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Abstract. Sequential techniques can be adapted to the ABC algorithm to enhance
its efficiency. For instance, when Sisson et al. (2007) introduced the ABC-PRC
algorithm, the goal was to improve upon existing ABC-MCMC algorithms (Mar-
joram et al., 2003). While the ABC-PRC method is based upon the theoretical
developments of Del Moral et al. (2006), the application to the setting of approx-
imate Bayesian computation induces a bias in the approximation to the posterior
distribution of interest, as we demonstrate in this paper via both theoretical rea-
soning and experimental results. It is however possible to devise an alternative
version based on genuine importance sampling arguments that we call ABC-PMC
in connection with the population Monte Carlo method introduced in Cappé et al.
(2004). Furthermore, the ABC-PMC algorithm is simpler than the ABC-PRC
algorithm in that it does not require any backward transition kernel and proposes
an automatic scaling of the forward kernel. In this paper, we demonstrate the
applicability of ABC-PMC and compare its performances with ABC-PRC.

Keywords: Approximate Bayesian computation, ABC-PRC, importance sampling,
population Monte Carlo, sequential Monte Carlo.

1 Introduction

When the likelihood function is not available in a closed form, as in population Genetics,
approximate Bayesian computational (ABC) methods have been introduced (Pritchard
et al., 1999; Beaumont et al., 2002) as a rejection technique bypassing the computation
of the likelihood function via a simulation from the corresponding distribution. Namely,
if we observe y ∼ f(y|θ) and if π(θ) is the prior distribution on the parameter θ, then
the original ABC algorithm jointly simulates

θ′ ∼ π(θ) and x ∼ f(x|θ′)

and accept the simulated θ′ if and only if the auxiliary variable x is equal to the observed
value, x = y. This algorithm is clearly legitimate in that the accepted θ′’s are exactly
distributed from the posterior. In the (more standard) event that y is a continuous
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2 ABC-PMC

random variable, the ABC algorithm uses an approximation, replacing the strict equality
x = y with a tolerance zone, %(x, y) ≤ ε, % being a measure of discrepancy (like a
distance between summary statistics) and ε a small enough number. The output is then
distributed from the distribution with density proportional to

π(θ) Pθ(%(x, y) < ε)

where Pθ represents the distribution of x conditional on the value of θ. (This distribution
is often summarised by π(θ|%(x, y) < ε), which is to be understood under the marginal
distribution of %(x, y) < ε.) Improvements to this general scheme have this far been
achieved in two ways: either by modifying the proposal distribution of the parameter
θ to increase the density of x within the vicinity of y (Marjoram et al., 2003; Sisson
et al., 2007); or by viewing the problem as one of conditional density estimation and
developing techniques to allow for larger ε (Beaumont et al., 2002).

Sisson et al. (2007) have introduced a sequential Monte Carlo method called the
ABC-PRC algorithm (where PRC stands for partial rejection control, as introduced in
Liu (2001)). The simulation method is sequential (see, e.g., Robert and Casella, 2004,
Chapter 14) in that simulated populations of N points (sometimes called particles) are
generated at each iteration of the algorithm and that they are exploited to produce bet-
ter proposals for a given target distribution. As demonstrated in, e.g., Douc et al. (2007),
the reliance on earlier populations to build proposals is perfectly legitimate from a con-
vergence point of view as long as an importance sampling perspective is adopted, and
a progressive improvement in the choice of proposals is the appeal of using a sequence
of samples rather than a single one, since Douc et al. (2007) establish that iterating the
simulation of samples without modifying the proposal does not bring an improvement
in the Kullback divergence between the target and the proposal distribution.

Marjoram et al. (2003) enjoys the same validity as the original ABC algorithm,
namely that, if a Markov chain (θ(t)) is created via the transition function

θ(t+1) =


θ′ ∼ K(θ′|θ(t)) if x ∼ f(x|θ′) is such that x = y

and u ∼ U(0, 1) ≤ π(θ′)K(θ(t)|θ′)
π(θ(t))K(θ′|θ(t))

,

θ(t) otherwise,

the stationary distribution of the Markov chain is the true posterior π(θ|y). Once again,
in most situations, the distribution of y is absolutely continuous and the strict constraint
x = y is replaced with the approximation %(x, y) < ε.

Example 1.1. When

θ ∼ U(−10.10) , x|θ ∼ 1
2
N (θ, 1) +

1
2
N (θ, 1/100) ,

as studied in Sisson et al. (2007), the posterior distribution associated with y = 0 is the
normal mixture

θ|y = 0 ∼ 1
2
N (0, 1) +

1
2
N (0, 1/100)
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Figure 1: Output (left) and histogram ((right) of a sample produced by an ABC-MCMC
algorithm, for the mixture model of Example 1.1, T = 106 iterations, ε = 0.025 and a
scale of τ = .15. (Note: The exact posterior density plotted on top of the histogram is
identical to the target of the simulation algorithm, π(θ|%(x, y) < ε).)

restricted to the set [−10, 10]. As in regular MCMC settings, the performances of the
ABC-MCMC algorithm depend on the choice of the scale τ in the random walk proposal,
K(θ′|θ) = τ−1ϕ(τ−1(θ−θ′)). However, even when τ = 0.15 as in Sisson et al. (2007), the
Markov chain mixes slowly, but still produces an acceptable fit over T = 106 iterations,
as shown in Figure 1. We further note that, in this toy example, the true target is
available as

π(θ||x| < ε) ∝ Φ(ε− θ)− Φ(−ε− θ) + Φ(0.1(ε− θ))− Φ(−0.1(ε+ θ)) .

It is therefore possible to check that, for the value ε = 0.025, the true target is identical
with the exact posterior density π(θ|y = 0) and we can thus clearly separate the issue
of poor convergence of the algorithm (related with the choice of τ) from the issue of
approximating the posterior density (related with the choice of ε). J

The ABC-PRC modification introduced in Sisson et al. (2007) consists in producing
samples (θ(t)1 , . . . , θ

(t)
N ) at each iteration 1 ≤ t ≤ T of the algorithm by using [except

when t = 1 in which case a regular ABC step is implemented] Markov transition kernels
Kt for the generation of the θ(t)i ’s, namely

θ
(t)
i ∼ Kt(θ|θ?) ,

until x ∼ f(x|θ(t)i ) is such that %(x, y) < ε, where θ? is selected at random among
the previous θ(t−1)

i ’s with probabilities ω(t−1)
i . The probability ω

(t)
i is derived by an
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importance sampling argument as (t > 1)

ω
(t)
i ∝

π(θ(t)i )Lt−1(θ?|θ(t)i )

π(θ?)Kt(θ
(t)
i |θ?)

,

where Lt−1 is an arbitrary transition kernel. (Sisson et al. (2007), suggest using
Lt−1(θ′|θ) = Kt(θ|θ′) equal to a Gaussian kernel, which means that the weights are then
all equal under a uniform prior π.) This importance ratio is inspired from Del Moral
et al. (2006) who used a backward kernel Lt−1 (or more exactly a sequence of backward
kernels) in a sequential Monte Carlo algorithm to achieve unbiasedness in the marginal
distribution of the current particle without computing this (unavailable) marginal.

In this paper, we analyse the properties of the above ABC-PRC techniques and
show in the following section via both theoretical and experimental arguments that
this algorithm is biased. Moreover, we introduce a new algorithm called ABC-PRC
in connection with the population Monte Carlo (PMC) method of Cappé et al. (2004).
This correction is based on genuine importance sampling arguments and the section after
next demonstrates its applicability as well as the improvement it brings compqared with
ABC-PRC.

2 Bias in the ABC-PRC algorithm

2.1 Distribution of the ABC-PRC sample

In order to expose the difficulty in using the ABC-PRC weights as given in Sisson et al.
(2007), we first consider the ideal and limiting case when ε = 0. (In that case, we
recall that both ABC and ABC-MCMC algorithms are correct samplers from π(θ|y).)
This means we generate θ′ ∼ Kt(θ|θ?) and x ∼ f(x|θ′) until x = y. We now consider
the distribution of the weighted θ(t)i ’s when those are simulated and weighted according
to ABC-PRC. To evaluate the bias resulting from using the ABC-PRC weight in the
second step, let us further assume without loss of generality that the θ(t−1)

i ’s have been
resampled using proper weights, i.e. that θ? ∼ π(θ|y). Then [denoting by θ(t−1) the
selected θ?] the joint density of (θ(t−1), θ(t)) is proportional to

π(θ(t−1)|y)Kt(θ(t)|θ(t−1))f(y|θ(t))

with a marginalisation constant that only depends on y [and on the choice of Kt].
Therefore, if we use the weight ωt proposed by Sisson et al. (2007) in PRC2.2, the
weighted distribution of θ(t) is such that, for an arbitrary integrable function h(θ),
E[h(θ(t))ωt] is proportional to∫∫

h(θ(t))
π(θ(t))Lt−1(θ(t−1)|θ(t))
π(θ(t−1))Kt(θ(t)|θ(t−1))

×π(θ(t−1)|y)Kt(θ(t)|θ(t−1))f(y|θ(t))dθ(t−1)dθ(t)

∝
∫∫

h(θ(t))
π(θ(t))Lt−1(θ(t−1)|θ(t))
π(θ(t−1))Kt(θ(t)|θ(t−1))

π(θ(t−1))f(y|θ(t−1))
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×Kt(θ(t)|θ(t−1))f(y|θ(t))dθ(t−1)dθ(t)

∝
∫
h(θ(t))π(θ(t)|y)

×
{∫

Lt−1(θ(t−1)|θ(t))f(y|θ(t−1))dθ(t−1)

}
dθ(t)

[with all proportionality terms being functions of y only]. If the weight was unbiased
we should obtain

E[h(θ(t))ωt] =
∫
h(θ(t))π(θ(t)|y)dθ(t) ,

therefore we can conclude that there is a bias in the weight proposed by Sisson et al.
(2007) unless

Lt−1(θ(t−1)|θ(t))f(y|θ(t−1))

integrates to the same constant for all values of θ(t). Apart from this special case—
that is achievable when Lt−1(θ(t−1)|θ(t)) = g(θ(t−1)) but not in the random walk type
proposal, i.e. when Lt−1(θ(t−1)|θ(t)) = ϕ(θ(t−1) − θ(t))—, the ABC-PRC weight is thus
incorrect.

Paradoxically, the weight used in the ABC-PRC algorithm misses a f(y|θ(t−1)) term
in its denominator, while the method is used when f(y|θ) is not available. This is
exactly the difference between the weights used in Sisson et al. (2007) and those used
in Del Moral et al. (2006), namely that, in the latter paper, the posterior π(θ(t−1)|x)
explicitly appears in the denominator instead of the prior. The accept-reject principle
at the core of ABC allows for the replacement of the posterior by the prior in the
numerator of the ratio, but not in the denominator.

In order to illustrate the practical effect of this bias in the weight of Sisson et al.
(2007), we first consider a toy situation based on a discrete distribution, namely the
Beta-binomial case.

Example 2.1. Here, f(y|θ) is the density of a binomial B(n, θ) distribution and we
choose π(θ) to be the constant density of a U(0, 1) distribution. Since the support of
f(y|θ) is finite, we can implement the ideal exact ABC algorithm (i.e. accepting only
when the simulated x is identical to the observed y) to produce a sample simulated from
the true posterior, which is then equal to a Be(y + 1, n− y + 1) distribution (see, e.g.,
Robert, 2001).

When implementing the ABC-PRC algorithm of Sisson et al. (2007), the initial
importance sampling distribution can be chosen to be equal to the prior distribution,
i.e. µ1 = π. Then, the first sample θ(1)i is exactly distributed from the true posterior
Be(y+1, n−y+1) since the importance weights are equal to 1 and since the acceptance
step has probability f(y|θ) to occur. For the following ABC-PRC steps (t ≥ 2), we use
for Kt the random walk proposal of Sisson et al. (2007), except that we first operate
a logistic change of variables to account for the fact that the θ’s are restricted to vary
between 0 and 1. This means that Kt(θ|θ?) is a normal distribution on the logistic
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transform of θ:

Kt(θ|θ?) =
1√

2πσt
exp {−(log{θ/(1− θ)}

− log{θ?/(1− θ?)})2/2σ2
t

} 1
θ(1− θ)

,

the final fraction in the above being the Jacobian due to the change of variable. In order
to reproduce the adaptive features of the ABC-PRC algorithm, we also use a sequence σt
of standard deviations based on twice the (weighted) empirical variance of the previous
sample of η(t−1)

i = log{θ(t−1)
i /(1 − θ(t−1)

i )}. (The factor 2 corresponds to the optimal
choice of scale in terms of Kullback-Leibler divergence for a random walk.) Following
the recommendation in Sisson et al. (2007), we take the backward kernel Lt−1(θ|θ?) to
be the same normal distribution on the logit scale, which means that

ω
(t)
i =

π(θ(t)i )Lt−1(θ?|θ(t)i )

π(θ?)Kt(θ
(t)
i |θ?)

=
Lt−1(θ?|θ(t)i )

Kt(θ
(t)
i |θ?)

=
θ
(t)
i (1− θ(t)i )
θ?(1− θ?)

,

equal to the ratio of the Jacobians, except for t = 1. (Note that the ratio is naturally
invariant by a change of variables and that it is thus the same whether it is expressed
in terms of the θ(t)’s or in terms of the η(t)’s.)

Figure 2 monitors the histograms of the consecutive samples produced by ABC-PRC
against the graph of the true posterior distribution Be(y+ 1, n− y+ 1) when y = 3 and
n = 7. As clearly shown by this figure, the fit after the (exact) first step deteriorates
along iterations. J

Quite obviously, the bias does not vanish along iterations since there is a factor
similar to ∫

Lt−1(θ(t−1)|θ(t))f(y|θ(t−1))dθ(t−1)

appearing at each iteration. Figure 2 shows that the effect of this cumulative bias tends
to level off with iterations, rather than increasing with T as it would if only an additional
f(y|θ) factor would appear at each iteration.

2.2 Bias in the continuous case

In a continuous environment with the additional approximation due to the tolerance
zone %(x, y) < ε, there is no particular reason for the situation to improve, even though
we can see that the bias in the weights generaly decreases as ε increases. The following
example illustrates this point in the case of the mixture example of Sisson et al. (2007).

Example 2.2. (Example 1.1 continued) When considering the mixture setting of
Example 1.1, Figure 3 shows the output of ten consecutive iterations of the ABC-PRC
algorithm, using a decreasing sequence of εt’s, from ε1 = 2 downto ε10 = 0.01, and
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Figure 2: Histograms of samples of θ’s produced by ABC-PRC in the Beta-binomial
case, compared with the true posterior density Be(y + 1, n − y + 1) when y = 3 and
n = 7, based on M = 104 simulations and T = 6 iterations, and started with a uniform
proposal µ1 equal to the prior distribution.
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Figure 3: Histograms of the last nine weighted samples produced by ten consecutive
iteration of ABC-PRC for the mixture target of Example 2.2, with a sequence of εt’s,
from ε1 = 2 downto ε10 = 0.01 and a constant scale τ = .15 in the random walk, based
on M = 5 × 103 simulations. (Note: The exact posterior density is plotted on top of
the histogram with a dotted blue curve, while the target of the simulation algorithm,
π(θ|%(x, y) < ε), is represented with brown full lines.)

a scale in the Gaussian random walk equal to τ = 0.15. (Since τ is not explicitely
specified in the original paper, we chose it equal to the scale used for the ABC-MCMC
illustration. Note that an adaptive scale as the one adopted in the following section
does exhibit worse biases.). As shown by this graph, using the ABC-PRC algorithm
leads to a bias in terms of the target when ε is small, a somehow surprising contrast
with the good fit produced on Figure 2 in Sisson et al. (2007), even though the values of
the εt’s we used are smaller. For the final values of εt, the output does not concentrate
enough around the mode and misses the tails of the target, while larger values of εt in
ABC-PRC produces a better fit (but is, obviously, farther from the true posterior.) J
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3 Correction via importance sampling: ABC-PMC

3.1 Population Monte Carlo

Since the missing factor in the importance weight of Sisson et al. (2007) is related with
the unknown likelihood f(x|θ), it would appear that a resolution of the problem would
require an estimation of the likelihood based on earlier samples. This is however not
the case in that a standard importance sampling perspective allows for a more direct
approach, in a spirit similar to the generic Population Monte Carlo algorithm of Cappé
et al. (2004).

Taking into account the way the t-th iteration sample of ABC-PRC is produced, it is
indeed natural to modify the importance weight associated with an accepted simulation
θ
(t)
i as

ω
(t)
i ∝ π(θ(t)i )

/
π̂t(θ

(t)
i ) ,

where

π̂t(θ(t)) =
N∑
j=1

ω
(t−1)
j Kt(θ(t)|θ(t−1)

j ) .

is the distribution used to generate the θ(t)i ’s. It is then straightforward to check that,
whatever the distribution π̃(θ(t−1)) of the θ(t−1)

j ’s is, the above weight corrects for the
choice of the importance distribution since

E[ω(t)h(θ(t))] ∝
∫
h(θ(t))

π(θ(t))
π̂(θ(t))

π̂(θ(t))f(θ(t)|y)π̃(θ(t−1)) dθ(t) dθ(t−1) .

This is essentially the proof for the unbiasedness of the population Monte Carlo method
of Cappé et al. (2004) and the fact that the kernel Kt depends on the earlier simulations
(θ(t−1))t [for instance by adjusting the variance of the random walk on those simulations]
does not jeopardise the validity of the method. In addition, it must be noted that Douc
et al. (2007) have proved that the kernel Kt must be modified at each iteration for the
iterations to make sense, i.e. for those iterations to bring an asymptotic improvement
on the Kullback-Leibler divergence between the proposal π̂(θ(t)) and the (fixed) target
π(θ|y): if for instance the variance of the random walk does not change from one
iteration to the next, the approximation of the target π(θ|y) by π̂(θ(t)) does not change
either and it is more profitable (from a variance point of view) to increase the number
of points at the second iteration.

When considering the special case of componentwise independent random walk pro-
posals, i.e. when

Kt(θ
(t)
k |θ

(t−1)
k ) = τ−1

k ϕ{τ−1
k (θ(t)k − θ

(t−1)
k )}

for each component k of the parameter vector θ(t)k , the (asymptotically) optimal choice
of the scale factor τk can be found for each iteration. Indeed, when using a Kullback-
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Leibler measure of divergence between the target and the proposal,

E

[
log

{
π(θ(t)|y)

/∏
k

τ−1
k ϕ{τ−1

k (θ(t)k − θ
(t−1)
k )} f(y|θ(t))

}]

where the expectation E is taken under the product distribution

(θ(t), θ(t−1)) ∼ π(θ(t)|y)× π(θ(t−1)|y) ,

the minimisation of the Kullback divergence leads to maximise component-wise

E[log τ−1
k ϕ{τ−1

k (θ(t)k − θ
(t−1)
k )}]

under the product distribution π(θ(t)|y)×π(θ(t−1)|y). As already mentioned above, the
optimal scale is then to choose τ2

k equal to E[(θ(t)k − θ
(t−1)
k )2], that is,

τ2
k = 2var(θk|y) ,

under the posterior distribution. The implementation of this updating scheme on the
scale is obviously straightforward.

The corresponding ABC-PMC scheme is then as follows:

ABC-PMC algorithm
Given a decreasing sequence of approximation levels ε1, . . . , εT ,

1. At iteration t = 1,

For i = 1, ..., N
Simulate θ

(1)
i ∼ π(θ) and x ∼ f(x|θ(1)i ) until %(x, y) < ε1

Set ω
(1)
i = 1/N

Take σ2
2 as twice the empirical variance of the θ

(1)
i ’s

2. At iteration 2 ≤ t ≤ T ,

For i = 1, ..., N , repeat

Pick θ?i from the θ
(t−1)
j ’s with probabilities ω

(t−1)
j

generate θ
(t)
i |θ?i ∼ N (θ?i , σ

2
t ) and x ∼ f(x|θ(t)i )

until %(x, y) < εt

Set ω
(t)
i ∝ π(θ(t)i )/

∑N
j=1 ω

(t−1)
j ϕ

(
σ−1
t

{
θ
(t)
i − θ

(t−1)
j )

})
Take σ2

t+1 as twice the weighted empirical variance of the θ
(t)
i ’s
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Figure 4: Histograms of the weighted samples produced by six consecutive iteration of
ABC-PMC for the Beta-binomial target of Example 2.1, with a adaptive scale τt in the
random walk, based on M = 104 simulations.

3.2 Illustrations

Example 3.1. (Example 2.1 continued) In the case of the beta-binomial model, we
modify the sampling weights from iteration 2 onwards according to our scheme, namely

ω
(t)
i ∝ π(θ(t)i )

/
π̂(θ(t)i )

∝ θ(t)i (1− θ(t)i )
/ N∑

j=1

ω
(t−1)
j ϕ

(
σ−1
t

{
logit(θ(t)i )

−logit(θ(t−1)
j )

})
,

where σ2
t is twice the weighted variance of the logit(θ(t−1)

j )’s. Figure 4 shows the outcome
of the ABC-PMC scheme, with a much better fit of the [true] posterior distribution
compared with ABC-PRC and a constant behaviour along iterations. We also note that
the range of the importance weights remains quite limited (with a ratio from 1 to 4)
and that the variance τt stabilises around 1 within a few iterations. J

Example 3.2. (Example 2.2 continued) For the mixture model, using the ABC-
PMC algorithm with the corrected weights leads to a recovery of the target, whether
using a fixed τ = 0.15 or a sequence of adaptive τt’s based on the variance of the previous
sample following the ABC-PMC algorithm, as shown on Figures 5 and 6, respectively.
The difference between both is actually difficult to spot, the estimated variance being
again more stable. This means that T = 10 iterations are not necessary in that setting
and that a faster decrease to ε = 0.01 would also give a good fit. J
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Figure 5: Histograms of the nine last weighted samples produced by ten consecutive
iteration of ABC-PMC for the mixture target of Example 2.2, with a sequence of εt’s,
from ε1 = 2 downto ε10 = 0.01 and a constant scale τ = .15 in the random walk, based
on M = 5 × 103 simulations. (Note: The exact posterior density is plotted on top of
the histogram with a dotted blue curve, while the target of the simulation algorithm,
π(θ|%(x, y) < ε), is represented with brown full lines.)
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Figure 6: Histograms of the nine last weighted samples produced by ten consecutive
iteration of ABC-PMC for the mixture target of Example 2.2, with a sequence of εt’s,
from ε1 = 2 downto ε10 = 0.01 and an adaptive scale τt in the random walk, based
on M = 5 × 103 simulations. (Note: The exact posterior density is plotted on top of
the histogram with a dotted blue curve, while the target of the simulation algorithm,
π(θ|%(x, y) < ε), is represented with brown full lines.)
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4 Conclusion

While the ABC-PRC algorithm relies on biased weights due to an inappropriate trans-
lation of the sequential scheme of Del Moral et al. (2006), with a visible impact on the
quality of the approximation, we have shown in this paper that the same Markov tran-
sition kernels [and thus the same computing power] can be used to produce an unbiased
scheme.

The new ABC-PMC scheme is based on an importance argument that does not
require a backward kernel as in Sisson et al. (2007). We have thus established that the
adaptive schemes of Douc et al. (2007) and Cappé et al. (2007) are also appropriate in
this setting, towards a better fit of the proposal kernel Kt to the target π(θ|%(x, y) < ε).
An important remark associated with this work is that the number of iterations T can be
controlled via the modifications in the parameters of Kt, a stopping rule being that the
iterations should stop when those parameters have settled, while the more fundamental
issue of selecting a sequence of εt’s towards a proper approximation of the true posterior
can rely on the stabilisation of the estimators of some quantities of interest associated
with this posterior.
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