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Abstract

A permutation group G (acting on a set Ω, usually infinite) is said
to be oligomorphic if G has only finitely many orbits on Ωn (the set of
n-tuples of elements of Ω). Such groups have traditionally been linked
with model theory and combinatorial enumeration; more recently their
group-theoretic properties have been studied, and links with graded
algebras, Ramsey theory, topological dynamics, and other areas have
emerged.

This paper is a short summary of the subject, concentrating on
the enumerative and algebraic aspects but with an account of group-
theoretic properties. The first section gives an introduction to permu-
tation groups and to some of the more specific topics we require, and
the second describes the links to model theory and enumeration. We
give a spread of examples, describe results on the growth rate of the
counting functions, discuss a graded algebra associated with an oligo-
morphic group, and finally discuss group-theoretic properties such as
simplicity, the small index property, and “almost-freeness”.

1 Introduction

Despite the history and importance of group theory, we have very little idea
what an arbitrary group looks like. We have made important strides in un-
derstanding finite groups, by determining the finite simple groups; but we
can only study general groups under some very strong condition, usually a
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finiteness condition. We have theories of finitely generated groups, locally
finite groups, residually finite groups, groups of finite cohomological dimen-
sion, linear groups, profinite groups, and so forth, but no theory of general
groups.

Oligomorphic groups satisfy a rather different kind of finiteness condi-
tion; paradoxically, one which makes them “large” rather than “small”. A
permutation group G (a subgroup of the symmetric group on a set Ω) is
said to be oligomorphic if G has only finitely many orbits on Ωn for every
natural number n. (An element of G acts componentwise on the set Ωn of
all n-tuples of points of Ω.)

Thus, by definition, an oligomorphic group G gives us a sequence of nat-
ural numbers, the numbers of orbits on n-tuples for n = 0, 1, 2, . . .. Not
surprisingly, the theory is connected with counting problems in various parts
of mathematics (combinatorics, model theory, graded algebras). Curiously,
there is rather less we can say about the groups themselves. If G is oligo-
morphic and H is a proper subgroup having the same orbits on n-tuples as
G for all n, then counting cannot distinguish between G and H, even though
they may be very different as groups (for example, G may be simple while
H is a free group).

In the remainder of this section, we introduce some basics of permuta-
tion group theory and of the counting functions associated with oligomorphic
groups. For further information about permutation groups, see [7, 14]. Note
also that there are many connections between parts of the theory of oligomor-
phic groups and that of (combinatorial) species, as developed by Joyal [21].

1.1 Permutation groups

This section is a brief introduction to permutation groups. For more details,
see [7].

The symmetric group Sym(Ω) on a set Ω is the group of all permutations
of Ω. If Ω is finite, say Ω = {1, 2, . . . , n}, we write the symmetric group as
Sn. We write permutations on the right, so that the image of α under g is
written αg.

An orbit of G is an equivalence class of the relation α ∼ β if αg = β for
some g ∈ G; in other words, a set of the form {αg : g ∈ G}. We say that G
is transitive if it has only one orbit. In a sense, any permutation group can
be “resolved” into transitive groups.

There is a partial converse. If Gi is a transitive permutation group on Ωi
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for i ∈ I, where I is some index set, the cartesian product
∏

i∈I Gi is the set
of functions f : I →

⋃
i∈I Gi satisfying f(i) ∈ Gi for all i ∈ I. It has two

natural actions:

• The intransitive action on the disjoint union of the sets Ωi: if α ∈ Ωi,
then αf = αf(i). If each group Gi is transitive, then the sets Ωi are
the orbits of the cartesian product.

• There is also a product action, componentwise on the cartesian product
of the sets Ωi.

If I is finite, we speak of the direct product, and write it as (for example)
G1 × · · · ×Gk, if I = {1, . . . , k}.

Thus, if G1 = Sn and G2 = Sm, then G1 ×G2 has an intransitive action
on m + n points, and a product action on mn points (which can be regarded
as a rectangular grid with G1 permuting the rows and G2 the columns).

Now let G be transitive on Ω. A congruence is an equivalence relation
on Ω which is G-invariant. There are two “trivial” congruences on Ω: the
relation of equality, and the “universal” relation with a single equivalence
class. We say that G is primitive if there are no other congruences. For
example, the symmetric group is primitive.

Important examples of imprimitive groups are the wreath products, de-
fined as follows. Let H be a permutation group on Γ, and K a permutation
group on ∆. Let Ω = Γ×∆, regarded as a union of copies of Γ indexed by
∆: thus Γδ = {(γ, δ) : γ ∈ Γ}, for each δ ∈ ∆. Take a copy Hδ of H for
each δ ∈ ∆, where Hδ acts on Γδ. Then the cartesian product B =

∏
δ∈∆ Hδ

acts on Ω (in its intransitive action). Moreover, the group K acts on Ω by
permuting the second components (i.e. by permuting the “fibres” Γδ. The
wreath product G = H Wr K is the group generated by B and K; we call B
the base group (it is a normal subgroup) and K the top group of the wreath
product.

We note that there are different notations and conventions in other areas
of mathematics. For example, in experimental design in statistics [2], direct
product (product action) is called crossing, and wreath product is called
nesting, but nesting is written with the top structure before the bottom one,
e.g. ∆/Γ in our case.

If |Γ| > 1 and |∆| > 1, the wreath product is imprimitive: the relation
(γ, δ) ≡ (γ′, δ′) if δ = δ′ is a congruence. For this reason it is called the
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imprimitive action. Any imprimitive permutation group can be embedded
in a wreath product in a natural way.

There is another action of the wreath product, the power action, on the
set Γ∆ of functions from ∆ to Γ. It bears a similar relation to the imprimitive
action as the product action does to the intransitive action for the cartesian
product. If we regard the domain of the imprimitive action as a fibred space,
with fibres Γδ isomorphic to Γ indexed by ∆, then the domain for the power
action is the set of global sections (subsets containing one point from each
fibre).

1.2 Oligomorphic permutation groups

For a natural number n, a permutation group is n-transitive if it acts transi-
tively on the set of n-tuples of distinct elements of Ω, and n-set-transitive if it
acts transitively on the set of n-element subsets of Ω. We say a permutation
group is highly transitive if it is n-transitive for all n, and highly set-transitive
if it is n-set-transitive for all n.

Oligomorphic permutation groups generalise these classes. Thus, we let
Fn(G) denote the number of orbits of G on the set of n-tuples of distinct
elements, and fn(G) the number of orbits on n-element subsets. So G is
n-transitive (resp. n-set-transitive) if Fn(G) = 1 (resp. fn(G) = 1). If the
group G is clear, we drop it and write simply Fn, fn.

The definition speaks of orbits on Ωn, the set of all n-tuples. Let F ∗
n(G)

denote the number of these orbits. It is clear that, for given n, one of these
numbers is finite if and only if the others are; indeed, we have

• F ∗
n =

n∑
k=1

S(n, k)Fk, where S(n, k) is the Stirling number of the second

kind (the number of partitions of an n-set into k parts);

• fn ≤ Fn ≤ n! fn.

As an example for the first point, if G is highly transitive, then

F ∗
n(G) =

n∑
k=0

S(n, k) = B(n),

the nth Bell number (the number of partitions of an n-set).
In the second point, both bounds are attained:
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• Let G = Sym(Ω) (we will always denote this group by S). Then
fn(S) = Fn(S) = 1 for all n.

• Let G be the group of order-preserving permutations of the rational
numbers (we will always denote this group by A). We can map any n
rational numbers in increasing order to any other n such by an order-
preserving permutation (by filling in the gaps to produce a piecewise-
linear map); so fn(A) = 1 and Fn(A) = n!.

Highly set-transitive groups must resemble the above types. All we can
do is to modify the total order slightly. The following is proved in [3].

Theorem 1.1 Let G be a highly set-transitive but not highly transitive per-
mutation group. Then there is a linear or circular order preserved by G. In
particular, G is not 4-transitive.

1.3 Topology

We will only consider permutation groups of countable degree in this article.
If we are interested in the sequences fn and Fn, this is justified by the follow-
ing result, which follows from the Downward Löwenheim–Skolem Theorem
of model theory:

Proposition 1.2 Let G be an oligomorphic permutation group on an infinite
set. Then there is an oligomorphic permutation group G′ on a countably
infinite set such that Fn(G′) = Fn(G) and fn(G′) = fn(G) for all n ∈ N.

There is a natural topology on the symmetric group of countable degree.
This is the topology of pointwise convergence, where a sequence (gn) con-
verges to g if αign = αig for all sufficiently large n, where (α1, α2, . . .) is an
enumeration of Ω. This topology can be derived from a complete metric.
The topology is specified by the first part of the proposition below.

Proposition 1.3 (a) G is open in Sym(Ω) if and only if it contains the
pointwise stabiliser of a finite set.

(b) G is closed in Ω if and only if G is the automorphism group of a rela-
tional structure on Ω, that is, a family of relations (of various arities)
on Ω.
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The closure of a permutation group G consists of all permutations which
preserve the G-orbits on Ωn for all n. We remarked earlier that, as far as
orbit-counting goes, we cannot distinguish between groups with the same
orbits. The largest such group is necessarily closed in Sym(Ω). So we may
restrict our attention to closed groups of countable degree (that is, auto-
morphism groups of countable relational structures) if we are interested in
orbit-counting.

The fact that the topology on the symmetric group is derived from a
complete metric means that the same is true for any closed subgroup. This
permits use of the Baire category theorem. Recall that a subset of a complete
metric space is residual if it contains the intersection of countably many
open dense subsets. The Baire category theorem asserts that a residual
set is non-empty. Indeed, residual sets are “large” (for example, they have
non-empty intersection with any open set, and the intersection of countably
many residual sets is residual). Often it is possible to give a non-constructive
existence proof for some object by showing that objects of the required type
form a residual set.

1.4 Cycle index

An important tool in combinatorial enumeration is the cycle index of a fi-
nite permutation group G, which is the polynomial in the indeterminates
s1, s2, . . . , sn (where n is the degree) given by

Z(G; s1, s2, . . . , sn) =
1

|G|
∑
g∈G

s
c1(g)
1 s

c2(g)
2 · · · scn(g)

n ,

where ci(g) is the number of i-cycles in the decomposition of the permutation
g into disjoint cycles.

For its role in enumeration, see [18].
One cannot simply take this definition unchanged for infinite permutation

groups, for several reasons: the number ci(g) may be infinite; there may be
infinite cycles; and the denominator |G| is infinite.

The trick to generalising it lies in the following result about finite groups,
the Shift Lemma. Let PΩ be the set of all subsets of the finite set Ω, and
let PΩ/G denote a set of representatives of the G-orbits on PΩ. Also, if X
is any subset of Ω, we let G[X] denote the permutation group on X induced
by its setwise stabiliser in G.
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Proposition 1.4 For a finite permutation group G on Ω,∑
X∈PΩ/G

Z(G[X]; s1, s2, . . .) = Z(G; s1 + 1, s2 + 1, . . .).

Now let G be any oligomorphic permutation group on the (possibly infi-
nite) set Ω. We define the modified cycle index of G to be the left-hand side
of the Shift Lemma, with one small modification: we replace PΩ by PfinΩ,
the set of all finite subsets of Ω. Thus, the modified cycle index is

Z̃(G; s1, s2, . . .) =
∑

X∈PfinΩ/G

Z(G[X]; s1, s2, . . .).

Each term in the sum is the cycle index of a finite permutation group. Also
since G is oligomorphic, there are only a finite number of terms in the sum
which contribute to the coefficient of a fixed monomial sc1

1 · · · scr
r , namely

those corresponding to the fn(G) orbits on sets of cardinality n = c1 +
2c2 + · · · + rcr. (We see here that the definition would fail if G were not
oligomorphic.) So we have defined a formal power series in s1, s2, . . .. We
also see that if G happens to be a finite permutation group, then we have
the ordinary cycle index with 1 added to each indeterminate.

Our previous counting functions can be extracted from the modified cycle
index:

Proposition 1.5 Let G be an oligomorphic permutation group.

• FG(x) is obtained from Z̃(G) by substituting s1 = x and si = 0 for
i > 1.

• fG(x) is obtained from Z̃(G) by substituting si = xi for all i.

Just as before, it is true that

• for any oligomorphic permutation group G, there is an oligomorphic
group G′ of countable degree satisfying Z̃(G) = Z̃(G′);

• an oligomorphic group of countable degree and its closure have the
same modified cycle index.

So we may consider closed groups of countable degree.
We conclude this section by displaying the modified cycle index for the

groups S (the infinite symmetric group) and A (the group of order-preserving
permutations of Q).
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Proposition 1.6

Z̃(S) = exp

(∑
i≥1

si

i

)
;

Z̃(A) =
1

1− s1

.

2 Connections

Oligomorphic permutation groups are closely connected with two other ar-
eas of mathematics: model theory, and combinatorial enumeration. In this
section we discuss the connections.

2.1 Model theory

Model theory describes structures consisting of a set with a collection of
constants, relations and functions. Much of mathematics can be fitted into
this framework, often in different ways. For example, a group has a binary
operation (composition), a unary operation (inversion), and a constant (the
identity); but the second and third may be defined in terms of the first. A
graph can be regarded as a set of vertices with a binary relation (adjacency),
or as a set of vertices and edges with a unary relation (to distinguish the
vertices) and a binary operation of incidence. The latter is appropriate for
multigraphs.

Logic describes such structures by means of collections of formulae. The
language includes symbols for the relations, functions, and constants, con-
nectives and quantifiers, equality, brackets, and a supply of variables. We
work in first-order logic: we are allowed to combine finitely many formulae
with connectives, and to quantify over variables which range over the un-
derlying set. I will assume that the language is countable. A sentence is a
formula with no free variables (all variables are quantified). Thus for exam-
ple the group axioms can be expressed as a single sentence (the conjunction
of the associative, identity and inverse laws, each universally quantified over
all variables).

A theory is a set of sentences; a structure is a model for a theory if every
sentence in the theory is true in the model.
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Sometimes we want a theory to have a wide range of models (this is the
case with group theory). At other times, we have a particular model in mind,
and want to capture as much of its essence as possible in a theory (this is
the case with the Peano axioms for the natural numbers). It is known that,
as long as a theory has infinite models, it cannot have a unique model; there
will be models of arbitrarily large cardinality. The best we can do is ask
that the theory is α-categorical, where α is an infinite cardinal, meaning that
there is a unique model of cardinality α up to isomorphism. By a theorem of
Vaught, there are only two types of categoricity, countable and uncountable:
if a theory is α-categorical for some uncountable cardinal α, then it is α-
categorical for all such.

Uncountable categoricity gives rise to a powerful structure theory, ex-
tending that for vector spaces over a fixed field or algebraically closed fields
of fixed characteristic (where a single invariant, the rank, determines the
model). By contrast, countable categoricity is related to symmetry, by the
following remarkable theorem due independently to Engeler, Ryll-Nardzewski
and Svenonius:

Theorem 2.1 Let M be a countable model of a theory T over a countable
language. Then T is ℵ0-categorical if and only if the automorphism group of
M is oligomorphic.

In fact, if M is the unique countable model of T , and G = Aut(M), then
F ∗

n(T ) is the number of n-types over T (maximal consistent sets of formulae
in n free variables). So our results are applicable to counting types in such
theories.

Note in passing that the automorphism group of N is trivial; so the Peano
axioms have countable “non-standard” models.

2.2 Combinatorial enumeration

The set-up is similar, but we restrict ourselves to relational structures (no
function or constant symbols). We will see that the counting problems for or-
bits on sets and tuples of oligomorphic permutation groups are identical with
those for unlabelled and labelled structures in so-called oligomorphic Fräıssé
classes of relational structures. These include large numbers of combinato-
rially important classes of structures, so we have a rather general paradigm
for interesting counting problems.
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Take a fixed relational language L (this means, each set carries named
relations of prescribed arities). For example, we could consider graphs, di-
rected graphs, tournaments, partially ordered sets, k-edge-coloured graphs,
graphs with a fixed bipartition, or much more recondite examples.

A Fräıssé class over L is a class C of finite relational structures over L
satisfying the following four conditions:

(a) C is closed under isomorphism;

(b) C is closed under taking induced substructures (this means, take a sub-
set of the domain, and all instances of all relations which are contained
within this subset);

(c) C has only countably many members up to isomorphism;

(d) C has the amalgamation property : this means that, if B1, B2 ∈ C have
isomorphic substructures, they can be “glued together” along these
substructures (or possibly more) to form a structure in C. Formally, if
A, B1, B2 ∈ C and fi : A → Bi is an embedding for i = 1, 2, then there
is a structure C ∈ C and embeddings hi : Bi → C for i = 1, 2 so that
h1f1 = h2f2.

(The reader is warned that I allow the structure A to be empty here. Some
authors exclude this, state the special case where A = ∅ separately, and call
it the joint embedding property.)

For a simple example, finite graphs form a Fräıssé class: take the union
of B1 and B2 identifying the isomorphic substructures, and put any or no
edges between B1 \ A and B2 \ A. It is just a little more difficult to show
that finite total or partial orders form a Fräıssé class.

Let M be a structure over L. We make two definitions:

• The age of M is the class of all finite L-structures which are embeddable
in M .

• M is homogeneous if any isomorphism between finite induced substruc-
tures of M can be extended to an automorphism of M .

For example, the totally ordered set Q is homogeneous, and its age consists
of all finite totally ordered sets.

Fräıssé’s Theorem asserts:
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Theorem 2.2 A class C of finite L-structures is the age of a countable homo-
geneous L-structure M if and only if it is a Fräıssé class. If these conditions
hold, then M is unique up to isomorphism.

We call the countable homogeneous structure M the Fräıssé limit of the
class C. Thus, (Q, <) is the Fräıssé limit of the class of finite totally ordered
sets. The Fräıssé limit of the class of finite graphs is the celebrated random
graph, or Rado graph R, which is extensively discussed in [4].

Now suppose that a Fräıssé class satisfies the following stronger version
of condition (c):

(c′) For any n ∈ N, the class C has only finitely many n-element members
up to isomorphism.

We call such a class an oligomorphic Fräıssé class. All examples mentioned so
far are oligomorphic; the condition certainly holds if L contains only finitely
many relations. Let M be its Fräıssé limit, and let G = Aut(M) be the
automorphism group of M . By homogeneity, it follows that

• Fn(G) is the number of labelled n-element structures in C (that is,
structures on the set {1, 2, . . . , n};

• fn(G) is the number of unlabelled n-element structures in C (that is,
isomorphism classes of n-element structures).

Some Fräıssé classes satisfy a stronger version of the amalgamation prop-
erty, called strong amalgamation. This is said to hold if the amalgam of any
two structures can be produced without identifying any points not in the
common substructure. More formally, if h1(b1) = h2(b2), then b1 = f1(a) and
b2 = f2(a) for some a ∈ A.

This holds in the above examples. An example where it fails is given by
the class of graphs consisting of isolated vertices and edges. If B1 and B2 are
edges and A a single vertex, then in the amalgam we are forced to identify
the other ends of the two edges as well.

Proposition 2.3 A Fräıssé class has the strong amalgamation property if
and only if the automorphism group of its Fräıssé limit has the property that
the stabiliser of any finite set of points fixes no additional points.

Later we will see a still stronger version.
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3 Constructions

There are two main sources for examples of (closed) oligomorphic groups:
building new examples from old, or constructing Fräıssé classes (the group is
then the automorphism group of the Fräıssé limit of the class).

3.1 Direct and wreath products

Suppose that G1 and G2 are oligomorphic permutation groups on Ω1 and Ω2

respectively. We can form their direct or wreath product, and each of these
has two actions, which we now discuss.

Direct product, intransitive action The direct product G = G1 × G2

acts on the disjoint union of Ω1 and Ω2, say Ω. An n-subset of Ω consists of
k points of Ω1 and n− k points of Ω2, for some k with 0 ≤ k ≤ n; two n-sets
are in the same G-orbit if and only if their intersections with Ωi are in the
same Gi-orbit for i = 1, 2. Thus (fn(G)) is the convolution of (fn(G1)) and
(fn(G2)):

fn(G) =
n∑

k=0

fk(G1)fn−k(G2),

from which it follows that the generating functions multiply:

fG(x) = fG1(x)fG2(x).

Similarly, for Fn, we have an exponential convolution, so that the exponential
generating functions also multiply:

FG(x) = FG1(x)FG2(x).

The modified cycle index is also multiplicative:

Z̃(G) = Z̃(G1)Z̃(G2).

Direct product, product action The direct product G1 ×G2 also has a
product action on the cartesian product Ω1 × Ω2. This is more difficult to
analyse; the recent paper [9] describes the situation.

First, there is a multiplicative property: it is easy to see that

F ∗
n(G) = F ∗

n(G1)F
∗
n(G2).
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The modified cycle index of the product can be computed as follows.
Define an operation on the indeterminates by

si • sj = (slcm(i,j))
gcd(i,j).

Extend this operation multiplicatively to monomials and then additively to
sums of monomials. Then we have

Z̃(G) = Z̃(G1) • Z̃(G2).

It should clearly be possible to deduce the first of these relations from
the second; but this is surprisingly difficult (see the cited paper).

Here is an example. Consider first the group G = A, the order-preserving
permutations of Q. We have Fn(G) = n!, and hence

F ∗
n(G) =

n∑
k=1

S(n, k)k! = P (n),

the number of preorders of an n-set (reflexive and transitive relations).
Now let G = A × A with the product action. We have F ∗

n(G) = P (n)2,
and so

Fn(G) =
n∑

k=1

s(n, k)P (k)2.

Moreover, since G (like A) has the property that the setwise stabiliser of an
n-set fixes it pointwise, we have

fn(G) = Fn(G)/n!.

Now the exponential generating function for P (n) is 1/(2 − ex), with the
nearest singularity to the origin at log 2; so P (n) is roughly n!/(log 2)n. So
Fn(G) is about (n!)2/(log 2)2n. Since the Stirling numbers alternate in sign, it
is not completely trivial to find the asymptotics of fn(G). This was achieved
in [10], using three entirely different methods; it turns out that

fn(G) ∼ n!

4
e−

1
2
(log 2)2 1

(log 2)2n+2
.

In broad-brush terms, “factorial times exponential”.
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Wreath product, imprimitive action The wreath product G1WrG2 has
its imprimitive action on Ω1 × Ω2; as we have seen, this should be thought
of as a covering of Ω2 with fibres isomorphic to Ω1. The function FG(x) is
found by substitution:

FG(x) = FG2(FG1(x)− 1).

In particular, for any oligomorphic group G, we have

FSWrG(x) = FG(ex − 1) = F ∗
G(x),

so that Fn(S Wr G) = F ∗
n(G) for all n, as is easily seen directly.

For another example, we note that FGWrS(x) = exp(FG(x)−1). Thus, the
substitution rule for the wreath product can be regarded as the prototype of
a wide generalisation of the exponential principle in combinatorics [33, 16].
If G is the automorphism group of the Fräıssé limit of a Fräıssé class C,
then G Wr S is similarly associated with the class of disjoint unions of C-
structures; the exponential principle applies to this situation. In general, if
H is associated with a Fräıssé class D, then G Wr H is associated with the
class of disjoint unions of C-structures with a D-structure on the set of parts.
For example, if H = A, then we have ordered sequences of C-structures; if
H is the automorphism group of the random graph, we have a graph whose
vertices are C-structures; and so on.

The numbers fn(G) of orbits on unordered sets cannot be obtained from
the sequences (fn(G1)) and fn(G2)) alone; we need the modified cycle index
of the top group G2. The generating function fG(x) is obtained from Z̃(G2)
by substituting fG1(x

i)− 1 for the variable si, for i = 1, 2, . . ..

Wreath product, power action The wreath product also has a power
action on ΩΩ2

1 , the set of functions from Ω2 to Ω1 (the set of transversals to the
fibres in the imprimitive action). This action is not in general oligomorphic;
it is so if G2 is a finite group.

It is shown in [9] that F ∗
n(G) is obtained from the (ordinary) cycle index

of the finite group G2 by substituting F ∗
n(G1) for all of the variables si.

3.2 Other examples

Further examples are most easily described as automorphism groups of rela-
tional structures. As we have seen, any closed oligomorphic group of count-
able degree is the automorphism group of a homogeneous relational structure,
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which is the Fräıssé limit of a Fräıssé class of finite structures. Sometimes
the easiest way to specify the group is to give the Fräıssé class.

The random graph and some of its relations. Let R be the countable
random graph. This graph is the Fräıssé limit of the class of finite graphs.
There are direct constructions for it, see [4]: for example, the vertices are
the primes congruent to 1 mod 4, and p and q are joined if and only if p
is a quadratic residue mod q. Alternatively, as Erdős and Rényi showed, if
we form a countable random graph by choosing edges independently with
probability 1/2 from the 2-subsets of a countable set, the resulting graph is
isomorphic to R with probability 1.

The graph R is homogeneous, and contains all finite (and indeed all count-
able) graphs as induced subgraphs. So, if G = Aut(R), then Fn(G) is the
number of labelled graphs on n vertices (which is 2n(n−1)/2), while fn(G)
is the number of unlabelled graphs on n vertices (which is asymptotically
Fn(G)/n!). Note that these sequences grow so fast that the generating func-
tions converge only at the origin.

There are several related Fräıssé classes. Here are a few examples.

• In place of graphs, we can take directed graphs, or oriented graphs, or
tournaments, or k-uniform hypergraphs. Note that the automorphism
group of the random k-uniform hypergraph is (k − 1)-transitive but
not k-transitive; so every degree of transitivity is possible for infinite
permutation groups.

• Thomas [34] showed that there are only five closed supergroups of
Aut(R), namely

– Aut(R);

– The group D(R) of dualities (automorphisms and anti-automorphisms)
of R, which is 2-transitive and contains Aut(R) as a normal sub-
group of index 2;

– The group S(R) of switching automorphisms of R (see below),
which is 2-transitive;

– The group B(R) of switching automorphisms and anti-automorphisms
of R, which is 3-transitive and contains S(R) as a normal subgroup
of index 2;
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– the symmetric group.

• Lachlan and Woodrow [24] determined all the countable homogeneous
graphs. There are some trivial ones (disjoint unions of complete graphs
of the same size, and their complements); some non-trivial ones, the
Henson graphs and their complements; and the random graph. The
Henson graph Hn is the Fräıssé limit of the class of all finite graphs
which contain no complete graph of order n, for n ≥ 3. They are not
very well understood.

The operation σX of switching a graph with respect to a set X of vertices
consists in replacing edges between X and its complement by non-edges, and
non-edges by edges, while keeping things inside or outside X the same as
before. A permutation g is a switching automorphism of Γ if Γg = σX(Γ) for
some set X. Switching anti-automorphisms are defined similarly.

One curious fact is that Fn(S(R)) and fn(S(R)) are equal to the numbers
of labelled and unlabelled even graphs on n vertices (graphs with all vertex
degrees even), although the even graphs do not form a Fräıssé class.

Ordered structures An old theorem of Skolem says that, if two sub-
sets X and Y of Q are dense and have dense complements, then there is
an order-preserving permutation of Q carrying X to Y . More generally,
consider colourings of Q with m colours so that each colour class is dense.
It is not hard to show that there is a unique such colouring up to order-
preserving permutations. The automorpism group Am of such a colouring
(the group of permutations preserving the order and the colours) is oligo-
morphic, and fn(Am) = mn. For, if {c1, . . . , cm} is the set of colours, then an
n-set {q1, . . . , qn}, with q1 < · · · < qm, can be described by a word of length
n in the alphabet {c1, . . . , cm}, whose ith letter is the colour of qi; two sets
lie in the same orbit if and only if they are coded by the same word, and
every word arises as the code of some subset.

We can modify this example in the same way we did for Q itself, allowing
ourselves to preserve or reverse the order, or turning it into a circular order.

Treelike structures There are vast numbers of treelike structures; I can-
not give even a brief overview, so I will concentrate on a couple of examples.

Consider the class of boron trees, that is, finite trees in which each vertex
has degree 1 or 3. Consider any four leaves in such a tree. They are connected
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by a graph of the following shape:
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We see that one of the three partitions of the four leaves into two sets of two
is distinguished by the fact that the paths joining vertices in the same pair
do not intersect. Thus, there is a quaternary relation on the set of leaves. It
is possible to show that this relation uniquely determines the boron tree, and
that the class of finite structures carrying quaternary relations which arise
in this way is a Fräıssé class. So there is a corresponding oligomorphic group
G, which is 3-transitive but not 4-transitive, and satisfies fn(G) ∼ An−5/2cn,
where c = 2.483 . . ..

This construction can be modified in many ways, of which a few are given
below.

• We may consider trees with degrees 1, 3, 4, . . . ,m, or with any possible
degree except 2. (Divalent vertices are invisible in this construction.)

• We may consider internal vertices as well as leaves: there will be a
ternary betweenness relation saying that one vertex is on the path
joining the other two.

• By embedding the trees in the plane, we may impose a circular order
on the set of leaves.

Many of these constructions give examples with exponential growth (roughly
cn for some c > 1).

Other examples The symmetric group S on a countable set Ω has an
induced action on the set of k-element subsets of Ω, for any k. These groups
are oligomorphic, but except in the case k = 2, not much is known about the
asymptotics of the orbit-counting sequences (see [11] for the case k = 2).

Other examples are linear and affine groups on infinite-dimensional vector
spaces over finite fields. See [12] for the asymptotics.
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4 Growth rates

In this section we survey some known results about the rate of growth of the
sequences (fn(G)) and (Fn(G)) for an oligomorphic group G.

First, note that there is no upper bound for growth rates. Given any
sequence (an) of natural numbers, let L be a relational language containing
an n-ary relations C be the Fräıssé class consisting of all structures in which
an n-ary relation holds only if all its arguments are distinct. If G is the
automorphism group of the Fräıssé limit, then fn(G) ≥ 2an for all n. Indeed,
it is slow growth which is most interesting!

For intransitive or imprimitive groups, we can have polynomial growth for
(fn). For a simple example, if G is the direct product of r symmetric groups

(with the intransitive action), then fn(G) =

(
n + r − 1

r − 1

)
, with generating

function fG(x) = (1− x)−r.
For the same group, Fn(G) = rn, since the orbit of an n-tuple is de-

termined by the orbit containing each of its points. Recently it has been
shown [1] that, if G is transitive, and the point stabiliser has m orbits on the
remaining points, then Fn(G) ≥ mn−1. Equality is possible here for any m.

There is a gap above polynomial growth for (fn). The next possible
growth rate is fractional exponential, about exp(

√
n). This is realised by the

group G = S WrS, for which we have fn(G) = p(n), the number of partitions
of the integer n, with growth asymptotically

1

4n
√

3
exp(π

√
2n/3);

and Fn(G) = B(n), the number of partitions of an n-set (the Bell number),
whose growth is faster than exponential but slower than factorial.

However, if we insist that the group is primitive, there is a dramatic
change [25, 29]:

Theorem 4.1 There is a number c > 1 such that the following holds. Sup-
pose that G is primitive but not highly set-transitive. Then

• fn(G) ≥ cn/q(n), for some polynomial q;

• Fn(G) ≥ n! cn/q(n), for some polynomial q.
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In other words, for (fn), there is a gap between constant and exponential
growth! Merola’s proof gives the result with c = 1.324 . . .; the best-known
examples have c = 2 (these are circular versions of the rationals partitioned
into two dense subsets, that we met earlier).

The main problems for exponential growth are:

• prove that the “exponential constant” limn→∞(fn)1/n always exists;

• find the possible values it can take;

• find a structural description of the examples where the growth is no
faster than exponential.

What happens just above exponential growth? Here are some examples.

• Let C be the Fräıssé class each of whose members is a set with a pair of
total orders, and G the automorphism group of its Fräıssé limit. Then
fn(G) = n! and Fn(G) = (n!)2.

• The group S Wr S2 with the power action is primitive. I do not know
what the asymptotic behaviour of (fn(G)) is. As explained earlier, we
find that

Fn(G) ∼ 1
2
B(n)(B(n) + 1),

where B(n) is the Bell number.

• For the permutation group induced by S on the set of 2-element subsets
of the domain, we have

Fn(G) ∼ B(2n)2−nn−1/2 exp
(
−[1

2
log(2n/ log n)]2

)
.

No clear evidence of a gap emerges from this limited data. Macpherson
[26] has proved some theorems connecting growth just faster than exponen-
tial with model-theoretic properties such as stability and the strict order
property.

For the automorphism group of the random graph, the growth rate is
about exp(cn2). For such growth, it doesn’t make a lot of difference whether
we consider Fn or fn. We make one brief observation about this case.

Proposition 4.2 Let G be the automorphism group of a homogeneous struc-
ture over a finite relational language. Then Fn(G) is bounded above by the
exponential of a polynomial.
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The converse of this is not true. For example, the general linear group
on a vector space of countable dimension over the field of two elements has
Fn(G) roughly 2n2/16, but is not the automorphism group of a homogeneous
structure over a finite relational language. (Take two n-tuples of vectors,
the first linearly independent and the second satisfying the single linear re-
lation that the sum of the vectors is zero. These two n-tuples cannot be
distinguished by relations of arity less than n.)

An open problem here is to understand what the implications for G are
of being the automorphism group of a homogeneous structure over a finite
relational language.

5 Graded algebras

Another part of mathematics where sequences of positive integers occur is
the theory of graded algebras. Such an algebra is a direct sum

A =
⊕
n∈N

An,

where the An are vector spaces over a field F , and, if v ∈ Am and w ∈ Am,
then the algebra product vw belongs to Am+n. The subspaces An are the ho-
mogeneous components. If they are all finite-dimensional, then the sequence
of their dimensions (or its ordinary generating function) is the Hilbert series
of the algebra. If a graded algebra is finitely generated, then the dimensions
grow no faster than a polynomial in n, and so the Hilbert series converges
inside the unit circle.

We construct graded algebras as follows. First, let Ω be an infinite set,
and F a field (for our purposes, always of characteristic zero). Let An be the
vector space of functions from

(
Ω
n

)
(the set of n-element subsets of Ω) to F ,

and define a multiplication on the homogeneous components by the rule

fg(X) =
∑

Y ∈(X
n)

f(Y )g(X \ Y )

for f ∈ An, g ∈ Am, and X ∈
(

Ω
n+m

)
. Extended linearly to A =

⊕
An,

this multiplication is commutative and associative, and makes A a graded
algebra. The constant function 1 on

(
Ω
0

)
= {∅} is the identity. (In fact

A0 is 1-dimensional, spanned by the identity.) This algebra is the reduced
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incidence algebra of the poset of finite subsets of Ω, but we make no use of
this fact.

The algebra A is much too large: its homogeneous components have
infinite dimension (except for A0 which has dimension 1), and there are
many nilpotent elements.

But it has one important feature: if e ∈ A1 is the constant function on
Ω with value 1, then e is not a zero-divisor ; that is, multiplication by e is a
monomorphism from An to An+1. (This algebraic statement is really a fact
about finite combinatorics: the incidence matrix of n-sets and (n+1)-sets of
a set X of cardinality at least 2n + 1 has full rank.)

Now let G be a permutation group on Ω. There is a natural action of G
on An, for all n; we let AG

n be the set of functions invariant under G (that is,
constant on the G-orbits), and AG =

⊕
AG

n . Then AG is a graded subalgebra
of A. Moreover, if G is oligomorphic, then dim(AG

n ) = fn(G), so that the
Hilbert series of AG is fG(x).

There are various interesting examples of groups for which AG is finitely
generated. For example, if G = G1×G2 in its intransitive action on Ω1∪Ω2,
where Gi acts on Ωi for i = 1, 2, we have

AG ∼= AG1 ⊗F AG2 ,

for any field of characteristic zero. In particular, AS×S is freely generated by
(that is, a polynomial ring in) two generators of degree 1, and more generally,
ASr

freely generated by r generators of degree 1.
If H is a finite permutation group of degree n, and G = S Wr H (in

its imprimitive action), then AG is isomorphic to the ring of invariants of
H (acting as a linear group via permutation matrices). In particular, if
H = Sn, then AG is the ring of symmetric polynomials in n variables, and
is freely generated by the elementary symmetric polynomials e1, . . . , en of
degrees 1, 2, . . . , n, by Newton’s Theorem.

However, it follows from Macpherson’s Theorem that, if G is primitive
but not highly homogeneous, then AG cannot be finitely generated.

In the light of this, we are forced to look for other kinds of algebraic
properties of AG. An example is a remarkable recent theorem of Pouzet [30],
confirming a 30-year-old conjecture:

Theorem 5.1 Let G be a permutation group on an infinite set Ω. Then AG

is an integral domain if and only if G has no finite orbits on Ω.
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One direction is trivial. Suppose that ∆ is a G-orbit of size n, and let
f ∈ An be the characteristic function of {∆}. Then f ∈ AG

n and f 2 = 0.
The converse requires a new type of Ramsey-type theorem which is likely to
have further applications. The result itself is applicable to growth rates, in
view of the following result [6], whose proof uses some easy dimension theory
from algebraic geometry:

Theorem 5.2 If G is oligomorphic and AG is an integral domain then fm+n ≥
fm + fn − 1.

Another situation in which we can describe the structure of AG is when
G is associated with a Fräıssé class C (that is, G is the automorphism group
of the Fräıssé limit of C). In [5] it is shown that, if the class C has notions of
connected components, disjoint union, and spanning substructures satisfying
a few simple axioms, then AG is a polynomial algebra whose generators are
the characteristic functions of the connected structures in C. (More precisely,
for each isomorphism type of n-element connected structure in C, let f be the
function in An which takes the value 1 on n-sets whose induced substructure
is of the given type and 0 elsewhere; the collection of all such functions is a
set of free generators for AG.) Here are a few, reasonably typical, examples.

• Let C be the class of finite graphs, so that G is the automorphism
group of the random graph R. Then a basis for the nth homogeneous
component of AG consists the characteristic functions of all n-vertex
graphs (so that dim(AG

n ) = fn(G) is the number of unlabelled graphs
on n vertices). Now the characteristic functions of connected graphs
on n vertices are algebraically independent, and the set of all such
elements forms a free generating set for AG, which is a polynomial
algebra (infinitely generated).

• We saw earlier that, if G is associated with a Fräıssé class C, then GWrS
is associated with the class of disjoint unions of C-structures. There is
an obvious notion of connectedness: structures with a single part are
connected! Thus, AGWrS is a polynomial algebra, with fn(G) generators
of degree n for all n. (Thus, the structure of AGWrS is independent of
the structure of AG except for numerical information about dimensions
of components.)

• Consider the set Q with two kinds of structure: the order, and m
subsets forming a partition of Q, each one dense in Q. (Think of a
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colouring of Q with m colours c1, c2, . . . , cm, so that each colour class
is dense.) Let G be the group of permutations preserving the order
and the colours. An orbit of G on n-sets is described uniquely by a
word of length n in the alphabet {c1, c2, . . . , cm}, recording the colours
of the elements of the set in increasing order. Now the algebra AG

is the shuffle algebra over an alphabet of size m, which occurs in the
theory of free Lie algebras [32]. One can develop an appropriate notion
of connectedness, so that the connected words are the so-called Lyn-
don words. The fact that the shuffle algebra is a polynomial algebra
generated by the Lyndon words was first proved by Radford [31], but
emerges as a special case of the theory presented here.

6 Group structure

Relatively little is known about the structure of closed oligomorphic per-
mutation groups, but the picture is rapidly changing. We look first at the
normal structure in a couple of classical examples.

The countable symmetric group S = Sym(Ω) has a normal subgroup
FSym(Ω), the finitary symmetric group, consisting of all permutations mov-
ing only finitely many points; this has a normal subgroup of index 2, the
alternating group Alt(Ω), consisting of finitary permutations which are even
permutations of their supports. These are the only non-trivial proper normal
subgroups; in particular, the quotients are simple.

The group A of order-preserving permutations of Q has two normal sub-
groups L and R; L consists of all permutations fixing all sufficiently large
positive rationals, and R consists of permutations fixing all sufficiently large
negative rationals. Their intersection consists of the order-preserving permu-
tations of bounded support. These are the only non-trivial normal subgroups.
In particular, A/(L ∩R) ∼= L/(L ∩R)×R/(L ∩R), and the two factors are
isomorphic.

The automorphism group of the countable random graph is simple [35].
Indeed, given any two elements g, h of this group with g 6= 1, it is possible
to write h as the product of three copies of g or g−1.

An important property which has had a lot of attention is the small index
property. Let G be a permutation group of countable degree. A subgroup
H has small index if |G : H| < 2ℵ0 . (If the Continuum Hypothesis holds,
this just says that H has finite or countable index.) The stabiliser of any
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finite set has small index. We say that G has the small index property if any
subgroup of G of small index contains the pointwise stabiliser of a finite set;
it has the strong small index property if every subgroup of small index lies
between the pointwise and setwise stabilisers of a finite set. If G is a closed
oligomorphic group with the small index property, then the topology of G is
determined by the group structure: a subgroup is open if and only if it has
small index, so the subgroups of small index form a neighbourhood basis of
the identity.

The symmetric group S, the group A of order-preserving permutations
of Q, and the automorphism group of the random graph all have the strong
small index property [15, 19, 8]. A typical example of a permutation group
which does not have the strong small index property is S Wr S, in its im-
primitive action; the stabiliser of a block of imprimitivity is not contained
in the setwise stabiliser of any finite set. Examples which do not have the
small index property can be constructed by producing automorphism groups
of Fräıssé limits which have infinite elementary abelian 2-groups as quotients;
they have “too many” subgroups of small index!

I mentioned earlier that the notion of Baire category is important for
closed oligomorphic groups. Such a group G is said to have generics if there
is a conjugacy class which is residual in G. In each of the three groups
mentioned above, generics exist. Indeed, the nth direct power of the group
has generics (in other words, the original group has generic n-tuples) for all
n. This property is closely related to the small index property (see [19]).

We can also ask what group is generated by a “typical” n-tuple of el-
ements. John Dixon proved that almost all pairs of elements of the finite
symmetric group Sn generate Sn or the alternating group An. Later [13],
he proved an analogue for the symmetric group of countable degree: almost
all pairs of elements (in the sense of Baire category, that is, a residual set)
generate a highly transitive free subgroup of S. (The existence of highly
transitive free groups was first shown by McDonough [28].)

As noted, very recently these results have been extended to wider classes
of groups.

Macpherson and Tent define the free amalgamation property, which is
a strengthening of the strong amalgamation property, as follows. A Fräıssé
class C has the free amalgamation property if, whenever B1 and B2 are struc-
tures in C with a common substructure A, there is an amalgam C of B1 and
B2 such that
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• the intersection of B1 and B2 in C is precisely A (this is the content of
strong amalgamation, see Section 2);

• Every instance of a relation in C is contained in either B1 or B2.

This holds for graphs: we can choose to make the amalgam so that there are
no edges between B1 \ A and B2 \ A.

They prove the following theorem:

Theorem 6.1 Let C be a nontrivial Fräıssé class (that is, there are some
non-trivial relations) with the free amalgamation property, and G the auto-
morphism group of its Fräıssé limit. Then G is simple.

The trivial case must be excluded, since then G is the symmetric group
S, and as we have seen this group is not simple.

Gartside and Knight [17] say that a Polish group (a topological group
whose topology comes from a complete metric) is almost free if a residual
subset of the n-tuples of elements of G freely generate a free group. They
give a number of equivalent characterisations of such groups, and show:

Theorem 6.2 Closed oligomorphic groups are almost free.

Kechris and Rosendal [23] give conditions for the existence of generic
conjugacy classes in a closed oligomorphic group.

In closing I mention a couple of important papers linking oligomorphic
permutation groups, dynamical systems, and Ramsey theory: [20, 22].
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theory, and topological dynamics of automorphism groups, Geometric
and Functional Analysis 15 (2005), 106–189.

[23] A. S. Kechris and C. Rosendal, Turbulence, amalgamation, and generic
automorphisms of homogeneous structures, Proc. London Math. Soc. (3)
94 (2007), 302–350.

[24] A. H. Lachlan and R. E. Woodrow, Countable ultrahomogeneous undi-
rected graphs, Trans. Amer. Math. Soc. 262 (1980), 51–94.

[25] H. D. Macpherson, The action of an infinite permutation group on the
unordered subsets of a set, Proc. London Math. Soc. (3) 46 (1983), 471–
486.

[26] H. D. Macpherson, Permutation groups of rapid growth, J. London
Math. Soc. (2) 35 (1987), 276–286.

[27] H. D. Macpherson and K. Tent, Simplicity of some automorphism
groups, preprint.

[28] T. P. McDonough, A permutation representation of a free group, Quart.
J. Math. Oxford (2) 28 (1977), 353–356.

[29] F. Merola, Orbits on n-tuples for infinite permutation groups, Europ. J.
Combinatorics 22 (2001), 225–241.

[30] M. Pouzet, When the orbit algebra of a group is an integral domain?
Proof of a conjecture of P. J. Cameron, to appear.

27



[31] D. E. Radford, A natural ring basis for the shuffle algebra and an appli-
cation to group schemes, J. Algebra 58 (1979), 432–454.

[32] C. Reutenauer, Free Lie Algebras, London Math. Soc. Monographs (New
Series) 7, Oxford University Press, Oxford, 1993.

[33] R. P. Stanley, Generating functions, in: MAA Studies in Mathematics,
vol. 17 (G.-C. Rota ed.), Mathematical Association of America, Wash-
ington, 1978, pp. 100–141.

[34] S. R. Thomas, Reducts of the random graph, J. Symbolic Logic 56
(1991), 176–181.

[35] J. K. Truss, The group of the countable universal graph, Math. Proc.
Cambridge Philos. Soc. 98 (1985), 213–245.

28


