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Abstract

We introduce a new invariant for a binary matroid M and use it to prove
upper bounds on the number of circuits and, more generally, the number of
2-connected deletion minors of M containing a fixed element. In addition, we
conjecture that the invariant can be used to bound the roots of the characteristic
polynomial of M .

1 Introduction

The purpose of this paper is to introduce a new invariant for a binary matroid M
and use it to prove upper bounds on the number of circuits and, more generally, the
number of 2-connected deletion minors of M containing a fixed element. The matroid
invariant extends a graph invariant previously introduced in [3].

Given a binary matroid M , let B(M) be the set of bases of the cocyle space of M
and put

Λ(M) = min
B∈B(M)

max
K∈B

{|K|}.

For example, if M is the cycle matroid of the wheel with s spokes, we have Λ(M) = 3
and the minimum is obtained by taking the basis of the cocycle space of G which
consists of the sets of edges incident with each vertex on the rim of the wheel.



For a graph G, we put Λ(G) = Λ(MG) where MG is the cycle matroid of G.
As in the above example, the stars centred on all but one of the vertices of G span
the cocycle space of G (and form a basis whenever G is connected). Thus Λ(G) is
bounded above by the second largest degree of G. Our interest in Λ(G) was sparked
initially by the study of the roots of chromatic polynomials of graphs in [7]. It is an
elementary fact that all of the integer chromatic roots of G lie in the interval [0, ∆(G)]
where ∆(G) denotes the maximum degree of G, i.e. the chromatic number of G is at
most ∆(G) + 1. Sokal [7, Corollary 6.4] showed that all the chromatic roots (real or
complex) can be bounded in terms of the second-largest degree ∆2(G): they lie in the
disc |q| < 7.963907∆2(G) + 1. Furthermore, he conjectured, following a suggestion
of Shrock and Tsai [5, 6], that it might be possible to bound all the chromatic roots
in terms of Λ(G). An important step in [7] is to show that the number of connected
m-edge subgraphs containing a fixed vertex of G is at most em∆(G)m. It is not
possible to obtain a similar bound in terms of Λ(G). Consider for example the case
when G is the wheel with s spokes. We saw above that Λ(G) = 3. The number of
connected 1-edge subgraphs of G containing the central vertex of G is s and this can
be arbitrarily large compared to Λ(G). On the other hand, the following result shows
that the number of 2-connected m-edge subgraphs containing a fixed edge of a graph
G can be bounded by an exponential function of Λ(G).

Theorem 1.1 [3] Let G be a graph and f be an edge of G. Then the number of
2-connected m-edge subgraphs of G containing f is at most (2Λ(G)/ ln 2)m.

The main result of this paper is a partial extension of Theorem 1.1 to binary
matroids.

Theorem 1.2 Let M be a binary matroid and f be an element of M . Then:
(a) the number of circuits of M containing f is at most Λ(M)m−1;
(b) the number of 2-connected deletion minors of M containing f is at most 2m2

Λ(M)m.

Theorem 1.2 will follow from Theorems 2.5 and 2.8, below. It is an open problem to
decide if the number of 2-connected deletion minors of a binary matroid M containing
a fixed element can be bounded above by αmΛ(M)m for some constant α.

An anonymous referee suggested that Theorem 1.2 could be extended to all ma-
troids M by replacing Λ(M) by another invariant Θ(M) defined to be the smallest
integer k such that every element of M belongs to a cocircuit of size k. Unfortunately,
this is false even for graphic matroids. Consider the graph G consisting of two vertices
joined by p internally disjoint paths of length two, and let MG be the cycle matroid
of G. We have Λ(MG) = p and Θ(MG) = 2. The number of 2-connected 4-edge
subgraphs of G containing any fixed edge e is p − 1, which can be arbitrarily large
compared to Θ(MG).

Our long term aim is to adapt the methods of [7] to bound the roots of character-
istic polynomials of binary matroids. In particular, by restricting to the special case
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of cographic matroids, we would like to obtain an analogous result to [7, Corollary
6.4] for the roots of flow polynomials of graphs. We will return to this in Section 3.

We close this section with some remarks on the complexity of computing Λ(M)
for a binary matroid M . We can compute Λ(M) in polynomial time when M is
graphic by using maximum flow calculations, see [3].1 We may also determine Λ(M)
for a cographic matroid by using an algorithm for finding a ‘shortest cycle basis’ of a
graph due to Horton [1].2 We do not know if Λ(M) can be determined in polynomial
time for an arbitrary binary matroid M . However, the related problem of finding a
minimum size cocircuit in a binary matroid is known to be NP-hard, see [10].

2 Counting 2-Connected Deletion Minors

Given a matroid M , let E(M) denote the ground set of M , C(M) the set of circuits
of M , K(M) the set of cocircuits of M , and r(M) the rank of M . A matroid N is
a deletion minor of M if N = M\S for some S ⊂ E(M), a contraction minor of M
if N = M/T for some T ⊂ E(M), and a minor of M if N = (M\S)/T for some
disjoint subsets S, T ⊂ E(M). The matroid M is 2-connected if every pair of elements
of E(M) are contained in a common circuit. The following lemma is due to Tutte [9]
(see also [4, Theorem 4.3.1]).

Lemma 2.1 If M is a 2-connected matroid and e ∈ E(M), then at least one of the
matroids M\e and M/e is 2-connected.

A matroid M is binary if there exists a vector space V over GF(2) and a map
f : E(M) → V such that, for each S ⊆ E(M), the rank of S is equal to the dimension
of the subspace of V spanned by f(S). Given a binary matroid M , we consider the
set 2E(M) of all subsets of E(M) as a vector space over GF(2), where vector addition
is given by symmetric difference ⊕. The cycle space and cocycle space of M are the
subspaces of 2E(M) spanned by C(M) and K(M), respectively. They have dimensions
|E(M)| − r(M) and r(M), respectively. We refer to the elements of the cycle and
cocycle spaces as cycles and cocycles of M . We need the following elementary lemma
for binary matroids, see [4, Proposition 9.2.2].

Lemma 2.2 Let M be a binary matroid and S ⊆ E(M). Then S is a cycle (respec-
tively cocycle) of M if and only if |S ∩ T | is even for all cocycles (respectively cycles)
T of M .

1We show in [3] that if MG is the cycle matroid of a graph G with vertex set V then Λ(MG) =
max{λ(x, y) : x, y ∈ V }, where λ(x, y) is the maximum number of pairwise edge-disjoint xy-paths
in G.

2It is easy to see that if B is a basis for the cocycle space of a binary matroid M such that∑
K∈B

|K| is as small as possible, then Λ(M) = max{|K| : K ∈ B}.
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We say that (M,w) is a weighted binary matroid if M is a binary matroid and
w = {we}e∈E(M) is a set of nonnegative real weights for E(M). Let

Λ(M,w) = min
B∈B(M)

max
K∈B

∑

e∈K

we . (1)

cocycle space of M . The invariant Λ(M) defined in the Introduction can be obtained
from Λ(M,w) by taking all weights equal to one. We consider the weighted version
Λ(M,w) for two reasons: the first is that our proofs for the weighted and unweighted
versions are identical; the second is that we believe Λ(M,w) can be used to bound
the roots of generalisations of the characteristic polynomial of M , i.e. the Tutte
polynomial of M and its multivariate extension, see [8].

Given a weighted binary matroid (M, w) and N a minor of M let w(N) =∏
e∈E(N) w(e). For e ∈ E(M), let Dm(e, M) denote the set of all m-element 2-

connected deletion minors of M which contain e, and put

dm(e) =
∑

N∈Dm(e,M)

w(N).

The next two results will form the basis for an inductive proof of an upper bound
on dm(e) in terms of m and Λ(M).

Lemma 2.3 Let M be a binary matroid, and let e be an element of M . Let B be a
basis for the cocycle space of M , and choose K1 ∈ B with e ∈ K1. Let X = {K ∈
B: e ∈ K} and Y = B\X.

(a) If e is not a coloop of M , then B1 := {K − {e}: K ∈ X} ∪ Y is a basis for the
cocycle space of M\e.

(b) If e is not a loop of M , then B2 := {K ⊕ K1: K ∈ X\{K1}} ∪ Y is a basis for
the cocycle space of M/e.

Proof. (a) Each element of B1 is a cocycle of M\e. Since e is not a coloop of
M we have r(M\e) = r(M). Hence the cocycle spaces of M and M\e have the
same dimension and it suffices to show that B\e is linearly independent. Suppose
[
⊕

K∈X′(K−{e})]⊕[
⊕

K∈Y ′ K] = ∅, for some X ′ ⊆ X and Y ′ ⊆ Y with X ′∪Y ′ 6= ∅.
Then

⊕
K∈X′∪Y ′ K ⊆ {e}. This is impossible: the left hand side of the above set

inclusion cannot be empty since B is linearly independent, and cannot equal {e}
since it belongs to the cocycle space of M , and {e} is not a cocycle of M (because it
is not a coloop).

(b) Each element of B2 is a cocycle of M/e. Since e is not a loop of M we have
r(M/e) = r(M)−1. Hence the dimension of the cocycle space of M/e is one less than
the dimension of the cocycle space of M and it suffices to show that B2 is linearly
independent. Suppose [

⊕
K∈X′(K⊕K1)]⊕ [

⊕
K∈Y ′ K] = ∅, for some X ′ ⊆ X −{K1}
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and Y ′ ⊆ Y . Then either [
⊕

K∈X′∪Y ′ K] = ∅ or [
⊕

K∈X′∪Y ′ K] ⊕ K1 = ∅. Both
alternatives contradict the linear independence of B. �

Corollary 2.4 Let (M,w) be a weighted binary matroid and e be an element of M
that is neither a loop nor a coloop. Then Λ(M\e,w|E(M)−e) ≤ Λ(M,w) and
Λ(M/e,w|E(M)−e) ≤ 2Λ(M,w).

Proof. Immediate from Lemma 2.3. �

Theorem 2.5 Let (M,w) be a weighted binary matroid and e ∈ E(M). Then
dm(e, M) ≤ D(m)weΛ(M,w)m−1, where D(1) = 1 and D(m) = 1

2

∏m−2
i=0 (1 + 2i)

for m ≥ 2.

Proof. We use induction on m. Since d1(e, M) = we, the theorem holds for m = 1.
So suppose m ≥ 2. If e is a loop or coloop of M , then dm(e, M) = 0 for all m ≥ 2.
Hence we may suppose that e is not a loop or coloop of M . Let B be a basis for the
cocycle space of M such that

∑
f∈K wf ≤ Λ(M,w) for all K ∈ B. Choose K0 ∈ B

with e ∈ K0 and let K0 = {e, e1, . . . , et}.
Suppose m = 2 and let F = {f ∈ E(M): {e, f} ∈ C(M)}. Then d2(e, M) =

we

∑
f∈F wf . Since F is a subset of each cocycle of M which contains e, we have∑

f∈F wf ≤
∑

f∈K0
wf ≤ Λ(M,w). Thus the theorem holds for m = 2 and we may

assume that m ≥ 3.
For each 2-connected deletion minor N of M with e ∈ E(N), we have |E(N) ∩

K0| ≥ 2 (since, if C is a circuit of N containing e, then C is a circuit of M and hence
|K0∩C| 6= 1 by Lemma 2.2). We shall classify such deletion minors N of M according
to p(N) := min{i: ei ∈ E(N), 1 ≤ i ≤ t}. Let Di = {N ∈ Dm(e, M): p(N) = i}.
Using Lemma 2.1, we may deduce that if N ∈ Di, then either N − ei ∈ Dm−1(e) or
N/ei ∈ Dm−1(e) or both. Thus

dm(e, M) ≤

t∑

i=1

wei
[dm−1(e, M − ei) + dm−1(e, M/ei)] . (2)

The theorem now follows by applying Lemma 2.4 and induction, using the fact that∑
ei∈K0

wei
≤ Λ(M,w). �

If M is the cycle matroid of a graph, then it follows from a weighted version
of Theorem 1.1, [3, Corollary 7.4], that the bound on dm(e, M) given in Theorem
2.5 can be reduced from O(2m2/2Λm) to O((2/ ln 2)mΛm). It is an open problem to
decide whether a similar strengthening holds for other families of binary matroids —
e.g. cographic matroids, regular matroids, matroids for which the maxflow/mincut
property holds — or even for all binary matroids. Some evidence in favour of this can
be deduced from Theorem 2.8 below. We will need some further results on cocycle
bases.
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Lemma 2.6 Let M be a binary matroid and e be an element of M . Let B =
{K1, K2, . . . , Km} be a basis for the cocycle space of M\e.

(a) If e is a coloop of M , then B1 = B ∪ {{e}} is a basis for the cocycle space of
M .

(b) If e is not a coloop of M , then there exists a basis B2 = {K ′
1, K

′
2, . . . , K

′
m} for

the cocycle space of M such that Ki ⊆ K ′
i ⊆ Ki ∪ {e} for all i, 1 ≤ i ≤ m.

Proof. (a) Since e is a coloop of M , {e} is a cocycle of M , and r(M) = r(M\e) + 1.
Hence the dimension of the cocycle space of M is m+1. It follows from the definition
of M\e that either Ki or Ki ∪ {e} is a cocycle of M for all i, 1 ≤ i ≤ m. However, if
Ki ∪ {e} is a cocycle of M , then (Ki ∪ {e})⊕{e} = Ki is also a cocycle of M . Hence
Ki is a cocycle of M for all i, 1 ≤ i ≤ m. The linear independence of B1 follows from
the linear independence of B and the fact that e /∈ Ki for all i, 1 ≤ i ≤ m.

(b) Since e is a not a coloop of M , r(M) = r(M\e), and hence the dimension of
the cocycle space of M is m. It follows from the definition of M\e that either Ki or
Ki ∪ {e} is a cocycle of M for all i, 1 ≤ i ≤ m. Let K ′

i be the cocycle of M with
Ki ⊆ K ′

i ⊆ Ki ∪{e} and put B2 = {K ′
1, K

′
2, . . . , K

′
m}. The linear independence of B2

follows from the linear independence of B and the fact that {e} is not a cocycle of
M . �

Corollary 2.7 Let M be a binary matroid and S ⊆ M . Let B = {K1, K2, . . . , Km} be
a basis for the cocycle space of M\S. Then there exists a basis B′ = {K ′

1, K
′
2, . . . , K

′
n}

for the cocycle space of M such that Ki ⊆ K ′
i ⊆ Ki ∪ S for all i, 1 ≤ i ≤ m, and

K ′
i ⊆ S for all i, m + 1 ≤ i ≤ n.

Proof. This follows from Lemma 2.6 by induction on |S|. �

Let (M,w) be a weighted binary matroid, m be a positive integer, and S ⊆ E(M).
Let Cm(S) = {C ∈ C(M) : |C| = m, S ⊆ C} and cm(S) =

∑
C∈Cm(S) w(C).

Theorem 2.8 Let (M,w) be a weighted binary matroid, m be a positive integer,
S ⊆ E(M) and suppose |S| = s ≥ 1. Let Λ(M\S,w|E(M)−S) = Λ. Then

∞∑

m=1

Λ−m+scm(S) ≤ w(S). (3)

Proof. We shall show that

k∑

m=1

Λ−m+scm(S) ≤ w(S) (4)
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for all k ≥ 1. If k < s then cm(S) = 0 for all 1 ≤ m ≤ k and (4) holds trivially.
Hence we may suppose that k ≥ s. We sall proceed by induction on k − s. If k = s
then cm(S) = 0 for all 1 ≤ m < k, ck(S) ≤ w(S) and again (4) holds. Hence suppose
that k > s. Let B be a basis for the cocycle space of M\S such that

∑
e∈K we ≤ Λ

for all K ∈ B. Let B′ be a basis for the cocycle space of M obtained from B as in
Corollary 2.7. Then ∑

e∈K−S

we ≤ Λ for all K ∈ B′. (5)

Suppose |S ∩K| is even for all K ∈ B′. Then |S ∩K| is even for all cocycles K of
M and hence S is a cycle of M . Thus cm(S) = 0 if either m 6= s or S is not a circuit
of M , and cs(S) = w(S) if S is a circuit of M . Thus (4) holds.

Hence we may assume that |S ∩ K0| is odd for some K0 ∈ B′. Let K0 =
{e1, e2, . . . , en}. Choose C ∈ Cm(S). Then |C ∩ K0| is even. Since |S ∩ K0| is
odd, it follows that |C ∩K0| 6⊆ S. We shall classify the circuits C ∈ Cm(S) according
to p(C) = min{i : ei ∈ (C ∩ K0) − S}. Let Ci = {C ∈ Cm(S) : p(C) = i}. Note
that Ci ⊆ Cm(S ∪ {ei}) for all 1 ≤ i ≤ n. Using induction on k − s we deduce that:

k∑

m=1

Λ−m+scm(S) ≤

k∑

m=1

Λ−m+s
∑

ei∈K0−S

cm(S + ∪{ei})

= Λ−1
∑

ei∈K0−S

k∑

m=1

Λ−m+s+1cm(S + ei)

≤ Λ−1
∑

ei∈K0−S

w(S ∪ {ei})

= w(S)Λ−1
∑

ei∈K0−S

wei
≤ w(S), (6)

by (5) �

Theorem 2.8 has the following two corollaries for graphs. The special case when
|S| = 2 of our first corollary is closely related to [3, Proposition 4.3].

Corollary 2.9 Let (G,w) be a weighted graph, S ⊆ E(G) and suppose |S| = s ≥ 1.
Let Λ(G − S,w|E(M)−S) = Λ. Let Cm(S) be the set of all circuits of G which have
length m and contain S, and cm(S) =

∑
C∈Cm(S) w(C). Then

∞∑

m=1

Λ−m+scm(S) ≤ w(S). (7)
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�

Let (G,w) be a weighted graph and B∗(G) be the cycle space of G. Put

Λ∗(G,w) = min
B∈B∗(G)

max
C∈B

∑

e∈C

we . (8)

cycle space of M . A cocircuit of G is an element of the cocycle space of G which is
minimal with respect to inclusion i.e. a cocycle K such that G − K has one more
components than G

Corollary 2.10 Let (G,w) be a weighted graph, S ⊆ E(G) and suppose |S| = s ≥ 1.
Let Λ∗(G/S,w|E(M)−S) = Λ∗. Let Km(S) be the set of all cocircuits of G which have
length m and contain S, and k∗

m(S) =
∑

K∈Km(S) w(K). Then

∞∑

m=1

(Λ∗)−m+skm(S) ≤ w(S). (9)

�

Problem 2.11 Does there exist a universal constant α < ∞ such that if (M,w) is
a weighted binary matroid and e ∈ E(M), then dm(e, M) ≤ w(e)(αΛ(M,w))m?

Problem 2.11 has an affirmative answer for graphic matroids, with α = 2/ ln 2,
by [3, Proposition 7.6]. (We also show in [3, Examples 7.4,7.5] that it has a negative
answer for graphic matroids if we take α < 1/ ln 2.) We have not been able to solve
Problem 2.11 for any other family of binary matroids. In particular, it is still open
for cographic matroids.

3 Roots of Characteristic Polynomials

The characteristic polynomial PM(q) of a matroid M with rank function r is the
polynomial in q defined by

PM(q) =
∑

A⊆E(M)

(−1)|A|tr(E)−r(A).

When M is is the cycle matroid of a graph G, q−1PM(q) is the chromatic poly-
nomial of G. Similarly when M is is the cocycle matroid of G, PM(q) is the flow
polynomial of G.

As mentioned in the Introduction, our principal motivation for studying Λ(M),
for a binary matroid M , is the problem of deciding whether it can be used to bound
the roots of the characteristic polynomial of M :
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Conjecture 3.1 [2, Conjecture 41] There exist universal constants C(Λ) < ∞ such
that the roots (real or complex) of the characteristic polynomial of every loopless binary
matroid M with Λ(M) = Λ, all lie in the disc |q| ≤ C(Λ).

An analogous theorem for the chromatic polynomial of a graph G using the maximum
degree of G rather than Λ(G) was proven in [7]: the approach taken there is to
decompose a spanning subgraph of G into its connected components and to treat these
components as a “polymer gas”. The desired bound on chromatic roots then follows
from standard bounds on the zeros of a polymer-gas partition function, once one
has an exponential bound in terms of maximum degree on the number of connected
m-edge subgraphs of G containing a specified vertex. An affirmative answer to the
unweighted version of Problem 2.11 would be a first step in adapting the approach
of [7] to verify Conjecture 3.1. Similarly an affirmative answer to Problem 2.11 could
lead to bounds on the roots of the multivariate Tutte polynomial of M , as was the
case for graphs in [7].
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