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Abstract – Mixtures of factor analyzers enable model-based density estimation
and clustering to be undertaken for high-dimensional data, where the number of ob-
servations n is very large relative to their dimension p. In practice, there is often the
need to reduce further the number of parameters in the specification of the component-
covariance matrices. To this end, we propose the use of common component-factor
loadings, which considerably reduces further the number of parameters. Moreover, it
allows the data to be displayed in low-dimensional plots.
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1 Introduction

Finite mixture models are being increasingly used to model the distributions of a wide
variety of random phenomena and to cluster data sets; see, for example, [1]. Let

Y = (Y1, . . . , Yp)
T (1)

be a p-dimensional vector of feature variables. For continuous features Yj, the density of
Y can be modelled by a mixture of a sufficiently large enough number g of multivariate
normal component distributions,

f(y; Ψ) =

g
∑

i=1

πi φ(y; µi,Σi), (2)

where φ(y; µ,Σ) denotes the p-variate normal density function with mean µ and co-
variance matrix Σ. Here the vector Ψ of unknown parameters consists of the mixing
proportions πi, the elements of the component means µi, and the distinct elements of
the component-covariance matrices Σi (i = 1, . . . , g).

The parameter vector Ψ can be estimated by maximum likelihood. For an observed
random sample, y1, . . . , yn, the log likelihood function for Ψ is given by

log L(Ψ) =
n

∑

j=1

log f(yj; Ψ). (3)

The maximum likelihood estimate (MLE) of Ψ, Ψ̂, is given by an appropriate root of
the likelihood equation,

∂ log L(Ψ)/∂Ψ = 0. (4)

Solutions of (4) corresponding to local maximizers of log L(Ψ) can be obtained via the
expectation-maximization (EM) algorithm [2]; see also [3].

Besides providing an estimate of the density function of Y , the normal mixture
model (2) provides a probabilistic clustering of the observed data y1, . . . , yn into g
clusters in terms of their estimated posterior probabilities of component membership
of the mixture. The posterior probability τi(yj; Ψ) that the jth feature vector with
observed value yj belongs to the ith component of the mixture can be expressed by
Bayes’ theorem as

τi(yj; Ψ) =
πiφ(yj; µi,Σi)

∑g
h=1 πhφ(yj; µh,Σh)

(i = 1, . . . , g; j = 1, . . . , n). (5)

An outright assignment of the data is obtained by assigning each data point yj to the
component to which it has the highest estimated posterior probability of belonging.

The g-component normal mixture model (2) with unrestricted component-covariance
matrices is a highly parameterized model with d = 1

2
p(p + 1) parameters for each

component-covariance matrix Σi (i = 1, . . . , g). Banfield and Raftery [4] introduced
a parameterization of the component-covariance matrix Σi based on a variant of the
standard spectral decomposition of Σi (i = 1, . . . , g). But if p is large relative to the
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sample size n, it may not be possible to use this decomposition to infer an appropriate
model for the component-covariance matrices. Even if it is possible, the results may not
be reliable due to potential problems with near-singular estimates of the component-
covariance matrices when p is large relative to n.

In this paper, we focus on the use of mixtures of factor analyzers to reduce the
number of parameters in the specification of the component-covariance matrices, as
discussed in [1, 5, 6]; see also [7]. With the factor-analytic representation of the
component-covariance matrices, we have that

Σi = BiB
T
i + Di (i = 1, . . . , g), (6)

where Bi is a p × q matrix and Di is a diagonal matrix. As 1
2
q(q − 1) constraints are

needed for Bi to be uniquely defined, the number of free parameters in (6) is

pq + p − 1
2
q(q − 1). (7)

Thus with this representation (6), the reduction in the number of parameters for Σi is

r = 1
2
p(p + 1) − pq − p + 1

2
q(q − 1)

= 1
2
{(p − q)2 − (p + q)}, (8)

assuming that q is chosen sufficiently smaller than p so that this difference is positive.
The total number of parameters is

d1 = (g − 1) + 2gp + g{pq − 1
2
q(q − 1)}. (9)

We shall refer to this approach as MFA (mixtures of factor analyzers).

Even with this MFA approach, the number of parameters still might not be man-
ageable, particularly if the number of dimensions p is large and/or the number of
components (clusters) g is not small.

In this paper, we therefore consider how this factor-analytic approach can be modi-
fied to provide a greater reduction in the number of parameters. We extend the model
of [8, 9] to propose the normal mixture model (2) with the restrictions

µi = Aξi (i = 1, . . . , g) (10)

and
Σi = AΩiA

T + D (i = 1, . . . , g), (11)

where A is a p × q matrix, ξi is a q-dimensional vector, Ωi is a q × q positive definite
symmetric matrix, and D is a diagonal p × p matrix. As to be made more precise in
the next section, A is a matrix of loadings on q unobservable factors and its p columns
are taken to be orthonormal; that is,

AT A = Iq, (12)

where Iq is the q× q identity matrix. With the restrictions (10) and 11) on the compo-
nent mean µi and covariance matrix Σi, respectively, the total number of parameters
is reduced to

d2 = (g − 1) + p + q(p + g) + 1
2
(g − 1)q(q + 1). (13)
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We shall refer to this approach as MCFA (mixtures of common factor analyzers)
since it is formulated via the adoption of a common matrix (A) for the component-factor
loadings. We shall show for this approach how the EM algorithm can be implemented
to fit this normal mixture model under the constraints (10) and (11). We shall also
illustrate how it can be used to provide lower-dimensional plots of the data yj (j =
1, . . . , n). It provides an alternative to canonical variates which are calculated from
the clusters under the assumption of equal component-covariance matrices.

2 Mixtures of Common Factor Analyzers (MCFA)

In this section, we examine the motivation underlying the MCFA approach with its
constraints (10) and (11) on the g component means and covariance matrices µi and
Σi (i = 1, . . . , g). We shall show that it can be viewed as a special case of the MFA
approach.

To see this we first note that the MFA approach with the factor-analytic representa-
tion (6) on Σi is equivalent to assuming that the distribution of the difference Y j −µi

can be modelled as

Y j − µi = BiU ij + eij with prob. πi (i = 1, . . . , g) (14)

for j = 1, . . . , n, where the (unobservable) factors U i1, . . . , U in are distributed in-
dependently N(0, Iq), independently of the eij, which are distributed independently
N(0, Di), where Di is a diagonal matrix (i = 1, . . . , g).

As noted in the introductory section, this model may not lead to a sufficiently large
enough reduction in the number of parameters, particularly if g is not small. Hence
if this is the case, we propose the MCFA approach whereby the distribution of Y j is
modelled as

Y j = AU ij + eij with prob. πi (i = 1, . . . , g) (15)

for j = 1, . . . , n, where the (unobservable) factors U i1, . . . , U in are distributed in-
dependently N(ξ, Ωi), independently of the eij, which are distributed independently
N(0, D), where D is a diagonal matrix (i = 1, . . . , g). Here A is a p × q matrix of
factor loadings, which we take to satisfy the relationship (12); that is, AT A = Iq.

To see that the MCFA model as specified by (15) is a special case of the MFA
approach as specified by (14), we note that we can rewrite (15) as

Y j = AU ij + eij

= Aξi + A(U ij − ξi) + eij

= µi + AKiK
−1
i (U ij − ξi) + eij

= µi + BiU
∗

ij + eij, (16)

where

µi = Aξi, (17)

Bi = AKi, (18)

U ∗

ij = K−1
i (U ij − ξi), (19)
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and where the U ∗

ij are distributed independently N(0, Iq). The covariance matrix of
U ∗

ij is equal to Iq, since K i can be been chosen so that

K−1
i ΩiK

−1T

i = Iq (i = 1, . . . , g). (20)

On comparing (16) with (14), it can be seen that the MCFA model is a special case
of the MFA model with the additional restrictions that

µi = Aξi (i = 1, . . . , g), (21)

Bi = AKi (i = 1, . . . , g), (22)

and
Di = D (i = 1, . . . , g). (23)

The latter restriction of equal diagonal covariance matrices for the component-specific
error terms (Di = D) is sometimes imposed with applications of the MFA approach
to avoid potential singularities with small clusters (see [5]).

Concerning the restriction (22) that the matrix of factor of loadings is equal to AK i

for each component, it can be viewed as adopting common factor loadings before the
use of the transformation K i to transform the factors so that they have unit variances
and zero covariances. Hence this is why we call this approach mixtures of common
factor analyzers. It is also different to the MFA approach in that it considers the
factor-analytic representation of the observations Y j directly, rather than the error
terms Y j − µi.

As the MFA approach allows a more general representation of the component-
covariance matrices and places no restrictions on the component means it is in this
sense preferable to the MCFA approach if its application is feasible given the values
of p and g. If the dimension p and/or the number of components g is too large, then
the MCFA provides a more feasible approach at the expense of more distributional
restrictions on the data. In empirical results some of which are to be reported in
the sequel we have found the performance of the MCFA approach is usually at least
comparable to the MFA approach for data sets to which the latter is practically feasible.
The MCFA approach also has the advantage in that the latent factors in its formulation
are allowed to have different means and covariance matrices and are not white noise
as with the formulation of the MFA approach. Thus the (estimated) posterior means
of the factors corresponding to the observed data can be used to portray the latter in
low-dimensional spaces.

3 Some Related Approaches

The MCFA approach is similar in form to the approach proposed by Yoshida et al. [8,
9], who also imposed the additional restrictions that the common diagonal covariance
matrix D of the error terms is spherical,

D = σ2Ip, (24)
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Table 1: The number of parameters for three models

p g q Number of parameters
MFA 1000 2 2 7999

1000 4 2 15999
5000 2 2 39999
5000 4 2 79999

MCFA 1000 2 2 3008
1000 4 2 3020
5000 2 2 15008
5000 4 2 15020

MCUFSA 1000 2 2 2007
1000 4 2 2017
5000 2 2 10007
5000 4 2 10017

and that the component-covariance matrices of the factors are diagonal. We shall
call this approach MCUFSA (mixtures of common uncorrelated factor spherical-error
analyzers). The total number of parameters with this approach is

d3 = (g − 1) + pq + 1 + 2gq − 1
2
q(q + 1). (25)

In our experience, we have found that these restrictions of sphericity of the errors
and of diagonal covariance matrices in the component distributions of the factors can
have an adverse effect on the clustering of high-dimensional data sets. The relaxation
of these restrictions does considerably increase the complexity of the problem of fitting
the model. But we shall show how it can be effected via the EM algorithm with the E-
and M-steps being able to be carried out in closed form.

In Table 1, we have listed the number of parameters to be estimated for the MFA,
MCFA, and MCUFSA models when p = 1000, 5000; q = 2; and g = 2, 4. For example,
when we cluster p = 1000 dimensional gene expression data into g = 2 groups using
q = 2 dimensional factors, the MFA model requires 7999 parameters to be estimated,
while the MCUFSA needs only 2007 parameters. Moreover, as the number of clusters
grows from 2 to 4 the number of parameters for the MFA model grows twice as large
as before, but that for MCUFSA remains almost the same. As MCUFSA needs less
parameters to characterize the structure of the clusters, it does not always provide a
good fit. It may fail to fit the data unless the directions of the cluster-error distributions
are parallel to the axes of the original feature space due the condition of sphericity on
the cluster errors. Also, it is assuming that the component-covariance matrices of the
factors are diagonal.

Recently, Sanguinetti [10] has considered a method of dimensionality reduction in
a cluster analysis context. However, its underlying model assumes sphericity in the
specification of the variances/covariances of the factors in each cluster. Our proposed
method allows for oblique factors, which provides the extra flexibility needed to cluster
more effectively high-dimensional data sets in practice.
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4 Fitting of Factor-Analytic Models

The fitting of mixtures of factor analyzers as with the MFA approach has been consid-
ered in [5], using a variant of the EM algorithm known as the alternating expectation-
conditional maximization algorithm (AECM). With the MCFA approach, we have fit to
the same mixture model of factor analyzers but with the additional restrictions (10)and
(11) on the component means µi and covariance matrices Σi. We also have to impose
the restriction (23) of common diagonal covariance matrices D. The implementation of
the EM algorithm for this model is described in the Appendix. In the EM framework,
the component label zj associated with the observation yj is introduced as missing
data, where zij = (zj)i is one or zero according as yj belongs or does not belong to the
ith component of the mixture (i = 1, . . . , g; j = 1, . . . , n). The unobservable factors
uij are also introduced as missing data in the EM framework.

As part of the E-step, we require the conditional expectation of the component
labels zij (i = 1, . . . , g) given the observed data point yj (j = 1, . . . , n) . It follows
that

EΨ{Zij | yj} = prΨ{Zij = 1 | yj}

= τi(yj; Ψ) (i = 1, . . . , g; j = 1, . . . , n), (26)

where τi(yj; Ψ) is the posterior probability that yj belongs to the ith component of
the mixture. From (5), it can be expressed under the MCFA model as

τi(yj; Ψ) =
πiφ(yj; Aξi, AΩiA

T + D)
∑g

h=1 πhφ(yj; Aξh, AΩhA
T + D)

(27)

for i = 1, . . . , g; j = 1, . . . , n.

We also require the conditional distribution of the unobservable (latent) factors
U ij given the observed data yj (j = 1, . . . , n). The conditional distribution of U ij

given yj and its membership of the ith component of the mixture (that is, zij = 1) is
multivariate normal,

U ij | yj, zij = 1 ∼ N(ξij, Ωiy), (28)

where
ξij = ξi + γT

i (yj − Aξi) (29)

and
Ωiy = (Iq − γT

i A)Ωi, (30)

and where
γi = (AΩiA

T + D)−1AΩi. (31)

We can portray the observed data yj in q-dimensional space by plotting the corre-
sponding values of the ûij, which are estimated conditional expectations of the factors
U ij, corresponding to the observed data points yj. From (28) and (29),

E(U ij | yj, zij = 1) = ξij

= ξi + γT
i (yj − Aξi). (32)
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We let ûij denote the value of the right-hand side of (32) evaluated at the maximum
likelihood estimates of ξi, γi, and A. We can define the estimated value ûj of the jth
factor corresponding to yj as

ûj =

g
∑

i=1

τi(yj; Ψ̂) ûij (j = 1, . . . , n) (33)

where, from (27), τi(yj; Ψ̂) is the estimated posterior probability that yj belongs to
the ith component. An alternative estimate of the posterior expectation of the factor
corresponding to the jth observation yj is defined by replacing τi(yj; Ψ̂) by ẑij in (33),
where

ẑij = arg max
h

τh(yj; Ψ̂). (34)

5 Accuracy of Factor-Analytic Approximations

To illustrate the accuracy of the three factor-analytic approximations as defined above,
we performed a small simulation experiment. We generated 100 random vectors from
each of g = 2 different three-dimensional multivariate normal distributions. The first
distribution had the mean vector µ1 = (0, 0, 0)T and covariance matrix

Σ1 =





4 −1.8 −1
−1.8 2 0.9
−1 0.9 2



 ,

while the second distribution had mean vector µ2 = (2, 2, 6)T and covariance matrix

Σ2 =





4 1.8 0.8
1.8 2 0.5
0.8 0.5 2



 .

We applied the MFA, MCFA, and the MCUFSA approaches with q = 2 to clus-
ter the data into two groups. We used the ArrayCluster http://www.ism.ac.jp/

~higuchi/arraycluster.htm, which was developed by Yoshida et al. [9] to imple-
ment the MCUFSA approach. There were 2 misclassifications for MFA, 4 for MCFA,
and 8 for MCUFSA. As we obtained the parameter estimates for each model we can
also predict each observation based on the estimated factor scores and the parameter
estimates. In Figures 1, 2, and 3, we have plotted the predicted observations ŷj along
with the actual observations yj by the MFA, MCFA, and the MCUFSA approaches.
For the MFA approach, the predicted observation is obtained as

ŷj =

g
∑

i=1

τi(yj; Ψ̂)(µ̂i + B̂iûij), (35)

where
ûij = α̂T

i (yj − µ̂i) (36)

and
α̂i = (B̂iB̂

T

i + D̂i)
−1B̂i. (37)
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Figure 1: Original observations and the predicted observations by MFA: � Group 1; o
Group 2; * predicted for Group 1; + predicted for Group 2
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Figure 2: Original observations and the predicted observations by MCFA: � Group 1;
o Group 2; * predicted for Group 1; + predicted for Group 2

For the MCFA approach, the predicted observation is

ŷj = Âûj, (38)

where Â is the estimated projection matrix A and where ûj is the estimated factor
score for the jth observation, as defined by (33); similarly, for the MCUFSA approach.

The figures show that the original distribution structure of two groups is recovered
by the estimated factor scores for MFA and MCFA approaches. Their assumed models
are sufficiently flexible to fit the data where the directions of the two cluster-error
distributions are not parallel to the axes of the original feature sapce. On the other hand
the predicted observations for the MCUFSA approach are not fitted well to the actual
distribution of two groups as shown in Figure 3. With this approach, the predicted
observations tend to be higher than the actual observations from the first group and
lower for those from the second group. This lack of fit is due to the strict assumption
of a spherical covariance matrix for each component-error distribution. We measured
the difference between the predicted and observed observations by the mean squared
error (MSE),where MSE=

∑200
j=1(yj − ŷj)

T (yj − ŷj)/200. The value of the MSE for the
simulated data is 2.30, 3.80, 17.34 for MFA, MCFA, and MCUFSA, respectively. As
to be expected, the MSE increases in going from MFA to MCFA and then markedly to
MCUFSA.
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Figure 3: Original observations and the predicted observations by MCUFSA: � Group
1; o Group 2; * predicted for Group 1; + predicted for Group 2

6 Applications of MCFA Approach to Clustering

We implemented the MFA, MCFA, and MCUFSA approaches to cluster tissues in two
different gene expression data sets and individuals in one chemical measurement data
set. We compared the consistency between the implied clustering obtained with each
approach with the true group membership of each data set. We adopted the clustering
corresponding to the local maximizer that gave the largest value of the likelihood as
obtained by implementing the EM algorithm for 50 trial starts, comprising 25 k-means
starts and 25 random starts. To measure the agreement between a clustering of the
data and their true group membership, we used the consistency measures of Jaccard
Index [11] and the Adjusted Rand Index (ARI)[12]. Both indices take the value 1 when
there is perfect validation between the clustering and the true grouping. The Jaccard
Index takes any value between 0 and 1, but the ARI can have negative values.

6.1 Example 1: Leukaemia Gene-Expression Data

The first data set concerns the leukaemia tissue samples of Golub et al. [13], in which
there are two types of acute leukaemia: Acute Lymphoblastic Leukaemia (ALL) and
Acute Myeloid Leukaemia (AML). The data contain the expression levels of 7129 genes
on 72 tissues comprising 47 cases of ALL and 25 cases of AML. We preprocessed the
data by the following steps: (i) thresholding with a floor of 100 and a ceiling of 16000;
(ii) filtering: exclusion of genes with max / min ≤ 5 and (max−min) ≤ 500, where
max and min refer to the maximum and minimum expression levels, respectively, of
a particular gene across a tissue sample; (iii) taking logs of the expression levels and
then standardizing them across genes to have mean zero and unit standard deviation.
Finally, standardizing them across samples to have mean zero and unit standard devi-
ation. This preprocessing resulted in thousand genes being retained. We reduced this
set further to 100 genes by selecting genes according to the simple two-sample t-test as
used in [14].

As observed in previous studies, the data on the ALL and AML cases are well sep-
arated, confirming the biological distinction between ALL and AML subtypes. Hence
all three approaches were able to cluster the into two clusters that almost corresponded
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Table 2: Agreement between the clustering result and the true membership of leukaemia
data

q
Similarity Indices Model 1 2 3 4

MFA 0.951 0.951 0.951 0.951
Jaccard MCFA 0.951 0.951 0.951 0.951

MCUFSA 0.951 0.951 0.951 0.951

MFA 0.945 0.945 0.945 0.945
ARI MCFA 0.945 0.945 0.945 0.945

MCUFSA 0.945 0.945 0.945 0.945
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Figure 4: Plot of the factor scores with the MCFA approach

perfectly with the ALL and AML subtypes. There was only one misallocation with the
three approaches using either q = 1, 2, 3, or 4 factors. Hence in Table 2 the values of
the Jaccard Index are the same for all three approaches, as are the ARI values.

We plotted the estimated factor scores ûj = (û1j , û2j)
T of the tissues in two-

dimensional space according to their clustered membership determined by the MCFA
with q = 2 factors (Figure 4). It can be seen from Figure 4 that the two classes ALL
and AMl are well separated. The one AML tissue that is misallocated as ALL is circled
in Figure 4.

6.2 Example 2: Paediatric Leukaemia Gene-Expression Data

In the second example, we considered the clustering of the Paediatric Acute Lym-
phoblastic Leukaemia (ALL) data of Yeoh et al. [15], who analyzed some gene expres-
sions on 7 subtypes of 327 ALL tissues, consisting of BCR-ABL, E2A-PBXI, Hyper-
diploid (> 50), MLL, Novel, T-ALL, and TEL-AML1 subtypes. They performed an
hierarchical cluster analysis of the 327 diagnostic cases using genes selected by several
different methods including chi-squared and the t-statistic. We chose for our analysis
the 20 genes with highest chi-squared statistics in each subtype. (This resulted in a
total 132 unique genes as some were chosen for more than one subtype. Given that the
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Table 3: Agreement between the clustering result and the true membership of paediatric
ALL data

q
Similarity Indices Model 1 2 3 4 5

MFA 0.632 0.642 0.648 0.555 0.540
Jaccard MCFA NA 0.355 0.597 0.610 0.650

MCUFSA - - 0.593 - 0.584

MFA 0.720 0.735 0.741 0.650 0.632
ARI MCFA NA 0.392 0.685 0.700 0.740

MCUFSA - - 0.687 - 0.677

number of components (subtypes) here is not small with g = 7, we imposed the con-
straint (23) of common diagonal matrices Di in the formulation of the MFA approach.
This constraint is always imposed with the MCFA approach.

The values of the Jaccard Index and the ARI are listed in Table 3 for the three
approaches for each of five levels of the number of factors q (q = 1, 2, 3, 4, 5). In the
case of a single factor (q = 1), the MFCA approach using g = 7 components clustered
the 327 tissues into only 5 clusters, and so the indices were unable to be calculated.
This is noted by NA (not available) for q = 1 in Table 3. It can be seen that the
performance of the MCFA approach for q ≥ 3 factors is comparable to the MFA
approach, although their best results for the Jaccard and Adjusted Rand Indices occur
for different values of q. The indices for the latter are greatest for q = 3 factors, whereas
they are greatest for the MCFA approach for q = 5 factors. The ArrayCluster program
for the implementation of the MCUFSA approach gave results for only q = 3 and 5
factors, which are not as high as those for the MCFA approach.

6.3 Example 3: Chemical Data with Additional Noise Added

The third example considers the so-called Vietnam data which was considered in Smyth
et al. [16]. The Vietnam data set consists of the log transformed and standardized
concentrations of 17 chemical elements to which four types of synthetic noise variables
were added in [16] to study methods for clustering high-dimensional data. We used
these data consisting of a total of 67 variables (p = 67; 17 chemical concentration
variables plus 50 normal noise variables). The concentrations were measured in hair
samples from six classes (g = 6) of Vietnamese, and the total number of subjects were
n = 224.

The values of the indices for the clustering results for this set are presented in
Table 4. It can be seen that the highest value (0.815) of the ARI for the MFCA
approach was obtained for q = 4 factors, compared to a highest value of 0.611 for this
index at q = 3 factors with the MFA approach. A similar comparison can be made
on the basis of the Jaccard Index. Again, it was not possible to obtain results for the
MCUFSA approach for all values of q.
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Table 4: Agreement between the clustering result and the true membership of Viet-
namese data

q
Similarity Indices Model 1 2 3 4 5

MFA 0.416 0.507 0.526 0.483 0.425
Jaccard MCFA 0.316 0.605 0.590 0.738 0.691

MCUFSA - 0.374 0.583 0.577 0.576

MFA 0.491 0.590 0.611 0.565 0.505
ARI MCFA 0.331 0.700 0.676 0.815 0.778

MCUFSA - 0.440 0.681 0.671 0.675

7 Low-Dimensional Plots via MCFA Approach

To illustrate the usefulness of the MFCA approach for portraying the results of a
clustering in low-dimensional space, we have plotted in Figure 5 the estimated mean
posterior values of the factors qij as defined by (33). It can be seen that the clusters are
represented in this plot with very little overlap. This is not the case in Figure 6, where
the first two canonical variates are plotted. They were calculated using the implied
clustering labels. It can be seen from Figure 6 that one cluster is essentially on top of
another. The canonical variates are calculated on the basis of the assumption of equal
cluster-covariance matrices, which does not apply here. The MCFA approach is not
predicated on this assumption and so has more flexibility in representing the data in
reduced dimensions.

Figure 5: Plot of the (estimated) posterior mean factor scores

8 Discussion and Conclusions

In practice, much attention is being given to the use of normal mixture models in density
estimation and clustering. However, for high-dimensional data sets, the component-
covariance matrices are highly parameterized and some form of reduction in the number
of parameters is needed, particularly when the number of observations n is not large
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Figure 6: Plot of the first two canonical variates based on the implied clustering via
MCFA approach

relative to the number of dimensions p. One way of proceeding is to work with mix-
tures of factor analyzers (MFA) as studied in [1, Chapter 8]. This approach achieves a
reduction in the number of parameters through its factor-analytic representation of the
component-covariance matrices. But it may not provide a sufficient reduction in the
number of parameters, particularly when the the number g of clusters (components)to
be imposed on the data is not small. In this paper, we show how in such instances
the number of parameters can be reduced appreciably by using a factor-analytic rep-
resentation of the component-covariance matrices with common factor loadings. The
approach is called mixtures of common factor analyzers (MCFA). This sharing of the
factor loadings enables the model to be used to cluster high-dimensional into many
clusters and to provide low-dimensional plots of the clusters so obtained. The latter
plots are given in terms of the (estimated) posterior means of the factors correspond-
ing to the observed data. These projections are not useful with the MFA approach
as in its formulation the factors are taken to be white noise with no cluster-specific
discriminatory features for the factors.

The MFA approach does allow a more general representation of the component
variances/covariances and places no restrictions on the component means. Thus it is
more flexible in its modelling of the data. But in this paper we demonstrate that MCFA
provides a comparable approach that can be applied in situations where the dimension
p and the number of clusters g can be quite large. We have presented analyses of both
simulated and real data sets to demonstrate the usefulness of the MCFA approach.

In practice, we can use the Bayesian Information Criterion (BIC) of Schwartz [18]
to provide a guide to the choice of the number of factors q and the number of number
of components g to be used. On the latter choice it is well known that regularity
conditions do not hold for the usual chi-squared approximation to the asymptotic null
distribution of the likelihood ratio test statistic to be valid. However, they do hold for
tests on the number of factors at a given level of g, and so we can also use the likelihood
ratio test statistic to choose q; see [1, Chapter 8].

14



9 Appendix

The model (15) underlying the MCFA approach can be fitted via the EM algorithm to
estimate the vector Ψ of unknown parameters. It consists of the mixing proportions πi,
the factor component-mean vectors ξi, the distinct elements of the factor component-
covariance matrices Ωi, the projection matrix A based on sharing of factor loadings,
and the common diagonal matrix D of the residuals given the factor scores within
a component of the mixture. In order to apply the EM algorithm to this problem,
we introduce the component-indicator labels zij, where zij is one or zero according to
whether yj belongs or does not belong to the ith component of the model. We let zj

be the component-label vector, zj = (z1j , . . . , zgj)
T . The zj are treated as missing

data, along with the (unobservable) latent factors uij within this EM framework. The
complete-data log likelihood is then given by

log Lc(Ψ) =

g
∑

i=1

n
∑

j=1

zij{log πi + log φ(yj; Auij, D) + log φ(uij; ξi,Ωi)}. (39)

• E-step

On the E-step, we require the conditional expectation of the complete-data log like-
lihood, log Lc(Ψ), given the observed data y = (yT

1 , . . . , yT
n )T , using the current fit

for Ψ. Let Ψ(k) be the value of Ψ after the kth iteration of the EM algorithm. Then
more specifically, on the (k + 1)th iteration the E-step requires the computation of the
conditional expectation of log Lc(Ψ) given y, using Ψ(k) for Ψ, which is denoted by
Q(Ψ;Ψ(k)).

We let
τ

(k)
ij = τi(yj; Ψ(k)), (40)

where τi(yj; Ψ) is defined by (27). Also, we let E
Ψ(k) refer to the expectation operator,

using Ψ(k) for Ψ. Then the so-called Q-function, Q(Ψ;Ψ(k)), can be written as

Q(Ψ;Ψ(k)) =

g
∑

i=1

n
∑

j=1

τ
(k)
ij {log πi + w

(k)
1ij + w

(k)
1ij}, (41)

where
w

(k)
1ij = E

Ψ(k){log φ(yj; Auij, D) | yj, zij = 1} (42)

and
w

(k)
2ij = E

Ψ(k){log φ(uij; ξi, Ωi) | yj, zij = 1}. (43)

• M-step

On the (k + 1)th iteration of the EM algorithm, the M-step consists of calculating

the updated estimates π
(k+1)
i , ξ

(k+1)
i ,Ω

(k+1)
i , A(k+1), and D(k+1) by solving the equation

∂Q(Ψ; Ψ(k))/∂Ψ = 0. (44)
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The updated estimates of the mixing proportions πi are given as in the case of the
normal mixture model by

π
(k+1)
i =

n
∑

j=1

τ
(k)
ij /n (i = 1, . . . , g). (45)

Concerning the other parameters, it can be shown using vector and matrix differ-
entiation that

∂Q(Ψ; Ψ(k))/∂ξi = Ω−1
i

n
∑

j=1

τ
(k)
ij E

Ψ(k){(uij − ξi) | yj}, (46)

∂Q(Ψ; Ψ(k))/∂Ω−1
i =

n
∑

j=1

τ
(k)
ij

1
2
[Ωi − E

Ψ(k){(uij − ξi)(uij − ξi)
T | yj}], (47)

∂Q(Ψ; Ψ(k))/∂D−1 =

g
∑

i=1

n
∑

j=1

τ
(k)
ij

1
2
[D − E

Ψ(k){(yj − Auij)(yj − uij)
T | yj}],

(48)

∂Q(Ψ; Ψ(k))/∂A =

g
∑

i=1

n
∑

j=1

τ
(k)
ij [D−1{yjEΨ(k)(uT

ij | yj)

−AE
Ψ(k)(uiju

T
ij | yj)}]. (49)

On equating (46) to the zero vector, it follows that ξ
(k+1)
i can be expressed as

ξ
(k+1)
i = ξ

(k)
i +

∑n
j=1 τ

(k)
ij γ

(k)T
i (yj − A(k)ξ

(k)
i )

∑n
j=1 τ

(k)
ij

, (50)

where
γ

(k)
i = (A(k)Ω

(k)
i A(k)T

+ D(k))−1A(k)Ω
(k)
i . (51)

On equating (47) to the null matrix, it follows that

Ω
(k+1)
i =

∑n
j=1 τ

(k)
ij γ

(k)T

i (yj − A(k)ξ
(k)
i )(yj − A(k)ξ

(k)
i )T γ(k)

∑n
j=1 τ

(k)
ij

+(Iq − γ
(k)T

i A(k))Ω
(k)
i (52)

On equating (48) to the zero vector, we obtain

D(k+1) = diag(D
(k)
1 + D

(k)
2 ), (53)

where

D
(k)
1 =

∑g
i=1

∑n
j=1 τ

(k)
ij D(k)(Ip − β

(k)
i )

∑g
i=1

∑n
j=1 τ

(k)
ij

(54)
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and

D
(k)
2 =

∑g
i=1

∑n
j=1 τ

(k)
ij β

(k)T

i (yj − A(k)ξ
(k)
i )(yj − A(k)ξ

(k)
i )T β

(k)
i

∑g
i=1

∑n
j=1 τ

(k)
ij

, (55)

and where
β

(k)
i = (A(k)Ω

(k)
i A(k)T

+ D(k))−1D(k). (56)

On equating (49) to the null matrix, we obtain

A(k+1) = (

g
∑

i=1

A
(k)
1i )(

g
∑

i=1

A
(k)
2i )−1, (57)

where

A
(k+1)
1i =

n
∑

j=1

τ
(k)
ij {yjξ

(k)T

i + (yj − A(k)ξ
(k)
i )T γ

(k)
i }, (58)

A
(k+1)
2i =

n
∑

j=1

τ
(k)
ij {(Iq − γ

(k)T

i A(k))Ω
(k)
i + r

(k)
i r

(k)T

i }, (59)

and
r

(k)
i = ξ

(k)
i + γ

(k)T

i (yj − A(k)ξ
(k)
i ) (60)

The factor loading matrix A(k+1) must be orthogonal in columns, that is,

A(k+1)T

A(k+1) = Iq. (61)

We can use the Cholesky decomposition to find the upper triangular matrix C (k+1) of
order q so that

A(k+1)T

A(k+1) = C(k+1)T

C(k+1). (62)

Then it follows that if we replace A(k+1) by

A(k+1)C(k+1)−1

, (63)

then it will satisfy the requirement (61). With the adoption of the estimate (63) for

A, we need to adjust the updated estimates ξ
(k+1)
i and Ω

(k+1)
i to be

C(k+1)ξ
(k+1)
i (64)

and
C(k+1)Ω

(k+1)
i C(k)T

, (65)

where ξ
(k+1)
i and Ω

(k+1)
i are given by (50) and (52), respectively.

We have to specify an initial value for the vector Ψ of unknown parameters in
the application of the EM algorithm. A random start is obtained by first randomly
assigning the data into g groups. Let ni, ȳi, and Si be the number of observations, the
sample mean, and the sample covariance matrix, respectively, of the ith group of the
data so obtained (i = 1, . . . , g). We then proceed as follows:
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• Set π
(0)
i = ni/n.

• Generate random numbers from the standard normal distribution N(0, 1) to ob-
tain values for the (j, k)th element of A∗ (j = 1, . . . , p; k = 1, . . . , q).

• Implement the Cholesky decomposition so that A∗T
A∗ = CT C, where C is the

upper triangle matrix of order q, and define A(0) by A∗C−1.

• On noting that the transformed data D−1/2Y j satisfies the probabilistic PCA
model of Tipping and Bishop [17] with σ2

i = 1, it follows that for a given D(0)

and A(0), we can specify Σ
(0)
i as

Ω
(0)
i = A(0)T

D(0)1/2

H i(Λi − σ̃2
i Iq)H

T
i D(0)1/2

A(0),

where σ̃2
i =

∑p
h=q+1 λih/(p − q). The q columns of the matrix H i are the eigen-

vectors corresponding to the eigenvalues λi1 ≥ λi2 ≥ · · · ≥ λiq of

D(0)−1/2

Ω
(0)
i D(0)−1/2

, (66)

where Ω
(0)
i is the covariance matrix of the yj in the ith group, and Λi is the

diagonal matrix with diagonal elements equal to λi1, . . . , λiq. Concerning the
choice of D(0), we can take D(0) to be the diagonal matrix formed from the
diagonal elements of the (pooled) within-cluster sample covariance matrix of the

yj. The initial value for ξi is ξ
(0)
i = A(0)T

ȳi.

Some clustering procedure such as k-means can be used to provide non-random
partitions of the data, which can be used to obtain another set of initial values for the
parameters. In our analyses we used both initialization methods.
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les, Vol. 37, pp. 241–272, 1901.

[12] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification, Vol.
2, 193–218, 1985.

[13] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeck, P. Mesirov, H.
Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, et al., “Molecular classification
of cancer: Class discovery and class prediction by gene expression monitoring,”
Science, 286, 531-537, 1999.

[14] D. Nguyen, and D. Rocke, “Tumor classification by partial least squares using
microarray gene expression data,” Bioinformatics, Vol. 18, pp. 39–50, 2002.

[15] E. Yeoh, and Ross, M.E., et al., “Classification, subtype discovery, and prediction
of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling,”
Cancer Cell, Vol. 1, pp. 133–143, 2002.

[16] C. Smyth, D. Coomans, and Y. Everingham, “Clustering noisy data in a reduced
dimension space via multivariate regression trees,” Pattern Recognition, Vol. 39, pp.
424–431, 2006.

[17] M.E. Tipping, and C.M. Bishop, “Mixtures of probabilistic principal component
analysers,” Neural Computation, Vol. 11, pp. 443–482, 1999.

[18] G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics, Vol. 6,
pp. 461–464, 1978.

19


