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Abstract

This paper provides an overview of two topics. First, it presents a
unified approach to various techniques addressing the non–uniqueness
of the solution of the inverse gravimetric problem; alternative, simple
proofs of some known results are also given. Second, it summarises in
a concise and self–contained way a particular multiscale regularisation
technique involving scaling functions and wavelets.
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1 Introduction

A typical example of an ill–posed inverse problem is the inversion of New-
ton’s Law of Gravitation

V (y) = γ

∫

B

D(x)

|x− y| dx ,

where V is the gravitational potential, which is given, for example at the
Earth’s surface or at satellite height, γ is the gravitational constant, B is
the closed unit ball, and D ∈ L2(B) is the unknown mass density function.
The first known occurence of this inverse problem in the literature is in the
works of Stokes in 1867 [52].
Note that we do not consider here the problem where the determination
of the shape of the gravitating body is combined with or is chosen instead
of the determination of the density function. For such problems or similar
ones, we refer to [11, 40, 64, 65, 66, 67] and [28, Chapter III, § 1].
Actually, the inverse gravimetric problem discussed here violates all three
of Hadamard’s criteria for a well–posed problem.

1. The potential V must be harmonic outside B. Moreover, due to the
Picard condition, a solution exists only if V belongs to an appropriate
subset in the space of harmonic functions. However, this does not
cause a serious problem since in practice the information of V is only
finite–dimensional. In particular, an approximation or interpolation
by an appropriate harmonic function is a natural ingredient of any
practical method.

2. The most serious problem is the non–uniqueness of the solution: The
associated Fredholm integral operator is of the first kind and has a
null space which is the L2(B)–orthogonal space of the closed linear
subspace of all harmonic functions on B. This orthogonal comple-
ment, whose elements are called anharmonic functions, is infinite–
dimensional.

3. Restricting the operator to harmonic densities yields an injective map-
ping which, however has a discontinuous inverse leading to an unstable
solution. If V is given at satellite height, this instability is exponential!

The problem of non–uniqueness has been discussed extensively in literature,
starting with the paper [52] of Stokes. This problem can be bypassed by
imposing some reasonable additional condition on the density. One such
condition, suggested by the mathematical structure of the operator, is to
require that the density is harmonic (the complementary anharmonic part
must then be obtained from non–gravimetric data, such as seismic data).
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The approximate calculation of the harmonic density has already been im-
plemented in several papers (whereas the problem of determining the an-
harmonic part remains open).
Due to the lack of a sensible physical interpretation of the harmonic part of
the density, various alternative constraints have been discussed in the liter-
ature. In general, one can observe that gravitational data yield significant
information only about the uppermost part of the Earth, which is essentially
laterally heterogeneous.
Wavelet–based multiscale methods for the approximation of the harmonic
density have been presented in [23], [33]-[36]. In particular, the papers [35]
and [36] also take into account the cases where a zeroth, first, or second
order derivative of V is given at satellite height (cf. the satellite missions
CHAMP, GRACE, and GOCE).
In this paper we present a unified approach to various techniques addressing
the non–uniqueness of the solution of the inverse gravimetric problem; alter-
native, simple proofs of some known results are also given. Furthermore, we
discuss the role of the harmonic density, which is known to be the minimal
L2(B)–norm density. In this context, we note the similarity of the inverse
gravimetric problem with the inverse problem of magnetoencephalography
(MEG), where uniqueness can also be obtained by requiring that the solu-
tion minimises the L2–norm, see [19] and [20]. In addition, we summarise
in a concise and self–contained way a particular multiscale regularisation
technique involving scaling functions and wavelets.
This paper is organised as follows: In Section 2, we derive a spectral rela-
tion between the density and the associated potential, which maps the non–
uniqueness of the inverse problem to the radial dependence of the spherical
harmonics coefficients of the density. This allows us to derive a well–known
characterisation of the null space in Section 3. In Sections 4 to 8, we discuss
known approaches for obtaining a unique solution, such as imposing the con-
straint of harmonicity or requiring the minimisation of certain functionals.
In Section 9, we use the wavelet-based multiscale method of [22, 35, 36] to
generate a regularised sequence of approximations which converges to the
minimal density (i.e. to the density which minimises the L2–norm). In this
method each function is obtained pointwise and it involves the spherical
convolution of a particularly constructed scaling function with V . In Sec-
tion 10, we present calculations which assume that the potential is given
at a point grid at the Earth’s surface. The case where the second radial
derivative of the potential is given at satellite height was analysed in [36].
Moreover, we study the effect of local noise on the data (the case of global
noise was analysed in [36]).
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Notation

The sets of real numbers and positive integers are denoted by R and N,
respectively. Furthermore, N0 := N∪ {0}. The unit sphere in R

3 is denoted
by S

2. The corresponding ball is denoted by B := {x ∈ R
3 | |x| ≤ 1}. The

Laplacian operator is denoted by ∆.
A well–known complete orthonormal system in L2

(

S
2
)

is the system of
spherical harmonics {Yn,j}n∈N0;j=−n,...,n, where each Yn,j is the restriction
of a homogeneous harmonic polynomial of degree n to S

2. Throughout this
paper, we will make use of several properties of the spherical harmonics; for
further details, including proofs, we refer to [21].

2 Derivation of a Spectral Relation Between the

Potential and the Associated Density

The purpose of this section is to derive a relation between the spherical
harmonics coefficients of the gravitational potential and those of the density
function. Here, we will omit the gravitational constant since it is simply a
factor. However, it will be taken into account in the numerical implementa-
tion of Section 10.

Theorem 2.1 Let the mass density function D ∈ L2(B) be given. This
function admits the following representation

D(x) =
∞
∑

n=0

n
∑

j=−n

Dn,j(|x|)Yn,j

(

x

|x|

)

(1)

which converges in L2(B). Then the potential

V =

∫

B

D(x)

|x− ·| dx

is given for |y| > 1 pointwise and for |y| = 1 in the sense of L2
(

S
2
)

, by

V (y) =

∞
∑

n=0

n
∑

j=−n

(
∫ 1

0
rn+2Dn,j(r) dr

)

4π

2n+ 1
|y|−n−1Yn,j

(

y

|y|

)

. (2)

Proof. Let Pm be the Legendre polynomial of degree m. Using the well–
known formula (see, for instance, [21], p. 44)

1

|x− y| =

∞
∑

m=0

|x|m
|y|m+1

Pm

(

x

|x| ·
y

|y|

)

, |x| < |y| (3)
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and assuming |y| > 1, we find
∫

B

D(x)

|x− y| dx

=

∫ 1

0
r2
∫

S2

D(rξ)
1

|rξ − y| dω(ξ) dr

=
∞
∑

n=0

∞
∑

m=0

n
∑

j=−n

1

|y|m+1

∫ 1

0
r2Dn,j(r)r

m dr

∫

S2

Pm

(

ξ · y|y|

)

Yn,j(ξ) dω(ξ)

=
∞
∑

n=0

∞
∑

m=0

n
∑

j=−n

|y|−m−1

∫ 1

0
rm+2Dn,j(r) dr

× 4π

2m+ 1

∫

S2

2m+ 1

4π
Pm

(

ξ · y|y|

)

Yn,j(ξ) dω(ξ).

Since 2m+1
4π Pm represents the reproducing kernel of the linear space of all

spherical harmonics of degree m with respect to 〈., .〉L2(S2), the last integral
equals δnmYn,j(

y
|y|). Hence,

∫

B

D(x)

|x− y| dx =
∞
∑

n=0

n
∑

j=−n

∫ 1

0
rn+2Dn,j(r) dr

4π

2n+ 1
|y|−n−1Yn,j

(

y

|y|

)

.

This series can be formally extended to S
2 so that V |

S2 ∈ L2
(

S
2
)

using the
Cauchy–Schwarz–Bunjakovski–inequality:

‖V |
S2‖2

L2(S2) =
∞
∑

n=0

n
∑

j=−n

(
∫ 1

0
rn+2Dn,j(r) dr

)2(
4π

2n+ 1

)2

≤
∞
∑

n=0

n
∑

j=−n

(
∫ 1

0
r2n+2 dr

)(
∫ 1

0
r2 (Dn,j(r))

2 dr

)(

4π

2n+ 1

)2

≤ 16π2
∞
∑

n=0

n
∑

j=−n

∫ 1

0
r2 (Dn,j(r))

2 dr

= 16π2‖D‖2
L2(B) < +∞.

We already observe here that the solution of the inverse problem of con-
structing D from the knowledge of V outside intB cannot have a unique
solution, since the relation

∫ 1

0
rn+2Dn,j(r) dr =

2n+ 1

4π
〈V |

S2 , Yn,j〉L2(S2) (4)

admits an infinite number of choices forDn,j . The relation (4) is well–known,
see for example [39, 43, 44].
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The non–uniqueness of the solution can also be inferred in many other ways.
Already [52] mentions this fact, which was quantified more precisely later
by other scientists. A precise description of the null space requires the
discussion of harmonic and anharmonic functions which will be presented in
Section 3.
For the sake of completeness, we mention that the solution would be unique
if V was known in the whole space R

3, because in this case (provided that
D satisfies certain conditions) the Poisson equation

∆V = −4πD

would hold in B, see e.g. [39, 52].

3 Characterisation of the Null Space

There are several ways of characterising the null space of the operator

T : L2(B) ∋ D 7→
∫

B

D(x)

|x− ·| dx

∣

∣

∣

∣

S2

. (5)

Note that since the potential is harmonic outside the Earth, it can be ob-
tained as a solution of the corresponding outer Dirichlet problem from its
values at S

2; for this reason, in what follows we restrict the image of T to
functions on S

2.

Theorem 3.1 The Hilbert space L2(B) can be decomposed into two orthog-
onal spaces

L2(B) = Harm(B) ⊕ Anharm(B),

where

Harm(B) :=
{

H ∈ C(2)(B)
∣

∣

∣
∆H = 0

}

,

Anharm(B) :=
{

F ∈ L2(B)
∣

∣ 〈F,H〉L2(B) = 0∀H ∈ Harm(B)
}

.

The null space of the operator T defined in (5) satisfies

kerT = Anharm(B).

Proof. We use an orthonormal basis for L2(B) which is due to [7, 17, 33]:

Bn,j,m(x) = γn,mP
(0,n+1/2)
m

(

2|x|2 − 1
)

|x|n Yn,j

(

x

|x|

)

,

m, n ∈ N0, j = −n, ..., n, where {P (α,β)
m }m∈N0

(α, β > −1) are the Jacobi
polynomials satisfying (see e.g. [54])

1. Each P
(α,β)
m is a univariate polynomial of degree m,
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2.
∫ 1
−1(1 − t)α(1 + t)βP

(α,β)
n (t)P

(α,β)
m (t) dt = 0 whenever n 6= m,

3. P
(α,β)
m (1) =

(

n+α
n

)

and the γn,m are normalisation constants, which are not important here (see,
for example, [37]). The use of this basis implies the following representation
of Dn,j in (1):

Dn,j(r) = rn
∞
∑

m=0

dn,j,mγn,mP
(0,n+1/2)
m

(

2r2 − 1
)

in the sense of the corresponding weighted L2–space on [0, 1]. We insert it in
the left–hand side of (4) and obtain, using the substitution r =

√

(t+ 1)/2
the identity

∫ 1

0
rn+2+n

∞
∑

m=0

dn,j,mγn,mP
(0,n+1/2)
m

(

2r2 − 1
)

dr

=

∫ 1

−1

[

1

2
(t+ 1)

]n+1 ∞
∑

m=0

dn,j,mγn,mP
(0,n+1/2)
m (t)

1

4

[

1

2
(t+ 1)

]−1/2

dt

=
1

2n+5/2

∫ 1

−1
(t+ 1)n+1/2

(

∞
∑

m=0

dn,j,mγn,mP
(0,n+1/2)
m (t)

)

P
(0,n+1/2)
0 (t) dt

=
1

2n+ 3
dn,j,0γn,0.

Hence, Bn,j,m is in the null space of T if and only if m > 0. Since the
functions Bn,j,0 constitute the system of inner harmonics, which are a basis
for the harmonic functions on a ball, we obtain the desired result.

This result, which shows that all anharmonic functions, i.e. all functions
orthogonal to all harmonic functions in the L2(B)–sense, are precisely these
density functions which produce a vanishing potential outside the Earth, was
proved (as pointed out by [32]) in [42, 43, 27] (in chronological order of the
steps leading eventually to this result). This result was later also mentioned
in [40]. There exist various ways of establishing this result, see also [9, 10,
23, 33, 55]. In the works of [14] and [63] it is shown, in addition, that the
set of anharmonic functions can be characterised in the distributional sense

as ∆
◦
H2(B). Finally, for the discussion of the 2D–case, see e.g. [8, 52].

4 The Harmonic Solution is the Minimal L2(B)–
norm Solution

One way of treating the non–uniqueness is to look for a harmonic density
function and to try to obtain the anharmonic complement using other type
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of data. Using Theorem 3.1 it is possible to derive already a formula for the
harmonic solution of TD = V :

Corollary 4.1 (Harmonic Solution) Let V : R3 \B → R be an arbitrary
function satisfying

• V |
S2 ∈ L2

(

S
2
)

,

• ∑∞
n=0

∑n
j=−n〈V |

S2 , Yn,j〉2L2(S2)n
3 < +∞,

• ∆V = 0 in R
3 \B.

Then the unique solution D ∈ C(2)(B) with V =
∫

B
D(x)
|x−·| dx and ∆D = 0 in

B is given by

D(x) =

∞
∑

n=0

2n+ 1

4π
(2n+ 3)|x|n

n
∑

j=−n

〈V |
S2 , Yn,j〉L2(S2)Yn,j

(

x

|x|

)

(6)

provided that this series converges with respect to L2(B).

Proof. To prove this result, we have to know that

Hn,j(x) (:= Bn,j,0(x)) =
√

2n+ 3 |x|nYn,j

(

x

|x|

)

, n ∈ N0, j = −n, ..., n,

is an orthonormal basis of (Harm(B), 〈·, ·〉L2(B)), i.e. γn,0 =
√

2n+ 3 , n ∈ N0

(see e.g. [33, 45]). Hence,

D(x) =
∞
∑

n=0

n
∑

j=−n

dn,j

√
2n+ 3 |x|n Yn,j

(

x

|x|

)

(7)

in the sense of L2(B). Thus, Equation (4) with Dn,j(r) = dn,j

√
2n+ 3 rn

yields
∫ 1

0
r2n+2 dr dn,j

√
2n+ 3 =

2n+ 1

4π
〈V |

S2 , Yn,j〉L2(S2) ,

which is equivalent to

dn,j =
√

2n+ 3
2n+ 1

4π
〈V |

S2 , Yn,j〉L2(S2) .

The harmonic solution was discussed in numerous works such as [4], Section
5.5 as well as [18, 23, 24, 33, 34, 35, 36, 38, 45, 55, 61]. This solution lacks a
convening physical interpretation, see also [55]. Furthermore, an additional
drawback is the maximum principle, according to which the harmonic den-
sity is maximal (and minimal) at the surface (which is in contrast to the
real density). However, it still has certain advantages. Namely, the search
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for high frequency density anomalies is supported by exactly this maximum
principle, since such structures primarily occur at the uppermost Earth layer
and, indeed, can be derived in a remarkable qualitative resolution out of
gravitational data, see [33, 34, 36, 38, 55]. In addition, the behaviour of rn

on [0, 1] for different n is consistent with the following relation: the higher
the frequency viz degree (band) of a density phenomenon, the more it is
concentrated towards the surface; this was pointed out in [39].
According to [32] there is an interpretation of the harmonic density with re-
spect to all Stokesian quantities (see also [39]). Furthermore, the harmonic
density plays a predominant role from the mathematical point of view due
to the orthogonal decomposition of L2(B). It is a projection of the real
density to this part which influences the gravity. It has to be supplemented
by an anharmonic function obtained from different, i.e. non–gravitational
data such as seismic data (see [12, 55] for a detailed discussion of combining
different types of data for this application).
Last but not least, the harmonic density is also the solution of minimal
L2(B)–norm, which was observed in [4], p. 161 and [39, 45]. There exist
several ways of proving this identity. The probably shortest one is the follow-
ing simple functional analytic argumentation (see also [39]): a density D ∈
L2(B) may be decomposed uniquely into a harmonic and an anharmonic part
D = Dharm +Danharm such that ‖D‖2

L2(B) = ‖Dharm‖2
L2(B) + ‖Danharm‖2

L2(B)
due to the orthogonality. Every change of Dharm changes the potential,
whereas every change to Danharm leaves the potential unchanged. Hence,
the solution D of TD = V with minimal L2(B)–norm is D = Dharm.
Note that [45] used potential theoretic arguments to show the identity of
the two concepts. This has the interesting side effect that one obtains that
Dharm may be represented as a single layer potential. Single layer potentials
as unique solutions of the inverse gravimetric problem were also discussed
in [39]. It should also be noted that [45] in addition discusses a density
solution with minimal (modified) H1,2–norm, which also turns out to be the
harmonic solution.
In the following, we present a straightforward derivation of a formula for the
minimal L2(B)–norm solution. This derivation is similar with that of [19]
and [20], where a formula for the minimal L2–norm of the solution of the
inverse problem of MEG was derived.

Theorem 4.2 (Minimal Norm Solution) Let V : R3 \B → R be an
arbitrary function satisfying

• V |
S2 ∈ L2

(

S
2
)

,

• ∑∞
n=0

∑n
j=−n〈V |

S2 , Yn,j〉2L2(S2)n
3 < +∞,

• ∆V = 0 in R
3 \B.
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Then, among all D ∈ L2(B) with V =
∫

B
D(x)
|x−·| dx, there is a unique min-

imiser of the functional

F(D) :=

∫

B
(D(x))2 dx

which is given in L2(B) by

D(x) =

∞
∑

n=0

2n+ 1

4π
(2n+ 3)|x|n

n
∑

j=−n

〈V |
S2 , Yn,j〉L2(S2)Yn,j

(

x

|x|

)

(8)

provided that this series converges with respect to L2(B).

Proof. The conditions on V guarantee the solvability of the inverse prob-
lem (see [33, 36]). According to Theorem 2.1 any solution solving the in-
verse problem can be represented by the following series, which converges
in L2(B),

D(x) =
∞
∑

n=0

n
∑

j=−n

Dn,j(|x|)Yn,j

(

x

|x|

)

,

where
∫ 1

0
Dn,j(r)r

n+2 dr =
2n+ 1

4π
Vn,j ,

with Vn,j := 〈V |
S2 , Yn,j〉L2(S2), such that

V (y) =
∞
∑

n=0

n
∑

j=−n

Vn,j |y|−n−1Yn,j

(

y

|y|

)

, y ∈ R
3 \B .

Since

∫

B
(D(x))2 dx =

∞
∑

n=0

n
∑

j=−n

∫ 1

0
r2 (Dn,j(r))

2 dr ,

we now have the following family of minimisation problems:

minimise

∫ 1

0
r2 (Dn,j(r))

2 dr ,

subject to

∫ 1

0
Dn,j(r)r

n+2 dr =
2n+ 1

4π
Vn,j .

We set Fn,j(r) := rDn,j(r). Then we have to solve

minimise

∫ 1

0
(Fn,j(r))

2 dr ,

subject to

∫ 1

0
Fn,j(r)r

n+1 dr =
2n+ 1

4π
Vn,j .
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We decompose Fn,j by Fn,j(r) = αrn+1 + Gn,j(r), where Gn,j is L2[0, 1]–
orthogonal to r 7→ rn+1. Then the problem reduces to

minimise α2

∫ 1

0
r2n+2 dr + ‖Gn,j‖2

L2[0,1] ,

subject to α

∫ 1

0
r2n+2 dr =

2n+ 1

4π
Vn,j .

Obviously, Gn,j ≡ 0 and

α = (2n+ 3)
2n+ 1

4π
Vn,j .

In what follows, we will derive a condition for the convergence of the series
(8) (which is actually identical with the series (6)).

Theorem 4.3 The series in (8) converges in L2(B) if and only if

∞
∑

n=0

n3
n
∑

j=−n

〈V |
S2 , Yn,j〉2L2(S2) < +∞ . (9)

Proof. The L2(B)–norm of D is given by

‖D‖2
L2(B) =

∫ 1

0
r2
∫

S2

(D(rξ))2 dω(ξ) dr

=

∞
∑

n=0

(

2n+ 1

4π
(2n+ 3)

)2 ∫ 1

0
r2 · r2n dr

n
∑

j=−n

〈V |
S2 , Yn,j〉2L2(S2)

=

∞
∑

n=0

(

2n+ 1

4π

)2

(2n+ 3)

n
∑

j=−n

〈V |
S2 , Yn,j〉2L2(S2) .

Hence, the condition for the convergence of the series is precisely the condi-
tion for the solvability of the inverse problem. This is not surprising, since
it corresponds to the principle of the Picard condition for inverse problems.
Note that the real gravitational potential of the Earth certainly satisfies
condition (9), since the (empirical) Kaula’s rule states that

n
∑

j=−n

〈V |
S2 , Yn,j〉2L2(S2) = O

(

ϑn+1n−3
)

, n→ ∞,

for some constant ϑ ∈]0, 1[ related to the Bjerhammar sphere, see, for ex-
ample, [46].
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5 Quasi–harmonic Solution

A generalisation of the constraint of harmonicity is the constraint of quasi–
harmonicity. In this case, the density satisfies the equation

∆x

(

D(x)

F (|x|)

)

= 0,

where F is a given function without zeros. Such quasi–harmonic solutions
were discussed in [24, 57, 58, 60, 61]. In [61] the case where the sphere is
replaced by a spheroid is additionally treated. However, the phenomenon of
a concentration of the density at the surface also occurs here according to
[58, 60]. According to [58] “the use of these functions ... [was] not useful”
and [57] reports “rather disappointing results”.
In [60] the case of a monomial function F is analysed in detail and an
associated spectral relation is derived. In what follows we will discuss a
slight generalisation of this result.

Theorem 5.1 (Quasi–harmonic Solution) Let V satisfy the conditions
of Theorem 4.2. Then the unique solution D ∈ C(2)(B) of

∫

B

D(x)

|x− ·| dx = V in R3 \B,

∆x

(

D(x)|x|−p
)

= 0 in B,

p ∈ R
+
0 fixed, is given by

D(x) =

∞
∑

n=0

(2n+ p+ 3)
2n+ 1

4π
|x|n+p

n
∑

j=−n

〈V |
S2 , Yn,j〉L2(S2)Yn,j

(

x

|x|

)

,

where the series converges in L2(B).

Proof. Obviously, the functions x 7→ |x|n+pYn,j

(

x
|x|

)

provide an orthogonal

basis for such quasi–harmonic functions with respect to the L2(B)–inner
product. The square of the normalisation constant is given by

∫

B

[

|x|n+pYn,j

(

x

|x|

)]2

dx =

∫ 1

0
r2n+2p+2 dr

∫

Ω
Yn,j(ξ)

2 dω(ξ)

=
1

2n+ 2p+ 3
.

Hence, using Dn,j(r) = dn,j
√

2n+ 2p+ 3 rn+p in (4), we obtain

2n+ 1

4π
〈V |

S2 , Yn,j〉L2(S2) =

∫ 1

0
r2n+2+p dr dn,j

√

2n+ 2p+ 3

= dn,j

√
2n+ 2p+ 3

2n+ p+ 3
.
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Consequently,

D(x) =
∞
∑

n=0

n
∑

j=−n

dn,j

√

2n+ 2p+ 3 |x|n+p Yn,j

(

x

|x|

)

=
∞
∑

n=0

(2n+ p+ 3)
2n+ 1

4π
|x|n+p

n
∑

j=−n

〈V |
S2 , Yn,j〉L2(S2)Yn,j

(

x

|x|

)

in the sense of L2(B). The convergence of the series is guaranteed by the
conditions on V , since the Fourier coefficients of D satisfy

dn,j = 〈V |
S2 , Yn,j〉L2(S2) ·O

(

n3/2
)

as n→ ∞.

In the case of p = 0 the above representation leads to the harmonic solution.

6 Biharmonic Solution

A biharmonic constraint for the density, i.e. ∆∆D = 0, is discussed in [51]
and [60]. Clearly, the knowledge of V |

S2 is now insufficient for obtaining
a unique solution, since the harmonic solution represents only a particular
case of a biharmonic solution. For this reason, in the literature it is assumed
that D|

S2 is given. According to [51], the minimisation of the L2(B)–norm
of ∇D, provided that D|

S2 and V |
S2 are given, implies that the solution D

is biharmonic. A spectral relation for the spherical harmonics coefficients is
given in [51].
However, these results have to be slightly corrected, since the knowledge of
V and D at S

2 is not sufficient for a unique solution, as we show in the
following theorem.

Theorem 6.1 (Biharmonic Solution) All solutions D ∈ C(4)(B) of the
problem

∆∆D = 0 in B,
∫

B

D(x)

|x− ·| dx = V given on S
2,

D given on S
2

can be represented by

D(x) =
1
∑

n=0

n
∑

j=−n

(

an,j |x|n + bn,j |x|n+2 + cn,j |x|−n+1
)

Yn,j

(

x

|x|

)

+
1

8π

∞
∑

n=2

(2n+ 1)(2n+ 3)(2n+ 5)
(

|x|n − |x|n+2
)
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×
n
∑

j=−n

〈V |
S2 , Yn,j〉L2(S2)Yn,j

(

x

|x|

)

+
1

2

∞
∑

n=2

[

(2n+ 5)|x|n+2 − (2n+ 3)|x|n
]

×
n
∑

j=−n

〈D|
S2 , Yn,j〉L2(S2)Yn,j

(

x

|x|

)

,

provided that these series converge at least in the L2(B)–sense, where the
coefficients a0,0, ..., c1,1 are given by the underdetermined system of linear
equations

1
2n+3 an,j + 1

2n+5 bn,j + 1
4 cn,j = 2n+1

4π 〈V |
S2 , Yn,j〉L2(S2)

an,j + bn,j + cn,j = 〈D|
S2 , Yn,j〉L2(S2)

for n = 0, 1, j = −n, ..., n.
Proof. We first need a biharmonic basis for D. It is easy to verify, by using
the decomposition ∆x = ∂2

∂r2 + 2
r

∂
∂r + 1

r2 ∆∗
ξ , r = |x|, ξ = x/|x| (see, for

example, [21], p. 14 and 36 for further details), that ∆x∆x(rαYn,j(ξ)) = 0
has exactly four solutions for fixed n ∈ N0:

α ∈ {−n− 1,−n+ 1, n, n+ 2},

where −n− 1 and n correspond to the harmonic case and the non–negative
solutions n and n+2 yield bounded functions. However, for n = 0 and n = 1
the choice α = −n+ 1 gives another bounded basis function. We, thus, use
Dn,j(r) = an,jr

n + bn,jr
n+2 for n ≥ 2 and Dn,j(r) = an,jr

n + bn,jr
n+2 +

cn,jr
−n+1 for n ≤ 1 in (4).

We first investigate the case n ≥ 2, where we get

2n+ 1

4π
〈V |

S2 , Yn,j〉L2(S2) = an,j

∫ 1

0
r2n+2 dr + bn,j

∫ 1

0
r2n+4 dr

=
an,j

2n+ 3
+

bn,j

2n+ 5
(10)

and
〈D|

S2 , Yn,j〉L2(S2) = Dn,j(1) = an,j + bn,j . (11)

This is uniquely solvable:

an,j =
1

8π
(2n+ 1)(2n+ 3)(2n+ 5)〈V |

S2 , Yn,j〉L2(S2)

− 1

2
(2n+ 3)〈D|

S2 , Yn,j〉L2(S2),

bn,j = − 1

8π
(2n+ 1)(2n+ 3)(2n+ 5)〈V |

S2 , Yn,j〉L2(S2)

+
1

2
(2n+ 5)〈D|

S2 , Yn,j〉L2(S2) .
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If n ≤ 1, the two equations (10) and (11) become:

an,j

2n+ 3
+

bn,j

2n+ 5
+
cn,j

4
=

2n+ 1

4π
〈V |

S2 , Yn,j〉L2(S2)

〈D|
S2 , Yn,j〉L2(S2) = Dn,j(1) = an,j + bn,j + cn,j ,

which leaves exactly one degree of freedom for every pair (n, j).

The formula presented in [51] corresponds to the choice cn,j = 0.
The case of a harmonic solution is consistent with this result, since har-
monicity implies cn,j = 0 and bn,j = 0, which is equivalent to

〈D|
S2 , Yn,j〉L2(S2) =

1

4π
(2n+ 1)(2n+ 3)〈V |

S2 , Yn,j〉L2(S2) ,

which is the result of Corollary 4.1.
However, it should be noted that the assumption that D|

S2 is known cannot
be realised in practice on a sufficiently dense point grid.

7 Discussion of the Radial Mean

In what follows we discuss a particular case of a non–radially dependent
density. In this section, we write Vn,j := 〈V |

S2 , Yn,j〉L2(S2).

Theorem 7.1 (Spectral Relation for a Layer Density) Let a spheri-
cal shell be given by the constraints

0 ≤ τ ≤ |x| ≤ τ + ε ≤ 1, ε > 0 .

If DL is a square–integrable density function which has the form

DL(x) =
∞
∑

n=0

n
∑

j=−n

DL
n,jYn,j

(

x

|x|

)

inside the shell and which vanishes outside the shell and V is the correspond-
ing gravitational potential, then

DL
n,j =

(2n+ 1)(n+ 3)

4π

(

(τ + ε)n+3 − τn+3
)−1

Vn,j .

Proof. Using again (3) we have

V (y) =
∞
∑

n=0

∫ τ+ε

τ
r2
∫

S2

DL(rξ)
rn

|y|n+1
Pn

(

ξ · y|y|

)

dω(ξ) dr

=
∞
∑

n=0

∫ τ+ε

τ
rn+2 dr |y|−n−1 4π

2n+ 1

n
∑

j=−n

DL
n,jYn,j

(

y

|y|

)

=
∞
∑

n=0

4π

(2n+ 1)(n+ 3)

(

(τ + ε)n+3 − τn+3
)

|y|−n−1
n
∑

j=−n

DL
n,jYn,j

(

y

|y|

)

.
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This holds pointwise for |y| > 1. Due to the square–integrability of DL this
can be extended to S

2 in the sense that we get a function in L2
(

S
2
)

:

∞
∑

n=0

(

4π

(2n+ 1)(n+ 3)

(

(τ + ε)n+3 − τn+3
)

)2 n
∑

j=−n

(

DL
n,j

)2

≤ 16π2
∞
∑

n=0

n
∑

j=−n

(

DL
n,j

)2
< +∞ .

Hence, we have the desired relation.

8 Other Constraints

There are several other constraints discussed in the literature. For reasons
of completeness, these constraints are mentioned below.
The functional

∫

B(|x|D(x))2 dx is minimised in [51] and a formula for the
spherical harmonics expansion of D is derived.
The gravitational potential energy as functional of D is used in [44, 45].
An approach which postulates a fluid mantle is discussed in [50, 52].
In [31], in addition to the constraint of harmonicity, it is postulated that
the lateral density variations in the interior of the Earth’s mantle and the
density contrast on the undulated core mantle boundary do not influence
the gravitational field in the core. This ansatz leads to a system of linear
equations of which the minimal energy solution is chosen.
A measure theoretic approach is discussed in [3, 4, 49]. Note that [3] also
contains a list of references on historical remarks regarding the inverse gravi-
metric problem.
An interesting idea is to use the boundedness of the density 0 ≤ D ≤ Dmax

given by physical considerations. The reduction of the non–uniqueness prob-
lem using such a constraint is investigated in [41, 49, 67] (see also the refer-
ences in [25]). The condition of positive solutions of linear inverse problems
is discussed in [13]. It is the opinion of the authors that such constraints for
the inverse gravimetric problem should be investigated further.

9 A Multiscale Method

The exist several methods for the numerical calculation of the density inside
the Earth. They range from purely local approaches, like a block ansatz,
to completely global tools like a representation in orthogonal polynomials.
In the case of a block ansatz, the Earth, or a part of it, is subdivided
into predefined (overlapping or non–overlapping) blocks with a very simple
density structure, such as a constant density, per block, see, for instance
[24, 26, 30, 56]. Also within this category of purely local methods are those
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approaches which use point masses, see, for example, [9, 53]. Another ap-
proach of that kind is the use of basis functions with local support, see
[24, 45].
A typical example of a global approach is a truncated singular value de-
composition (TSVD), see, for instance, [55, 60]. As discussed earlier most
constraints lead to an explicit singular value decomposition of the inverse
operator. Thus, calculating the expansion coefficients of the given gravity
function and then inserting these coefficients into the truncated series rep-
resentation of the density yields an approximation of the unknown solution.
In this context, the corresponding orthonormal basis functions are always
polynomials. Thus, this method is purely global, since Fourier coefficients
with respect to a polynomial basis are global means with no local preference.
For the sake of completeness, it should be mentioned that there also exist
additional numerical approaches including a Monte Carlo method [55], a
finite element ansatz [10], and the use of cubic and exponential splines for
the 2D problem [6]. Moreover, the measure theoretic approach in [49] also
includes the discussion of a corresponding numerical method. Furthermore,
the theory of a regularisation method (going back to Tykhonov [62]) for the
calculation of the harmonic density is discussed in [63].
Both purely global and purely local methods, have certain drawbacks. A
disadvantage of a global method using polynomials is its inability to model
local heterogeneity, such as an inhomogeneous distribution of the data grid
points, a locally varying accuracy of the data, or a spatially restricted change
of the data. The only parameter for controlling the resolution is the degree
of truncation, which, however, has a global effect. It controls the resolution
everywhere in the Earth, although we cannot expect that gravity data yield
an equally accurate description of the Earth’s deep structures on the one
hand and the crust on the other hand — this drawback is also mentioned
in [55]. Moreover, the coefficients describing the solution have no spatial
reference, i.e., we are not able to say that the gravity data over, say, the
Southern Atlantic Ocean primarily influence a certain subset of these coef-
ficients. Any change to the data and any noise disturbing part of the data
contribute almost equally to all coefficients in the expansion of the potential
and therefore in the same manner to the coefficients of the solution in the
TSVD.
In this respect, a good compromise appears to be the use of functions which
are globally defined, but which concentrate on a certain subdomain. Such
so–called localised functions can be obtained by using product kernels and
they appear in different contexts.
On the one hand, product kernels can be used to construct basis functions
for the solution. In contrast to polynomials, their graphs look approximately
like peaks, where their area of localisation depends on the given basis func-
tion. Hence, this allows to treat differently different subdomains. A spatially
varying quality and density of the data can be taken into account by produc-
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ing a solution which is globally coarse but which gets sharper in areas with
more and better data. This is demonstrated in [38] for the inverse gravimet-
ric problem and in [2] for the seismic travel time tomography problem. In
the context of the inverse gravimetric problem, such approaches have also
been employed as collocation methods with a more statistical background
(see [24, 45, 47, 56, 58, 60]) and as spline methods based on the theory of re-
producing kernel Hilbert spaces (see [18, 38] and the historical references in
[1] where the use of similar methods for different applications is discussed).
It should be noted that since the model space is of finite dimensions the
ill–posedness is circumvented.
On the other hand, product kernels can also be used as scaling functions
and wavelets. In this context, they are equipped with a parameter J , i.e.
now we consider a family, usually a sequence, of such kernels. The main
idea is to convolve separately the given right–hand side with the scaling
functions for each J . In a certain limit of the parameter such as J → ∞ the
relevant sequence converges to the exact solution. An essential feature is
that every element of the sequence depends continuously on the right–hand
side (no matter how close it is already to the exact solution), whereas the
exact solution depends discontinuously on the right–hand side. This yields
a regularisation, even if the model space has an infinite dimension. This
approach allows a multiresolution analysis, i.e. it allows to obtain the result
at different resolutions, e.g. ranging from continental size to the structures
of a small island. The detail information representing the step from one res-
olution to the next can be calculated by using the wavelet kernels. The use
of such methods for the inverse gravimetric problem was already proposed
in [5]. They were eventually developed and numerically investigated in [23]
and [33]-[36].
A particular method of the above type is a multiscale method, which will
be described below, in analogy to the general principle described in [35] (see
also [22, 36]).

Theorem 9.1 Let σ ≥ 1 and let V satisfy the conditions of Theorem 4.2
such that D ∈ L2(B) is the corresponding harmonic density. Moreover, let
ΦJ : B × (σS

2) → R, J ∈ N0, be a sequence of functions, here called scaling
functions, given by

ΦJ(x, ση) :=
∞
∑

n=0

ϕJ(n)σn(2n+ 3)|x|n
(

2n+ 1

4π

)2 1

σ
Pn

(

x

|x| · η
)

,

where

• 0 ≤ ϕJ(n) ≤ ϕJ+1(n) for all n, J ∈ N0,

• limJ→∞ ϕJ(n) = 1 for all n ∈ N0,

• ∑∞
n=0(ϕJ(n))2σ2nn5 < +∞ for all J ∈ N0.
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Then

lim
J→∞

∥

∥

∥

∥

D −
∫

σS2

ΦJ(·, y)V (y) dω(y)

∥

∥

∥

∥

L2(B)

= 0.

Proof. The addition theorem for spherical harmonics implies

2n+ 1

4πσ
Pn

(

x

|x| · η
)

=
n
∑

j=−n

Yn,j

(

x

|x|

)

1

σ
Yn,j(η),

where { 1
σYn,j(

·
σ )}n∈N0; j=−n,...,n is a complete orthonormal system in the

Hilbert space L2(σS
2). For fixed x ∈ B, it follows that

∞
∑

n=0

(ϕJ(n))2 σ2n(2n+ 3)2|x|2n

(

2n+ 1

4π

)2 n
∑

j=−n

(

Yn,j

(

x

|x|

))2

=
∞
∑

n=0

(ϕJ(n))2 σ2n(2n+ 3)2|x|2n

(

2n+ 1

4π

)3

≤
∞
∑

n=0

(ϕJ(n))2 σ2n (2n+ 3)5

64π3
.

Consequently, the series representation of ΦJ(x, ·) converges with respect to
L2(σS

2). Thus, for all x ∈ B,

∫

σS2

ΦJ(x, y)V (y) dω(y) (12)

=

∞
∑

n=0

ϕJ(n)σn(2n+ 3)|x|n 2n+ 1

4π

×
n
∑

j=−n

Yn,j

(

x

|x|

)〈

V |σS2 ,
1

σ
Yn,j

( ·
σ

)

〉

L2(σS2)

.

Note that
〈

V |σS2 ,
1

σ
Yn,j

( ·
σ

)

〉

L2(σS2)

= σ−n 〈V |
S2 , Yn,j〉L2(S2) .

Since {x 7→
√

2n+ 3|x|nYn,j(
x
|x|)}n∈N0;j=−n,...,n represents an orthonormal

system in L2(B), we get

∥

∥

∥

∥

D −
∫

σS2

ΦJ(·, y)V (y) dω(y)

∥

∥

∥

∥

2

L2(B)

=
∞
∑

n=0

n
∑

j=−n

(1 − ϕJ(n))2
(

2n+ 1

4π

)2

(2n+ 3) 〈V |
S2 , Yn,j〉2L2(S2) .
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We know that D ∈ L2(B) exists and, thus, due to the Parseval identity and
the requirement 0 ≤ ϕJ(n) ≤ 1, this series is uniformly convergent with
respect to J ∈ N0. Consequently,

lim
J→∞

∥

∥

∥

∥

D −
∫

σS2

ΦJ(·, y)V (y) dω(y)

∥

∥

∥

∥

2

L2(B)

=
∞
∑

n=0

n
∑

j=−n

lim
J→∞

(1 − ϕJ(n))2
(

2n+ 1

4π

)2

(2n+ 3) 〈V |
S2 , Yn,j〉2L2(S2)

= 0.

In the usual way linear wavelets can be established for this constellation.

Theorem 9.2 Let the conditions of Theorem 9.1 be satisfied. If the kernels
ΨJ : B × (σS

2) → R, J ∈ N0, here called wavelets, are defined by

ΨJ(x, ση) :=
∞
∑

n=0

ψJ(n)σn(2n+ 3)|x|n
(

2n+ 1

4π

)2 1

σ
Pn

(

x

|x| · η
)

,

with
ψJ(n) := ϕJ+1(n) − ϕJ(n)

for all J, n ∈ N0 and ψ−1(n) := ϕ0(n) for all n ∈ N0, then

∫

σS2

ΦJ+1(·, y)V (y) dω(y) =

∫

σS2

ΦJ(·, y)V (y) dω(y)+

∫

σS2

ΨJ(·, y)V (y) dω(y)

and

D =
∞
∑

J=−1

∫

σS2

ΨJ(·, y)V (y) dω(y)

with respect to L2(B).

We will show now that the described method represents a regularisation of
the inverse problem.

Theorem 9.3 Let ΦJ , J ∈ N, satisfy the requirements formulated in The-
orem 9.1. Then all operators

RJ : L2
(

σS
2
)

→ L2(B)

V 7→
∫

σS2

ΦJ(·, y)V (y) dω(y) ,

J ∈ N0, are continuous.
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Proof. We prove the continuity by showing that the linear operator RJ ,
where J ∈ N0 is arbitrary, is bounded due to the third requirement on the
generating sequence (ϕJ(n))n∈N0

:

‖RJV ‖2
L2(B) =

∥

∥

∥

∥

∫

σS2

ΦJ(·, y)V (y) dω(y)

∥

∥

∥

∥

2

L2(B)

=

∥

∥

∥

∥

∥

∞
∑

n=0

ϕJ(n)σn(2n+ 3)| · |n 2n+ 1

4π

×
n
∑

j=−n

〈

V |σS2 ,
1

σ
Yn,j

( ·
σ

)

〉

L2(σS2)

Yn,j

( ·
| · |

)

∥

∥

∥

∥

∥

∥

2

L2(B)

=
∞
∑

n=0

n
∑

j=−n

(ϕJ(n))2 σ2n(2n+ 3)

(

2n+ 1

4π

)2〈

V |σS2 ,
1

σ
Yn,j

( ·
σ

)

〉2

L2(σS2)

≤ 1

16π2

∞
∑

n=0

n
∑

j=−n

(ϕJ(n))2 σ2n(2n+ 3)3
〈

V |σS2 ,
1

σ
Yn,j

( ·
σ

)

〉2

L2(σS2)

≤ sup
m∈N0

(

(ϕJ(m))2 σ2m(2m+ 3)3
) 1

16π2
‖V ‖2

L2(σS2).

10 Numerical Results

We will show here some numerical results. We have used the EGM96 gravity
potential [29] from degree 3 to 360, evaluated at a 720 × 720 equiangular
point grid at the surface1 of the Earth, see Figure 1. The scaling functions
ΦJ were defined via the cubic polynomial symbol, which is generated out of

ϕ0(x) :=

{

(1 − x)2(1 + 2x), if 0 ≤ x ≤ 1
0, if x > 1

via the dilation ϕJ(n) := ϕ0(2
−Jn), n ∈ N0. The resulting expansion of ΦJ

in terms of Legendre polynomials up to degree 2J −1 was calculated via the
Clenshaw algorithm [15] as finite sum of Legendre polynomials. Finally, the
convolution of the scaling function and the potential, which is an integration
over the spherical surface of the Earth (i.e. the unit sphere) was realised by
the Driscoll–Healy method [16]. Each integration yields an approximation
to the density at one point in the Earth. For plotting the approximate
solution of Theorem 9.1 we have calculated this solution at point grids on

1Note that such a multiscale method can also be used to regularise the exponential
ill–posedness in the case of σ > 1. This has been rigorously established and numerically
implemented in [36] for the case of the harmonic density.
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different surfaces. The results are shown in Figures 2 to 5. Moreover, we
use a locally perturbed potential, see Figure 7, and reconstruct the density
at the higher sphere in the same way, see Figure 6. It can clearly be seen
that the perturbation remains local.
The figures illustrate the multiresolution analysis that the method provides.
The higher the scale, the better the resolution and the more local the added
details. Comparing the different spheres one observes a smoothing and de-
creasing tendency towards the Earth’s centre. This is not unusual for the
inverse gravimetric problems since the radially symmetric structures of the
deep Earth are only represented via their constant global mean value in
the gravitational field [33, 55]. Moreover, as discussed earlier the maximum
principle for harmonic functions shows that the concentration of the large
density variations at the surface, as one can see in Figure 5, is a feature of
the harmonic density approach.
In summary, the minimal norm density which equals the harmonic density
reveals topographical structures related to surface–near strong mass density
variations, such as mountains, islands, and tectonic faults. Some of those
features are already visible in the potential. The density recovery seems
to bring them out clearly. No matter what additional constraint is used
to obtain uniqueness, the methods are limited by the fact that certain es-
sential parts of the Earth’s mass density distribution are not captured by
the solution of the inverse problem, which include coarse radially symmetric
structures of the mantle and the core. There are probably slight angular
variations of those structures, e.g. concerning the topography of the core–
mantle–boundary. However, the present accuracy of gravity measurements
appears insufficient to reveal such anomalies.

Figure 1: Used gravitational potential (from degree 3 to 360) in m2/s2
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Figure 2: Calculated density (from degree 3 to 360) of minimal norm (in
kg/m3) at a sphere of radius ρ = 0.999, i.e. close to the surface: The left
column shows the convolution with the scaling functions of scales J = 4
(top) to J = 8 (bottom), whereas the right column shows the difference of
the approximations of two consecutive scales which could also be calculated
by convolving the potential with the corresponding wavelet (see Theorem
9.2).
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Figure 3: Similar to Figure 2, density at scale 8 (top) and scale step, i.e.
wavelet approximation, at scale 7 (bottom), both with different colour scales
that reveal more details.
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Figure 4: Similar to Figure 2 but for ρ = 0.7.
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Figure 5: Calculated density (from degree 3 to 360) of minimal norm (in
kg/m3) at a cross section of a great circle: Again, the left column shows the
convolution with the scaling functions of scales J = 4 (top) to J = 8 (bot-
tom) whereas the right column shows the difference of the approximations
of two consecutive scales.
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Figure 6: Calculated harmonic density like in Figure 2 but calculated out
of the perturbed potential in Figure 7.
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Figure 7: Perturbed gravitational potential

11 Conclusions

The characterisation of the problem of non–uniqueness for the inverse gravi-
metric problem and different constraints yielding uniqueness have been dis-
cussed. Apparently, none of the constraints yields a solution with a satisfac-
tory physical interpretation. In particular, the deep structures of the Earth
definitely cannot be recovered from gravity data (perhaps seismic data can
be used for this purpose). It appears that a reasonable approach is to calcu-
late a harmonic density function from gravity data and to combine it with
an anharmonic density function obtained from non–gravitational data.
We have shown that a known multiscale method using product kernels, is
able to yield a satisfactory approximation to the harmonic density. These
results also demonstrate a well–known observation: the harmonic density
alone already yields interesting qualitative information on density anoma-
lies in the uppermost layer of the Earth.
Future research should investigate density recovery using seismic data (nor-
mal mode tomography might be a good choice for this purpose).
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