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Abstract. We study finite set-theoretic solutions (X, r) of the Yang-Baxter

equation of square-free multipermutation type. We show that each such solu-

tion over C with multipermutation level two can be put in diagonal form with
the associated Yang-Baxter algebra A(C, X, r) having a q-commutation form

of relations determined by complex phase factors. These complex factors are

roots of unity and all roots of a prescribed form appear as determined by the
representation theory of the finite abelian group G of left actions on X. We

study the structure of A(C, X, r) and show that they have a •-product form

‘quantizing’ the commutative algebra of polynomials in |X| variables. We ob-
tain the •-product both as a Drinfeld cotwist for a certain canonical 2-cocycle

and as a braided-opposite product for a certain crossed G-module (over any

field k). We provide first steps in the noncommutative differential geometry
of A(k, X, r) arising from these results. As a byproduct of our work we find

that every such level 2 solution (X, r) factorises as r = f ◦ τ ◦ f−1 where τ is
the flip map and (X, f) is another solution coming from X as a crossed G-set.

1. Introduction

Let V be a vector space of a field k. It is well-known that the ‘Yang-Baxter equation’
(YBE) on an invertible linear map R : V ⊗ V → V ⊗ V ,

R12R23R12 = R23R12R23

(where Ri,j denotes R acting in the i, j place in V ⊗ V ⊗ V ) provide a linear
representation of the braid group on tensor powers of V . When R2 = id one says
that the solution is involutive, and in this case one has a representation of the
symmetric group on tensor powers. We say that R is of cotwist form if R = FF−1

21

for some invertible linear map F : V ⊗ V → V ⊗ V . Such a form of R always
obeys the YBE and is always involutive. Associated to each solution of the YBE
are several algebraic constructions, among them the ‘quantum space’ kR[V ] which
is nothing but the tensor algebra on V modulo the ideal generated by the image of
id−R. If {xi} are a basis of V then kR[V ] is the free associative algebra generates
by the xi modulo the ideal generated by xixj − ·R(xi ⊗ xj) where · on the right
denotes product in the free associative algebra.
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Next, a particularly nice class of solutions is provided by set-theoretic solutions
where X is a set, r : X ×X → X ×X obeys similar relations on X ×X ×X. Of
course, each such solution extends linearly to V = kX with matrices in this natural
basis having only entries from 0,1 and many other nice properties. In this case there
is a semigroup S(X, r) generated by X with relations xy = ·r(x, y) (where · denotes
product in the free semigroup) and the semigroup algebra kS(X, r) = kR[V ]. There
is a canonical action of S(X, r) on X by permutations and hence of kR[V ] on V . The
algebra kR[V ] when defined in the basis X is the ‘Yang-Baxter algebra’ A(k,X, r)
associated to (X, r), but kR[V ] is defined independently of any basis of V and may
be computed in some other more convenient one.

In this paper we look at the special properties of linear solutions obtained in this
way when r is a finite square-free multipermutation solution of level 2. Precise
details of what this means will be recalled in the preliminaries but, briefly, such
solutions are involutive and have the property that the permutation group G(X, r),
defined as the image in Sym(X) of S(X, r) acting by permutations on X, is abelian.
We show over the field k = C that then (i) the linear extension has a cotwist form
and (ii) there exists a basis Y of V in which R has a diagonal form in the sense
that R is the vector space flip map but with further coefficients in this basis. This
is achieved (Theorem4.9) in Section 4 using Fourier theory on the finite groups Gi

which are the restrictions of G to its orbits in X. The necessary methods in the
context of finite abelian groups are first developed in Section 3 before applying to
each Gi.

The basis Y = {yi
η} which we obtain here for the span of each orbit Xi is labelled

by characters on Gi. Writing the diagonal coefficients of R in this basis as qi,η,j,ζ ,
say, the quantum algebra A(C, X, r) takes a ‘q-commutation’ relations form

yi
ηyj

ζ = qi,η,j,ζy
j
ζy

i
η; qi,η,j,ζ =

χζ(σi
j)

χη(σj
i )

where σj
i ∈ Sym(Xi) is a certain fixed permutation for each ordered pair i, j and

χη, χζ denote characters on Gi,Gj . Relations with q-factors are typical in the sim-
plest models of noncommutative geometry (for example the ‘quantum plane’ [M])
but now the factors are particular roots of unity with values determined by the
group characters.

Such factors are also typical in quantum mechanics (the ‘Weyl form’ of the Heisen-
berg commutation relations) and in Section 6 we provide a general picture of
A(k,X, r) as ‘quantisation’ in the sense of a deformed •-product on the vector
space of the commutative algebra k[V ] (the symmetric algebra on V which we
view as polynomials in any fixed basis of V as |X| variables). We obtain this •
product in analogy with the Moyal product in quantum mechanics, using modern
Drinfeld cotwist methods. The form of R ensures that this is possible but we find
a natural expression of • in Proposition 6.4 as such a cotwist with respect to a
canonical cocycle on H∗ × H where H =

∏
i Gi. This is a finite group version of

the canonical symplectic structure on V ∗ ⊕ V in quantum theory. We then find a
second expression (now over a general field k) of the same •-product in terms of
the braided-opposite algebra to k[V ] in the braided category of crossed G-modules,
Proposition 6.9.



MULTIPERMUTATION SOLUTIONS OF LEVEL TWO 3

An immediate consequence of our work is that A(k, X, r) is not only an algebra but
a Hopf algebra in a certain symmetric monoidal category with braiding induced by
R. Moreover, the infinitesimal translations afforded by this braided coproduct pro-
vide braided differential operators or ‘vector fields’ which define a noncommtuative
differential structure on the algebra. We show, equivalently, that there is a natural
exterior algebra of differential forms (Ω(A(k, X, r)),d) obtained by extending • to
differential forms. In this way we provide the first stage of the noncommutative
differential geometry of A(k,X, r) for the class of (X, r) under study.

In Section 7 we end with a short epilogue to our work. Namely, the ‘cotwist’ form of
R turns out to have a set-theoretic analogue r = f◦τ◦f−1 where f : X×X → X×X
is itself a set-theoretic solution (X, f) and τ(x, y) = (y, x). It is the (non-involutive)
braiding associated to X as a crossed G-set. We provide (Proposition 7.1) necessary
and sufficient conditions for this which include (and do not allow much more than)
(X, r) square-free involutive of multipermutation level 2.

2. Preliminaries on set-theoretic solutions

There are many works on set-theoretic solutions and related structures, of which
a relevant selection for the interested reader is [ESS, GB, GI, GI04, GIM1, GIM2,
GJO, JO, LYZ, R, T, V]. In this section we recall basic notions and results which
will be used in the paper. We shall use the terminology, notation and some results
from our previous works, [GI, GIM1, GIM2].

Definition 2.1. Let X be a nonempty set (not necessarily finite) and let r :
X ×X −→ X ×X be a bijective map. We refer to it as a quadratic set, and denote
it by (X, r). The image of (x, y) under r is presented as

(2.1) r(x, y) = (xy, xy).

The formula (2.1) defines a “left action” L : X × X −→ X, and a “right action”
R : X ×X −→ X, on X as:

(2.2) Lx(y) = xy, Ry(x) = xy,

for all x, y ∈ X. The map r is nondegenerate, if the mapsRx and Lx are bijective for
each x ∈ X. In this paper we shall consider only the case where r is nondegenerate.
As a notational tool, we shall sometimes identify the sets X ×X and X2, the set
of all monomials of length two in the free semigroup 〈X〉.
Definition 2.2. (1) r is square-free if r(x, x) = (x, x) for all x ∈ X.

(2) r is a set-theoretic solution of the Yang-Baxter equation or, shortly a solu-
tion (YBE) if the braid relation

r12r23r12 = r23r12r23

holds in X × X × X, where the two bijective maps rii+1 : X3 −→ X3,
1 ≤ i ≤ 2 are defined as r12 = r × idX , and r23 = idX × r. In this case we
shall refer to (X, r) also as a a braided set.

(3) A braided set (X, r) with r involutive is called a symmetric set.

To each quadratic set (X, r) we associate canonical algebraic objects generated by
X and with quadratic defining relations < = <(r) defined by

(2.3) xy = zt ∈ <(r), whenever r(x, y) = (z, t).



4 TATIANA GATEVA-IVANOVA AND SHAHN MAJID

Definition 2.3. Let (X, r) be a quadratic set.

(i) The semigroup S = S(X, r) = 〈X;<(r)〉, with a set of generators X and a set
of defining relations <(r), is called the semigroup associated with (X, r).

(ii) The group G = G(X, r) associated with (X, r) is defined as G = G(X, r) =
gr〈X;<(r)〉

(iii) For arbitrary fixed field k, the k-algebra associated with (X, r) is defined as
A = A(k,X, r) = k〈X;<(r)〉. (A(k, X, r) is isomorphic to the monoidal algebra
kS(X, r)).

(iv) To each nondegenerate braided set (X, r) we also associate a permutation
group, called the group of left action and denoted G = G(X, r), see Definition 2.6.

If (X, r) is a solution, then S(X, r), resp. G(X, r), resp. A(k,X, r) is called the
Yang-Baxter semigroup, resp. the Yang-Baxter group, resp. the Yang-Baxter alge-
bra associated to (X, r).

Example 2.4. For arbitrary nonempty set X with |X| ≥ 2, the trivial solution
(X, r) is defined as r(x, y) = (y, x), for all x, y ∈ X. It is clear that (X, r) is
the trivial solution iff xy = y, and xy = x, for all x, y ∈ X, or equivalently
Lx = idX = Rx for all x ∈ X. In this case S(X, r) is the free abelian monoid,
G(X, r) is the free abelian group, A(k,X, r) the algebra of commutative polynomials
in X, and G(X, r) = {idX}.

Remark 2.5. Suppose (X, r) is a nondegenerate quadratic set. It is well known,
see for example [GIM1], that (X, r) is a braided set (i.e. r obeys the YBE) iff the
following conditions hold

l1 : x(yz) =
xy(xy

z), r1 : (xy)z = (x
yz)yz

,

lr3 : (xy)(
xy

(z)) = (x
yz)(yz),

for all x, y, z ∈ X.

Clearly, conditions l1, imply that for each nondegenerate braided set (X, r) the
assignment: x −→ Lx, x ∈ X extends canonically to a group homomorphism

(2.4) L : G(X, r) −→ Sym(X),

which defines the canonical left action of G(X, r) on the set X. Analogously r1
implies a canonical right action of G(X, r) on X.

Definition 2.6. [GIM1] Let (X, r) be a nondegenerate braided set, L : G(X, r) −→
Sym(X) be the canonical group homomorphism defined via the left action. The
image L(G(X, r)) is denoted by G(X, r). We call it the (permutation) group of left
actions.

The permutation group G(X, r) will be of particular importance in the present
paper.

Remark 2.7. Suppose X is a finite set, then G = L(S(X, r)). Indeed, G is gener-
ated as a semigroup by the images Lx of all x ∈ X and their inverses. Each Lx is
a permutation of finite order, say mx. Then its inverse (in G) is simply (Lx)mx−1.
So G is generated as a semigroup by the set {Lx,L(xmx−1) | x ∈ X} ⊆ L(S(X, r)).
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The following conditions were introduced and studied in [GI, GIM1, GIM2]:

Definition 2.8. Let (X, r) be a quadratic set.

(1) [GI, GIM1] (X, r) is called cyclic if the following conditions are satisfied

cl1 : yx

x = yx for all x, y ∈ X; cr1 : x
xy = xy, for all x, y ∈ X;

cl2 :
xyx = yx, for all x, y ∈ X; cr2 : xyx

= xy for all x, y ∈ X.

We refer to these conditions as cyclic conditions.
(2) Condition lri is defined as

lri: (xy)x = y = x(yx) for all x, y ∈ X.

In other words lri holds if and only if (X, r) is nondegenerate andRx = L−1
x

and Lx = R−1
x

In this paper the class of nondegenerate square-free symmetric sets of finite order
will be of special interest. The following result is extracted from [GIM1], Theorem
2.34, where more equivalent conditions are pointed out. Note that in our consider-
ations below (unless we indicate the contrary) the set X is not necessarily of finite
order.

Fact 2.9. [GIM1]. Suppose (X, r) is nondegenerate, involutive and square-free
quadratic set (not necessarily finite). Then the following conditions are equivalent:
(i) (X, r) is a set-theoretic solution of the Yang-Baxter equation; (ii) (X, r) satisfies
l1; (iii) (X, r) satisfies r1; (iv) (X, r) satisfies lr3.

In this case (X, r) is cyclic and satisfies lri.

Corollary 2.10. Every nondegenerate square-free symmetric set (X, r) is uniquely
determined by the left action L : X ×X −→ X, more precisely,

r(x, y) = (Lx(y),L−1
y (x)).

Furthermore it is cyclic.

Let (X, r) be a braided set. Clearly, if Y is an r-invariant subset of (X, r), r induces
a solution (Y, rY ), where rY = r|Y×Y . We call (Y, rY ) the restricted solution (on
Y ). Suppose (X, r) is square-free symmetric set. Then each G-orbit under the left
action of G on X is also a right G-orbit and therefore it is an r-invariant subset.

2.1. Nondegenerate square-free symmetric sets of finite order. In the case
when (X, r) is a square-free symmetric sets of finite order the algebras A(X, r) pro-
vided new classes of Noetherian rings [GI94, GI96-1], Gorentstein (Artin-Schelter
regular) rings [GI96-2, GI00, GI04] and so forth. Artin-Schelter regular rings were
introduced in [AS] and are of particular interest. The algebras A(X, r) are similar
in spirit to the quadratic algebras associated to linear solutions particularly studied
in [M], but have their own remarkable properties. The semigroups S(X, r) for a gen-
eral braided set (X, r) were studied particularly in [GIM1] with a systematic theory
of ‘exponentiation’ from the set to the semigroup by means of the ‘actions’ Lx,Rx

(which in the process become a matched pair of semigroup actions) somewhat in
analogy with the Lie theoretic exponentiation in [M90].

We shall recall some basic facts and recent results needed in this paper. Suppose
(X, r) is a nondegenerate square-free symmetric set of finite order, G = G(X, r),G =
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G(X, r) in notation as above. Note that the group G acts nontransitively on X.
This follows from the decomposition theorem of Rump, [R].

Let X1, · · · , Xt be the set of orbits of the left action of G on X. These are r-
invariant subsets of X, and each (Xi, ri), 1 ≤ i ≤ t, where ri is the restriction
ri = r|Xi×Xi

, is also square-free symmetric sets.

For each i, 1 ≤ i ≤ t, we denote by Gi the subgroups of Sym(Xi) generated by the
set of all restrictions Lx|Xi

:

Gi = gr〈Lx|Xi
| x ∈ X〉

Note that Gi acts transitively on Xi for 1 ≤ i ≤ t. In general Gi is not a subgroup
of G. Rather, there are canonical group surjections G → Gi of restriction to Xi and
a canonical inclusion G ⊆

∏
1≤i≤t Gi.

The notions of retraction of symmetric sets and multipermutation solutions were
introduced in the general case in [ESS], where (X, r) is not necessarily finite, or
square-free. In [GI], [GIM1], [GIM2] are studied especially the multipermutation
square-free solutions of finite order, we recall some notions and results. Let (X, r)
be a nondegenerate symmetric set. An equivalence relation ∼ is defined on X as

x ∼ y iff Lx = Ly.

In this case we also have Rx = Ry,

We denote by [x] the equivalence class of x ∈ X, [X] = X/∼ is the set of equivalence
classes.

Lemma 2.11. [GIM1] Let (X, r) be a nondegenerate symmetric set.

(1) The left and the right actions of X onto itself induce naturally left and right
actions on the retraction [X], via

[α][x] := [αx] [α][x] := [αx], for all α, x ∈ X.

(2) The new actions (as usual) define a canonical map r[X] : [X] × [X] −→
[X]× [X] where r[X]([x], [y]) = ([x][y], [x][y]).

(3) ([X], r[X]) is a nondegenerate symmetric set. Furthermore,
(4) (X, r) cyclic =⇒ ([X], r[X]) cyclic.
(5) (X, r) is lri =⇒ ([X], r[X]) is lri.
(6) (X, r) square-free =⇒ ([X], r[X]) square-free.

Definition 2.12. [ESS] The solution Ret(X, r) = ([X], [r]) is called the retraction
of (X, r). For all integers m ≥ 1, Retm(X, r) is defined recursively as Retm(X, r) =
Ret(Retm−1(X, r)).

(X, r) is a multipermutation solution of level m, if m is the minimal number (if
any), such that Retm(X, r) is the trivial solution on a set of one element. In this
case we write mpl(X, r) = m. By definition (X, r) is a multipermutation solution
of level 0 iff X is a one element set.

The following conjecture was made by the first author in 2004.
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Conjecture 2.13. [GI]

(1) Every nondegenerate square-free symmetric set (X, r) of finite order is re-
tractable.

(2) Every nondegenerate square-free symmetric set (X, r) of finite order n is a
multipermutation solution, with mpl(X, r) < n.

A more recent conjecture states

Conjecture 2.14. [GI08] Suppose (X, r) is a nondegenerate square-free multiper-
mutation solution of finite order n. Then mpl(X) < log2 n.

Evidence for this conjecture and more recent results on multipermutation square-
free symmetric sets in the general case can be found in [CGI].

The following results are of significant importance for our paper and can be deduced
from the results in [GIM2]. We give a sketch of the proofs

Proposition 2.15. Let (X, r) be a nondegenerate square-free symmetric set of
finite order, Xi, 1 ≤ i ≤ t the set of all G(X, r)-orbits in X enumerated so that
X1, · · · , Xt0 is the set of all nontrivial orbits (if any). Then the following are
equivalent.

(1) (X, r) is a multipermutation solution of level 2
(2) t0 ≥ 1 and for each j, 1 ≤ j ≤ t0, x, y ∈ Xj implies Lx = Ly.
(3) t0 ≥ 1 and for each x ∈ X the permutation Lx is an r-automorphism, i.e.

G(X, r) ⊆ Aut(X, r).

Proof. If there are no nontrivial orbits then mpl(X, r) = 1 since all elements act the
same way, i.e. ([X], r[X]) is the 1-element solution. Assuming t0 ≥ 1, mpl(X, r) = 2
means mpl([X], r[X]) = 1, which means [xy] = [y] for all x, y ∈ X, i.e.

(2.5) Ly = Lxy, ∀x, y ∈ X.

Note that for every pair x, y ∈ X, x, y belong to the same orbit Xi iff y = Lu(x),
for some u ∈ S(X, r). This gives (2.5) ⇐⇒ (2). Meanwhile, [GIM2, Lemma 2.7]
provides (2.5) ⇐⇒ (3). �

Theorem 2.16. Let (X, r) be a nondegenerate square-free symmetric set of mul-
tipermutation level 2 and finite order, and Xi orbits as in Proposition 2.15. Let
(Xi, ri), 1 ≤ i ≤ t be the restricted solution. Then:

(1) G(X, r) is a nontrivial abelian group.
(2) Each (Xi, ri), 1 ≤ i ≤ t0 is a trivial solution. Clearly in the case t0 < t,

each (Xj , rj), with t0 ≤ j ≤ t is a one element solution.
(3) For any ordered pair i, j, 1 ≤ i ≤ t0, 1 ≤ j ≤ t, such that Xj acts nontrivially

on Xi, every x ∈ Xj acts via the same permutation σj
i ∈ Sym(Xi) which is

a product of disjoint cycles of equal length d = dj
i

σj
i = (x1 · · ·xd)(y1 · · · yd) · · · (z1 · · · zd),

where each element of Xi occurs exactly once. Here dj
i is an invariant of

the pair Xj , Xi.
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(4) X is a strong twisted union X = X1\X2\ · · · \Xt, (see the definition in
[GIM1]).

Proof. The proof of part (1) is given immediately following [GIM2, Lemma 5.25].
Briefly, write (2.5) as Ly = Lyx for all x, y using lri (see Fact 2.9), and then use
l1. By Proposition 2.15(2) and (X, r) square-free one has yx = xx = x, for all
x, y ∈ Xi which implies part (2) here. The implication mpl(X, r) = 2 =⇒ (3) can
be read off from [GIM2, Thms. 5.22, 5.24]. The reader can deduce it also from
Proposition 2.15(2) and the fact that G is an abelian group of permutations acting
transitively on each orbit Xi. mpl(X, r) = 2 ⇐⇒ (4) follows from [GIM2, Thm.
5.24]. �

We note that the converse to part (1) stated in [GIM2, Thm. 5.24] is incorrect
(there was a gap in the proof in this direction). Indeed, G a nontrivial abelian
group does not require multipermutation level 2, see [CGI] for an example.

3. Representations of finite abelian groups and diagonalization over
C

In this section we shall recall some facts from representation theory of finite abelian
groups. C× will denote the multiplicative group of nonzero complex numbers. Cp

will denote a cyclic group of finite order p, where p is a positive integer. We shall
write also Cp = 〈u〉 to denote that Cp is generated by u. A will denote an abelian
group of finite order N . We recall some facts, from the representation theory of
finite abelian groups, which can be extracted from the literature, see for example
[C08] and [C].

Theorem 3.1. Let A be a finite abelian group. Then

(3.1) A = Cp1 × Cp2 × · · · × Cps
,

where p1 · · · , ps are positive integers, pi | pi+1, for 1 ≤ i ≤ s− 1.

It is not difficult to verify that the integer s in the presentation (3.1) is minimal
with the property that A can be presented as a direct product of s cyclic groups.
In addition the condition that pi divides pi+1, for 1 ≤ i ≤ s − 1 guarantees that
the presentation (3.1) is unique, so Theorem 3.1 is a stronger version of the Basis
theorem for abelian groups, (where originally the condition pi | pi+1, is not imposed)
see [D].

We choose a set of generators

(3.2) B = {u1, · · · , us}

where Cpi
= 〈ui〉, 1 ≤ i ≤ s. Every element a ∈ A can be presented as

(3.3) a = um1
1 um2

2 · · ·ums
s , with 0 ≤ mi ≤ pi − 1, ∀i, 1 ≤ i ≤ s.

where the multi-index s-tuple m = (m1,m2, . . . ,ms) is uniquely determined by a
and we refer to it as the coordinates of a with respect to B. Here B is called a basis
for the abelian group A. If we consider A as a Z-module, with operation +, then B
behaves as a free-module basis.
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Denote by Λ = Λ(A) the multi-indexing set

(3.4) Λ = {m = (m1,m2, · · · ,ms) | 0 ≤ mi ≤ pi − 1, 1 ≤ i ≤ s}

Clearly, | Λ |=| A |= N . Note that, in general, the choice of B is not unique, but Λ
is uniquelly determined by the presentation (3.1).

In the setting of finite abelian grous the notion of a character is simple and pleasant
to work with. As a reference one can use for example [C]. We recall some basic
definitions and results.

Definition 3.2. In the context of abelian groups and for our purposes, a character
χ on an abelian group A can be defined simply as a group homomorphism χ : A →
C×, i.e. as a 1-dimensional representation.

Note that these are irreducible characters from the point of view of the general
theory (and that in general a character on an arbitrary group is defined as the
trace of a representation). We will not need the general theory here.

Since A is a finite group of order N , then every a ∈ A, satisfies aN = 1, so
χ(aN ) = χ(a)N = 1, therefore χ(a) is a root of unity of order dividing N .

The set A∗ of (irreducible) characters is a group called the dual of A. Suppose p
is a positive integer, Cp = 〈g〉. Let θ be a primitive p-th root of unity. Then the
dual C∗

p is itself a cyclic group of order p generated by the character χ(p), with
χ(p)(g) = θ, so C∗

p
∼= Cp. In this case every character χ is a group homomorphism

Cp → 〈θ〉.

More generally, if A is a finite abelian group, presented as (3.1), then

(3.5) A∗ = C∗
p1
× C∗

p2
× · · · × C∗

ps
∼= Cp1 × Cp2 × · · · × Cps = A.

Note that the isomorphism A∗ ∼= A is not canonical, since it depends on the decom-
position of A as a direct product and on the choice of primitive pk-th roots of unity
θk for each 1 ≤ k ≤ s. Once this choice is made, we can use our same indexing set
Λ to label elements of A∗:

(3.6) χ(uk) = θηk

k

where η = (η1, · · · , ηs) ∈ Λ denotes the s-tuple of coordinates of χ = χη.

Suppose now that A ⊆ Sym(Z) is an abelian group of permutations acting transi-
tively on a finite set Z. Under the assumptions and notations as above, we recall
some elementary properties which will be useful for our results, see [C], [C08].

Fact 3.3. (1) For every x ∈ Z the stabilizer Stab(x) is the identity permuta-
tion e = idZ .

(2) Let x1 ∈ Z, then the map A −→ Z defined as A 3 π 7→ π(x1) is a bijection.
Therefore we can consider Z as the set

Z = {π(x1) | π ∈ A}

In particular,
| Z |=| A |= N =

∏
1≤k≤s

pk
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Fix an arbitrary x1 ∈ Z. We know that its stabilizer is trivial. An arbitrary z ∈ X,
can be presented as z = π(x1), for some π ∈ A, since the group A acts transitively
on X. This permutation π is uniquely determined by z, indeed π(x1) = ρ(x1)
implies ρ−1π(x1) = x1, and therefore ρ−1π ∈ Stab(x1) = {e}. Hence ρ = π. Hence
there is a 1-1 correspondence between Z and A provided by z = π(x1). Hence the
coordinates m = mπ = (m1, · · · ,ms) of π ∈ A in our basis can also be viewed as
coordinates of the corresponding element

Z = {xm | m ∈ Λ}; xmπ
= π(x1)

In this way the set Λ also indexes elements of Z.

Finally, we often use N ×N permutation matrices, so it will be convenient to order
Λ linearly. This induces an enumeration of A,A∗, Z as we have seen. Let < be the
lexicographic order on Λ. < is a linear ordering on a finite set, so we can enumerate
Λ accordingly,

m(1) = (0, · · · , 0) < m(2) = (1, · · · , 0) < · · · < m(N) = (p1 − 1, · · · , ps − 1).

We can then refer to our enumerated elements by their position. Thus

(3.7) xj = xm(j) = πj(x1), χj(uk) = θ
m

(j)
k

k

where m(j) = (m(j)
1 , · · · ,m

(j)
s ). Clearly, this is equivalent to our previous multi-

index enumeration, and one has x1 < x2 < · · ·xN as the induced ordering on
Z.

Let V be the N dimensional C-vector space spanned by Z. Then the action of each
permutation π ∈ A on Z can be extended to linear automorphism Tπ of V and the
action of A on Z canonically extends to action of the group algebra CA on V . This
induces a matrix representation of A via permutation matrices.

Let P = P (π) be the matrix of the automorphism Tπ. w.r.t. the basis Z =
{x1, x2, · · · , xN}. Then P is a permutation matrix with entries

Pij =

{
1 if πxi = xj

0 else

As usual, θ denotes the complex conjugate of θ ∈ C.

Theorem 3.4. In notation as above, suppose χ is an irreducible character of A.
Then

(3.8) yχ =
∑

1≤i≤N

χ(πi)xi

is a simultaneous eigenvector for all ρ ∈ A. More precisely, there is an equality

(3.9) P (ρ)yχ = χ(ρ)yχ.

Proof. We know that for all π ∈ A, θ = χ(π) ∈ C is a root of unity, thus θθ = 1,
and θ = θ−1. This implies

(3.10) χ(π) = (χ(π))−1 = χ(π−1).

Now we use (3.7), (3.10) to present yχ as

(3.11) yχ =
∑

1≤i≤N

χ(πi)xi =
∑

1≤i≤N

χ(π−1
i )πi(x1)
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For each i, 1 ≤ i ≤ N we set ρπi = σi. Then

(3.12) π−1
i = σ−1

i ρ χ(π−1
i ) = χ(σ−1

i )χ(ρ)

We apply (3.10) and (3.12) to deduce the equalities

(3.13)

P (ρ)yχ = P (ρ).
∑

1≤i≤N χ(π−1
i )πi(x1)

=
∑

1≤i≤N χ(π−1
i )ρπi(x1)

=
∑

1≤i≤N [χ(σ−1
i )χ(ρ)]σi(x1)

= χ(ρ)
∑

1≤i≤N χ(σ−1
i )σi(x1)

= χ(ρ)yχ

The last equality follows from the equalities of sets

{σi, 1 ≤ i ≤ N} = {πi, 1 ≤ i ≤ N}.

�

4. Complete Datum of multipermutation solution of level two and
explicit formulae for the diagonlization

In this section (X, r) denotes a finite nondegenerate square-free symmetric set of
multipermutation level 2. We shall use the notation of Section 2. As usual G =
G(X, r), S = S(X, r) and G = G(X, r), are respectively the associated YB group,
YB monoid, and the permutation group of (X, r). X1, · · · , Xt are the G-orbits or
equivalently the G-orbits in X.

By the Decomposition Theorem [R], t ≥ 2. By Proposition 2.15 there is at least
one nontrivial orbit Xi, and we enumerate the orbits so that X1 · · ·Xt0 is the set
of all nontrivial orbits in X (1 ≤ t0 ≤ t). The restrictions (Xi, ri) 1 ≤ i ≤ t0 are
trivial solutions and all elements x ∈ Xi are equivalent. In the case when t0 < t,
(Xi, ri) are one element solutions for all t0 < i ≤ t.

We recall from Section 2 that for 1 ≤ i ≤ t, Gi is the subgroup of Sym(Xi) generated
by the set {Lx|Xi

| x ∈ X}. As sets we also have

Gi = {Lu|Xi
| u ∈ G(X, r)} = G|Xi

.

The Gi are 1-element groups for t0 < i ≤ t.

Remark 4.1. By Remark 2.7 every element g of G (respectively of Gi) has a
presentation as g = Lu, u ∈ S (respectively as g = Lu|Xi

, u ∈ S).

Under our assumption the group G is abelian. Hence each Gi is an abelian group of
permutations acting transitively on Xi, 1 ≤ i ≤ t0. It is known, see Section 3, that
in this case there is an equality of orders | Gi |=| Xi | .
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We shall use the results of the previous section (adjusted to our concrete notation
for the left actions). In particular, for each i, 1 ≤ i ≤ t0, Gi is a direct product of
cyclic subgroups (see Theorem 3.1)

(4.1) Gi = (Lui1|Xi
)× (Lui2|Xi

)× · · · × (Luisi
|Xi

),

where for 1 ≤ k ≤ si, the orders pik of Luik|Xi
satisfy

(4.2) pik | pik+1, 1 ≤ k ≤ si − 1.

Moreover, for each i, 1 ≤ i ≤ t0, si, is the least integer such that Gi is generated by
si elements, and by the above remark we can without loss of generality choose all
uik ∈ S = S(X, r), 1 ≤ k ≤ si (but not necessarily uij ∈ X.) The integer si and
the finite sequence pi1, · · · , pisi

in (4.1), (4.2) are invariants of the data (Xi, r) and
are uniquelly determined for each i, 1 ≤ i ≤ t0. Note that the set {Lx|Xi

| x ∈ X}
generates the group Gi, but it is not necessarily a minimal set of generators.

Definition 4.2. For 1 ≤ i ≤ t0 we fix a presentation as in (4.1). We call the set
Bi = {ui1, · · · , uisi

} a basis of labels for Gi. We shall assume that uik ∈ S, 1 ≤ k ≤
si (see Remark 4.1).

We know that each g ∈ Gi has a unique presentation in terms of the basis elements:

(4.3) g =
∏

1≤k≤si

(Luik|Xi
)mg,k , where 0 ≤ mg,k ≤ pik − 1.

Definition 4.3. We call the si-tuple mg = (mg,1, · · · ,mg,si) the coordinates of
g ∈ Gi.

Consider the vector spaces V = SpanCX, Vi = SpanCXi, 1 ≤ i ≤ t. Clearly (since
X is a basis of V ), for each u ∈ S the map Lu ∈ Sym(X) extends canonically to
a linear automorphism on V, denoted L̃u. It is a standard fact that these can be
extended to representations of the group algebra CG on V = SpanX, and since each
Vi, 1 ≤ i ≤ s is invariant, this representation canonically induces representations of
CGi on Vi.

We shall apply the results of the previous section to find a basis Yi of Vi , 1 ≤ i ≤ t0
on which Gi acts diagonally. In the cases t0 < j ≤ t we simply set Yj = Xj . Then,
clearly, the set Y =

⋃
1≤i≤t Yi is a basis of V on which the group G acts diagonally.

To each multipermutation solution (X, r) with mpl(X, r) = 2 and in notation as
above, we associated the following datum D below. The results Theorems 4.7, 4.9,
and Corollary 4.8 will give: i) Explicit coordinates of a new basis Yi w.r.t initial
basis Xi of CXi in terms of the datum D. The new basis will have the feature that
the linear solution R associated to r is diagonal. ii) Explicitly presented form of
the diagonal coefficients of R.

Definition 4.4. For 1 ≤ i ≤ t0, we define the complete datum Di of Xi as
(Xi, Bi,Pi,Θi,Mi) where:

(1) Bi = {ui1, · · · , uisi
} is a basis as in Definition 4.2.

(2) Pi = {pi1, · · · , pisi
}, where pik is the order of Luik|Xi

, 1 ≤ k ≤ si. Note
that

Ni = pi1 · · · pisi =| Xi |=| Gi |
by the results of the previous section.
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(3) Θi = {θi1, · · · , θisi
} where θi is a chosen primitive pisi

–th root of unity and

θik = (θi)
pisi
pik , 1 ≤ k ≤ si.

Clearly, each θik is a primitive pik–th root of unity.
(4) Mi = {mj

i | 1 ≤ j ≤ t} where mj
i = (mj

i1, · · · ,mj
isi

) denotes the coordi-
nates in our basis of the element σj

i ∈ Gi for the action of any element of
Xj on Xi (see Theorem 2.16).

(5) D = D(X, r) = (D1, · · · , Dt) is a complete datum of (X, r).

In the particular case, when i > t0, i.e. Xi is a one element set and (for complete-
ness) we define Di = (Xi, {1}, {1}, {1}, {1}).

From the Pi part of the datum for each i, 1 ≤ i ≤ t, we also have an associated
space

Λi = {m = (m1, · · · ,msi) | 0 ≤ mk ≤ pik − 1, 1 ≤ k ≤ si}

for the range of coordinates in our basis Bi. Clearly, | Λi |= Ni. Every element of
Gi can be written with coordinates mg ∈ Λi as in Definition 4.3. As explained in
Section 3 this induces also coordinates on Xi once we fix an element xi1 ∈ Xi, and
it induces coordinates for G∗i given the data Θi. Thus, given η = (η1, · · · , ηsi

) ∈ Λi

the corresponding character is

(4.4) χ(Lui1|Xi
) = θη1

i1 , χ(Lui2|Xi
) = θη2

i2 , · · · , χ(Luisi
|Xi

) = θ
ηsi
isi

Notation 4.5. Let η ∈ Λi, and χη ∈ G∗i the corresponding character as in 4.4. The
simultaneous eigenvector vector yχη

, see Theorem 3.4 and (3.8), will be denoted yi
η.

Finally, in order to have explicit formulae, we enumerate Λi as in Section 3. We
enumerate the corresponding elements of Gi as id = π1 < · · · < πNi

and the
elements of Xi as xi1 < xi2 < · · · < xiNi

. As in the proof of Theorem 3.4 we then
have explicitly

(4.5) yi
η = yχη

=
∑

1≤j≤Ni

χη(π−1
j )xij

for the explicit change from a basis Xi to the new basis Yi = {yi
η | η ∈ Λi}. Here

xij = πj(xi1). We can also write this formula as a sum over π ∈ Gi (without
enumeration).

Lemma 4.6. In notation and enumeration as above, let η = (η1, · · · , ηsi) ∈ Λi.
Denote

λ1 = (θi1)η1 , λ2 = (θi2)η2 , · · · , λsi
= (θisi

)ηsi .
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The simultaneous eigenvector yi
η has the following explicit coordinates with respect

to the basis Xi (given in the form of a vertical ”block-vector”):

(4.6) yi
η =



(λsi
)pisi

−1Bsi−1

...

(λsi
)2Bsi−1

(λsi
)Bsi−1

Bsi−1



,

where the vectors Bk are determined recursively as follows.

B1 =



λpi1−1
1

...

λ2
1

λ1

1


,

and for 2 ≤ k ≤ si, one has

Bk =



(λk)pik−1Bk−1

...

(λk)2Bk−1

λkBk−1

Bk−1
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In particular, for η1 = (0, 0, · · · , 0) one has

yi
η1 =


1
1
...
1
1

 ,

The following theorem is mainly an elaboration of Theorem 3.4 in terms of the fixed
datum and the enumeration of X induced from the action of G.

Theorem 4.7. Let (X, r) be a finite nondegenerate square-free symmetric set and
notations as in Section 2. We assume that (X, r) is a nontrivial solution. Let
V = CX = ⊕iVi where Vi = CXi. Then

(1) The left action of of the finite group G on X, extends canonically to a rep-
resentation of the group algebra CG on V . Each Vi, 1 ≤ i ≤ t, is invariant
under this representation. Moreover, suppose there exists a basis Y of V
on which G acts diagonally. Then G is abelian.

(2) Suppose that (X, r) has mpl(X, r) = 2 and datum D. Then:
(a) The set Yi = {yi

η | η ∈ Λi} is a basis of Vi on which Gi acts diagonally.
The set Y =

⋃
Yi, is a basis of V on which the group G acts diagonally.

(b) The elements of Yi are simultaneous eigenvectors of all g ∈ Gi, with
eigenvalues µg

i,η determined from the coordinates mg,

(4.7) g.yi
η = µg

i,ηyi
η, µg

i,η = χη(g) =
∏

1≤k≤si

(θηk

ik )mg,k .

Proof. Part (1) collects some classical facts. Note that by its definition as a sub-
group of Sym(X), the group G acts faithfully on V . In the basis Y the matrices
for the elements of G, being diagonal, all commute. Since they also form a faithful
representation, the group G must be abelian. Part (2) is an elaboration of Theorem
3.4 in the present context. �

The next corollary follows straightforwardly from Theorem 4.7. Using direct in-
formation from the datum D it gives explicitly the coefficients which occur in the
Main Theorem 4.9.

Recall that each ordered pair Xj , Xi defines uniquely the si-tuple mj
i = (mj

i,1, · · · ,mj
i,si

) ∈
Mi. (These are the coordinates of any element Lx|Xi

when x ∈ Xj).

Corollary 4.8. In the hypothesis of Theorem 4.7. Let i, j be integers 1 ≤ i, j ≤ t.
Then all x ∈ Xj act in the same way as

(4.8) Lxyi
η = µj

i,ηyi
η; µj

i,η = χη(σj
i ) =

∏
1≤k≤si

(θηk

ik )mj
i,k .

where mj
i ∈Mi is from our datum. In particular, µj

i,η = 1, whenever j = i, so

Lxyi
η = yi

η, ∀x ∈ Xi.

We are now ready to prove our main theorem.
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Theorem 4.9. Let (X, r) be a finite nondegenerate square-free symmetric set of
order n, with mpl(X, r) = 2, and datum D. For each i, 1 ≤ i ≤ t, let Yi be the basis
of Vi determined by Theorem 4.7. Then the linear extension R : V ⊗ V −→ V ⊗ V,
of the solution r to kX has the form

R(yi
η ⊗ yj

ζ) =
µi

j,ζ

µj
i,η

yi
η ⊗ yj

ζ .

Proof. Note first that as a linear extension of the map r, the automorphism R
satisfies

(4.9) R(z ⊗ x) = zx⊗ zx.

Note also that since lri holds, action from the right is inverse to action from the
left, and that under our assumptions this left action has the form zx = σj

i (x) if
z ∈ Xj and x ∈ Xi. Hence we merely need to compute

R(yi
η ⊗ yj

ζ) =
∑
π∈Gi
ρ∈Gj

χη(π−1)χζ(ρ−1)R(π(xi1)⊗ ρ(xj1))

=
∑
π∈Gi
ρ∈Gj

χη(π−1)χζ(ρ−1) π(xi1)ρ(xj1)⊗ π(xi1)ρ(xj1)

=
∑
π∈Gi
ρ∈Gj

χη(π−1)χζ(ρ−1)(σi
jρ)(xj1)⊗ ((σj

i )
−1π)(xi1)

=
∑

π′∈Gi
ρ′∈Gj

χη(π′−1(σj
i )
−1)χζ(ρ′−1σi

j)ρ
′(xj1)⊗ π′(xi1)

= χη((σj
i )
−1)χζ(σi

j)
∑

π′∈Gi
ρ′∈Gj

χζ(ρ′−1)ρ′(xj1)⊗ χη(π′−1)π′(xi1)

=
χζ(σi

j)

χη(σj
i )

yj
ζ ⊗ yi

η

where we use the definition (4.5) and linearity of R. We change the summation
over π, ρ to summation over π′ = (σj

i )
−1π and ρ′ = σi

jρ (if one runs over Gi and
Gj respectively then so does the other). We then use that the characters are group
homomorphisms, identifying the result as stated. �

We do not know if only mpl(X, r) = 2 solutions are diagonalisable in this way but
in the next section we give an example in support of that conjecture as well as
‘forward’ examples of Theorem 4.9.

5. Worked out examples

In this section we illustrate the results on Section 4 on some nontrivial examples.
The first example was suggested by Peter Cameron.
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Figure 1. Graph for Example 5.1. Arrows show left actions on
the set X = {x1, · · ·x12} ∪ {a} ∪ {b}.

Example 5.1. Let (X, r) be the square-free symmetric set defined as follows.

X = {x1, x2, · · · , x12, a, b}

La = (x1x3x5x7x9x11)(x2x4x6x8x10x12)

Lb = (x1x4x7x10)(x2x5x8x11)(x3x6x9x12)

Lxi = idX 1 ≤ i ≤ 12.

The graph for this example is shown in Figure 1.

In this case G = gr〈La,Lb〉, and X splits into 3 G-orbits: X1 = {xi | 1 ≤ i ≤ 12},
X2 = {a}, X3 = {b}. Clearly, G1 = G. Note that (La)3 = (Lb)2, so we can not
present G1 as a direct product of the cyclic groups 〈La〉 and 〈La〉. One can use as
a basis for G1 the element u = a2b3. More precisely,

G1 = 〈Lu〉, La = (Lu)2, Lb = (Lu)3,
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Lu = (x1x2x3x4x5x6x7x8x9x10x11x12) is a cycle of length 12. The datum D(X, r)
is:

s1 = 1, B1 = {u}, P1 = {12}

Θ1 = {θ} where θ is a chosen primitive 12–th root of unity

M1 = {m2
1,m

3
1} where m2

1 = (2),m3
1 = (3)

D1 = (Xi, B1,P1,Θ1,M1), D2 = (X2, {1}, {1}, {1}, {1}), D3 = (X3, {1}, {1}, {1}, {1})

D = D(X, r) = (D1, D2, D3)

Λ1 = {k | 0 ≤ k ≤ 11}

Here instead of y1
η, η ∈ Λ1 we shall simply write yk, 1 ≤ k ≤ 11, y2

1 = a, y3
1 = b.

Note that this enumeration agrees with our convention in Section 4. Then yk, in
coordinates with respect to the basis X1 of V1 and written as the transpose of a
row vector is

yk =
[
(θk)11 · · · (θk)2 θk 1

]t
Furthermore, one has

R(a⊗ yk) = θ2k yk ⊗ a, R(b⊗ yk) = θ3k yk ⊗ b

R(yj ⊗ yk) = yk ⊗ yj , R(a⊗ b) = b⊗ a, ∀k, j, 1 ≤ k, j ≤ 12

Example 5.2. Let (X, r) be the square-free symmetric set defined as follows.

X = X1

⋃
X2

⋃
X3, X1 = {ai | 1 ≤ i ≤ 18}

X2 = {bj | 1 ≤ j ≤ 16}, X3 = {ck | 1 ≤ k ≤ 8}

The solution r is defined via the left actions:

Lai
= τ.υ, 1 ≤ i ≤ 18; Lbj

= ρ.ω, 1 ≤ j ≤ 16; Lck
= π.σ, 1 ≤ k ≤ 8

where the permutations π, ρ, σ, τ, υ, ω are given below.

π = π0π1π2π3π4π5, where πk = (a3k+1 a3k+2 a3k+3), 0 ≤ k ≤ 5

ρ = ρ1ρ2ρ3, where ρm = (am am+3 am+2.3 · · · am+5.3), 1 ≤ m ≤ 3

τ = τ0τ1τ2τ3, where τj = (b4k+1 b4k+2 b4k+3 b4k+4), 0 ≤ k ≤ 3

σ = σ1σ2σ3σ4, where σm = (bm bm+4 bm+2.4 bm+3.4), 1 ≤ m ≤ 4

υ = υ0υ1υ2υ3, where υm = (c2k+1 c2k+2), 0 ≤ k ≤ 3

ω = ω1ω2, where ωm = (cm cm+2 cm+2.2 cm+3.2), 1 ≤ m ≤ 2

The graph for this example is given in Figure 2.

Clearly, G = gr〈La1 ,Lb1 ,Lc1〉 and the G-orbits in X are exactly X1, X2, X3. This
time each of the restricted groups Gi, 1 ≤ ı ≤ 3 is nontrivial and differs from G.
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Figure 2. Graph for Example 5.2. Arrows show left actions on
the set X = X1 ∪X2 ∪X3.

More precisely, one has

La|X1 = e, Lb|X1 = ρ, Lc|X1 = π, ∀a ∈ X1, b ∈ X2, c ∈ X3

G1 = 〈π〉 × 〈ρ〉, π3 = e, ρ6 = e.

In the usual notation one has:
s1 = 2, B1 = {u11 = c1, u12 = b1}, P1 = {3, 6},

Θ1 = {θ11 = (θ)2, θ12 = θ}, where θ is a chosen primitive 6–th root of unity,

M1 = {m2
1 = (0, 1), m3

1 = (1, 0)}, D1 = (X1, B1,P1,Θ1,M1);

Λ1 = {(η1, η2) | 0 ≤ η1 ≤ 2, 0 ≤ η2 ≤ 5}.
On X2 one has

La|X2 = τ, Lb|X2 = e, Lc|X2 = σ, ∀a ∈ X1, b ∈ X2, c ∈ X3

G2 = 〈τ〉 × 〈σ〉 τ4 = e σ4 = e

s2 = 2 B2 = {u21 = a1, u22 = c1}, P2 = {4, 4}

Θ2 = {θ21 = i, θ22 = i} (here we chose as a primitive 4–th root of unity simply i ∈ C)

M2 = {m1
2 = (1, 0), m3

2 = (0, 1)} D2 = (X1, B2,P2,Θ2,M2);

Λ2 = {(η1, η2) | 0 ≤ η1, η2 ≤ 3}
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Finally,

La|X3 = υ, Lb|X3 = ω, Lc|X3 = e, ∀a ∈ X1, b ∈ X2, c ∈ X3

G3 = 〈υ〉 × 〈ω〉, υ2 = e, ω4 = e

Furthermore,

s3 = 2, B3 = {u31 = a1, u32 = b1}, P3 = {2, 4}

Θ3 = {θ31 = i2 = −1, θ32 = i}

M3 = {m1
3 = (1, 0), m3

2 = (0, 1)}

D3 = (X3, B3,P3,Θ3,M3);

Λ3 = {(η1, η2) | 0 ≤ η1 ≤ 1, 0 ≤ η2 ≤ 3}
D = D(X, r) = (D1, D2, D3)

We can compute all yi
η, 1 ≤ i ≤ 3, η ∈ Λi, via the recursive formulae in Lemma 4.6.

For example, the 18 entries of y1
(1,1) written as a transposed row vector are

y1
(1,1)

=
[
θ5θ4 θ5θ2 θ5 θ4θ4 θ4θ2 θ4 θ3θ4 θ3θ2 θ3 θ2θ4 θ2θ2 θ2 θθ4 θθ2 θ θ4 θ2 1

]t
=
[
θ3 θ θ5 θ2 1 θ4 θ θ5 θ3 1 θ4 θ2 θ5 θ3 θ θ4 θ2 1

]t
The above two examples illustrate our main Theorem 4.9 as well as our explicit
methods developed in Section 4. In the converse direction to Theorem 4.9, we can
ask:

Question 5.3. Suppose that (X, r) is a square-free nondegenerate symmetric set
of finite order n, Xi orbits of G(X, r), V = CX and Vi = CXi. Suppose that there
exists a basis Y of V with Y = ∪Yi, each Yi a basis of Vi, such that the linear
extension R of r has the form

R(yi ⊗ yj) = µijyj ⊗ yi, 1 ≤ i, j ≤ n, µij ∈ C×.

Can we conclude that (X, r) is a multipermutation solution with mpl(X, r) = 2?

We provide an example in support of an affirmative answer here. This will be a
square-free symmetric set (X, r) with mpl(X, r) = 3 for which it is impossible to
find a new basis Y of the diagonal form stated. From the list of solutions of order
≤ 4 in [GI94] it is not difficult to verify that |X| ≤ 4 implies that mpl(X, r) ≤ 2,
hence such an example must have order at least |X| = 5, see also [CGI]. A method
for constructing higher permutation level examples is in [CGI] and we use one of
these.

Example 5.4. [CGI] Let (X, r) be the square-free symmetric set of order 5 defined
as follows.

X = {x1, x2, x3, x4, a}
La = (x1x2x3x4), Lx1 = Lx3 = (x2x4), Lx2 = Lx4 = (x1x3)

G = gr〈La,Lx1 ,Lx2〉 = gr〈La,Lx2〉 = gr〈(x1x2x3x4), (x1x3)〉 ' D8,
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Figure 3. Graphs for Example 5.4. Arrows show left actions on
the set X = {x1, x2, x3, x4} ∪ {a} in part (a). The first retract is
shown in part (b). The second retract (c) is the trivial solution.
The third retract (d) is the 1-element solution. Hence mpl(X, r) =
3.

where D8 is the Dihedral group of order 8 with generators of order 4 and 2 as
exhibited.

In this case the orbits are X1 = {x1, x2, x3, x4}, X2 = {a}. It is straightforward to
see that the retract Ret(X, r) = ([X], r[X]) satisfies

[X] = {[x1], [x2], [a]}, L[a] = ([x1][x2]), L[x1] = L[x2] = id[X]

so mpl(Ret(X, r)) = 2 and thus mpl(X, r) = 3. The graph for this example is
shown in Figure 3.

Now assume that there is a basis Y = Y1

⋃
{a} fulfilling the conditions in Conjec-

ture 5.3. Let Y1 = {y1, y2, y3, y4} ⊂ V1. So we assume that

(5.1) R(a⊗ yi) = λiyi ⊗ a; λi ∈ C×, 1 ≤ i ≤ 4

and

(5.2) R(yi ⊗ yj) = µijyj ⊗ yi; µij ∈ C×, 1 ≤ i ≤ 4.

Each yi ∈ Y1 is some linear combination yi =
∑

j αjxj (say) but the right action
on a is trivial, so

R(a⊗ yi) = R(a⊗
∑

αjxj) =
∑

αjR(a⊗ xj) =
∑

αj
a(xj)⊗ a = La(yi)⊗ a.

Hence we require Layi ⊗ a = λiyi ⊗ a. Hence Layi = λiyi. So each yi ∈ Y is an
eigenvector of P (a) – the permutation matrix of the cycle (x1x2x3x4). Since the
latter has four eigenvectors and these have distinct eigenvalues, this determines Y1

up to normalisation and order. Without loss of generality we can therefore take

Y1 =

y0 =


1
1
1
1

 , y1 =


−ı
−1
ı
1

 , y2 =


−1
1
−1
1

 , y3 =


ı
−1
−ı
1
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in terms of the basis X1. We compute R in basis Y1 in two steps;

z1 = x1 + x3, z2 = x1 − x3, t1 = x2 + x4, t2 = x2 − x4

R(z1 ⊗ z2) = z2 ⊗ z1, R(z1 ⊗ t1) = t1 ⊗ z1, R(z1 ⊗ t2) = −t2 ⊗ z1

R(z2 ⊗ t1) = −t1 ⊗ z2, R(z2 ⊗ t2) = t2 ⊗ z2, R(t1 ⊗ t2) = t2 ⊗ t1

and then

y0 = z1 + t1, y1 = −ız2 − t2, y2 = −z1 + t1, y3 = ız2 − t2

R(y1 ⊗ y2) = R((ız2 + t2)⊗ (z1 − t1)) = ız1 ⊗ z2 + ıt1 ⊗ z2 − z1 ⊗ t2 − t1 ⊗ t2

y2 ⊗ y1 = (z1 − t1)⊗ (ız2 + t2) = ız1 ⊗ z2 + z1 ⊗ t2 − ıt1 ⊗ z2 − t1 ⊗ t2

Now, by our assumption R(y1⊗y2) = µ(y2⊗y1). Here µ = µ12. Hence, comparing,
we need

(µ− 1)(ız1 ⊗ z2)− (µ + 1)ı(t1 ⊗ z2) + (µ + 1)(z1 ⊗ t2)− (µ− 1)(t1 ⊗ t2) = 0

which requires both µ + 1 = 0 and µ− 1 = 0, which is not possible.

6. Structure of A(k, X, r)

Let R : V ⊗ V → V ⊗ V be an invertible solution of the QYBE over a field k. The
quantum space associated to this data is the algebra kR[V ] defined as a quotient
of the tensor algebra TV modulo the ideal generated by elements of the form
v⊗w−R(v⊗w). This definition is basis-independent but in the case V = kX and
R the linear extension of a set-theoretic solution it is clear that kR[V ] computed in
this basis becomes the quantum algebra A(k, X, r).

On the other hand it is immediate from the form of R found in the main theorem
above (Theorem 4.9) that for a finite square-free multipermutation solution r of level
2 the vector space V = CX has a new basis of generators {yi

η | 1 ≤ i ≤ t, η ∈ Λi}
in which the relations of CR[V ] take the diagonal form

(6.1) yi
η.yj

ζ =
µi

j,ζ

µj
i,η

yj
ζ .y

i
η, 1 ≤ i ≤ j ≤ t, η ∈ Λi, ζ ∈ Λj ,

where the complex numbers µi
j,η etc., are roots of unity defined explicitly in (4.8).

When i = j we require η < ζ but note that due to the properties of the coefficients
µ we have in in fact that

(6.2) yi
ηyi

ζ = yi
ζy

i
η, η < ζ ∈ Λi, 1 ≤ i ≤ t.

Since the change from the X to the new Y basis does not change the algebra, clearly
this algebra is also isomorphic to the quantum algebra A(C, X, r). This is our first
immediate corollary.

In this section we give two points of view on the further particular structure of
A(k,X, r) in the form kR[V ] for our solutions of mulitpermutation level 2. The
first result concerns its structure as a cotwist indicated by the particular ‘ratio’
form of R in Theorem 4.9.
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6.1. Generalities on diagonal cotwist quantum algebras. We will use Hopf
algebra methods but the Hopf algebras here will be group algebras and therefore
we will give the general theory of cotwists at this level. Let H be a group and
F : H ×H → k× a 2-cocycle in the sense

F(a, bc)F(b, c) = F(a, b)F(ab, c), F(e, a) = 1, ∀a, b, c ∈ H

(here e is the group identity and one can deduce that F (a, e) = 1 holds as well).
Let A be a H-graded algebra (so A = ⊕a∈HAa into graded components, 1 ∈ Ae

and AaAb ⊆ Aab). Then the vector space of A acquires a new associative product
•, say, with

f • g = F(|f |, |g|)fg

on homogeneous elements f, g ∈ A of degree |f |, |g|. The right hand side uses the
old product. We obtain new algebra AF covariant under the Drinfeld-cotwisted
quantum group (kH)F . As a Hopf algebra the latter is the same as the group
algebra kH but with a cotriangular structure F21F−1 (the product here in a certain
convolution algebra). This means that the natural category in which AF lives is
that of H-graded spaces but with a non-trivial symmetry (i.e. involutive brading)
Ψ given by a ratio of F and its inverse transpose. We refer to [M95] for details.

Now suppose that V is a vector space of dimension n with basis Y = {yi} and R a
solution with diagonal entries ρij in the sense

R(yi ⊗ yj) = ρijyj ⊗ yi.

The indices i, j in this subsection will become multi-indices (i, η), (j, ζ) etc in our
application. We suppose further that ρij = Fij/Fji for some Fij . Note that since R

is involutive we have ρji = ρ−1
ij and the above form provides a natural special case

of this. Let k[Y ] (the algebra of polynomials k[y1, · · · , yn] in the basis) be graded
by H = Zn, the free abelian group on generators gi, with the H-degree of yi being
gi.

Next, we define

F(gi1 · · · gik
, gj1 · · · gjl

) =
k∏

a=1

l∏
b=1

Fiajb

This extends to negative powers by the use of F−1
iajb

if one or other (but not both)
of the relevant gia or gjb

occurs inverted in the sequence. It is easy to see that this
defines a bicharacter on Zn and hence in particular a 2-cocycle on it. A bicharacter
on a group means F(ab, c) = F(a, c)F(b, c) and F(a, bc) = F(a, b)F(a, c) for any
a, b, c in the group.

Applying the cotwist construction now gives the algebra k[Y ]F with the same vector
space as k[Y ] and the new product

(6.3) (yi1yi2 · · · yik
) • (yj1yj2 · · · yjl

) =

(
k∏

a=1

l∏
b=1

Fiajb

)
yi1yi2 · · · yik

yj1yj2 · · · yjl
.

Proposition 6.1. Suppose that R : V ⊗ V → V ⊗ V has a diagonal ‘ratio’ form
in a basis {yi}. Then kR[V ] is isomorphic to k[Y ]F , i.e. a cocycle cotwist of the
commutative polynomial algebra k[Y ].
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Proof. The n(n−1)/2 relations of kR[V ] in basis {yi} are of the form yi.yj = ρijyj .yi

and since the coefficients in our case are clearly invertible they allow all words on the
generators to be put in standard form in terms of basis {ys1

1 · · · ysn
n }. We identify

the vector space of kR[V ] with that of k[Y ]F in this way. One may then verify that
the products coincide. Thus yi • yj = Fijyiyj = Fijyjyi = Fij

Fji
yj • yi as required in

degree 2. Hence there is an algebra epimorphism kR[V ] → k[Y ]F . Since their bases
coincide in each degree, this is an isomorphism. �

By definition, an exterior differential calculus (Ω(A),d) on an algebra A means
an associative N-graded algebra Ω generated by degrees Ω0 = A and Ω1, and
d : Ωm → Ωm+1 obeying d2 = 0 and a graded Leibniz rule for its action on
products.

Corollary 6.2. kR[V ] has a natural exterior differential calculus (ΩR(V ),d) with
basis dyi over kR[V ] and relations

dyi · yj = ρijyj .dyi, ∀i, j, dyi · dyj + ρijdyj · dyi = 0, ∀i ≤ j.

Moreover, the partial derivative operators ∂i : kR[V ] → kR[V ] defined by df =∑
i(∂

if)dyi are right-handed braided derivations in the sense:

∂i(f · (yj1 · · · yjl
)) = f · ∂i(yj1 · · · yjl

) +

(
l∏

b=1

ρijb

)
(∂if) · (yj1 · · · yjl

)

on f and homogeneous yj1 · · · yjl
in kR[V ]. The product here is the noncommutative

one of kR[V ].

Proof. We apply the cotwisting theory above to the usual exterior algebra Ω(k[Y ])
generated by the commutative yi and the graded-commutative dyi. This retains
the Zn-grading where d is given degree 0 (so dyi has the same degree as yi) and
is therefore an H-comodule algebra as before. Cotwisting now gives yi • dyj =
Fijyidyj = Fij

Fji
dyj • yi as before. Similarly for the relations between the dyi. We

define this algebra Ω(k[Y ])F to be the exterior calculus on kR[V ] = k[Y ]F . The
map d is unchanged at the level of the unchanged underlying vector spaces. Finally,
we identify this exterior calculus with product • with the abstract algebra ΩR(V )
generated by yi,dyi as stated, by identifying the natural bases as before. The
product in the abstract algebra is now the noncommutative one (without explicitly
writing •). The relations imply that in ΩR(V ),

dyi.(yj1 · · · yjl
) =

(
l∏

a=1

ρija

)
yj1 · · · yjl

dyi

from which the behaviour of the partial derivatives follows. �

Another feature of kR[V ] is its braided Hopf algebra structure as follows. We have
explained that as a cotwist it ‘lives’ in the category of H-graded spaces but with
a nontrivial braiding (in our case a symmetry) built from ρ. The braiding on
monomials is

Ψ(yi1 · · · yik
⊗ yj1 · · · yjl

) =

(
k∏

a=1

l∏
b=1

ρiajb

)
yj1 · · · yjl

⊗ yi1 · · · yik



MULTIPERMUTATION SOLUTIONS OF LEVEL TWO 25

Working in this category, kR[V ] necessarily has an additive coproduct ∆yi = yi ⊗
1+1⊗yi which expresses addition on the underlying braided space just as the usual
k[Y ] has an ordinary Hopf algebra structure with additive coproduct. We refer to
[M95, Ch 10] for the general theory. (In our case since R is involutive there is no
other R′-operator as in the general theory of braided linear spaces.)

Proposition 6.3. In the context above with kR[V ] viewed as a ‘braided linear space’
the braided derivatives ∂i canonically defined by

∆f(y) = f ⊗ 1 +
∑

i

∂i(f)⊗ yi + · · ·

(where we drop terms with higher products of yi on the right) coincide with the
partial derivatives above obtained by cotwisting.

Proof. As a Hopf algebra in a (symmetric) braided category we extend ∆ to prod-
ucts by

∆(fg) = (∆f)(∆g) =
∑

f (1)Ψ(f (2) ⊗ g(1))g(2)

using the notation ∆f =
∑

f (1) ⊗ f (2). Expanding as stated, this becomes

(f⊗1+∂if⊗yi + · · · )(g⊗1+∂ig⊗yi + · · · ) = fg⊗1+f∂ig⊗yi +∂ifΨ(yi⊗g)+ · · ·

which gives the same results for ∂i(fg) as above. Since the values of both on
generators are ∂iyj = δi

j (the Kronecker delta-function), the partial derivatives
coincide. There are explicit formulae for the braided derivatives in terms of ‘braided
integer matrices’ generalizing the notion of q-integers, see [M95]. �

Similar calculus and braided Hopf algebra structures on kR[V ] were found in greater
generality in the 1990s in a ‘braided approach to noncommutative geometry’ [M95],
without assuming that R is involutive or of cotwist form. However, in the special
case of a diagonal cotwist solutiion as above the formulae are rather simpler and,
moreover, we are able to obtain the constructions quite explicitly on the underlying
vector spaces rather than in terms of arguments by generators and relations as in
the literature.

All of the above apply in view of Theorem 4.9 to CR[V ] with R obtained from a
finite square-free set-theoretic solution of multipermutation level 2. We set

(6.4) F(i,η),(j,ζ) = µi
j,ζ

where our basis of V is now written as {yi
η}, i.e. labelled by the multi-index (i, η) in

place of i above. We have explained that CR[V ] is A(C, X, r) written as a quadratic
algebra and Proposition 6.1 asserts that this is a •-product ‘quantisation’ of C[V ]
(the usual polynomial algebra with our basis as generators). The relations of the
differential calculus on A(C, X, r) from Corollary 6.2 are

(6.5) dyi
η.yj

ζ =
µi

j,ζ

µj
i,η

yj
ζ .dyi

η, (dyi
η).(dyj

ζ) +
µi

j,η

µj
i,η

(dyj
ζ).(dyi

η) = 0,

(we take i ≤ j in the second set of relations and where i = j then η < ζ). The
algebra is moreover a Hopf algebra in a certain symmetric monoidal category with
additive coproduct in the generators as in Proposition 6.3. Note that A(C, X, r),
as a semigroup algebra, also has an ordinary bialgebra structure with coproduct
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∆x = x ⊗ x on x ∈ X. This is a different coproduct from the additive braided
coproduct ∆ on the same algebra.

6.2. Canonical cotwist structure of A(C, X, r). While the above generalities
apply in our case, they do not make use of the specific structure of the diagonal
basis {yi

η}. Here we provide the same • product for our particular quantum algebra
CR[V ] (and hence A(C, X, r)) as a different cotwist, this time with finite grading
group and a canonical cocycle on it.

We let
H =

∏
1≤i≤t

G∗i ×
∏

1≤i≤t

Gi = H∗ ×H

and we let V be H-graded as follows. We let the component Vi have H-grade∏
1≤j≤t σi

j and define the H∗-grading equivalently as an action of H. This action is
just the action of each Gi on each Vi (with trivial action on Vj if j 6= i). Because the
group H is abelian the grading extends to C[V ] (by which we mean the symmetric
algebra on V , i.e. the free commutative algebra of polynomials in a fixed basis).

Note that these definitions are basis-independent. However, the bases where the
actions of the Gi are diagonal are just those where the basis elements have homoge-
neous grade under H∗ and hence under the action of H. This is precisely our {yi

η}
basis constructed in Section 4. The basis elements here have degree

|yi
η| = (χη, γi) ∈ H; γi =

∏
1≤j≤t

σi
j .

Next, on each subgroup G∗i × Gi there is a canonical 2-cocycle

F((χ, g), (χ′, h)) = χ′(g), ∀χ, χ′ ∈ G∗i , g, h ∈ Gi

which similarly extends for each i to define a 2-cocycle F on H.

Proposition 6.4. Let (X, r) be a finite square-free multipermutation solution of
level 2 and let V = CX be H-graded as above. Then the canonical 2-cocycle F on H
induces a cotwist quantization C[V ]F isomorphic to CR[V ] and hence to A(C, X, r).

Proof. We compute in the homogeneous basis

(yi1
η1
· · · yik

ηk
) • (yj1

ζ1
· · · yjl

ζl
) =F(χη1γ

i1 · · ·χηk
γik , χζ1γ

j1 · · ·χζl
γjl)yi1

η1
· · · yik

ηk
yj1

ζ1
· · · yjl

ζl

= (χζ1 · · ·χζl
)(γi1 · · · γik)yi1

η1
· · · yik

ηk
yj1

ζ1
· · · yjl

ζl

= χζ1(σ
i1
j1
· · ·σik

j1
) · · ·χζl

(σi1
jl
· · ·σik

jl
)yi1

η1
· · · yik

ηk
yj1

ζ1
· · · yjl

ζl

=

(
k∏

a=1

l∏
b=1

χζb
(σia

jb
)

)
yi1

η1
· · · yik

ηk
yj1

ζ1
· · · yjl

ζl

We write expressions in the group H where the various factors Gi and G∗j all mu-
tually commute. We view the product of characters in the second line here as a
single character in H∗ but the evaluation of a factor χζb

is 1 except on elements
in the corresponding Gjb

. Hence writing out the products of the γia = σia
1 · · ·σia

t

and collecting the factors living in each Gjb
gives the third line. Using that χζb

is
a character gives the last expression. We recognise µia

jbζb
in the product, i.e. the

same factors F(ia,ηa),(jb,ζb) as in the previous section and the same form of product
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(6.3) in terms of such factors. Hence we again obtain the algebra A(C, X, r) in the
{yi

η} generators. �

These results express A(C, X, r) as a kind of ‘quantisation’ of the commutative
polynomial algebra C[V ] (indeed, the form of H and the cocycle on it are a finite
version of the similar ideas that apply to the Moyal product in quantum mechancs).
We similarly find the same formulae (6.5) for the quantum differential calculus and
for the braiding. In the present setting, however, we learn that these constructions
are all H-graded since we have constructed them in a symmetric monoidal category
of H-graded spaces.

Moreover, they are canonically defined independent of any basis. The only subtlety
is that other elements such as those of our original basis X will not be homogeneous.
However, we can think of the H-grading equivalently as a coaction of the group Hopf
algebra CH where everything is extended linearly as a map ∆R : V → V ⊗ CH
(the axioms for this map are dual to the axioms of an action H∗ × V → V and
are equivalent to such an action as H here is finite). On homogeneous elements we
have ∆Rv = v ⊗ |v| and we extend this linearly. We also understand the cocycle
now as a map F : CH ⊗ CH → C which is the same map as before but extended
linearly. The bullet product is defined now as

(6.6) f • g = f (1)g(2)F(f (2) ⊗ g(2)); ∆Rf =
∑

f (1) ⊗ f (2)

where we use an ‘explicit’ notation for ∆Rf ∈ V ⊗ H. Provided we linearise
everything in this way, we are free to change bases. In particular, we could now use
the original basis X. Then we recover the following result:

Corollary 6.5. A(C, X, r) can be built on the same vector space as C[V ] where
V = CX (i.e. the polynomial algebra on |X| variables labelled by x ∈ X) with
bullet product

x • y = xLx(y), ∀x, y ∈ X

Proof. We compute C[V ]F in the basis X with the explanations above that our
previous maps are extended linearly. The coaction of CH on V = CX corresponding
to our previous H-grading has the form

(6.7) x 7→ 1
Ni

∑
π∈Gi

π(x)⊗

∑
η∈Λi

χη(π−1)χη

 γi.

Here the γi part of the grading is the same on the entire space Vi hence unaffected
by the change of basis. The Fourier transform relating the {π(xi1)} basis to the {yi

η}
has an inverse and we use this to compute the coaction yi

η 7→ yi
η⊗|yi

η| in the former
basis as stated in (6.7). One may verify this directly from yi

η =
∑

π χη(π−1)π(xi1)
and the identity

∑
π χη(π)χ(π−1) = δχ,χη |Gi|. Armed with this coaction, for x ∈

Xi, y ∈ Xj we have,

x • y =
1

NiNj

∑
π∈Giρ∈Gj

π(x)ρ(y)
∑

η∈Λiζ∈Λj

χη(π−1)χζ(ρ−1)F(χηγi, χζγ
j) = xσi

j(y)

after a short computation. Here F(χηγi, χζγ
j) = χζ(γi) = χζ(σi

j). �



28 TATIANA GATEVA-IVANOVA AND SHAHN MAJID

We remark that while it is easy to see directly that the stated formula for • gives
the right relations x • y = (xy) • (xy) on the generators, it is not apriori obvious
that • extends to a well-defined associative product in the same vector space as
C[V ] and this is what the twisting theory ensures (it follows from F a 2-cocycle).
In the X basis we also have differential calculus readily computed in the same way
as

(6.8) x • dy = (dxy) • xy, dx • dy = (dxy) • (dxy)

with d2 = 0 and d respecting the H-grading, part which includes that d commutes
with the action of each restriction Gi and hence with the left action. Dropping the
• symbol, this defines the exterior differential calculus (Ω(A(C, X, r)),d) for our
quantum space. The symmetry Ψ on the generators is just r itself.

Finally, we explain how the above results extend to any field k. The trick is that by
the time we allow the linear span of characters in CH∗ ⊆ CH = CH∗ ⊗CH we are
in fact working with all functions on H – we do not need to use the basis provided
by the characters and can hence dispense with the characters all together. Thus,
CH∗ = C(H) in a canonical way as Hopf algebras. The latter denotes the Hopf
algebra of functions on H (this works for any finite group). In this second form,
we can now simply work with k(H) for a general field. It is the Hopf algebra dual
of kH; we refer to [M95] for an introduction. One can in fact introduce characters
over k but we do not need to if we use these Hopf algebra methods. Thus, instead
of the group H above we now work with the Hopf algebra

H = k(H)⊗ kH.

The Hopf algebra k(H) has a basis {δh | h ∈ H} where δh is the Kronecker δ-
function δh(h′) = 1 if h = h′ and otherwise 0. We explained in general above that
the H∗-part of the grading was dual to the action of H on V = kX which on each
Vi = kXi is given by the action of Gi. The H part of the grading is by the element
γi as before. Thus the coaction V → V ⊗H given simply by

∆Rv =
∑
π∈Gi

π.v ⊗ (δπ ⊗ γi), ∀ v ∈ Vi.

where δπ ∈ k(Gi) is viewed in k(H) = ⊗1≤i≤tk(Gi). This agrees with our previous
formula (6.7) in the case where k = C since

1
|Gi|

∑
η∈Λi

χη(π−1)χη = δπ

when the linear combination of characters on the left is viewed as a function on Gi.

Next, as Hopf algebra 2-cocycle F : H ⊗H → k we take the linear map

(6.9) F((f ⊗ h)⊗ (f ′ ⊗ h′)) = ε(f)ε(h′)f ′(h), f, f ′ ∈ k(H), h, h′ ∈ kH

where the map ε(f) = f(e) (evaluation as the group identity) and ε(h) = 1 for all
h ∈ H ⊂ kH. The k-valued linear map ε is called the counit of the relevant Hopf
algebra. We refer to [M95, Chapter 2.3] for the formal definitions and axioms obeyed
by F , ε as linear maps. The cotwisting theory applies to produce an associative
algebra with •-product (6.6) but now on the vector space of k[V ] over a general
field.
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Proposition 6.6. Let (X, r) be a finite square-free multipermutation solution of
level 2, and let V = kX be an H-comodule by ∆R as above, where H = k(H)⊗kH.
Then the Hopf algebra 2-cocycle F in (6.9) induces a cotwist k[V ]F isomorphic to
kR[V ] and hence to A(k,X, r).

Proof. The computation of the • product is the same as before but proceeds more
cleanly without the use of characters. We compute in the basis X. For x ∈ Xi,
y ∈ Xj , we have

x•y =
∑
π∈Gi
ρ∈Gj

π(x)ρ(y)F((δπ⊗γi)⊗(δρ⊗γj)) =
∑
π∈Gi
ρ∈Gj

π(x)ρ(y)ε(δπ)ε(γj)δρ(γi) = xσi
j(y)

as before. Remember that δρ is viewed as a function on H but is sensitive only to
the part of γi that lives in Gj , where it has value δρ,σi

j
. We then find as observed

before that x • y = (xy) • (xy) as required in degree 2. Also, by construction, the
algebra k[V ]F has the same Hilbert series as k[V ]. As A(k,X, r) also has the same
Hilbert series when (X, r) is a symmetric set, see [GB, Thm. 1.3] and [GI, Thm.
9.7 ], we conclude that the epimorphism A(k,X, r) → k[V ]F is an isomorphism. �

In the same way, it is clear that we have (Ω(A(k,X, r)),d) with the same formulae
as before in the X basis. One also has a monoidal symmetry Ψ defined over k (it
is built from F and its ‘convolution inverse’, see [M95, Chapter 3]) with respect to
which A(k, X, r) is a Hopf algebra in a symmetric monoidal category.

6.3. Structure of A(k, X, r) as a braided-opposite algebra. Here we present
a different point of view on the structure of A(k,X, r). We use Hopf algebra
methods which do not require characters and in this context we prefer to work with
G(X, r) ⊆ H rather than the bigger group. We also then do not need to assume
that X is finite. Initially, let G be any group.

Definition 6.7. A set X is a crossed G-set if there is a map | | : X → G (the
grading) and an action of G on X such that |g.x| = g|x|g−1 for all g ∈ G and
x ∈ X.

The notion goes back to Whitehead but is also part of the modern theory of quan-
tum groups. The linear span V = kX becomnes a ‘crossed G-module’ and this is
the same thing in the case of G finite as V a module under the quantum double
D(G) of the group algebra of G, see [M95] for an introduction. Its category of
modules is strictly braided and so is the category of crossed G-modules (for any
group). In algebraic terms we require V to be both G-graded as a vector space and
to enjoy an action of G, and the two to be compatible. The grading can be viewed
as a coaction V → V ⊗ kG of the Hopf algebra kG which we write explicitly as
v 7→ ∆R(v) =

∑
v(1) ⊗ v(2) ∈ V ⊗ kG, as we have seen at the end of the previous

section. Let us write the action of G and hence of kG as usual from the left to
conform with notations in the paper. Then the braiding in the category of crossed
modules ΨD

V,W : V ⊗W → W ⊗ V can be written as

(6.10) ΨD(v ⊗ w) =
∑

v(2).w ⊗ v(1)
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Lemma 6.8. Let (X, r) be a square-free involutive set-theoretic solution of multi-
permutation level 2. Then X is a crossed G-set, where G is the group defined in
Section 2, and |x| = Lx.

Proof. If X is finite, we know from Theorem 2.16 that G is abelian, but the same
is true even if X is infinite (we will prove this in passing in the next section, see
(7.2)). Since the group G is Abelian we require for a crossed module that the grade
of an element is not changed by the action of G. In the finite case the grade Lx is
constant on each orbit Xi and by definition the action of G does not take us out of
an orbit. One can show by direct computation that Lx does not change if one acts
on x by an element of G even if X is infinite (see (7.3)). �

Hence V is a crossed G-module and one may verify that so is k[V ], the polynomial
algebra on any fixed basis of V (it is defined invariantly as the symmetric algebra on
V and in that formulation does not require V to be finite-dimensional). The grade
of any monomial is the product of the grades of each generator in the monomial and
in this way k[V ] becomes G-graded (we need that G is Abelian). The algebra also
has an action of G inherited from the action on V . In this way k[V ] is an algebra
in the braided category of crossed G-modules.

Finally, for any algebra A over k in a k-linear braided category there is an opposite
algebra Aop with ‘opposite product’ which we denote • built on the same object
but with

• = ·Ψ
where · denotes the original product of A.

Proposition 6.9. Let V = kX for (X, r) as in the lemma above and finite, and
view k[V ] in the braided category of crossed G-modules. Then A(k, X, r) ∼= k[V ]op.

Proof. The opposite product in the category of crossed modules has the form

f • g = ·(f (2).g ⊗ f (1)) = (f (2).g)f (1) = f (1)(f (2).g), ∀f, g ∈ k[V ],

where we use that the initial algebra is commutative and ΨD from (6.10). If we
compute this in our X basis we find

x • y = xLx(y) = x xy.

It is easy to see (see remarks above) that this implies x • y = xy • xy as required.
The above construction ensures that the algebra k[V ]op is associative and is built
on the same vector space as k[V ] in each degree as taking the opposite product does
not change the degree. At least in the case of finite X it follows that this algebra is
isomorphic to A(k, X, r) by the same arguments as in the proof of Proposition 6.6.

�

We do not attempt the proof with infinite (X, r) here but we note k[V ]op is defined
and associative even in this case. In the finite case, we obtain A(k,X, r) on the
vector space of k[V ] with the same • product as in Proposition 6.6 but this time
we understand its product as the ‘braided-opposite’, which is a novel approach to
‘quantisation’ via braided categories. Moreover, this approach works even for in-
finite X provided G remains abelian. From this point of view also, the classical
exterior algebra (Ω(k[V ]),d) is G-graded and has an action of G by declaring that
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it commutes with d. In this way it too lies in the braided category of crossed G-
modules and has a braided opposite product. The axioms of a differential exterior
algebra in noncommutative geometry do not make use of any braiding (they make
sense in any monoidal category with suitable additive and k-linear structure), hence
we can view the entire construction in the braided category of crossed G-modules.
Now, if A in a braided category has differential exterior algebra (Ω, d) then one can
show by braid-diagram methods [M95] that Aop has differential exterior algebra
(Ωop,d) where we use the graded braided opposite coproduct (the term ‘graded’
here refers to the Z2 grading in terms of odd or even differential forms and entails
an additional sign according to the degree). Hence we can ‘quantise’ the classical
exterior algebra to obtain one on k[V ]op by using the graded braided-opposite prod-
uct which, since the initial algebra and exterior algebra are (graded) commutative,
comes out as

f • dg = f (1)d(f (2).g), df • dg = (df (1))d(f (2).g).

This gives the same calculus (6.8) when applied to A(k,X, r). Once again, these
constructions are basis-independent. Over C, we can compute it in the {yi

η} ba-
sis if we prefer with the same result (6.5). Similarly, the monoidal symmetry Ψ
with respect to which A(C, X, r) was a Hopf algebra as in Section 6.1 can also be
expressed in terms of ΨD and its inverse if one wishes to use this approach.

Remark 6.10. Motivated by the above, we note that if we are not interested in
linking up with our original diagonalisation problem, we can also redo Proposi-
tion 6.6 using G in place of H provided G is finite. We define V to be a H =
k(G)⊗ kG-comodule by

∆R(x) =
∑
g∈G

g(x)⊗ (δg ⊗ Lx)

and we define the canonical 2-cocycle F : H ⊗H → k by the same formula as in
(6.9) but now with f, f ′ ∈ k(G) and h, h′ ∈ kG. We obtain that A(k, X, r) is the
cotwist of k[V ]F under the coaction of k(G)⊗ kG by a similar computation to that
in Proposition 6.6.

Proposition 6.9 when G is finite is then equivalent to this version of the cotwist
by the action of G. Thus, a coaction of k(G) on a vector space V is equivalent to
an action of kG. Hence a coaction of k(G) ⊗ kG is equivalent to an action of kG
and a coaction of kG. In our case where G is abelian these make V into a crossed
kG-module which evidently is the linearization of the crossed G-set in Lemma 6.8.

Going the other way, one could similarly view the k(H) ⊗ kH coaction in Propo-
sition 6.6 as making V and hence k[V ] into a crossed H-module. The coaction is
given by the H grade of Vi as γi which is just the image of the G-grade used above
under the canonical inclusion G ⊆ H, while the action is the action of Gi on Vi

which pulls back to the G action under this inclusion. Therefore we necessarily
obtain the same ΨD from this crossed module as the one used in Proposition 6.9,
and hence the same braided-opposite algebra even though the category is slightly
different.
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7. Epilogue

In the course of our study of A(k, X, r) we observed in Lemma 6.8 that for (X, r) a
finite square-free of multipermutation level 2 the set X is a crossed G-set. As such
it acquires a braiding of which the linearisation is ΨD in (6.10). The underlying
braiding, which we denote f , is, however, set-theoretic. Hence we have the following
result at the level of (X, r) analogous to our cotwisting result for A(k, X, r). We
can state and verify it directly in maximal generality. We let τ denote the ‘flip’
map τ(x, y) = (y, x).

Proposition 7.1. Let (X, r) be a nondegenerate quadratic set and define an asso-
ciated non-degenerate quadratic set (X, f) where

f : X ×X → X ×X, f(x, y) = (xy, x).

Then

(1) r = f ◦ τ ◦ f−1 iff r is involutive with lri (or iff r is involutive and cyclic).
(2) Suppose r has lri. Then any two of the following imply the third and (1):

(a) (xy)z = xz for all x, y, z ∈ X
(b) f obeys the YBE
(c) r obeys the YBE

(3) Suppose that r is square free. Then the above hold iff (X, r) is a symmetric
set of multipermutation level ≤ 2.

Proof. First, note that since r is nondegenerate each Ly is invertible hence so is f ,
with f−1(x, y) = (y, (Ly)−1x). The right actions associated to f are by the identity
map which is also invertible and its left actions are the same as for r and hence
each are invertible. Hence (X, f) is a nondegenerate quadratic set.

For part (1), writing out r = f ◦ τ ◦ f−1, we require (Ly)−1x = xy, i.e. x = y(xy),
which is equivalent to lri by [GIM1, Lemma 2.19], and we require (Ly)−1xy = xy
which now reduces to the cl1. Thus, if r has the form stated, clearly it is involutive
and lri holds, while conversely if r is involutive and obeys lri then by [GIM1, Prop.
2.25] it is cyclic and hence has the form stated. Similarly if r is cyclic and involutive
then by [GIM1, Prop. 2.25] lri holds.

For part (2), we first compute directly that

(7.1) YBE for f ⇔ x(yz) = (xy)(xz), ∀x, y, z ∈ X.

Hence, if l1 is assumed (for example if r obeys the YBE), this condition becomes
(xy)(xy

z) = (xy)(xz), which by nondegeneracy holds if and only if the condition (a)
holds (we do not in fact need to assume lri or the full YBE in this direction).

If instead we assume lri and (a). Then l1, l2, lr3 (the conditions for r to obey
the YBE) each reduce to x(yz) = y(xz) for all x, y, z ∈ X. Similarly the above
condition (7.1) reduces to this same commutativity condition. Hence under the
assumption of lri and (a) for r:

(7.2) YBE for r ⇔ LxLy = LyLx, ∀ x, y ∈ X ⇔ YBE for f.

Moreover, (2)(a) implies that (X, r) is cyclic and hence if lri also holds then part
(1) applies.
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For (3), the argument is similar to the proof in Proposition 2.15, but we will be
careful now to allow X infinite. Thus, condition mpl(X, r) ≤ 2 means L[y] = L[y′]

for all y, y′ (so that the second retract is trivial), i.e. [y][x] = [y′][x] for all y, y′, x.
Equality here is in [X], i.e. (yx)z = (y′x)z for all y, y′, x, z. If (X, r) is square-free
then this is equivalent to (yx)z = xz (in one direction, set y′ = x) as in (2.5). Hence
under the assumption of lri and square-free,

(7.3) mpl(X, r) ≤ 2 ⇔ xy

z = xz, ∀x, y, z ∈ X.

In this case, if we assume (2) then by (2)(c) (X, r) also obeys the YBE and by (1)
it is involutive. Conversely, if (X, r) is a square-free involutive solution of the YBE
then it is necessarily lri by [GIM1, Cor. 2.31] and if mpl(X, r) ≤ 2 then by the
above, (2)(a) holds as well as (2)(c). Hence all conditions hold. Note that in this
case the group G(X, r) is abelian by (7.2) without assuming that (X, r) is finite as
in Theorem 2.16(1). �
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