = 1. Then

χπ,ab

(
C

3
)[k]

= Vπ − V ∗
π

t1 t2 t3
+ V ∗

π ⊗ Vπ
(1 − t1) (1 − t2) (1 − t3)

t1 t2 t3
(5.59)

where at a fixed point

Vπ =
∑

(i,j,k)∈π

ti−1
1 tj−1

2 tk−1
3 . (5.60)

One can easily see that

χπ,ab

(
C

3
)[k]

= T
+
π + T

−
π (5.61)

where

T
+
π = Vπ − Vπ ⊗ V ∗

π

(1 − t1) (1 − t2)

t1 t2
,

T
−
π = − V ∗

π

t1 t2 t3
+ Vπ ⊗ V ∗

π

(1 − t1) (1 − t2)

t1 t2 t3
. (5.62)

With the dual operation t 7→ t∗ = t−1, this splitting of the character has the remarkable property

(
T

+
π

)∗ ∣∣
t1 t2 t3=1

= −T
−
π

∣∣
t1 t2 t3=1

. (5.63)

Note that this property is true only when one imposes the Calabi–Yau condition t1 t2 t3 = 1.

What is remarkable about the property (5.63) is that due to (5.56) the contribution to the
full fluctuation determinant is a minus sign to some power and this power can be computed to be
T

+
π (t1 = t2 = t3 = 1). Explicitly, one has

χπ,ab

(
C

3
)[k]∣∣

t1 t2 t3=1
= T

+
π

∣∣
t1 t2 t3=1

+ T
−
π

∣∣
t1 t2 t3=1

= T
+
π

∣∣
t1 t2 t3=1

−
(
T

+
π

)∗ ∣∣
t1 t2 t3=1
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=
n∑

i=1

ni e wi[ǫ1,ǫ2,ǫ3] −
n∑

i=1

ni e−wi[ǫ1,ǫ2,ǫ3] . (5.64)

By using the transform (5.56) we can write the contribution to the partition function as

Zπ =
n∏

i=1

wi[ǫ1, ǫ2, ǫ3]
ni

(
− wi[ǫ1, ǫ2, ǫ3]

)ni
=

n∏

i=1

(−1)ni = (−1)
P

i ni , (5.65)

and the sum over the multiplicities ni can be obtained by taking T
+
π

∣∣
t1 t2 t3=1

and setting the weights

wi to zero, i.e. setting ǫi to zero or ti to one. It is easy to see that T
+
π (t1 = t2 = t3 = 1) = |π| since

the second term of T
+
π in (5.62) vanishes at ti = 1. Thus we conclude that the partition function

in this case is given by

Z
U(1)
DT

(
C

3
)

=
∑

π

(−1)|π| e i ϑ |π| , (5.66)

which reproduces the MacMahon function (3.50) with the usual redefinition − e i ϑ = e−gs = q.

These arguments carry over to the U(1)N theory with only minor modifications. Now we have
to consider the full character (5.57). The splitting

T
+
~π = V~π ⊗W ∗

~π − V~π ⊗ V ∗
~π

(1 − t1) (1 − t2)

t1 t2
,

T
−
~π = −V

∗
~π ⊗W~π

t1 t2 t3
+ V~π ⊗ V ∗

~π

(1 − t1) (1 − t2)

t1 t2 t3
(5.67)

is helpful in simplifying the computation. At the fixed points ~π the vector spaces V and W
decompose as in (5.46). The property (5.63) still holds but now the dual involution is defined as
(ǫ1, ǫ2, ǫ3,a) 7→ (−ǫ1,−ǫ2,−ǫ3,−a). By a similar argument as above we need only evaluate T

+
~π at

(ǫ1, ǫ2, ǫ3,a) = (0, 0, 0,0). The second term in (5.67) again drops out and the first one gives

N∑

l=1

N∑

l′=1

∑

(i,j,k)∈πl′

1 = N
N∑

l′=1

|πl′ | . (5.68)

To complete the computation of the partition function, the only missing ingredient now is the
instanton action. Analogously to [34, 40], we write the universal sheaf E on the moduli space
MN,k(P

3) as
E = W ⊕ V ⊗

(
S− ⊖ S+

)
(5.69)

where S± are the positive/negative chirality spinor bundles over P
3, localized at a point of the

fibre of C
3 = P

3/P2. At a critical point ~π we regard (5.69) as a virtual T
3 ×U(1)N representation.

By using the correspondence between spinors and differential forms given by twisting the spinor

bundles to get S± ∼= Ω
even/odd,0
P3 [18], we can derive the Chern character

ch(E~π) = W~π + (t1 + t2 + t3 + t1 t2 t3 − 1 − t1 t2 − t2 t3 − t1 t3) V~π

= W~π − (1 − t1) (1 − t2) (1 − t3) V~π . (5.70)

In the quiver formalism we work in an instanton sector with fixed charge k = dimC V~π (so that the
instanton action is proportional to k), and this corresponds to the total number of boxes of the
partition by the same arguments used in the classification of the fixed points. Each subspace in
the weight decomposition of the vector space V~π is one-dimensional and corresponds to a box in
the partition ~π. The generating function for the nonabelian invariants is thus

Z
U(1)N

DT

(
C

3
)

=
∑

~π

(−1)N |~π| e i ϑ |~π| , (5.71)

which coincides with eq. (3.1).
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5.6 Comparison with the noncommutative gauge theory

The results described in this section have a clear interpretation in terms of the noncommutative
gauge theory of Section 3 that was spelled out in detail in Section 4. We can formally take this
a step further and stress some close similarities between the two approaches. Recall that for
the classification of the fixed points in the noncommutative gauge theory one simply needs to
construct the Hilbert space on which the noncommutative algebra A is represented. In particular,
the ratio of fluctuation determinants has the same structure, the main difference being that in
the noncommutative gauge theory we are dealing with the determinants of operators acting on
a separable Hilbert space which gives directly the result, while in the matrix model after the
computation of the determinants there is still the integral over the Cartan subalgebra to do. The
evaluation of the contour integral (5.23) was finally sidestepped by constructing an explicit local
model for the instanton moduli space. The computation of the associated index is equivalent to a
direct use of the localization formula.

We can build a formal dictionary to go back and forth between the two approaches. This
could prove very helpful in extending our general formalism to other setups. The equivariant
Chern character (5.70) can be derived precisely in the noncommutative gauge theory. If we use the
notation

χI(t) := ch~π(t) = W~π −
(
1 − e t ǫ1

) (
1 − e t ǫ2

) (
1 − e t ǫ3

)
V~π (5.72)

along with the redefinitions ti = e t ǫi and el = e t al , then the integrand of (3.41) formally reproduces
the character (5.57) up to the perturbative contribution W~π ⊗W ∗

~π and an irrelevant overall sign.
The sign mismatch was explained above in terms of the alternating sign in the definition of the
index. The role of the exponentiation and of the integral over t is to reproduce the transform
(5.56). Altogether, we can take this as a rule to compute the equivariant index from the ratio of
fluctuation determinants as computed in the noncommutative gauge theory. This is perhaps not
surprising as field theoretically both approaches are just two different ways to handle the ill-defined
localization in the original cohomological gauge theory. An application of this formalism will be
presented in the next section where we compute the partition function of the U(1)N model on a
generic toric Calabi–Yau manifold.

6 Partition function on a toric manifold

In the previous sections we have derived a precise dictionary between the noncommutative gauge
theory and an auxiliary matrix quantum mechanics. We will now apply our formalism in a controlled
setup, switching between the two approaches when convenient. In particular, we will write down the
partition function of the U(1)N gauge theory on an arbitrary toric Calabi–Yau threefold, extending
the gauge theory prescription of [8] for handling the instanton counting on a generic toric manifold
and the geometric results of [7] to compute the quantum fluctuation determinants. Although our
final result does not provide any new geometrical invariants of threefolds, as it does not capture
the full nonabelian structure of the Donaldson–Thomas invariants, it does compute the number of
BPS bound states of branes in this specific regime of the theory.

6.1 Instanton action

Let X be a nonsingular toric threefold with Kähler two-form k0 and Newton polyhedron ∆(X), the
image of X under the moment map associated to the toric action on X. The vertices f of ∆(X)
correspond to the fixed points of the T

3-action on X. For each f there is a T
3-invariant open C

3

chart centred at the fixed point. On each patch we can choose coordinates corresponding to the
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directions (t1, t2, t3), where (t1, t2, t3) = ( e i ǫ1, e i ǫ2, e i ǫ3) are the generators of the toric action.
The edges of the polyhedron ∆(X) correspond to the T

3-invariant lines of X. They represent
generic projective lines P

1 which join two fixed points f1 and f2 in ∆(X). Instantons of U(N)
noncommutative gauge theory on each C

3 patch in the Coulomb phase correspond to sums of
monomial ideals If = Ia1,f

⊕ · · · ⊕ IaN,f
in OC3 associated to coloured three-dimensional partitions

~πf = (π1,f , . . . , πN,f ). Such collections of ideals correspond globally to T
3×U(1)N -invariant torsion

free sheaves E of rank N on X with associated subscheme Z supported on the fixed points in ∆(X)
and the lines connecting them, together with a framing E∞ ∼= W ⊗ OX .

We need to compute Tr HIf

(
e t Φ

)
, where Φ is a nonabelian Higgs field and the Hilbert space

HIf
corresponds to a three-dimensional partition ~πf with fixed asymptotic behaviour at infinity.

One can write down directly the Chern character at a fixed point f ∈ ∆(X) corresponding to the
generalized instanton configuration with fixed asymptotics as

χIf
(t) =

N∑

l=1

el,f

(
1 − (1 − t1) (1 − t2)

∑

(i,j)∈λ3,l,f

ti−1
1 tj−1

2 − (1 − t1) (1 − t3)
∑

(i,k)∈λ2,l,f

ti−1
1 tk−1

3

− (1 − t2) (1 − t3)
∑

(j,k)∈λ1,l,f

tj−1
2 tk−1

3

− (1 − t1) (1 − t2) (1 − t3)
∑

(i,j,k)∈πl,f

ti−1
1 tj−1

2 tk−1
3

)
. (6.1)

The first set of terms represent the vacuum contribution which is fixed asymptotically by the
3N two-dimensional Young tableaux (λ1,l,f , λ2,l,f , λ3,l,f ), the asymptotics of πl,f in the coordinate
directions labelling the corresponding edges emanating from the vertex f . We are covering the
toric manifold X with C

3 patches and solving the noncommutative gauge theory in each patch.
The asymptotic boundary conditions are necessary to glue the patches together. The ordinary
two-dimensional partition which is the asymptotic condition in the i-th direction ti is denoted by
λi,l,f , with the index l = 1, . . . , N reminding us from which sector of the Hilbert space HIf

they
come from. The last term corresponds to the three-dimensional partitions πl,f which should now
be understood as properly renormalized for n≫ 0 with volume

|πl,f | =
( ∑

(i,j,k)∈πl,f

i,j,k≤n

1
)
− (n+ 1)

(
|λ1,l,f | + |λ2,l,f | + |λ3,l,f |

)
. (6.2)

In the following we will impose the Calabi–Yau condition (3.9) and define x = ǫ2
ǫ1

. The equiv-

ariant parameters are defined differently in each C
3 patch and in such a way that they match when

gluing the patches together as in the topological vertex gluing rules. The contribution of the third

Chern character to the instanton action, i.e. the coefficient χ
(3)
If

of t3 in the small t expansion of

(6.1), gives

i

48π3

∫

X
TrFA ∧ FA ∧ FA =

∑

f∈∆(X)

N∑

l=1

(
−

a3
l,f

6ǫ1,f xf (1 + xf )
+

∑

(i,j,k)∈πl,f

1

+
∑

(i,j)∈λ3,l,f

(
−1

2
+ j +

i− j

1 + xf
+

al,f

ǫ1,f (1 + xf )

)
(6.3)

+
∑

(i,k)∈λ2,l,f

(
−1

2
+ k +

k − i

xf
− al,f

ǫ1,f xf

)
+

∑

(j,k)∈λ1,l,f

(
−1

2
+ k − j xf + k xf − al,f

ǫ1,f

))
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where we have written down explicitly the sum over fixed points f associated with the vertices of the
toric diagram ∆(X). Each vertex contribution has a proper factor associated with the vertex itself,
but it also comes with edge factors associated with the asymptotic two-dimensional partitions. To
properly treat the edge factors one has to consider both contributions associated to an edge coming
from the two adjacent vertices. This will be done explicitly in the following.

The first contribution in (6.3) is independent of the partitions ~πf , and as such can be factored
out as a “perturbative” contribution as before. The second contribution gives a factor of |~πf |
associated to each vertex of the toric diagram and generalizes the instanton action. The remaining
three terms come from the contribution of the asymptotics and have to be combined with the
analogous contributions coming from other fixed points. For example, let us choose a fixed point f
and consider the term where we sum over boxes of λ3,l,f . The vertex we are considering is joined
to another vertex along an edge and the partitions on the edge have the structure given by λ3,l,f .
The edge represents a T

3-invariant rational curve P
1 with normal bundle OP1(−m1) ⊕ OP1(−m2)

determining the local geometry of ∆(X) near the edge. The Calabi–Yau condition implies

m1 +m2 = 2 . (6.4)

The two contributions we have to consider are exactly the same but each one is expressed in terms
of the equivariant parameters that are associated with the local coordinates in each C

3 patch. The
relation between the equivariant parameters is then given by the transition function between the
two coordinate charts as [7]

ǫ1,f2 = ǫ1,f1 +m1 ǫ3,f1 ,

ǫ2,f2 = ǫ2,f1 +m2 ǫ3,f1 ,

ǫ3,f2 = −ǫ3,f1 ,

xf2 =
ǫ2,f2

ǫ1,f2

=
xf1 −m2 −m2 xf1

1 −m1 −m1 xf1

, (6.5)

where (f1, f2) labels the two fixed points joined by the edge.

After a bit of algebra we find

N∑

l=1

∑

(i,j)∈λ3,l,f1

(
−1

2
+ j +

i− j

1 + xf1

+
al,f1

ǫ1,f1 (1 + xf1)
− 1

2
+ j +

i− j

1 + xf2

+
al,f2

ǫ1,f2 (1 + xf2)

)

=

N∑

l=1

∑

(i,j)∈λ3,l,f1

(−1 + 2j + im1 − j m1)

=

N∑

l=1

∑

(i,j)∈λ3,l,f1

(
m1 (i− 1) +m2 (j − 1) + 1

)
(6.6)

where in the last equality we have used (6.4) to express the edge contribution in a universal form.
The Higgs vevs cancel since we require al,f1 = al,f2 as part of the gluing conditions,3 and the edge
contribution along the “direction” t3 is the sum of N terms which all have the same form as in the
abelian N = 1 theory. After performing similar computations along the other two “directions” t2
and t1, the ch3 term of the instanton action gives

I(~πf ) =
∑

f∈∆(X)

N∑

l=1

|πl,f | +
∑

e∈∆(X)

N∑

l=1

∑

(i,j)∈λl,e

(
m1,e (i− 1) +m2,e (j − 1) + 1

)
, (6.7)

3Each al,f gives the asymptotic boundary condition on the instanton labelled by f , and we can glue together two
instantons at infinity if and only if they have the same value of al,f .
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where the sum over f runs through the vertices of the toric diagram ∆(X) while the sum over e
runs through the edges.

To complete the evaluation of the instanton action one needs to also consider the second Chern

character, i.e. the coefficient χ
(2)
If

of t2 in the small t expansion of (6.1). One finds

− 1

8π2

∫

X
k0 ∧ TrFA ∧ FA =

∑

f∈∆(X)

Hf χ
(2)
If

ǫ1,f ǫ2,f ǫ3,f
(6.8)

=
∑

f∈∆(X)

N∑

l=1

(
a2

l,f Hf

2ǫ1,f ǫ2,f ǫ3,f
−

∑

(i,j)∈λ3,l

Hf

ǫ3,f
−

∑

(i,k)∈λ2,l

Hf

ǫ2,f
−

∑

(j,k)∈λ1,l

Hf

ǫ1,f

)

where Hf is the value at the fixed point f of the hamiltonian H associated with the vector field Ω
that generates the equivariant rotations, i.e., dH = ıΩk0. The term depending on the Higgs vevs
can again be dropped and we can analyse the edge contributions as before with the result

−
∑

e∈∆(X)

N∑

l=1

te |λl,e| (6.9)

where te =
Hf1

−Hf2
ǫe

, for each pair of fixed points (f1, f2) connected by the edge e, is the Kähler

parameter of the line P
1 associated to e. Altogether, the instanton weight is given by

e iϑ I(~πf ) e−
P

e∈∆(X)

PN
l=1 te |λl,e| . (6.10)

6.2 Fluctuation determinants

The next step in the evaluation of the partition function is to determine the ratio of quantum
fluctuation determinants. According to our rule of the previous section, we can write down the
ratio in the noncommutative gauge theory and read off from the integrand the equivariant Euler
characteristic of the complex (5.51) using the techniques of [7]. The ratio at a fixed point f ∈ ∆(X)
comes out to be

χIf
(t)χIf

(−t)
(1 − t1) (1 − t2) (1 − t3)

(6.11)

as in (3.41), with χIf
(t) given by (6.1). The character at the fixed point f decomposes as

χf (X) =
(
Wf − (1 − t1) (1 − t2) V12,f − (1 − t1) (1 − t3) V13,f

− (1 − t2) (1 − t3) V23,f − (1 − t1) (1 − t2) (1 − t3) Vf

)

⊗
(
W ∗

f − (1 − t1) (1 − t2)

t1 t2
V ∗

12,f − (1 − t1) (1 − t3)

t1 t3
V ∗

13,f (6.12)

− (1 − t2) (1 − t3)

t2 t3
V ∗

23,f +
(1 − t1) (1 − t2) (1 − t3)

t1 t2 t3
V ∗

f

) 1

(1 − t1) (1 − t2) (1 − t3)

where the T
3 × U(1)N modules are given by

Wf =
N∑

l=1

el,f ,
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Vf =

N∑

l=1

el,f
∑

(i,j,k)∈πl,f

ti−1
1 tj−1

2 tk−1
3 ,

Vαβ,f =

N∑

l=1

el,f
∑

(i,j)∈λγ,l,f

ti−1
α tj−1

β (6.13)

with (α, β, γ) a cyclic permutation of (1, 2, 3).

The computation of the ratio of determinants from (6.12) is now just a tedious but completely
straightforward algebraic exercise. By using splittings of modules with properties analogous to
those of Section 5.5, one easily shows that all contributions independent of the Chan–Paton space
Wf vanish at (ǫ1, ǫ2, ǫ3,a) = (0, 0, 0,0). After dropping the perturbative contribution Wf ⊗W ∗

f ,
one thus finds that the only non-vanishing contributions which survive at (ǫ1, ǫ2, ǫ3,a) = (0, 0, 0,0)
are given by

Wf ⊗ V ∗
f

t1 t2 t3
− Vf ⊗W ∗

f − (1 − t1) (1 − t2) (1 − t3)

t1 t2 t3
Vf ⊗ V ∗

f (6.14)

+
1

1 − t3

(
−V12,f ⊗W ∗

f −
Wf ⊗ V ∗

12,f

t1 t2
+

(1 − t1) (1 − t2)

t1 t2
V12,f ⊗ V ∗

12,f

)

+
1

1 − t2

(
−V13,f ⊗W ∗

f −
Wf ⊗ V ∗

13,f

t1 t3
+

(1 − t1) (1 − t3)

t1 t3
V13,f ⊗ V ∗

13,f

)

+
1

1 − t1

(
−V23,f ⊗W ∗

f −
Wf ⊗ V ∗

23,f

t2 t3
+

(1 − t2) (1 − t3)

t2 t3
V23,f ⊗ V ∗

23,f

)
.

After applying the transformation (5.56), each of the four lines in (6.14) gives a minus sign to some
power.

The first line of (6.14) coincides with the character (5.57) computed in Section 5.5 and gives

a factor (−1)N
PN

l=1 |πl,f | for each fixed point f ∈ ∆(X). The remaining terms are a nonabelian
generalization of the edge character computed in [7] (reproduced formally by setting W to 1), and
can be understood from the point of view of the matrix quantum mechanics as follows. By T-duality,
the D6–D2 system corresponds to a four-dimensional instanton problem over each rational curve of
X. These asymptotics are each described by an ADHM quiver [32], with associated vector spaces
Wf of dimension N and Vαβ,f of dimension kγ,f = |~λγ,f |. The full quiver is the modification of the
D6–D0 quiver of Fig. 1 obtained by inserting the vector spaces Vαβ,f plus all additional open string
fields [12]. This modifies the complex (5.51) by including terms from the four-dimensional ADHM
deformation complex [32, 37]. The additional contributions in (6.14) then arise from the usual
characters in four-dimensions. They may be computed in the present case by carefully matching
the edge contributions with the partner terms coming from other vertices of the toric diagram
∆(X) as in Section 6.1 above.

For example, consider the contribution L23,f from the last line of (6.14), which is oriented in
the t1 “direction”. To this term we have to add its partner term coming from the vertex which
shares the same edge e, and which has the same two-dimensional partition structure of V23,f as its
asymptotic behaviour. Using (6.5) with t1 ↔ t3 the full edge contribution is then

E23,e = L23,f (t1, t2, t3, el,f ) + L23,f

(
t−1
1 , t2 t

m1
1 , t3 t

m2
1 , el,f

)
. (6.15)

We use the splitting L23,f = L
+
23,f + L

−
23,f with

L
+
23,f =

1

1 − t1

(
−V23,f ⊗W ∗

f +
1 − t2
t2

V23,f ⊗ V ∗
23,f

)
(6.16)
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and
(
L

+
23,f

)∗ ∣∣
t1 t2 t3=1

= −L
−
23,f

∣∣
t1 t2 t3=1

. Together with the condition (6.4), after some algebra one

finds that the corresponding splitting E
+
23,e in the limit (ǫ1, ǫ2, ǫ3,a) = (0, 0, 0,0) is given by

N∑

l,l′=1

∑

(j,k)∈λ1,l,f

(j m1 + km2 − 1) +
N∑

l,l′=1

∑

(j,k)∈λ1,l,f

∑

(j′,k′ )∈λ1,l′,f

m1 (6.17)

= N
N∑

l=1

∑

(j,k)∈λ1,l,f

(
m1 (j − 1) +m2 (k − 1) + 1

)
+

N∑

l,l′=1

|λ1,l,f | |λ1,l′,f |m1 .

In this way one finds that the final result for the ratio of fluctuation determinants can be expressed
as (−1)J(~πf ), where

J(~πf ) =
∑

f∈∆(X)

N

N∑

l=1

|πl,f | +
∑

e∈∆(X)

N

N∑

l=1

∑

(i,j)∈λl,e

(
m1,e (i− 1) +m2,e (j − 1) + 1

)

+
∑

e∈∆(X)

N∑

l,l′=1

|λl,e| |λl′,e|m1,e (6.18)

generalizes the abelian N = 1 result of [7, 8].

6.3 Partition function

We can now collect all the ingredients and write down the Donaldson–Thomas partition function on
any toric Calabi–Yau manifold X in the U(1)N phase of the six-dimensional topological Yang–Mills
theory on X. One finds

Z
U(1)N

DT (X) =
∑

~πf

(−1)J(~πf ) e iϑ I(~πf ) e−
P

e∈∆(X)

PN
l=1 |λl,e| te . (6.19)

After some rewriting we have

Z
U(1)N

DT (X) =
∑

~πf

qI(~πf ) (−1)(N+1) I(~πf )
∏

e∈∆(X)

(−1)
PN

l,l′=1 |λl,e| |λl′,e|m1,e e−PN
l=1 |λl,e| te , (6.20)

where the 1 in the N + 1 factor arises from the minus sign in the definition q = − e i ϑ and I(~πf ) is
the ch3 contribution to the instanton action given by (6.7). The m1-dependent signs in (6.20) are
naturally interpreted as framings of the corresponding edges, as in the topological vertex formalism.

As a simple example, let us consider the resolved conifold X = Xcon, the total space of the
rank two holomorphic bundle OP1(−1) ⊕ OP1(−1) → P

1 (viewed as the normal bundle to the local
Calabi–Yau curve P

1). In this case one has

Z
U(1)N

DT (Xcon) =
∑

π1,f1
,...,πN,f1

π1,f2
,...,πN,f2

q
PN

l=1 (|πl,f1
|+|πl,f2

|)+
PN

l=1

P

(i,j)∈λl
(i+j+1)

× (−1)
(N+1)

“

PN
l=1 (|πl,f1

|+|πl,f2
|)+

PN
l=1

P

(i,j)∈λl
(i+j+1)

”

× (−1)
PN

l,l′=1
|λl| |λl′ | e−

PN
l=1 t |λl| . (6.21)

This formula gives

Z
U(1)N

DT (Xcon) =
( ∑

πf

(
(−1)N+1 q

)|πf |+
P

(i,j)∈λ (i+j+1)
(−1)|λ| e−t |λ|

)N
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=
∞∏

n=1

(
1 − (−1)N n qn e−t

)N n

(
1 − (−1)N n qn

)N n
. (6.22)

Up to an alternating sign, this is just the N -th power of the abelian result which coincides with
the topological string amplitude computed in the melting crystal reformulation of the topological
vertex [3, 8]. The alternating sign will be explained in the next section.

7 Summary and applications

In this final section we will discuss some properties of the U(1)N partition functions (6.20). We
will also discuss some open questions and relations to other models. In particular, we summarize
our results and describe how they could be applied to other settings.

7.1 The OSV conjecture

Let us consider for simplicity the threefold X = C
3. The partition function (3.1) can be rewritten

in the form
Z

U(1)N

DT

(
C

3
)

=
∑

π1,...,πN

e (N i π−gs)
PN

l=1 |πl| = M(q̃)N , (7.1)

where M(q̃) is the MacMahon function (3.2) of q̃ = e−g̃s and

g̃s = gs −N iπ . (7.2)

The partition function is just a power of the abelian N = 1 result. This is reasonable since the torus
fixed points of the moduli space (4.19) essentially broke up accordingly (so that no new non-trivial
instantons are present). On the other hand, the Donaldson–Thomas string coupling constant gs is
modified to (7.2) as well. As we now explain, this modification is natural from the point of view of
the OSV conjecture [2].

Consider Type IIA string theory on X × R
4, where D6, D2 and D0 branes wrap holomorphic

cycles of the Calabi–Yau threefold X. The mixed ensemble partition function for BPS bound states
with fixed chemical potentials φa

2 and φ0 for the D2 and D0 brane charges, and magnetic charge p0

of the D6-branes, is denoted ZBH(p0;φa
2, φ0). It factorizes in the limit of large charge p0 and small

string coupling Gs as [2]

ZBH

(
p0 ; φa

2, φ0

)
=

∣∣Ztop(Gs, t
a)

∣∣2 , (7.3)

where Ztop(Gs, t
a) is the A-model topological string partition function on X evaluated at the

attractor point [41, 42] of the moduli space given by

Gs =
4π i

X0
=

4π i

p0 + i φ0

π

and ta = − 2φa
2

p0 + i φ0

π

(7.4)

with ta the Kähler parameters of the two-cycles wrapped by the D2-branes.

If we suppose now that the six-dimensional cohomological gauge theory on X computes the
topological A-model partition function, then the U(N) generalization means including multiple
D6-branes from the point of view of the OSV formula (7.3). However, the Calabi–Yau crystal
description is valid in the strong coupling regime [3] and so we expect the relation

gs =
1

Gs
. (7.5)
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Rewriting the OSV formula (7.3) in the S-dual string couplings g̃s and gs with and without the
D6-branes, one finds

g̃s = gs −
i p0

4π
. (7.6)

Taking into account the relation p0 = N
4π ,4 we see that the string coupling in the Donaldson–Thomas

description changes in the way expected from the OSV conjecture.5

According to the generic prediction (7.3), the general formula (6.20) should factorize in the
large N limit. It would be interesting to further check the OSV factorization for our C

3 example.
Factorization including D6-branes has only been checked for the single example X = K3×T2 [43].
Furthermore, the conformal field theory derivation of the OSV formula of [44] does not readily
generalize for multiple D6-branes. Given that the string coupling in our case lives in the strong
coupling regime, it would be interesting to see if and how the OSV factorization works here. A
refined version of the OSV formula was found in [45] using the U(1) Donaldson–Thomas theory
for a D6 brane-antibrane pair on compact Calabi–Yau manifolds. It was also shown there that in
certain limits of the background one can identify the abelian Donaldson–Thomas partition function
with the BPS index for stable D6–D2–D0 bound states with unit D6-brane charge.

7.2 Enumerative invariants

Let us study the small q expansion of the partition function (7.1), with the aim of understanding
its role in enumerative geometry. For example, for U(2) gauge group one gets

Z
U(1)2

DT

(
C

3
)

=
∑

π1,π2

(−1)3(|π1|+|π2|) q|π1|+|π2|

=
∑

π1,π2

(−1)|π1|+|π2| q|π1|+|π2|

=
( ∑

π

(−q)|π|
)2

(7.7)

=
( ∞∏

n=1

(
1 − (−q)n

)−n
)2

= 1 − 2q + 7q2 − 18q3 + 47q4 − 110q5 + 258q6 − 568q7 + 1237q8 +O
(
q9

)
.

Similarly, for the U(N) gauge theory one finds

Z
U(1)N

DT

(
C

3
)

=
∑

π1,...,πN

(−1)(N+1) (|π1|+···+|πN |) q|π1|+···+|πN |

=
( ∑

π

(−1)(N+1) |π| q|π|
)N

=
( ∞∏

n=1

(
1 − ((−1)N+1 q)n

)−n
)N

(7.8)

= 1 − (−1)N N q +
(

1
2 (−1)2N N2 + 5

2 (−1)2N N
)
q2

4The 4π factor is a matter of convention.
5The dependence on N does not spoil the S-duality conjecture. In fact, the instanton measure does not depend

on the Higgs vevs. Nevertheless, it would be interesting to check this prediction against a computation in some
Chern–Simons theory.
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+
(
−1

6 (−1)3N N3 − 5
2 (−1)3N N2 − 10

3 (−1)3N N
)
q3

+
(

1
24 (−1)4N N4 + 5

4 (−1)4N N3 + 155
24 (−1)4N N2 + 21

4 (−1)4N N
)
q4 +O

(
q5

)
.

The numerical invariants computed by the small q-expansion (7.8) are all integer-valued.

As the nonabelian U(1)N partition function on C
3 is given by the N -th power of the MacMahon

function, up to sign factors, the numerical values of the Donaldson–Thomas invariants are the
same. But the continuation of the MacMahon function in (7.1) to complex values of the string
coupling suggests a non-trivial interpretation in terms of Gromov–Witten theory. By using the
correspondence between the Donaldson–Thomas and Gromov–Witten partition functions [7], one
sees that the Gromov–Witten invariants change non-trivially. This change can be encoded in the
topological string coupling constant associated with the D6-brane charge. In terms of the usual
Gromov–Witten theory, this may arise through geometric transition via a connection with Chern–
Simons gauge theory with complexified coupling constant, as arises for complex gauge groups. It
would be very interesting to understand the meaning of the new parameter N in terms of the
underlying closed topological string theory.

However, we should reiterate that our computations are only valid in the Coulomb phase, where
the gauge group is completely broken to its maximal torus U(1)N . Furthermore, we considered
only the target space X = C

3 properly, wherein the instanton moduli space could be characterized
by a stable framed representation of the quiver with relations of Fig. 1 in the category of complex
vector spaces. The precise characterization of the full moduli space and the construction of the
full nonabelian Donaldson–Thomas theory is a much more difficult task. For a generic threefold
X it should involve a stable twisted representation of the quiver with relations depicted in Fig. 1
(including ADHM quivers over the rational curves) in the abelian category of coherent sheaves of
OX -modules [46], with non-trivial framing. A recent proposal for such a construction in the case
thatX is a local curve can be found in [13]. Understanding of the moduli space of the full nonabelian
Donaldson–Thomas theory, exploring its combinatorial nature in terms of random partitions, and
searching for new geometric invariants are all interesting and challenging tasks, which are however
beyond the scope of the present work. In this paper we have only probed a small corner of the full
moduli space, and developed some potentially useful starting techniques in this direction.

7.3 Relations with other models

It is instructive to compare our results with those obtained on other backgrounds, some of which
can be related to ours through duality transformations. It was argued in [11, 47] that the fact
that perturbative A-model topological string amplitudes capture non-perturbative information
about D-brane bound states can be understood as a consequence of S-duality, when embedding
the topological string theory into the physical Type IIB superstring theory. This S-duality was
used in [48] to relate the abelian Donaldson–Thomas invariants on a Type IIA compactification
with the Gopakumar–Vafa BPS invariants of M2-branes in M-theory, establishing another point of
view on the relationship between four and five dimensional black holes of [49]. One can start with
a Type IIA compactification on a ten-dimensional background given by the product of a Calabi–
Yau threefold and the four-dimensional space R

3 × S
1. Then the charge one D6-brane background

can be transformed into a charge one Taub–NUT geometry by applying a T S T duality transfor-
mation, where the D2 and D0 branes become respectively fundamental strings and Kaluza–Klein
momentum modes along the S

1 of the Taub–NUT geometry. More precisely, after a T-duality
transformation along the S

1 of the space R
3 × S

1, the Type IIA D6-brane gets mapped into the
Type IIB D5-brane. S-duality of the physical Type IIB string theory transforms this D5-brane into
an NS5-brane, and finally after the last T-duality transformation one arrives at the Taub–NUT
geometry. This configuration can then be lifted to M-theory. See [48] for further details.
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It is reasonable to expect that this set of dualities continues to hold for the nonabelian D6-
brane configuration, though more work would need to be done at the supergravity level to establish
this. However, if this is the case then it is interesting to speculate that our computation predicts
a relation between topological A-model amplitudes on the Taub–NUT geometry and the partition
function of N Type IIB NS5-branes, as a consequence of S-duality. It was pointed out in [47] that
a “mirror” version of this duality is already implied in [50], where it was argued that B-model
amplitudes compute the partition function of N Type IIA NS5-branes. In the setup of [50] one
starts with N NS5-branes on a Calabi–Yau threefold X and relates this configuration through T-
duality with Type IIB string theory on X×M

4, where M
4 is a Taub–NUT space (or better an ALE

space of type AN−1 when we let the size of the compactified circle grow to infinity). In concrete
computations they take X = K3 × T

2 and its Z2 orbifold.

By a supergravity analysis and careful matching of F-terms on both sides, one can compute the
nonperturbative contribution to the partition function of N well-separated NS5-branes, which turns
out to be equal to the (N−1)-th power of the B-model topological string amplitude.6 Reversing the
statement, one may say that perturbative topological string amplitudes only compute the partition
function of NS5-branes in the Coulomb branch. Thus even though it is not completely clear how
to explicitly translate this set of dualities to our setup, our results are compatible with the findings
of [50].

A similar picture arises in [51] where a one-parameter generalization of topological string theory
was proposed. Although it seems natural following the reasonings of [51] to identify this parameter
with the rank N of the nonabelian Donaldson–Thomas theory, it is not clear to us how to make
precise contact with their proposal. Other multiparameter extensions of topological string theory
are found in [52] and [53]. It would also be interesting to compare our results with the U(N)
extension of the construction of [54] which considered the equivariant reduction to lower dimension
of the six-dimensional gauge theory on a local surface.
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