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Abstract

Individual-based models are a relatively new approach
to modelling dynamical systems of interacting entities, for
example molecules in a biological cell. Although they
are computationally expensive, they have the capability of
modelling systems more realistically than traditional state-
variable models. We give a formal definition of individual-
based models, which includes state-variable models as a
special case. We examine the questions of when state-
variable models are sufficient for accurate modelling of
a system, and when individual-based models are neces-
sary. We define notions of abstraction and approximation,
and give sufficient conditions that imply that an individual-
based model can be approximated by a deterministic state-
variable model. We also give negative results: examples
of individual-based models that cannot be approximated by
any state-variable model.

1 Introduction

Many of the systems studied in biology, chemistry, and
physics consist of populations of interacting entities. These
are often referred to as “complex systems.” For example,
the metabolism within a biological cell is modelled by a
system of molecules that interact through various types of
chemical reactions. These systems can be described at two
levels. The local, fine-grained, or microscopic level pro-
vides data on individual entities and their relations. In a
model of cellular metabolism, this might include properties
of individual molecules such as conformational state, phos-
phorylation, methylation, and other attributes, and relations
between molecules such as the presence or absence of var-
ious types of molecular bonds. The global, coarse-grained,
or macroscopic level of description consists of aggregate
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properties such as free energy, temperature, concentrations
of molecular species, or even just the presence or absence
of a particular type of molecule.

Although the global properties are defined in terms of
the local properties and are usually the features of interest,
it is difficult to bridge the gap between the two levels. In
many cases, the local behavior of complex systems is well-
understood. But in most cases, even when the local behav-
ior is comparatively simple, the global behavior cannot be
explained, much less predicted, from it.

The dynamics of these systems has traditionally been
modelled by ignoring the fundamental stochastic interac-
tions between the entities and using a fixed number of real-
valued variables to denote population level properties. Evo-
lution equations (systems of differential or difference equa-
tions) involving the variables describe the state transitions.
These are often called state-variable models. It is assumed
that as the population sizes increase, the behavior of the sys-
tem is asymptotic to that of the state-variable model. An
additional simplification is to approximate these variables
by their averages (mean-field approximation), thus getting
a deterministic state-variable model. A well-known exam-
ple is the logistic equation [25]
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where x1, . . . , xk are population sizes of k different species.
Deterministic state-variable models have been the standard
methodology for modelling populations of interacting enti-
ties, even though it was clear from the outset that they had
severe limitations. One reason for this dominance is the
simplicity and mathematical elegance of differential equa-
tions as a way of describing the interactions among large
populations. Another reason is that no viable alternative
was evident.

Differential equations are powerful and essential tools in
many areas of science, but they have not yet enabled compa-
rable advances in the study of complex systems. One of the
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limitations of state variable models is that in most cases an-
alytic solutions of differential equations are unknown, and
numeric simulation is the main tool. More fundamentally,
population level behavior is an emergent property of the in-
dividual interactions, and even when the local behavior is
characterized in great detail, and evolution equations con-
ceptually exist, they may not be known.

Complex systems can be modelled at the local level by
using variants of von Neumann’s cellular automaton [5].
But mathematical analysis of these systems appears to be
at least as difficult as solving differential equations, and
until recently, simulating them was not practical. This
has changed with the increasing availability of inexpensive
computing power. This approach appears to have originated
independently in various fields, including chemistry, ecol-
ogy, and physics. There are many variations of this mod-
elling methodology, for example hybrid continuous/discrete
versions, and they go by several names, such as config-
uration models and object-oriented models, but the most
widely used term is individual-based models.

In spite of the increasing reliance on individual-based
modelling, progress is hindered by some of the same is-
sues that arise in more traditional modelling. Simulation
is still the main tool for reaching conclusions. In fact, it
can be more difficult not only because of the high compu-
tational cost, but because there is no widely accepted lan-
guage for describing individual-based models. The basic
question of which aspects of the model are necessary and
which can be abstracted away becomes even more difficult
with individual-based models.

In this article, we propose a formal syntax and seman-
tics for individual-based models. It is based on a term logic
that defines both the state of an individual-based model at
any time and the dynamics of the system. There are variants
of individual-based models depending on whether the state
space and time are discrete or continuous. Using our formal
framework, we define notions of abstraction and pose ques-
tions about the accuracy of abstractions. In some cases, we
provide partial answers. We give sufficient conditions for
individual-based models to be abstracted to state-variable
models. We also give some examples of individual-based
models that do not satisfy these conditions and cannot be
abstracted to state-variable models. We conclude with an
outline of future research.

2 Examples

Due to space limitations, examples of individual-based
models and proofs of our theorems are not included here.
They are in the full draft of this paper [24]

3 The State Space of Individual-Based Mod-
els.

An individual-based model is a set of finite structures
that evolve according to locally defined probabilistic rules.
From this description, it might seem that finite models
with probabilistic first-order update rules could describe all
individual-based models. However, in many cases the inter-
actions are defined by real numbers or arbitrarily large inte-
gers, and the properties of interest involve aggregations of
the populations. Thus we must augment finite models with
functions that assign numeric values to the relations and
have aggregate functions, and we must use logics stronger
than first-order logic. Similar considerations led Grädel and
Gurevich [17] to propose metafinite structures as models of
states of dynamical systems in computer science. We will
define a closely related version of metafinite structure and
logic. The only significant distinction is that our logic (de-
scribed in the next section) has two types of variables: those
whose values range over the finite universe and those whose
values range over the real numbers, whereas the terms in the
logic of Grädel and Gurevich have only variables of the first
type.

There are other ways of formalizing individual-based
models, such as process algebras augmented with proba-
bilistic operators [26], Abstract State Machines [19] with
probabilistic updates, CLU models with probabilistic next-
state expressions [4], or relational databases with proba-
bilistic updates. We have chosen a formalism that is sim-
ple and direct and includes all examples of individual-based
models we have encountered in the scientific literature. Not
surprisingly, our formalism is quite close to Abstract State
Machines. In fact, the AsmL implementation of Abstract
State Machines has the capability of performing random up-
dates since it is integrated with the .NET Framework.

A multiset M over a set S is a collection of elements
from S that distinguishes the multiplicity (number of oc-
currences) of elements but not their order. We require that
the multiplicity of each element is finite, thus M can be
identified with a function m : S → N, where m(s) is the
multiplicity of s in M . Our multisets will be finite, i.e.,
m(s) > 0 for only finitely many s ∈ S. We use {| |} to
enclose the members of a multiset. Let fm(S) be the col-
lection of finite multisets over S. A multiset operation on S
is a function Γ: fm(Sk) → S for some k ∈ N. Γ is of arity
k.

Metafinite models are functional structures with three
kinds of functions: weight functions, numeric functions,
and multiset operations. A vocabulary is a triple (W,F ,G)
where W is a set of weight function symbols, F is a set of
numeric function symbols, and G is a set of multiset oper-
ation symbols. Each function symbol is associated with an
arity.



Definition 1. A metafinite model A over the vocabulary
(W,F ,G) is a structure

〈A,WA,FA,GA〉

where

A is a finite set (the universe).

WA = 〈wA : w ∈ W〉, where each wA is a partial
function from Ak to R and w is k-ary.

FA = 〈fA : f ∈ F〉, where each fA is a function
from R

k to R and f is k-ary.

GA = 〈ΓA : Γ ∈ G〉, where each ΓA is a multiset
operation from fm(Rk) to R and Γ is k-ary.

We will use uppercase Fraktur letters to denote metafi-
nite models and their corresponding uppercase Roman let-
ters (primed or subscripted) to denote their universes. We
sometimes put wA(a1, . . . , ak) = undef for (a1, . . . , ak) /∈
dom(wA).

A simple example of a metafinite model is a weighted
graph G with vertex set G and edge weight function
wG : G2 → R.

The states of a classical state-variable model are a special
case of metafinite model. Their universe is ∅, and the weight
functions are 0-ary. Thus the state can be identified with the
vector WA.

The definition of isomorphism between two models eas-
ily extends to metafinite models.

Definition 2. Let

A = 〈A,WA,F ,G〉 and

B = 〈B,WB,F ,G〉

be metafinite models over the same vocabulary (W,F ,G).
Then A and B are isomorphic, written A ∼= B, if there is
a 1-1 onto function f : A → B such that for all w ∈ W
and a1, . . . , ak ∈ A where w is k-ary, wA(a1, . . . , ak) =
wB(f(a1), . . . , f(ak)).

The states of an individual-based model evolve by
changing their weight functions. But their numeric func-
tions and multiset operations are fixed, hence we will omit
their superscripts.

4 A Logic for Individual-Based Models

We will use a pure term calculus to express properties
of individual-based models and a closely related logic to
define the transition rules. The logic has two types of vari-
ables: those that take values in the finite universe of the

metafinite model, and those that take values in R. We dis-
tinguish the two types by referring to them as individual and
numeric variables respectively. In any term, we assume that
the type of each variable has been declared. As in first-order
logic, individual variables can be free or bound, but numeric
variables cannot be bound. Thus when we say “free vari-
able” or “bound variable,” we are implying that it is an indi-
vidual variable. Let A be a metafinite model over the vocab-
ulary (W,F ,G) and τ be a term with free variables among
x1, . . . , xi and numeric variables among y1, . . . , yj . We
will define τA to be a function on Ai×R

j . If a1, . . . , ai ∈ A
and r1, . . . , rj ∈ R, then τA(a1, . . . , ai; r1, . . . , rj) will de-
note the value of τA when each ak is assigned to xk and
each rk is assigned to yk. If τ has exactly i distinct free
variables and j distinct numeric variables, then it is of arity
(i, j).

Definition 3. If x is declared as a numeric variable, then x
is a term with numeric variable x.

If w ∈ W is k-ary and x1, . . . , xk are individual vari-
ables, then w(x1, . . . , xk) is a term with free variables
x1, . . . , xk.

If τ1, . . . , τk are terms, x1, . . . , xi and y1, . . . , yj are
the free and numeric variables respectively that occur in
τ1, . . . , τk, and f ∈ F is k-ary, then f(τ1, . . . , τk) is a
term with free variables x1, . . . , xi and numeric variables
y1, . . . , yj . For a1, . . . , ai ∈ A and r1, . . . , rj ∈ R,

f(τ1, . . . , τk)A(a1, . . . , ai; r1, . . . , rj)

= f(τA
1 (a1, . . . , ai; r1, . . . , rj), . . . ,

τA
k (a1, . . . , ai; r1, . . . , rj)).

If τ is a term with free variables x1, . . . , xi, z, numeric
variables y1, . . . , yj , and Γ ∈ G is k-ary, then (Γzτ) is a
term with free variables x1, . . . , xi and numeric variables
y1, . . . , yj . For a1, . . . , ai ∈ A and r1, . . . , rj ∈ R,

(Γzτ)A(a1, . . . , ai; r1, . . . , rj)

= Γ({|(τA(a1, . . . , ai, b1; r1, . . . , rj),

. . . , τA(a1, . . . , ai, bk; r1, . . . , rj)) | b1, . . . , bk ∈ A|}).

Term logics can define aggregate properties of
individual-based models. For example, the average
outdegree of a directed graph can be defined by the term
(Σx(ΣyE(x, y)))/(ΣxV (x)) where EG(u, v) = 1 if
(u, v) is an edge of the graph G and = 0 otherwise,
V G(v) = 1 for all vertices v, and Σ is the summation
operation on multisets of real numbers.

Numeric variables are used to describe structural prop-
erties of a metafinite model. In a model of diffusion, the
weight functions X(p), Y (p), and Z(p) could indicate the
coordinates of a particle p. If x, y, z, and r are numeric



variables, then the concentration of particles in the neigh-
borhood of radius r of (x, y, z) can be defined by the (0, 4)-
ary term

∑
({|(x − X(p))2 + (y − Y (p))2

+ (z − Z(p))2 < r2 | p ∈ A|})/(4πr3/3).

(We are using an informal syntax, where the relation < is
actually a binary 0-1 valued function.)

The first-order logic L of any predicate vocabulary can
be embedded in a term logic L′ in the following way. For
every k-ary relation symbol R in L, the vocabulary of L′ has
the k-ary weight function symbol χR. Every L model A can
be expanded to a L′ model where each χR is interpreted as
the characteristic function of R: for a1, . . . , ak ∈ A,

χA
R(a1, . . . , ak) =

{
1 if A |= R(a1, . . . , ak)
0 if A � R(a1, . . . , ak).

Function symbols of arity k are treated as (k + 1)-ary rela-
tion symbols. By also expanding A with numeric functions
for the Boolean operations ∨, ∧, and ¬ and the multiset
operator max, for every formula in L, we can construct a
term in L′ that is interpreted as the characteristic function
of the formula. Recursively, let φ be a formula in L with
free variables x1, . . . , xk, y and χφ be the term expressing
its characteristic function. Then (max yχφ) expresses the
characteristic function of (∃yφ).

5 Transition Rules

The evolution of an individual-based model is a stochas-
tic process whose states are metafinite models over some
specified vocabulary (W,F ,G). We put At for the state at
time t. We assume that, for any t and later time t′, the prob-
ability distribution of At′ is determined by At. That is, the
evolution is a Markov process. We will use an expanded vo-
cabulary ({A,A′} ∪W ∪ {w′|w ∈ W},F ,G) to define the
transition probabilities. A pair of states (A,A′) can be re-
garded as a metafinite model over this expanded vocabulary,
whose universe is A ∪ A′. For a ∈ A ∪ A′,

A(A,A′)(a) =

{
1 if a ∈ A

0 if a /∈ A

and similarly for A′. For a k-ary weight function w ∈ W
and a1, . . . , ak ∈ A ∪ A′,

w(A,A′)(a1, . . . , ak) ={
wA(a1, . . . , ak) if a1, . . . , ak ∈ A

undef otherwise.

and similarly for w′.
In general, the transition probabilities are defined by

terms in the expanded logic. The precise form of these
terms depends on the type of process (discrete or contin-
uous time or space, time-dependent or homogeneous) and
whether we are using declarative or operational semantics.
If we are using declarative semantics, we use a term δ to
describe the transition between two states. Let S be any set
of metafinite models over (W,F ,G). Fixing A ∈ S and
letting A′ range over S, δ(A,A′)(t, t′) is a multivariate ran-
dom variable on S that characterizes the transition from A
to A′. Thus, let δ be k-variate, that is, δ = (δ1, . . . , δk) for

some k ∈ N, and δ
(A,A′)
i ∈ R for i = 1, . . . , k. We use

a term F (x1, . . . , xk, t, t′) in the logic of (W,F ,G) to de-
fine the conditional cumulative distribution function of the
transition. For A ∈ S, r1, . . . , rk ∈ R, and 0 ≤ t ≤ t′,

FA(r1, . . . , rk, t, t′) = Pr

(
k∧

i=1

δ
(At,At′ )
i ≤ ri|At = A

)
.

There are numerous alternatives, depending on additional
assumptions about the process. For example, if F is differ-
entiable in x1, . . . , xk, we can use the conditional probabil-
ity density function g(x1, . . . , xk, t, t′):

gA(r1, . . . , rk, t, t′) =

∂kFA(x1, . . . , xk, t, t′)
∂x1 . . . ∂xk

∣∣∣∣
x1=r1,...,xk=rk

.

If the process is homogeneous, then the transition
probability does not depend on t, and we can write
F (x1, . . . , xk,∆t), where ∆t = t′ − t. If the process op-
erates in discrete time steps, then we take t′ = t + 1, and
we can write F (x1, . . . , xk, t). Note, however, that it is not
necessary to make these distinctions because time can be
built into the state as a 0-ary weight function, and we really
need to consider only transitions described by a term of the
form F (x1, . . . , xk).

If S is discrete, i.e., the process is a Markov chain, we
can define the transition probabilities directly with a condi-
tional probability function f :

f (A,A′)(t, t′) = Pr(At′ = A′|At = A)

Alternatively, we can use the transition rate function g:

g(A,A′)(t) = lim
∆t→0

f (A,A′)(t, t + ∆t) − α(A,A′)

∆t
,

if the limit exists, where

α(A,A′) =

{
1 if A = A′

0 otherwise.

Further simplifications are possible if the chain is homo-
geneous or operates in discrete time.



Definition 4. An individual-based model is a pair (S, F )
where S is a set of metafinite models over some vocabulary,
and F defines the state transitions.

Update rules can also be expressed in an imperative style,
as in Abstract State Machines [19]. By expanding the set of
numeric functions with random functions, probabilistic up-
date rules can be defined. In some cases, for example diffu-
sion processes, this may be the more natural style. The state
of a diffusion process is a real-valued vector (v1, . . . , vk).
That is, a diffusion process is a state-variable model. The
update rule of a diffusion process has the form

(v1, . . . , vk) := (v1, . . . , vk) + µ(v1, . . . , vk)∆t

+ (W (t + ∆t) − W (t))Λ(v1, . . . , vk),

where µ(v1, . . . , vk) is a k-dimensional drift vector,
Λ(v1, . . . , vk) is a k × k-dimensional diffusion matrix, and
W is a k-dimensional Wiener process.

6 Abstractions of Individual-Based Models

All attempts at modelling a system, whether it is soft-
ware, hardware, or biological, must balance accuracy of the
model with simplicity of its description. This tradeoff may
be the most significant decision faced by modellers. Ignor-
ing important features results in models that do not accu-
rately portray the system, but including superfluous features
leads to other difficulties. It decreases the efficiency of sim-
ulation, masks the important features. and makes it harder
to understand the model. The individual-based approach
makes it very easy to construct highly detailed models, but
as pointed out by Grimm [18], “it seems as if many details
are in the models simply because they make the model look
more ‘realistic’.” Thus choosing the appropriate features be-
comes even more difficult in individual-based modelling.

The process of simplifying a model is called abstraction.
The two most common forms of abstraction in individual-
based modelling are removing some of the weight functions
and summarizing population data with aggregate functions.
Ignoring spatial information in kinetic models is an exam-
ple of the former, and replacing populations of individuals
with their sizes or concentrations is an example of the latter.
Classical state-variable models completely abstract the indi-
viduals, replacing them with the values of aggregate func-
tions of the populations, and defining the state transitions in
terms of these functions.

In many cases, the exact value of an aggregate function
is unknown, and an approximation is the best possible re-
sult. This may be due to the stochastic nature of the under-
lying phenomena, or to the experimental margin of error.
It is often assumed that the error becomes small relative to
the population sizes as they get large. Another common as-
sumption is that as population sizes increase, the dynamics

of the individual-based model is approximated by determin-
istic transitions. The systems of deterministic differential
equations in Section 2 are examples.

Thus the common practice of modelling an individual-
based model with a system of deterministic differential
equations is really based on two simplifications:

1. Abstracting the individual-based model to a finite
number of aggregate functions.

2. Assuming that as the size of the individual-based
model increases, with high probability the values of
the aggregate functions follow a deterministic transi-
tion rule.

We next formalize a notion of abstraction. It will include
as special cases the kinds of abstractions described above.
We then define a notion of accuracy of an abstraction, and
use it to justify the practice of approximating an individual-
based model with a deterministic state-variable model. That
is, we give sufficient conditions for an individual-based
model to be approximated in this way and show that some
of the previous examples satisfy these conditions. We also
examine a recent technique for equation-free modelling of
dynamical systems that is based on this kind of approxima-
tion.

Definition 5. Let V = (W,F ,G) and V ′ = (W ′,F ,G)
be vocabularies such that, for every w ∈ W ′, there is
a term τw in the logic of V with the same arity as w.
Let I = (S, F ) and I ′ = (S ′, F ′) be individual-based
models over vocabularies V and V ′ respectively. Suppose
there is a map α : S → S ′ such that for every A ∈ S,
if A′ = α(A), then A′ ⊆ A, and if w ∈ W ′ has arity
(i, j), then for all a1, . . . , ai in A′ and all r1, . . . , rj ∈ R,
wA′

(a1, . . . , ai; r1, . . . , rj) = τA
w (a1, . . . , ai; r1, . . . , rj).

We say that α is an abstraction function and I ′ is an ab-
straction of I via α.

We now give a characterization of the accuracy of an ab-
straction.

Definition 6. Using the notation of Definition 5, for A ∈ S,
B ∈ S ′, s ∈ R, and 0 ≤ t ≤ t′, let

GA(a1, . . . , ai; r1, . . . , rj , s, t, t
′) =

Pr
(
τAt′
w (a1, . . . , ai; r1, . . . , rj) ≤ s | At = A

)
and

HB(a1, . . . , ai; r1, . . . , rj , s, t, t
′) =

Pr
(
wBt′ (a1, . . . , ai; r1, . . . , rj) ≤ s | Bt = B

)
be the conditional cumulative distribution
functions of τ

At′
w (a1, . . . , ai; r1, . . . , rj) and

wBt′ (a1, . . . , ai; r1, . . . , rj) respectively.



Let γ ≥ 0 and ε ∈ [0, 1]. For a given state A ∈
S, w ∈ W ′, and times t ≤ t′, we say that I ′ ap-
proximates I with respect to τw with accuracy γ and
confidence ε if for A′ = α(A), all a1, . . . , ai ∈ A′

and r1, . . . , rj , s ∈ R, there exists s′ ∈ R such that
|s − s′| ≤ γ and |GA(a1, . . . , ai; r1, . . . , rj , s, t, t

′) −
HA′

(a1, . . . , ai; r1, . . . , rj , s
′, t, t′)| ≤ 1 − ε.

Note that we do not require that I and I ′ have the same
kind of transitions (continuous or discrete in space or time),
only that t is an integer if either I or I ′ has discrete transi-
tions.

If all of the w ∈ W ′ satisfy Definition 6, then we say that
I ′ approximates I with accuracy γ and confidence ε for the
specified A, t and t′.

A special case of approximation implies a form of
lumpability or probabilistic bisimulation [11] of I. An
equivalence relation ≡ on the states of a Markov process
is a lumping if it respects the transition probabilities. That
is, for any states u and v, u ≡ v implies that for any measur-
able set S of states that is closed under ≡, the probability of
a transition from u to S equals the probability of a transition
from v to S. Thus, if the probability space of I is generated
by the sets {A|τA

w (a1, . . . , ai; r1, . . . , rj) ≤ r}, and I ′ ap-
proximates I with accuracy 0 and confidence 1 for all A, t,
and t′, then the equivalence relation A ≡ B if and only if
α(A) = α(B) is a lumping.

Generally, lumpability is too strict to be useful in prac-
tice. It usually suffices to have an abstraction that approx-
imates the individual-based model with a known degree of
accuracy. A common assumption is that the accuracy of an
abstraction increases relative to the time interval as popu-
lation sizes increase. Further, this condition may hold only
for states in a certain region of the state space. In the fol-
lowing definition, R will denote this region, and for n ∈ N,
Rn = {A ∈ R : |A| = n}.

Definition 7. Let w ∈ W ′ and t ≤ t′. Suppose, for every
γ > 0 and ε ∈ (0, 1), there is N such that if n ≥ N , then
I ′ approximates I with accuracy γ and confidence ε with
respect to τw for all A ∈ Rn. Then we say that I converges
to I ′ with respect to τw for R, t and t′.

If Definition 7 holds for all w ∈ W ′, then we say that I
converges to I ′.

A further common simplification is the assumption that
the dynamics of an individual-based model converges to a
deterministic state-variable model. This is also a special
case of our definition of approximation. If I ′ is a determin-
istic state-variable model with state set S ′ and weight func-
tion symbol set W ′, then for every B ∈ S ′, w ∈ W ′, and
t ≤ t′, there is s ∈ R such that Pr

(
wBt′ = s | Bt = B

)
=

1. Therefore if I ′ approximates I with accuracy γ and con-
fidence ε for a given A ∈ S,

Pr
(∣∣τAt′

w − wBt′
∣∣ < γ | At = A

)
> 2ε − 1.

If I converges to I ′ then for every γ > 0 and ε ∈ (0, 1), for
sufficiently large A ∈ R,

Pr
(∣∣τAt′

w − wBt′
∣∣ < γ | At = A

)
> ε.

The following diagram illustrates the idea behind this
definition.

At
∆t−−−−→ At+∆t

α

� �α

α(At) = Bt
∆t−−−−→ Bt+∆t ≈ α(At+∆t)

If I ′ is a mean-field approximation, then wBt′ =
E
(
τ

At′
w | At = A

)
.

We will investigate the problem of characterizing
individual-based models for which this assumption is valid.

Erban et al. [13] have used an equation-free method to
model chemotaxis and other mechanisms of biological dis-
persal. Their method is applicable in regions of the state
space of an individual-based model where the behavior is
approximated by deterministic evolution equations. It is not
necessary to use or even to know these equations. Instead,
a Monte-Carlo simulation is run for a brief time, and the re-
sults are extrapolated to a much larger time. This can enable
very significant speedups in total simulation time - a factor
of one thousand according to [13]. The method consists of
four steps, as ilustrated below.

At
∆t−−−−→ At+∆t

α−1

� �α

Bt Bt+∆t
T−−−−→ Bt+∆t+T

The flow of the arrows shows the four steps:

1. Given Bt ∈ α(S), choose some At ∈ α−1(Bt).

2. Use a Monte-Carlo simulator to evolve At for time ∆t,
getting At+∆t.

3. Estimate wBt+∆t ≈ τ
At+∆t
w and

∂w

∂t
(t + ∆t) ≈ τ

At+∆t
w − τAt

w

∆t
.

4. Project

wBt+∆t+T ≈ wBt+∆t + T

(
τ

At+∆t
w − τAt

w

∆t

)
.



7 Concentration Bounds

Here, we examine the rate of convergence of a term to
its mean-field approximation. That is, we will estimate
how large an individual-based model must be in order to
give a specified accuracy and confidence for the mean-field
approximation. An estimate of the closeness of a random
variable to its expectation is called a concentration bound.
There are at least two reasons for obtaining tight concen-
tration bounds in individual-based modeling. In general,
they help in estimating the size of a model required for
simulation. More specifically, when an individual-based
model converges to a state-variable model, concentration
bounds can indicate the scale at which approximation by
state-variable model is satisfactory. Since this size can be
modest (on the order of several hundred individuals accord-
ing to Gillespie [16]), lowering the bounds on population
sizes needed for accurate simulation is more than just an
academic exercise.

There are a variety of methods for obtaining concentra-
tion bounds. Classical methods such as Chebyshev’s in-
equality and the Central Limit Theorem can be used, but
they do not give very good bounds on the size needed to
guarantee desired accuracy and confidence. Much smaller
bounds can be derived from exponential tail bounds. We
will use one that is based on Azuma’s inequality for mar-
tingales [2]. We assume that the state space is discrete
and the Markov chain is homogeneous. We will give pre-
cise conditions that justify the use of mean-field approxima-
tions. These conditions are quite restrictive, but are satisfied
by many systems studied in biology and physics, including
some of those described in Section 2. We do not expect that
these conditions are necessary, but we will give examples of
individual-based models that fail the conditions and cannot
be approximated by state-variable models. We begin with
the case when time is discrete.

7.1 Discrete Time

For simplicity, we will consider only one term τ , but we
could generalize our results to a finite sequence of terms.
Also, since the free and numeric variables of τ are fixed, we
omit them. For t = 0, 1, . . . , T , let

Zt = τAt and

Yt = E (ZT |A0, . . . ,At) ,

the expectation of ZT , conditioned on the first t + 1 states
A0, . . . ,At. Then

Y0 = E (ZT ) and

YT = ZT .

The sequence of random variables Y0, . . . , YT is a mar-
tingale with respect to the sequence A0, . . . ,AT . That is,
for every t = 0, . . . , T − 1,

E(Yt+1|A0, . . . ,At) = Yt.

In order to apply Azuma’s inequality, we need to prove
that the martingale Y0, . . . , YT satisfies a Lipschitz or
bounded differences condition. That is, we need to show
that |Yt+1−Yt| is much smaller than T for t = 0, . . . , T−1.
Indeed, any method for proving a concentration bound re-
quires some bound on the volatility of the sequence. We will
state some conditions that are satisfied by many of the best-
known examples of individual-based models, which imply a
Lipschitz condition. Our conditions are smoothness proper-
ties on the update probability function f (A,A′) and the term
τ that we wish to approximate. Essentially, they say that
updates change the state by a small amount, and a small
change in a state A results in a small change in the proba-
bility distribution of its next state.

Definition 8. Let I = (S, f) be an individual-based model
where f is its update probability function. For any states A,

B ∈ S, and d ∈ N, we put A
d→ B if there is a sequence

A = A0, . . . ,Ad = B such that f (Ai,Ai+1) > 0 for i =
0, . . . , d − 1.

We say f has bounded support if |τB−τA| ≤ c for some

c ∈ R and all A,B ∈ S such that A
1→ B.

For r ∈ R, let

qA(r) =
∑{

f (A,B)
∣∣∣ τB − τA = r

}
Let ε : N → R such that limn→∞ ε(n) = 0. We say that

f is ε-smooth at A if the following holds. For all B such
that |τB − τA| ≤ c, and all r ∈ R,

|qB(r) − qA(r)| ≤ qA(r)ε(|A|).
Let

R = {A ∈ S : f is ε-smooth at B

for all B such that A
t→ B, 0 ≤ t < T}.

For the remainder of this section, we assume the bound-
edness and smoothness conditions are satisfied.

Lemma 1. Let d, t ∈ N such that d + t ≤ T . Then for

all states A ∈ R and B such that A
d→ B, letting β =

E(Z1 − Z0|A0 = A),

|E(Zt − Z0|A0 = B) − βt| ≤ |β|t(dt + t2)ε(|A|).

Corollary 1. For t = 1, . . . , T , |Yt − Yt−1| ≤ |β|(1 +
O(T 3ε(n))) + |Zt − Zt−1|.



Corollary 2. For any T , for sufficiently large A ∈ R, |Yt −
Yt−1| ≤ 3c.

Theorem 1. For any γ ∈ (0,∞) and ε ∈ [0, 1), for suffi-
ciently large T and A ∈ R,

Pr (|ZT − E (ZT )| < γT ) > ε.

Corollary 3. For any γ ∈ (0,∞) and ε ∈ [0, 1), for suffi-
ciently large T and A ∈ R,

Pr(|ZT − Z0 − Tβ| < γT ) > ε.

Theorem 2. Assume I and τ satisfy Definition 8. There
is a deterministic state-variable model I ′ such that for any
γ ∈ (0,∞) and ε ∈ [0, 1), for sufficiently large T and
A ∈ R, I can be approximated by I ′ with accuracy γT
and confidence ε with respect to τ .

7.2 Continuous Time

We now consider discrete space and continuous time
individual-based models. Let g(A,A′) be the transition rate
function. That is, for any small time interval dt, f (A,A′)(dt)
is approximately g(A,A′)dt. The definitions of qA(r) and
smoothness (Definition 8) are now rephrased with f re-
placed by g. The ideas of Section 7.1 apply here, with the
unit time interval and β replaced by dt and βdt respectively.
Theorems 1 and 2 still hold in this new context, with the ac-
curacy factor replaced by γTdt. In addition, we have

Corollary 4. Assume I and τ satisfy Definition 8. Then
I converges to a continuous state-variable model I ′ with
transitions defined by a system of ordinary differential equa-
tions.

Proof. Let ∆t be a time interval which can be arbitrarily
small. For a given T , let dt = ∆t/T . We regard I as
a discrete time individual-based model with transition time
interval dt. By Theorem 2, taking T and A large enough,
we can get any desired degree of accuracy and confindence.
That is,

∣∣τAT − τA0 − Tβdt
∣∣ < γTdt, or∣∣∣∣∆w

∆t
− β

∣∣∣∣ < γ,

which implies

dw

dt
= β.

8 Locality

In this section, we describe a canonical form for terms. It
will be used in the following section to characterize condi-
tions when an individual-based model can be approximated
by a deterministic state-variable model.

First-order properties of structures are often said to be
“local” in the following sense. A model-theoretic definition
of distance is given, and it is shown that the truth of any
first-order formula is determined by the neighborhoods of
bounded radius in the model. This locality principle was
used by Gaifman [15] and Hanf [20] to establish limitations
on the expressive power of first-order logic. It has been ex-
tended to more powerful logics such as counting logics [23].
Of course, this notion is useful only if the neighborhoods of
bounded radius are small compared to the size of the model.
In the extreme opposite case, all elements are within a dis-
tance of 1 of each other, and a neighborhood of radius 1 is
the whole model.

We will extend this notion of distance to metafinite mod-
els and give a canonical form for all terms in the logic of
metafinite models: every term is equivalent to a multiset
operation applied to the multiset of bounded neighborhoods
in the model.

Let A = 〈A,WA,F ,G〉 be a metafinite model. The
Gaifman graph of A is the symmetric graph 〈A,E〉, where

E = {(a, b) ∈ A2| for some k − ary w ∈ W
and a1, . . . , ak ∈ A,

a, b ∈ {a1, . . . , ak} and wA(a1, . . . , ak) �= undef}.
This is an obvious generalization of the Gaifman graph of a
relational structure where the relations have been replaced
by characteristic functions. Letting γA(a, b) be the length
of the shortest path in the Gaifman graph between a, b ∈ A,
since the graph is symmetric, γ is a metric on A.

For k ∈ N, a1, . . . , ak ∈ A and r ∈ R, let

NA
r (a1, . . . , ak) =

{b ∈ A|γ(ai, b) ≤ r for some i = 1, . . . , k},
and let NA

r (a1, . . . , ak) be the metafinite model with uni-
verse NA

r (a1, . . . , ak), weight functions of WA restricted
to NA

r (a1, . . . , ak) and additional unary weight functions
vA
1 , . . . , vA

k , where

vA
i (ai) = 1, and

vA
i (b) = 0 for b �= ai.

We put [NA
r (a1, . . . , ak)] for the isomorphism type of

NA
r (a1, . . . , ak).

Definition 9. Let S be the set of isomorphism types
[NA

r (a1, . . . , ak)], taken over all k ∈ N, metafinite models



A over our vocabulary, and a1, . . . , ak ∈ A. A neighbor-
hood multiset operation is a function

Γ: fm(S) → R.

Definition 10. The depth of a term is its maximum nest-
ing of multiset operators. We define this more precisely by
induction on the height of the term’s parse tree. A term
w(x1, . . . , xk) where w ∈ W has depth 0. If the maxi-
mum depth of τ1, . . . , τm is d and f ∈ F is m-ary, then
f(τ1, . . . , τm) has depth d. If τ has depth d and Γ ∈ G,
then (Γyτ) has depth d + 1.

We will use the function ρ(d) = (3d − 1)/2. The key
property of this function is ρ(d + 1) = 3ρ(d) + 1.

The canonical form described in the next lemma essen-
tially says that the value of a term is determined by the num-
bers of isomorphism classes that occur as bounded neigh-
borhoods in the metafinite model.

Lemma 2. Every term τ(x1, . . . , xk) of depth d is equiva-
lent to a term
(ΓyNρ(d)(x1, . . . , xk, y)), where Γ is a neighborhood mul-
tiset operator. That is, for every model A and every
a1, . . . , ak ∈ A,

τA(a1, . . . , ak) = Γ({|[NA
ρ(d)(a1, . . . , ak, b)]|b ∈ A|}).

9 Applications to Bounded Degree Structures

The first step in abstracting an individual-based model to
a state-variable model is finding a finite set of terms whose
values characterize the states of the individual-based model.
In the simplest cases, e. g. models of chemical kinetics,
this is easy: the population sizes of the various species de-
termine the dynamics of the system. In this section, we
generalize this idea to a class of individual-based models
that can be characterized by population sizes of bounded
neighborhoods of the individuals. This class is a general-
ization of the class of bounded degree structures. We give
sufficient conditions for approximation by a state-variable
model. We also give some biologically motivated examples
of individual-based models that violate these conditions and
cannot be approximated by any state-variable model. Our
methods are based on ideas that have been applied to the
analysis of expressivity of query languages. See e. g.
Libkin [23].

Let I = (S, f) be a discrete space individual-based
model. If there are only finitely many isomorphism types
among {NA

1 (a) : A ∈ S and a ∈ A}, then we say that S
and I are of bounded degree. This is a generalization of the
graph-theoretic notion of bounded degree. It implies that
for any r ∈ N, there are only finitely many isomorphism
types among {NA

r (a) : A ∈ S and a ∈ A}.

9.1 Approximation of Individual-Based
Models by Deterministic State-
Variable models

Using our canonical representation of terms, we will give
characterizations of individual-based models of bounded
degree with regions that can be approximated by determin-
istic state-variable models. Some of the best known exam-
ples of individual-based models satisfy these conditions.

Let τ be a term in the logic of I and d be the maximum
of the depths of f and τ . Since I is of bounded degree, there
are only finitely many, say k, isomorphism classes among
the neighborhoods of radius d in I. Let S ′ = N

k, and for
every A ∈ S, let α(A) = (n1, . . . , nk), where ni is the
number of neighborhoods in A belonging to the ith isomor-
phism class. By Lemma 2, there are functions Γ: N

k → R

and ∆: N
2k → R such that for all A ∈ S,

τA = Γ(α(A)),

and for all A′ ∈ S,

f (A,A′) = ∆(α(A), α(A′)).

Applying Lemma 2, Theorem 2, and Corollary 4, we have

Theorem 3. Assume Γ and ∆ satisfy the following Lip-
schitz condition. There is a constant c such that for any
n1, . . . , nk, n′

1, . . . , n
′
k ∈ N,

∆(n1, . . . , nk, n′
1, . . . , n

′
k) > 0 =⇒

|Γ(n1, . . . , nk) − Γ(n′
1, . . . , n

′
k)| ≤ c.

Let R ⊆ S be any region in which I satisfies the smooth-
ness condition.

If I is a discrete time individual-based model, there is a
deterministic state-variable model I ′ such that for any γ ∈
(0,∞) and ε ∈ [0, 1), for sufficiently large T and A, I can
be approximated by I ′ with accuracy γT and confidence ε
with respect to τ .

If I is continuous, it converges to a continuous determin-
istic state-variable model whose transitions are defined by
a system of ordinary differential equations.

Of the examples in Section 2, the models of chemical
kinetics satisfy the conditions of Theorem 3, for regions
where the population sizes are fixed or increase without
bound. This also holds for the models with spatial infor-
mation where spatial relations are represented by a lattice
of bounded degree. Similar reasoning applies to the ecolog-
ical models. The trophic models that do not include spatial
information satisfy the theorem, as do the patch-occupancy
models [22] provided each patch has a finite number of
states. The individuals in the behavioral models do not have



bounded degree because of their spatial attributes, and the
theorem does not apply.

In general, the graph growth models do not satisfy the
conditions of Theorem 3 because they have unbounded de-
gree. However, in some cases, e.g., [3, 6, 21], some param-
eter settings result in graphs with finite average degree, and
regions containing such graphs satisfy the theorem.

Dalvi, Miklau, and Suciu [8, 9] have studied the logic
of random databases where the average number of edges is
bounded. Although they do not consider the random evo-
lution of databases, their probability distributions generate
structures of bounded degree. Since database operations of-
ten satisfy the conditions of Theorem 3, this may be a topic
worth exploring.

9.2 Individual-Based Models That Can-
not be Approximated by State-
Variable models

If a bounded-degree individual-based model can be ap-
proximated by a state-variable model within some region,
then roughly speaking, the states in the region are described
by a finite set of terms in a counting logic. It is well-known
from database theory that counting logics cannot define
certain topological properties such as connectedness [23].
Thus it should not be surprising that there are individual-
based models that cannot be approximated by any state-
variable model in certain regions. In fact, the seeming in-
ability of existing state-variable models to capture impor-
tant behavioral features of systems is one of the main rea-
sons for the growing acceptance of individual-based mod-
els. We give two examples of individual-based models that
cannot be approximated by state-variable models in certain
nontrivial regions. They are simplified models of funda-
mental aspects of molecular biology.

The first example illustrates the use of a membrane to
control molecular interactions. We will model this in the
style of StochSim. The universe of each state consists of n2

individuals, for n ∈ N, which we will call sites, arranged in
a square lattice. Each site is labelled with a symbol indicat-
ing its state:

blank if vacant

C if occupied by a molecule of species C

D if occupied by a molecule of species D

E if occupied by a molecule of species E

M if occupied by a membrane molecule
For an individual a, we put l(a) for its label. Time is dis-

crete, and transitions are determined locally. At each step,
a site is randomly selected. If the site is labelled C, D, or E,
and the four nearest neighbors are vacant, then the symbol

C, D, or E, can be shifted to one of these neighbors or re-
main in place, with equal probabilities for all choices. If the
site is labelled C, and at least one of its four nearest neigh-
bors is labelled D, then one of them is randomly chosen and
changed to blank, and the C is changed to E. All other pos-
sible neighborhoods of the selected site remain the same. In
particular, sites constituting the membrane are fixed. This
is intended to be a simple model of reaction-diffusion con-
trolled by a membrane. Let τ be a term whose interpretation
is the number of molecules of type E.

Let R be any region satisfying the following. There are
arbitrarily large states A and B such that

• |A| = |B|.
• |{a ∈ A : l(a) = C}| = |{a ∈ B : l(a) = C}| =

Θ(n2).

• |{a ∈ A : l(a) = D}| = |{a ∈ B : l(a) = D}| =
Θ(n2).

• |{a ∈ A : l(a) = M}| = |{a ∈ B : l(a) = M}| =
Θ(n2).

• |{a ∈ A : l(a) = E}| = |{a ∈ B : l(a) = E}| = 0.

• For all a, b ∈ A, if l(a) �= blank and l(b) �= blank, then
γA(a, b) > d, where d is determined below.

• For all a, b ∈ B, if l(a) �= blank and l(b) �= blank, then
γB(a, b) > d.

• The M sites in both A and B divide their universes into
two parts called left and right.

• All a ∈ A such that l(a) = C or l(b) = D are in the
left part of A.

• All a ∈ B such that l(a) = C are in the left part of B,
and all a ∈ B such that l(a) = D are in the right part
of B.

Suppose the above individual-based model I is ab-
stracted via α to a state-variable model I ′. Let V =
(W,F ,G) and V ′ = (W ′,F ′,G′) be their respective vo-
cabularies. Then for every v ∈ W ′, there is a term τv in the
logic of V that corresponds to v.

We will show that I does not converge to I ′ with respect
to τ for any sufficiently large time interval T . Let d be
the maximum depth of all the terms τv for v ∈ W ′. If
we assume that I converges to I ′ with respect to τ , then
τ = τw for some w ∈ W ′. From the theory of random
walks, with positive probability, τAT = Θ(T ). By Lemma
2, τA = τB. But τB will always remain 0. Therefore our
assumption leads to a contradiction.

Our second example is a simplified model of transcrip-
tion, the process where one chain of molecules (DNA)



serves as a template for generating another chain (mRNA).
The template is read from beginning to end by an enzyme
called RNA polymerase (RNAP), which outputs the mRNA
chain one link at a time, in much the same way that a fi-
nite state transducer generates an output string from an in-
put string. Translation, the process where an mRNA chain
serves as a template for the production of a protein chain, is
conceptually similar, but three links (amino acids) in the
protein chain are generated for every link in the mRNA
chain, and a molecular complex known as a ribosome plays
the role of the RNAP. Since our simple version of transcrip-
tion cannot be modelled by a state-variable model, this neg-
ative result also holds for these more complicated systems.

The states of our individual-based model are directed la-
belled graphs whose components are chains, the transcrip-
tion enzymes, and the chain/enzyme complexes. Template
chains are of the form SA. . . AF, where S and F are noncod-
ing links signifying the start and finish of the chain. There
are also defective template chains that lack either an S or
an F. Output chains are of the form B. . . B. A transcription
enzyme is a vertex labelled R. Initially, all R vertices are
isolated, and there are no B vertices, but there may be tem-
plate chains (possibly defective).

At each step, a vertex is randomly selected. If it is an
R vertex of outdegree 0, then a second vertex is randomly
selected. If the second is an S of indegree 0, then an edge
is added from the R to the S. If the first vertex is an R with
an edge to an S, the R breaks its attachment to the S and
reattaches to the first A in the template chain. This begins
the process of concatenating a B to the end of the growing
output chain and moving the attachment of the R to the next
A molecule. This is repeated each time the R is selected
until the F link is reached, and then the R and the completed
output chain are released. If a template chain is defective,
then it cannot generate an output chain, either because in the
absence of the S, the process cannot start, or in the absence
of the F, the process cannot finish.

Let τ be the number of B vertices of outdegree 0. Since
there are no B vertices initially, the value of τ at some time
T is the number of output chains that have been generated
up to that time, which can be positive only if there are non-
defective template chains at time 0. It can be shown that
the existence of non-defective template chains is not ex-
pressible in our term logic. The proof is similar to that
of the well-known fact that SQL cannot express the prop-
erty of connectedness in graphs [23]. The proof that our
individual-based model cannot be approximated by a state-
variable model is based on the same ideas.

Assuming this individual-based model is abstracted via
α to a state-variable model let d be the maximum depth of
all the terms that correspond to weight functions in the state-
variable model. Let A have the following components:

n chains SA2d

n chains A2dF

n chains A2d

n chains SA2dF.
Let B have 2n components SA2d and A2dF. Again by

Lemma 2, τA = τB, but with positive probability, τAT =
Θ(T ), while τBT = 0.

10 Conclusions and Open Problems

It should be evident that discrete, stochastic interactions
are an essential feature of many dynamical systems. As
related by Wilkinson [28], the original version of SBML
(Systems Biology Markup Language), which is intended
to be the standard for describing complex biochemical re-
action systems, was designed for continuous determinis-
tic modelling. Later versions that included the capability
of individual-based modelling have had limited acceptance.
Perhaps it will be necessary to include this capability as a
basic feature of future modelling and simulation languages.

Most software tools in systems biology are aids to spec-
ifying and simulating biochemical networks. A further
step, which is already underway, is to develop verification
tools similar to those used in software and hardware design
[7, 10, 27]. A temporal logic for individual-based mod-
els could be developed for the purpose of model checking.
This would also require developing methods for approxi-
mating individual-based models with finite state systems.
The methods of Desharnais et al. [12] may be useful here.

We have mentioned the models of very sparse random
databases. To our knowledge, the rules for evolving such
databases have not been investigated. Characterizing these
rules and extending our results to evolving databases may
have applications to very large databases.

Since our results apply only to structures of bounded de-
gree, an obvious problem is to extend them to graph growth
models and models with spatial information that have un-
bounded degree. Models that include spatial information,
e. g. reaction-diffusion systems, often use terms with nu-
meric variables. They are approximated by partial differen-
tial equations. Can Theorem 3 be extended to this class of
models?

Theorems 2 and 3 apply to regions of state space where
the sizes of the neighborhod isomorphism classes are fixed
or increase without bound. The fluctuations of small popu-
lations of certain molecules can have a strong effect on the
behavior of cells. Arkin et al. [1] have modelled genetic net-
works that include some of these effects. Perhaps some kind
of hybrid system could approximate these systems. State
space would be partitioned into regions determined by those
individuals that are present in small numbers. Changes in
these numbers would be modelled by discrete transitions to



other regions, and changes to the sizes of the large popula-
tions would be approximated by state-variable changes, as
in Theorems 2 and 3. Important questions about stability—
when is the system resistant to small perturbations of its
state, and when can small perturbations lead to bifurcations
in its behavior—could be formalized and studied.

As pointed out by Firth and Bray [14], if the number
of conformational states of the molecules is very large, then
describing the possible reactions with a state-variable model
becomes impractical. Theorem 3 gives sufficient conditions
for approximating an individual-based model with a state-
variable model, but it does not address the question of how
many variables are needed by the state-variable model. Can
this number be reduced, or are there individual-based mod-
els for which this is optimal?

Our approximations result in deterministic state-variable
models. Are there individual-based models that can be ap-
proximated by nondeterministic state-variable models but
not deterministic ones? In particular, can they be approxi-
mated by stochastic differential equations but not determin-
istic differential equations?
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