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Abstract

In 1962, S. L. Hakimi proved necessary and sufficient conditions for a given sequence of

positive integers d1, d2, . . . , dn to be the degree sequence of a non–separable graph or that of

a connnected graph. Our goal in this note is to utilize these results to prove closed formulas

for the functions dns(2m) and dc(2m), the number of degree sequences with degree sum 2m

representable by non–separable graphs and connected graphs (respectively). Indeed, we give

both generating function proofs as well as bijective proofs of the following identities:

dns(2m) = p(2m) − p(2m − 1) −

m−2
X

j=0

p(j)

and

dc(2m) = p(2m) − p(m − 1) − 2

m−2
X

j=0

p(j)

where p(j) is the number of unrestricted integer partitions of j
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1 Introduction and Statement of Results

In this note, all graphs G = (V,E) under consideration will be finite, undirected, and loopless

but may contain multiple edges. We denote the degree sequence of the vertices v1, v2, . . . , vm by

d1, d2, . . . , dm with the convention that d1 ≥ d2 ≥ · · · ≥ dm. As usual, a graph is called connected if

it has only one component. We say that a vertex v is a cut–vertex of G if |E(G)| ≥ 2 and G− v has

more components than G. A graph is called non–separable if it is connected and has no cut–vertices.

In 1962, Hakimi [7] characterized those degree sequences for which there exists a non–separable

graph realization and those for which there exists a connected graph realization. His results are the

following:

Theorem 1.1. Let d1 ≥ d2 ≥ · · · ≥ dn ≥ 2 be integers with n ≥ 2. Then there exists a non–separable

graph with degree sequence d1, d2, . . . , dn if and only if

• d1 + d2 + · · · + dn is even and

• d1 ≤ d2 + d3 + · · · + dn − 2n+ 4.

Theorem 1.2. Let d1 ≥ d2 ≥ · · · ≥ dn ≥ 1 be integers with n ≥ 2. Then there exists a connected

graph with degree sequence d1, d2, . . . , dn if and only if

• d1 + d2 + · · · + dn is even,

• d1 ≤ d2 + d3 + · · · + dn, and

• d1 + d2 + d3 + · · · + dn ≥ 2(n− 1).

It should be noted that Hakimi’s Theorem 1.1 appeared more recently in the work of Jackson and

Jordán [8, Corollary 3.2] as a corollary to a more extensive theorem.

In this note, our goal is to enumerate all degree sequences of sum 2m for which there exists a

realization via a non–separable graph and those for which there exists a connected realization. We

will denote the number of degree sequences of sum 2m with a non–separable graph realization by

dns(2m). Similarly, we will let dc(2m) be the number of degree sequences of sum 2m for which there

exists a connected graph realization. Then our ultimate goal in this note is to prove the following:

Theorem 1.3. For all m ≥ 2,

dns(2m) = p(2m) − p(2m− 1) −
m−2∑

j=0

p(j)

where p(k) is the number of unrestricted integer partitions of k.

Theorem 1.4. For all m ≥ 1,

dc(2m) = p(2m) − p(m− 1) − 2

m−2∑

j=0

p(j)

where p(k) is the number of unrestricted integer partitions of k.
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So, for example, the number of degree sequences of sum 6 with non–separable graph realizations is

dns(6) = p(6) − p(5) − p(0) − p(1) = 11 − 7 − 1 − 1 = 2.

The two partitions in question, along with corresponding non–separable graph realizations, are shown

below.

• •

3 + 3

• •
•

2 + 2 + 2

Also by way of example, the number of degree sequences of sum 6 with connected graph realiza-

tions is

dc(6) = p(6) − p(2) − 2p(0) − 2p(1) = 11 − 2 − 2 − 2 = 5.

The five partitions in question, along with corresponding connected graph realizations, are shown

below.

• •

3 + 3

• • •

3 + 2 + 1

• ••

•

3 + 1 + 1 + 1

• •
•

2 + 2 + 2

• • • •

2 + 2 + 1 + 1

The techniques necessary for proving Theorems 1.3 and 1.4 are elementary. First, we develop

generating functions for functions closely related to dns(2m) and dc(2m) where n, the number of

vertices, is fixed. We then sum these generating functions over all possible values of n. Theorems 1.3

and 1.4 follow in straightforward fashion. We then close this work by providing alternative proofs

of both results which are bijective in nature.

2 Degree Sequences of Non–Separable Graphs

We begin by focusing our attention on Theorem 1.3. We will first relax the “evenness” condition

in the statement of Theorem 1.1; namely, we will not concern ourselves at this point with whether

the sum of the integers di is even. We will invoke this restriction at the end of the proof. Thus, we

now consider a function an(m), the number of partitions of m into exactly n parts satisfying the

inequality in Theorem 1.1.

The generating function An(q) for an(m) is given by

An(q) =
∑

m≥0

an(m)qm =
∑

d1≥d2≥···≥dn≥2
d1≤d2+d3+···+dn−2n+4

qd1+d2+···+dn .

We will now show that

An(q) = q2n

n∏

i=1

1

1 − qi
−
q2n+1

1 − q

n−1∏

i=1

1

1 − q2i
. (1)

There is some wisdom here in considering multivariable generating functions. Thus, for k ≥ 1, let

Gd,k(q1, . . . , qk) =
∑

d1≥d2≥···≥dk≥d

qd1
1 · · · qdk

k , (2)
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where we shall specifically set d = 2 later in this section and d = 1 in the next section. For k = 1

we have

Gd,1(q1) =

∞∑

d1=d

qd1
1 =

qd
1

1 − q1
.

We also see that

Gd,k(q1, . . . , qk) =
1

1 − q1
Gd,k−1(q1q2, q3, . . . , qk) for k ≥ 2.

A straightforward induction on k now proves that, for all k ≥ 1,

Gd,k(q1, . . . , qk) =
k∏

i=1

qd
i

1 − (q1 · · · qi)
. (3)

With this information about Gd,k in hand, we have

An(q) =
∑

d2≥···≥dn≥2

d2+···+dn−2n+4∑

d1=d2

qd1+···+dn

=
∑

d2≥···≥dn≥2

q2d2+d3+···+dn
1 − qd3+···+dn−2n+5

1 − q

=
1

1 − q
G2,n−1(q

2, q, . . . , q) −
q−2n+5

1 − q
G2,n−1(q

2, q2, . . . , q2)

= q2n

n∏

i=1

1

1 − qi
−
q2n+1

1 − q

n−1∏

i=1

1

1 − q2i
by (3).

This proves equation (1) above.

By (1), the generating function A(q) for a(m), the number of integer partitions of m into any

number n ≥ 2 parts which satisfy the inequality in Theorem 1.1, is given by

A(q) =
∑

n≥2

An(q) =
∑

n≥2

q2n

n∏

i=1

1

1 − qi
−

∑

n≥2

q2n+1

1 − q

n−1∏

i=1

1

1 − q2i
. (4)

Now we wish to consider the two sums in A(q) separately and interpret them as generating

functions of well–known arithmetic functions. First, we recall a well-known identity of Euler which

states that

1 +
∞∑

n=1

tn
n∏

i=1

1

1 − qi
=

∞∏

n=0

1

1 − tqn
; (5)

see Andrews [1, Corollary 2.2]. We will use this identity in key places in the work below.

We now focus our attention on the first sum on the right–hand side of (4). By (5) with t = q2,

and the fact that the generating function for p(n) is

∞∑

n=0

p(n)qn =
∞∏

n=1

1

1 − qn
, (6)

we have

∑

n≥2

q2n

n∏

i=1

1

1 − qi
=

∞∏

n=2

1

1 − qn
− 1 −

q2

1 − q

= (1 − q)

∞∑

n=0

p(n)qn − 1 −
∞∑

n=2

qn

=
∑

m≥3

(p(m) − p(m− 1) − 1) qm,
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where we have used the facts that p(0) = p(1) = 1 and p(2) = 2.

Next, we consider the second sum on the right–hand side of (4). Note that

∑

n≥2

q2n+1

n−1∏

i=1

1

1 − q2i
= q3

∑

n≥2

q2n−2

n−1∏

i=1

1

1 − q2i

= q3
∑

n≥1

q2n

n∏

i=1

1

1 − q2i

= q3
∞∏

i=1

1

1 − q2i
− q3.

The last line follows by first putting t = q in (5), and thereafter replacing q by q2 throughout. By

(6) and the last line above, we know

∑

n≥2

q2n+1

n−1∏

i=1

1

1 − q2i
= q3

∑

m≥0

p(m)q2m − q3

=
∑

m≥1

p(m)q2m+3 again using p(0) = 1.

In order to finish the analysis of the second sum in (4), we must multiply by the factor 1

1−q
. This

yields

∑

n≥2

q2n+1

1 − q

n−1∏

i=1

1

1 − q2i
=

1

1 − q

∑

m≥1

p(m)q2m+3

=

∞∑

k=0

qk
∑

m≥1

p(m)q2m+3

=
∑

m≥1

m∑

j=1

p(j)q2m+3 +
∑

m≥1

m∑

j=1

p(j)q2m+4

by standard generating function manipulations. This last line can be rewritten as

∑

m≥3

m−2∑

j=1

p(j)q2m−1 +
∑

m≥3

m−2∑

j=1

p(j)q2m.

We are now in a position to finish the proof of Theorem 1.3. Since a(2m) = dns(2m) for all m ≥ 2,

we see that the generating function for dns(2m) is given by

∑

m≥2

dns(2m)q2m =
∑

m≥2

(p(2m) − p(2m− 1) − 1) q2m −
∑

m≥3

m−2∑

j=1

p(j)q2m

=
∑

m≥2

(p(2m) − p(2m− 1) − 1) q2m −
∑

m≥2

m−2∑

j=1

p(j)q2m

where the empty sum is set to zero

=
∑

m≥2

(p(2m) − p(2m− 1) −
m−2∑

j=0

p(j))q2m since p(0) = 1.
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Therefore, for all m ≥ 2,

dns(2m) = p(2m) − p(2m− 1) −
m−2∑

j=0

p(j)

and this completes the proof of Theorem 1.3.

3 Degree Sequences of Connected Graphs

We now consider a proof of Theorem 1.4. As in the previous section, we first relax the “evenness”

condition in the statement of Theorem 1.2. Thus, we consider a function bn(m) which is the number

of partitions of m into exactly n parts satisfying the inequalities in Theorem 1.2.

Thus, the generating function Bn(q) for bn(m) is given by

Bn(q) =
∑

m≥0

bn(m)qm =
∑

d1≥d2≥···≥dn≥1
d1≤d2+···+dn

d1+d2+···+dn≥2(n−1)

qd1+d2+···+dn , n ≥ 2.

Now, we will show that

Bn(q) = qn

n∏

i=1

1

1 − qi
−
q2n−1

1 − q

n−1∏

i=1

1

1 − q2i
−

2n−3∑

i=n

p(i− n)qi. (7)

To prove (7), we first apply inclusion/exclusion to obtain

Bn(q) =
∑

d1≥···≥dn≥1
d1≤d2+···+dn

qd1+···+dn −
∑

d1≥···≥dn≥1
d1≤d2+···+dn

d1+···+dn≤2n−3

qd1+···+dn

=
∑

d1≥···≥dn≥1
d1≤d2+···+dn

qd1+···+dn −
∑

d1≥···≥dn≥1
d1+···+dn≤2n−3

qd1+···+dn +
∑

d1≥···≥dn≥1
d1≥d2+···+dn+1
d1+···+dn≤2n−3

qd1+···+dn .

Now, if d1 ≥ · · · ≥ dn ≥ 1 and d1 ≥ d2 + · · ·+dn +1, then d1 +d2 + · · ·+dn ≥ 2(d2 + · · ·+dn)+1 ≥

2(n− 1) + 1. This means that the last sum above is empty and we have

Bn(q) =
∑

d1≥···≥dn≥1
d1≤d2+···+dn

qd1+···+dn −
∑

d1≥···≥dn≥1
d1+···+dn≤2n−3

qd1+···+dn . (8)

For the first sum on the right–hand side of (8), we have

∑

d1≥···≥dn≥1
d1≤d2+···+dn

qd1+···+dn =
∑

d2≥···≥dn≥1

d2+···+dn∑

d1=d2

qd1+···+dn

=
∑

d2≥···≥dn≥1

q2d2+d3+···+dn
1 − qd3+···+dn+1

1 − q

=
1

1 − q
G1,n−1(q

2, q, . . . , q) −
q

1 − q
G1,n−1(q

2, q2, . . . , q2) from (2)

= qn

n∏

i=1

1

1 − qi
−
q2n−1

1 − q

n−1∏

i=1

1

1 − q2i
from (3).
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We now consider the second sum on the right–hand side of (8). First, let pk(m) denote the

number of partitions of m into at most k parts. (We know that pk(m) is also equal to the number

of partitions of m into parts no greater than k.) Then we have the generating function

∞∑

m=0

pk(m)qm =

k∏

i=1

1

1 − qi
.

By (2) and (3), we know

∑

d1≥···≥dn≥1

qd1+···+dn = G1,n(q, . . . , q) = qn

n∏

i=1

1

1 − qi
.

Hence,
∑

d1≥···≥dn≥1

qd1+···+dn =
∞∑

i=n

pn(i− n)qi,

so that the second sum on the right–hand side of (8) is given by

∑

d1≥···≥dn≥1
d1+···+dn≤2n−3

qd1+···+dn =
2n−3∑

i=n

pn(i− n)qi.

It is well–known and easily seen that pk(m) = p(m) if m ≤ k. Thus we have

∑

d1≥···≥dn≥1
d1+···+dn≤2n−3

qd1+···+dn =
2n−3∑

i=n

p(i− n)qi.

This completes the proof of equation (7).

Finally, we consider the generating function B(q) for b(m), the number of integer partitions of

m into any number n ≥ 2 parts which satisfy the inequalities in Theorem 1.2.

We have

B(q) =

∞∑

n=2

Bn(q) =

∞∑

n=0

qn

n∏

i=1

1

1 − qi
− 1 −

q

1 − q

∞∑

n=0

q2n

n∏

i=1

1

1 − q2i
−

∞∑

n=2

2n−3∑

i=0

p(i− n)qi,

using the convention p(m) = 0 if m < 0. Applying (5), we further get,

B(q) =

∞∏

n=1

1

1 − qn
−

q

1 − q

∞∏

n=1

1

1 − q2n
−

∞∑

n=2

2n−3∑

i=0

p(i− n)qi − 1,

or

B(q) =

∞∑

m=0

p(m)qm −
q

1 − q

∞∑

m=0

p(m)q2m −
∞∑

n=2

2n−3∑

i=0

p(i− n)qi − 1.

Since
q

1 − q
=

q

1 − q2
+

q2

1 − q2
,

it is easy to pick out from B(q) all terms with even exponents on q, so that

∞∑

m=1

b(2m)q2m =

∞∑

m=0

p(2m)q2m −
q2

1 − q2

∞∑

m=0

p(m)q2m −
∞∑

n=2

n−2∑

j=0

p(2j − n)q2j − 1;
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that is,
∞∑

m=1

b(2m)qm =

∞∑

m=1

p(2m)qm −
q

1 − q

∞∑

m=0

p(m)qm −
∞∑

n=2

n−2∑

j=0

p(2j − n)qj ,

or
∞∑

m=1

b(2m)qm =

∞∑

m=1

p(2m)qm −
∞∑

m=1

m−1∑

j=0

p(j)qm −
∞∑

m=0

∞∑

n=m+2

p(2m− n)qm,

where, in fact,
∞∑

n=m+2

p(2m− n) =

m−2∑

j=0

p(j).

Equating coefficients of qm, we have for m ≥ 1,

b(2m) = dc(2m) = p(2m) −
m−1∑

j=0

p(j) −
m−2∑

j=0

p(j),

and the proof of Theorem 1.4 is complete.

4 Bijective Proofs

In this section we give bijective proofs of Theorems 1.3 and 1.4. Let us take the first one first.

Let P(N) be the set of all partitions (d1, . . . , dn) of the integer N ,

N = d1 + · · · + dn, d1 ≥ · · · ≥ dn ≥ 1.

Then |P(N)| = p(N).

We want to determine the number of partitions in the subset P∗(2m) of P(2m), satifying the

hypotheses of Theorem 1.1. We do this by removing the nonadmissible partitions from P(2m).

First we remove the unique partition of 2m with n = 1. We are then left with the set

P1 = {(d1, . . . , dn) ∈ P(2m) | n ≥ 2}.

Next, we remove the subset

Q1 = {(d1, . . . , dn) ∈ P1 | dn = 1}.

Clearly, we have a bijection

Q1 −→ P(2m− 1),

given by (d1, . . . , dn−1, 1) 7−→ (d1, . . . , dn−1). Thus the set P2 = P1\Q1 contains p(2m)−1−p(2m−1)

partitions of 2m.

Finally, to arrive at P∗(2m), we remove the set

Q2 = {(d1, . . . , dn) ∈ P2 | d1 > d2 + · · · + dn − 2n+ 4}.

If (d1, . . . , dn) ∈ Q2, then

d1 + d2 + · · · + dn > 2(d2 + · · · + dn) − 2n+ 4,

or, equivalently,

m− 2 ≥ (d2 − 1) + · · · + (dn − 1).
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Hence we may define a map

ϕ : Q2 −→ P(1) ∪ . . . ∪ P(m− 2),

by putting ϕ(d1, d2, . . . , dn) = (d2 − 1, . . . , dn − 1). We now show that ϕ is a bijection.

Since d1 is uniquely determined by d2, . . . , dn (and the fixed m), the map ϕ is injective. On the

other hand, suppose that (x2, . . . , xn) ∈ P(1) ∪ . . . ∪ P(m− 2). Set

x1 + 1 = 2m− ((x2 + 1) + · · · + (xn + 1)).

Since m− 1 > x2 + · · · + xn, we then have

x1 + 1 > (x2 + 1) + · · · + (xn + 1) − 2n+ 4.

Moreover,

x1 − x2 > (x3 + 1) + · · · + (xn + 1) − 2n+ 4 ≥ 0,

so that x1 + 1 ≥ x2 + 1 ≥ · · · ≥ xn + 1 ≥ 2. Thus (x1 + 1, x2 + 1, . . . , xn + 1) ∈ Q2, and ϕ is a

bijection.

Since P(1), . . . ,P(m− 2) are pairwise disjoint, and |P(j)| = p(j), we have

|P(1) ∪ . . . ∪ P(m− 2)| =

m−2∑

j=1

p(j),

and

|P∗(2m)| = |P2| − |Q2| = p(2m) − p(2m− 1) −
m−2∑

j=0

p(j),

where we used that p(0) = 1. This completes the bijective proof of Theorem 1.3.

Next, we turn to the proof of Theorem 1.4. Again we will start with the set P(2m) and succes-

sively remove nonadmissible partitions, to arrive at the set P∗∗(2m) consisting of all partitions of

2m satisfying the hypotheses of Theorem 1.2.

Also now we remove the unique partition with n = 1 to get the set P1. Next, we set

Q3 = {(d1, . . . , dn) ∈ P1 | d1 > d2 + · · · + dn}.

If (d1, . . . , dn) ∈ Q3, we have 2d1 > d1 + · · · + dn = 2m; hence d1 ≥ m + 1. Thus we have

2m = d1 + · · · + dn ≥ m+ 1 + d2 + · · · + dn, so that

d2 + · · · + dn ≤ m− 1.

We may therefore define a map

ψ : Q3 −→ P(1) ∪ . . . ∪ P(m− 1),

by putting ψ(d1, . . . , dn) = (d2, . . . , dn). Since d1 = 2m− (d2 + · · ·+ dn), the map ψ is injective. We

go on to show that ψ also is surjective.

Let (x2, . . . , xn) ∈ P(1)∪ . . .∪P(m− 1), and put x1 = 2m− (x2 + · · ·+xn). If we can show that

(x1, . . . , xn) ∈ Q3, then ψ is surjective. We have x1 = 2m− (x2 + · · ·+xn) ≥ 2m− (m− 1) = m+1.

Clearly, x2 ≤ m − 1, so that we have the monotonicity x1 ≥ x2 ≥ · · · ≥ xn ≥ 1. Moreover, since
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x2 + · · · + xn < m, we have x1 = 2m− (x2 + · · · + xn) > m > x2 + · · · + xn. Thus ψ is surjective;

hence a bijection. Therefore, we have

|Q3| = |P(1) ∪ . . . ∪ P(m− 1)| =

m−1∑

j=1

p(j).

Next, set

Q4 = {(d1, . . . , dn) ∈ P1 | d1 + · · · + dn < 2(n− 1)}.

Then P∗∗(2m) = P1\(Q3∪Q4). If (d1, . . . , dn) ∈ Q3, then d1+ · · ·+dn > 2(d2+ · · ·+dn) ≥ 2(n−1).

Hence Q3 ∩ Q4 = ∅, and |P∗∗(2m)| = |P1| − |Q3| − |Q4|.

Let (d1, . . . , dn) ∈ Q4. Then 2m = d1 + · · · + dn < 2(n− 1), so that n ≥ m + 2. Suppose that

d1 ≥ · · · ≥ dr ≥ 2 and dr+1 = · · · = dn = 1. Then we define a map

ϑ : Q4 −→ P(0) ∪ . . . ∪ P(m− 2),

by putting ϑ(d1, . . . , dn) = (d1−1, d2−1, . . . , dr−1). In particular, ϑ(1, 1, . . . , 1) = 0 and P(0) = {∅}.

Clearly, the map ϑ is injective. On the other hand, let (x1, . . . , xr) be a partition of a nonnegative

integer at most equal to m−2. Determine n such that (x1 + · · ·+xr)+n = 2m. Since x1 + · · ·+xr ≤

m− 2, we have n ≥ m+ 2. Thus (x1 + 1, . . . , xr + 1, 1, . . . , 1) ∈ Q4, the map ϑ is surjective, and the

proof of Theorem 1.4 is easily completed.

5 Closing Thoughts

It is clear that those degree sequences enumerated by dns(2m) are also among those enumerated

by dc(2m) (by definition). Hence, the difference of these two functions may be of interest. For

completeness’ sake, we define dcs(2m) to be the number of degree sequences of sum 2m which have

connected graph realizations but no non-separable graph realizations. Then Theorems 1.3 and 1.4

imply that, for all m ≥ 2,

dcs(2m) = p(2m− 1) − p(m− 1) −
m−2∑

j=0

p(j).

It is important to note that partitions whose parts satisfy certain inequalities (as we see in

Hakimi’s characterizations above in Theorems 1.1 and 1.2) have been studied in many other contexts.

For example, see the work of Andrews, Paule, and Riese [2] for a very similar result to Theorem 1.3;

there, MacMahon’s partition analysis is used heavily. Andrews, Paule, and Riese have completed

other projects of a similar nature using partition analysis; the interested reader may wish to see

[3, 4] and the bibliographic reference lists therein for additional examples. (Although we could

have also used partition analysis in this paper, we chose a much more elementary approach in the

proof above, one which accomplishes the work of partition analysis but does not require as much

mathematical machinery.) For additional examples of work done on partitions whose parts satisfy

specific inequalities, see the works of Uppuluri and Carpenter [10], Sellers [9], Corteel and Savage

[5], and Corteel, Savage, and Wilf [6].
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