
Comment on “On Discriminative vs. Generative Classifiers:

A Comparison of Logistic Regression and Naive Bayes”

Jing-Hao Xue (jinghao@stats.gla.ac.uk) and D. Michael

Titterington (mike@stats.gla.ac.uk)

Department of Statistics, University of Glasgow, Glasgow G12 8QQ, UK

Abstract. Comparison of generative and discriminative classifiers is an ever-

lasting topic. As an important contribution to this topic, based on their theoretical

and empirical comparisons between the näıve Bayes classifier and linear logistic

regression, Ref. [6] claimed that there exist two distinct regimes of performance

between the generative and discriminative classifiers with regard to the training-

set size. In this paper, our empirical and simulation studies, as a complement of

their work, however, suggest that the existence of the two distinct regimes may not

be so reliable. In addition, for real world datasets, so far there is no theoretically

correct, general criterion for choosing between the discriminative and the generative

approaches to classification of an observation x into a class y; the choice depends

on the relative confidence we have in the correctness of the specification of either

p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why

Ref. [3] and [7] prefer normal-based linear discriminant analysis (LDA) when no

model mis-specification occurs but other empirical studies may prefer linear logistic

regression instead. Furthermore, we suggest that pairing of either LDA assuming a

common diagonal covariance matrix (LDA-Λ) or the näıve Bayes classifier and linear

logistic regression may not be perfect, and hence it may not be reliable for any claim

that was derived from the comparison between LDA-Λ or the näıve Bayes classifier

and linear logistic regression to be generalised to all generative and discriminative

classifiers.
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Abbreviations: LDA/QDA – Normal-based Linear/Quadratic Discriminant Anal-

ysis; AIC – Akaike Information Criterion; GAM – Generalised Additive Model

1. Introduction

Classification is a ubiquitous problem tackled in statistics, machine

learning, pattern recognition and data mining [4].

Generative classifiers, also termed the sampling paradigm [2], such

as normal-based discriminant analysis and the näıve Bayes classifier,

model the joint distribution p(x, y) of the measured features x and the

class labels y factorised in the form p(x|y)p(y), and learn the model

parameters through maximisation of the likelihood given by p(x|y)p(y).

Discriminative classifiers, also termed the diagnostic paradigm [2],

such as logistic regression, model the conditional distribution p(y|x)

of the class labels given the features, and learn the model parameters

through maximising the conditional likelihood based on p(y|x).

Comparison of generative and discriminative classifiers is an ever-

lasting topic [3,6,7,10,12]. Results from such comparisons, in particular

in terms of misclassification error rates, can not only guide the selection

of an appropriate classifier, either generative or discriminative, but also

shed light on how to exploit the best of both worlds of classifiers, and

thus has been attracting long-standing interest from both researchers

and practitioners.
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An important contribution to this topic is from Ref. [6], present-

ing some theoretical and empirical comparisons between linear logistic

regression and the näıve Bayes classifier.

The results in [6] suggested that, between the two classifiers, there

were two distinct regimes of discriminant performance with respect to

the training-set size. More precisely, they proposed that the discrimi-

native classifier had lower asymptotic error rate while the generative

classifier may approach its (higher) asymptotic error rate much faster.

In other words, the discriminative classifier performs better with larger

training sets while the generative classifier does better with smaller

training sets.

However, Ref. [3] and [7] presented some theoretical and simulation

studies showing that normal-based linear discriminant analysis (LDA),

a generative classifier, has better asymptotic efficiency (i.e., performs

better with larger training sets) when no model mis-specification oc-

curs. Our empirical and simulation studies, as presented in this paper,

suggest that it may not be so reliable to claim such an existence of

the two distinct regimes. Furthermore, we suggest that pairing of ei-

ther LDA assuming a common diagonal covariance matrix Λ (denoted

by LDA-Λ hereafter) or the näıve Bayes classifier and linear logistic

regression may not be perfect, and hence it may not be reliable for any

claim that was derived from the comparison between LDA-Λ or the

näıve Bayes classifier and linear logistic regression to be generalised to

all generative and discriminative classifiers.
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2. Setting for Comparison

2.1. Setting used by Ref. [6]

The setting for the theoretical proof and empirical evidence in [6] in-

cludes a binary class label y, e.g., y ∈ {1, 2}, a p-dimensional feature

vector x and the assumption of conditional independence amongst x|y,

the features within a class.

The näıve Bayes classifier, a generative classifier defined as in equa-

tion (4) in Section 2.2, assumes statistically independent features x

within classes y and thus diagonal covariance matrices within classes.

By contrast, linear logistic regression, a discriminative classifier defined

as in equation (1), may not assume such conditional independence

of the components of x. Both classifiers can be applied to discrete,

continuous or mixed-valued features x.

In the case of discrete features x, each feature xi, i = 1, . . . , p, inde-

pendently of other features within x, is assumed within a class to be a

binomial variable such that its value xi ∈ {0, 1}. However, this may not

guarantee the discriminant function λ(α) = log{p(y = 1|x)/p(y = 2|x)}
of the näıve Bayes classifier, where α is a parameter vector, to be linear.

As linear logistic regression uses a linear discriminant function, the

näıve Bayes classifier may not be a partner of linear logistic regression

as a generative-discriminative pair (see Section 2.2 for more discussion

about this pairing).

In the case of continuous features x, x|y is assumed to follow Gaus-

sian distributions with equal covariance matrices across the two classes,

i.e., Σ1 = Σ2 and, in view of the conditional independence assumption,
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both covariance matrices are equal to a diagonal matrix Λ. Some alge-

bra shows that, under the assumption of a common diagonal covariance

matrix Λ for normally distributed data, the näıve Bayes method is

equivalent to LDA-Λ (defined as equation (2)), and, under the assump-

tion of unequal diagonal within-class covariance matrices, it is equiva-

lent to quadratic discriminant analysis. For the experiments in [6], all

of the observed values of the features are rescaled so that xi ∈ [0, 1].

Based on such a setting, Ref. [6] compared two so-called generative-

discriminative pairs: one is for the continuous case, comparing LDA

assuming a common diagonal covariance matrix (LDA-Λ) vs. linear

logistic regression, and the other is for the discrete case, comparing the

näıve Bayes classifier vs. linear logistic regression. We shall next make

some comments on these pairings.

2.2. On the Pairing of LDA-Λ/Näıve Bayes and Linear

Logistic Regression/GAM

As mentioned in Section 2.1, first, the näıve Bayes classifier cannot

guarantee the linear form of the discriminant function λ(α) = log{p(y = 1|x)/p(y = 2|x)},
and, secondly, the conditional independence amongst the multiple fea-

tures within a class is a necessary condition for the validity of the

näıve Bayes classifier and LDA-Λ but not for linear logistic regression,

although in the latter the discriminant function λ(α) is modelled as

a linear combination of separate features. Therefore, the comparison

between a generative-discriminative pair of LDA-Λ/näıve Bayes classi-

fier vs. linear logistic regression should be interpreted with caution, in

particular when the data do not support the assumption of conditional
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independence of x|y that may shed unfavourable light on the simplified

generative version, LDA-Λ and the näıve Bayes classifier.

In this section, we will illustrate two such generative-discriminative

pairs: one is LDA-Λ vs. linear logistic regression [6], and the other is the

näıve Bayes classifier vs. the generalised additive model (GAM) [10].

2.2.1. LDA-Λ vs. Linear Logistic Regression

Consider a feature vector x = (x1, . . . , xp)
T and a binary class label

y = 1, 2.

Linear logistic regression, one of the discriminative classifiers that

do not assume any distribution p(x|y) of the data, is modelled directly

with a linear discriminant function as

λdis(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+ log

p(x|y = 1)

p(x|y = 2)
= β0 + βTx , (1)

where p(y = k) = πk, αT = (β0, β
T ) and β is a parameter vector of

p elements. By “linear”, we mean a scalar-valued function of a linear

combination of the features x1, . . . , xp of an observed feature vector x.

By contrast, LDA-Λ, one of the generative classifiers, assumes that

the data arise from two p-variate normal distributions with different

means but the same diagonal covariance matrix such that (x|y =

k; θ) ∼ N (µk,Λ), k = 1, 2, where θ = (µk,Λ); this implies an as-

sumption of conditional independence between any two features xi|y
and xj |y, i 6= j, within a class. The density function of (x|y = k; θ) can

be written as

p(x|y = k; θ) =
{

eµT
k

Λ−1
x

}

{

1
√

(2π)p|Λ|e
− 1

2
µT

k
Λ−1µk

}

{

e−
1
2
x

T Λ−1
x

}

,
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which leads to a linear discriminant function,

λgen(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+ log

A(θ1, η)

A(θ2, η)
+ (θ1 − θ2)

T x , (2)

where θk = µT
k Λ−1, η = Λ−1 and A(θk, η) = 1√

(2π)p|Λ|
e−

1
2
µT

k
Λ−1µk .

Similarly, by assuming that the data arise from two p-variate normal

distributions with different means but the same full covariance matrix

such that (x|y = k; θ) ∼ N (µk,Σ), k = 1, 2, we can obtain the same

formula as λgen(α) but with θk = µT
k Σ−1, η = Σ−1 and A(θk, η) =

1√
(2π)p|Σ|

e−
1
2
µT

k
Σ−1µk , which leads to the linear discriminant function

of LDA with a common full covariance matrix Σ (denoted by LDA-Σ

hereafter). Therefore, we could rewrite θ as θ = (θk, η), where θk is

a class-dependent parameter vector while η is a common parameter

vector across the classes.

It is clear that the assumption of conditional independence amongst

the features within a class is not a necessary condition for a generative

classifier to attain a linear λgen(α). In fact, as pointed out by [7], if the

feature vector x follows a multivariate exponential family distribution

with the density or probability mass function within a class being

p(x|y = k, θk) = eθT
k
xA(θk, η)h(x, η), k = 1, 2 ,

the generative classifiers will attain a linear λgen(α).

2.2.2. Näıve Bayes vs. Generalised Additive Model (GAM)

As with logistic regression, a GAM does not assume any distribution

p(x|y) for the data; it is modelled directly with a discriminant function

that is a sum of p functions f(xi), i = 1, . . . , p, of the p features xi
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separately [10]; that is

λdis(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+

p
∑

i=1

f(xi) . (3)

Meanwhile, along with the assumption of the distribution of (x|y),

a fundamental assumption underlying the näıve Bayes classifier is that

of the conditional independence amongst the p features within a class,

so that the joint probability is p(x|y) =
∏p

i=1 p(xi|y). It follows that

the discriminant function λ(α) is

λgen(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+

p
∑

i=1

log
p(xi|y = 1)

p(xi|y = 2)
. (4)

It is clear, as pointed out by [10], that the näıve Bayes classifier is a

specialised case of a GAM, with f(xi) = log{p(xi|y = 1)/p(xi|y = 2)}.
Furthermore, GAMs may not necessarily assume conditional indepen-

dence.

One sufficient condition that leads to another specialised case of a

GAM (we call it Q-GAM) is that p(x|y) = q(x)
∏p

i=1 q(xi|y), where q(x)

is common across the classes but cannot be further factorised into a

product of functions of individual features as
∏p

i=1 q(xi). In such a case,

the assumption of conditional independence between xi|y and xj |y,

i 6= j, is invalid but we still have f(xi) = log{q(xi|y = 1)/q(xi|y = 2)},
where q(xi|y) is different from the marginal probability p(xi|y) that is

used by the näıve Bayes classifier.
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2.2.3. Summary

First, the conditional independence amongst the features within a class

is a necessary condition for the näıve Bayes classifier and LDA-Λ, but

it is not a necessary condition for linear logistic regression. There-

fore, the generative-discriminative pair of LDA with a common full

covariance matrix Σ (LDA-Σ) vs. linear logistic regression also merits

investigation.

Secondly, given the parity between λgen(α) and λdis(α) and thus

that, between two pairs, LDA-Σ vs. linear logistic regression and Q-

GAM vs. GAM in terms of classification, neither classifier assumes

conditional independence of x|y amongst the features within a class,

which is an elementary assumption underlying LDA-Λ and the näıve

Bayes classifier. Therefore, it may not be reliable for any claim that

is derived from the comparison between LDA-Λ or the näıve Bayes

classifier and linear logistic regression to be generalised to all generative

and discriminative classifiers.

Thirdly, a comparison of quadratic normal discriminant analysis

(QDA) with unequal diagonal matrices Λ1 and Λ2 (denoted by QDA-

Λg hereafter) and unequal full covariance matrices Σ1 and Σ2 (denoted

by QDA-Σg hereafter) with quadratic logistic regression may provide

an interesting extension of the work of [6].

2.3. Our implementation

Ref. [6] reported experimental results on 15 real-world datasets, 8 with

only continuous and binary features and 7 with only discrete features,

from the UCI machine learning repository [1]; this repository stores
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more than 100 datasets contributed and widely used by the machine

learning community, as a benchmark for empirical studies of machine

learning approaches. As pointed out in [6], there were a few cases

(2 out of 8 continuous cases and 4 out of 7 discrete cases) that did

not support the better asymptotic performance of the discriminative

classifier, primarily because of the lack of sufficiently large training

sets. However, it is known that the performance of a classifier varies to

some extent with the features selected and a generally-valid empirical

evaluation of classifiers is always an important but difficult problem [4]

In this context, we first replicate experiments on these 15 datasets,

with and without stepwise variable selection being performed on the

full linear logistic regression model using all the observations of each

dataset. In the stepwise variable selection process, the decision to in-

clude or exclude a variable is based on the calculation of the Akaike

information criterion (AIC). Furthermore, in the 8 continuous cases,

both LDA-Λ and LDA-Σ are compared with linear logistic regression.

Then we will extend the comparison to between QDA and quadratic

logistic regression for the 8 continuous UCI datasets and finally to

simulated continuous datasets.

The implementations in R (http://www.r-project.org/) of LDA and

QDA are rewritten from a Matlab function cda for classical linear and

quadratic discriminant analysis [13]. Logistic regression is implemented

by an R function glm from a standard package stats in R, and the näıve

Bayes classifier is implemented by an R function naiveBayes from a

contributed package e1071 for R.

In addition, similarly to what was done by [6], for each sampled

training-set size m, we perform 1000 random splits of each dataset into
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a training set of size m and a test set of size N − m, where N is the

number of observations in the whole dataset, and report the average of

the misclassification error rates over these 1000 test sets. The training

set is required to have at least 1 observation from each of the two classes,

and, for discrete datasets, to have all the levels of the features presented

by the training observations, otherwise the prediction for the test set

may be asked to predict on some new levels for which no information

has been provided in the training process.

In order to have all the coefficients of predictor variables in the

model estimated in our implementation of logistic regression by glm, the

number m of training observations should be larger than the number

p̃ of predictor variables, where p̃ = p for the continuous cases if all p

features are used for the linear model. More attention should be paid to

the discrete cases with multinomial features in the model, where more

dummy variables have to be used as the predictor variables, with the

consequence that p̃ could be much larger than p, e.g., p̃ = 3p for the

linear model if all the features have 4 levels. In other words, although

we may report misclassification error rates for logistic regression with

small m, it is not reliable for us to base any general claim on those of

m smaller than p̃, the actual number of predictor variables used by the

logistic regression model.
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3. Linear/Quadratic Discrimination for Empirical Datasets

3.1. Linear Discrimination for Continuous Datasets

For the continuous datasets, as was done by [6], all the multinomial

features are removed so that only continuous and binary features xi

are kept and their values xi are rescaled into [0, 1]. Any observation

with missing features is removed from the datasets, as is any feature

with only a single value for all the observations.

In addition, as Gaussian distributions and equal within-class covari-

ance matrices are assumed for x|y for LDA-Λ and LDA-Σ, testing such

assumptions can help the interpretation of classification performance

of relevant classifiers. Therefore, before carrying out the classification,

we perform the Shapiro-Wilk test for within-class normality for each

feature xi|y [11] and Levene’s test for homogeneity of variance across

the two classes [5]. For the datasets discussed below, the significance

level is set at 0.05, and we observe that null hypotheses of normality

and homogeneity of variance are mostly rejected by the tests at that

significance level.

A brief description of the continuous datasets can be found in Ta-

ble I, which lists, for each dataset, the total number N0 of the ob-

servations, the number N of the observations that we use after the

pre-processing mentioned above, the total number p of continuous or

binary features, the number pAIC of features selected by AIC, the

number pSW of features for which the null hypotheses were rejected by

the Shapiro-Wilk test and the corresponding number pL for Levene’s

test, the indicator 1{2R−Λ} ∈ {1, 0} of whether or not the two regimes
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Table I. Description of continuous datasets.

Dataset N0 N p pAIC pSW pL 1{2R−Λ} 1{2R−Σ}

Pima 768 768 8 7 8 5 1 0

Adult 32561 1000 6 6 6 4 1 1

Boston 506 506 13 10 13 12 1 1

Optdigits 0-1 1125 1125 52 5 52 45 1 1

Optdigits 2-3 1129 1129 57 9 57 37 1 0

Ionosphere 351 351 33 20 33 27 1 1

Liver disorders 345 345 6 6 6 1 1 1

Sonar 208 208 60 37 59 16 1 1

are observed between LDA-Λ and linear logistic regression and the

indicator 1{2R−Σ} ∈ {1, 0} with regard to LDA-Σ. Note that, for some

large datasets such as “Adult” (and “Sick” in Section 3.3), in order to

reduce computational complexity without degrading the validity of the

comparison between the classifiers, we randomly sample observations

with the class prior probability kept unchanged.

Our results are shown in Figure 1. Since with variable selection

by AIC the results conform more to the claim of two regimes made

by [6], we show such results only if they are different from those without

variable selection. Meanwhile, in the figures hereafter we use the same

annotation of the vertical and horizontal axes and the same line type

as those in [6]. For the reason given at the end of Section 2.3, Figure 1

is only drawn for m > p, with the intercept in λ(α) taken into account.

In general, our study of these continuous datasets suggests the fol-

lowing conclusions.

First, in the comparison of LDA-Λ vs. linear logistic regression, the

pattern of our results can be said to be similar to that of [6].
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Figure 1. Plots of misclassification error rate vs. training-set size m (averaged over
1000 random training/test set splits) for the continuous UCI datasets, with regard
to linear discrimination.
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Secondly, the performance of LDA-Σ is worse than that of LDA-Λ

when the training-set size m is small, but better than that of the latter

when m is large.

Thirdly, the performance of LDA-Σ is better than that of linear

logistic regression when m is small, but is more or less comparable

with that of the latter when m is large.

Fourthly, pre-processing with variable selection can reveal the dis-

tinction in performance between generative and discriminative classi-

fiers with fewer training observations.

Therefore, considering LDA-Λ vs. linear logistic regression, there

is strong evidence to support the claim that the discriminative clas-

sifier has lower asymptotic error rate while the generative classifier

may approach its (higher) asymptotic error rate much faster. However,

considering LDA-Σ vs. linear logistic regression, the evidence is not so

strong, although the claim may still be made.

3.2. Quadratic Discrimination On Continuous Datasets

As a natural extension of the comparison between LDA-Λ (with a

common diagonal covariance matrix Λ across the two classes), LDA-Σ

(with a common full covariance matrix Σ) and linear logistic regression

that was presented in Section 3.1, this section presents the comparison

between QDA-Λg (with two unequal diagonal covariance matrices Λ1

and Λ2), QDA-Σg (with two unequal full covariance matrices Σ1 and

Σ2) and quadratic logistic regression.

Using the 8 continuous UCI datasets, all the settings are the same

as those in Section 3.1 except for the following aspects.
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First, considering that in the quadratic logistic regression model

there are p(p − 1)/2 interaction terms between the features in a p-

dimensional feature space, a large number of interactions when the

dimensionality p is high, the model is constrained to contain only the

intercept, the p features and their p squared terms, so as to make the

estimation of the model more feasible and interpretable.

Secondly, for the same reason as explained at the end of Section 1, in

the reported plots of misclassification error rate vs. m without variable

selection, only the results for m > 2p are reliable for comparison since

there are 2p predictor variables in the quadratic logistic regression

model. Hence, only the results for m > 2p are shown in Figure 2.

Thirdly, the datasets are randomly split into training sets and test

sets 100 times rather than 1000 times for each sampled training-set

size m because of the higher computational complexity of the quadratic

models compared with that of the linear models.

In general, our study of these continuous datasets, as shown in

Figure 2, suggests quite similar conclusions to those in Section 3.1,

through substituting QDA-Λg for LDA-Λ, QDA-Σg for LDA-Σ, and

quadratic logistic regression for linear logistic regression.

3.3. Linear Discrimination On Discrete Datasets

For the discrete datasets, as was done by [6], all the continuous fea-

tures are removed and only the discrete features are used. The results

are entitled ‘multinomial’ in the following figures if a dataset includes

multinomial features, and otherwise are entitled ‘binomial’. Meanwhile,
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Figure 2. Plots of misclassification error rate vs. training-set size m (averaged over
100 random training/test set splits) for the continuous UCI datasets, with regard
to quadratic discrimination.
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any observation with missing features is removed from the datasets, as

is any feature with only a single value for all the observations.

Table II. Description of discrete datasets.

Dataset N0 N p p̃ pAIC p̃AIC 1{2R−NB}

Promoters 106 106 57 171 7 21 0

Lymphography 148 142 17 38 10 27 0

Breast cancer 286 277 9 30 4 6 0

Voting recorders 435 232 16 16 11 11 1

Lenses 24 24 4 5 1 1 0

Sick 2800 500 12 15 4 7 1

Adult 32561 1000 5 20 5 20 1

A brief description of the discrete datasets can be found in Table II,

which includes the indicator 1{2R−NB} ∈ {1, 0} of whether or not the

two regimes are observed between the näıve Bayes classifier and linear

logistic regression.

Our results are shown in Figure 3 for some m > p̃ or m > p̃AIC ,

with dummy variables taken into account for the multinomial features.

In general, our study of these discrete datasets suggests that, in the

comparison of the näıve Bayes classifier vs. linear logistic regression,

the pattern of our results can be said to be similar to that of [6].

4. Linear Discrimination On Simulated Datasets

In this section, 16 simulated datasets are used to compare the perfor-

mance of LDA-Λ, LDA-Σ and linear logistic regression. The samples

are simulated from bivariate normal distributions, bivariate Student’s

t-distributions, bivariate log-normal distributions and mixtures of 2
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Figure 3. Plots of misclassification error rate vs. training-set size m (averaged over
1000 random training/test set splits) for the discrete UCI datasets, with regard to
linear discrimination.
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bivariate normal distributions, with 4 datasets for each of these 4

types of distribution. Within each dataset there are 1000 simulated

samples, which are divided equally into 2 classes. The simulations from

the bivariate log-normal distributions and normal mixtures are based

on an R function mvrnorm for simulating from a multivariate normal

distribution from a contributed R package MASS, and the simulation

from the bivariate Student’s t-distribution is implemented by an R

function rmvt from a contributed R package mvtnorm. Differently

from the UCI datasets, the simulated data are not rescaled into the

range [0, 1] and no variable selection is used since the feature space is

only of dimension two.

4.1. Normally Distributed Data

Four simulated datasets are randomly generated from two bivariate

normal distributions, N (µ1,Σ1) and N (µ2,Σ2), where µ1 = (1, 0)T ,

µ2 = (−1, 0)T and Σ1 and Σ2 are subject to four different types of

constraint specified as having equal diagonal or full covariance matrices

Σ1 = Σ2 and having unequal diagonal or full covariance matrices Σ1 6=
Σ2.

Similarly to what was done for the UCI datasets, for each sampled

training-set size m, we perform 1000 random splits of the 1000 samples

of each simulated dataset into a training set of size m and a test set of

size 1000−m, and report the average misclassification error rates over

these 1000 test sets. The training set is required to have at least 1 sam-

ple from each of the two classes. In such a way, LDA-Λ and LDA-Σ are
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compared with linear logistic regression, in terms of misclassification

error rate, with the following results shown in Figure 4.
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Figure 4. Plots of misclassification error rate vs. training-set size m (averaged over
1000 random training/test set splits) for simulated bivariate normally distributed
data for two classes.

The dataset for the top-left panel of Figure 4 has Σ1 = Σ2 = Λ

with a diagonal matrix Λ = Diag(1, 1), such that the data satisfy the

assumptions underlying LDA-Λ. The dataset for the top-right panel has

Σ1 = Σ2 = Σ with a full matrix Σ =







1 0.5

0.5 1






, such that the data

satisfy the assumptions underlying LDA-Σ. The dataset for the bottom-

left panel has Σ1 = Λ1,Σ2 = Λ2 with diagonal matrices Λ1 = Diag(1, 1)

and Λ2 = Diag(0.25, 0.75), such that the homogeneity of the covari-

ance matrices is violated. The dataset for the bottom-right panel has
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Σ1 =







1 0.5

0.5 1






and Σ2 =







0.25 0.5

0.5 1.75






, such that both the homo-

geneity of the covariance matrices and the conditional independence

(uncorrelatedness) of the features within a class are violated.

4.2. Student’s t-Distributed Data

Four simulated datasets are randomly generated from two bivariate

Student’s t-distributions, both distributions with degrees of freedom

ν = 3. The values of class means µ1 and µ2, the four types of constraint

on Σ1 and Σ2, and other settings of the experiments are all the same

as those in Section 4.1.

The results are shown in Figure 5, where for each panel the con-

straint with regard to Σ1 and Σ2 is the same as the corresponding one

in Figure 4, except for a scalar multiplier ν/(ν − 2).

4.3. Log-normally Distributed Data

Four simulated datasets are randomly generated from two bivariate

log-normal distributions, whose logarithms are normally distributed

as N (µ1,Σ1) and N (µ2,Σ2), respectively. The values of µ1 and µ2,

the four types of constraint on Σ1 and Σ2, and other settings of the

experiments are all the same as those in Section 4.1.

By definition, if a p-variate random vector x ∼ N (µ(x),Σ(x)), then

a p-variate vector x̃ of the exponentials of the components of x follows a

p-variate log-normal distribution, i.e., x̃ = exp(x) ∼ logN (µ(x̃),Σ(x̃)),

where the i-th element µ(i)(x̃) of the mean vector and the (i, j)-th
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Figure 5. Plots of misclassification error rate vs. training-set size m (averaged over
1000 random training/test set splits) for simulated bivariate Student’s t-distributed
data for two classes.

element Σ(i,j)(x̃) of the covariance matrix, i, j = 1, . . . , p, are

µ(i)(x̃) = eµ(i)(x)+
Σ(i,i)(x)

2 ,

Σ(i,j)(x̃) = (eΣ(i,j)(x) − 1)eµ(i)(x)+µ(j)(x)+
Σ(i,i)(x)+Σ(j,j)(x)

2 .

It follows that, if the components of its logarithm x are indepen-

dent and normally distributed, the components of the log-normally

distributed multivariate random variable x̃ are uncorrelated. In other

words, if x ∼ N (µ(x),Λ(x)), then x̃ = exp(x) ∼ logN (µ(x̃),Λ(x̃)).

However, as shown by the equations above, Λ(x̃) is determined by both

µ(x) and Λ(x), so that Σ1(x) = Σ2(x) may not mean Σ1(x̃) = Σ2(x̃).

Xue-Titterington-SCH2008.tex; 5/08/2008; 22:19; p.23



24 Xue and Titterington

Therefore, if we consider in our cases µ1 6= µ2, it can be expected

that the pattern of performance of the classifiers for the datasets with

equal covariance matrices Σ1 = Σ2 in the underlying normal distribu-

tions could be similar to that for the datasets with unequal covariance

matrices Σ1 6= Σ2, since in both cases the covariance matrices of the

log-normally distributed variables are in fact unequal. In this context, it

makes more sense to compare the classifiers in situations with diagonal

and full covariance matrices of the underlying normally distributed

data, respectively, rather than those with equal and unequal covariance

matrices.
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Figure 6. Plots of misclassification error rate vs. training-set size m (averaged over
1000 random training/test set splits) for simulated bivariate log-normally distributed
data for two classes.
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The results are shown in Figure 6, where for each panel the con-

straint with regard to Σ1 and Σ2 is the same as the corresponding one

in Figure 4.

4.4. Normal Mixture Data

Compared with the normal distribution, the Student’s t-distribution

and the log-normal distribution used in Sections 4.1, 4.2 and 4.3 for

the comparison of the classifiers, the mixture of normal distributions

is a better approximation to real data in a variety of situations. In

this section, 4 simulated datasets, each consisting of 1000 samples, are

randomly generated from two mixtures, each of two bivariate normal

distributions, with 250 samples from each mixture component. The

two components, A and B, of the mixture for Class 1 are normally dis-

tributed with distributions N (µ1A,Σ1) and N (µ1B ,Σ1), respectively,

where µ1A = (1, 0)T and µ1B = (3, 0)T ; and the two components,

C and D, of the mixture for Class 2 are normally distributed with

probability density functions N (µ2C ,Σ2) and N (µ2D,Σ2), respectively,

where µ2C = (−1, 0)T and µ2D = (−3, 0)T . In such a way, when Σ1 and

Σ2 are subject to the four different types of constraint with regard to

Σ1 and Σ2 as previously discussed, the covariance matrices of the two

mixtures will be subject to the same constraints. Other settings of the

experiments are all the same as that in Section 4.1.

The results are shown in Figure 7, where for each panel the con-

straint with regard to Σ1 and Σ2 is the same as the corresponding one

in Figure 4.
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Figure 7. Plots of misclassification error rate vs. training-set size m (averaged over
1000 random training/test set splits) for simulated bivariate 2-component normal
mixture data for two classes.

4.5. Summary of Linear Discrimination for Simulated

Datasets

In general, our study of these simulated continuous datasets suggests

the following conclusions.

First, when the data are consistent with the assumptions underlying

LDA-Λ or LDA-Σ, as shown in the top-left and top-right panels of

Figure 4, both methods can perform the best among them and linear

logistic regression, throughout the range of the training-set size m in

our study. In these cases, there is no evidence to support the claim that

the discriminative classifier has lower asymptotic error rate while the
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generative classifier may approach its (higher) asymptotic error rate

much faster.

Secondly, when the data violate the assumptions underlying the

LDAs, linear logistic regression generally performs better than the

LDAs, in particular when m is large. This pattern is especially clear, as

shown in Figure 6 for the log-normally distributed data, the distribu-

tions of which are heavy-tailed, asymmetric and thus in some sense less

‘Gaussian’ than Student’s t and normal-mixture distributions in our

experiments. In this case, there is strong evidence to support the claim

that the discriminative classifier has lower asymptotic error rate, but

there is no convincing evidence to support the claim that the generative

classifier may approach its (higher) asymptotic error rate much faster.

Finally, when the covariance matrices are non-diagonal, LDA-Σ per-

forms remarkably better than LDA-Λ and more remarkably when m

is large; when the covariance matrices are diagonal, LDA-Λ performs

generally better than LDA-Σ and more so when m is large.

5. Comments on the Two Regimes of Performance

regarding Training-Set Size

Based on the theoretical analysis and empirical comparison between

LDA-Λ or the näıve Bayes classifiers and linear logistic regression,

Ref. [6] claim that there are two distinct regimes of performance with

regard to the training-set size m. However, our empirical results, as

shown in Tables I and II, could not convincingly support the claim.

Furthermore, our simulation studies, as presented in Section 4, failed to
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find the two regimes when the data either conformed to the assumptions

underlying the generative classifiers, as shown in Figure 4, or heavily

violated the assumptions, as shown in Figure 6.

Therefore, besides commenting on the pairing of the compared clas-

sifiers in Section 2.2, we shall clarify the claim further through com-

menting on the reliability of the two regimes.

Suppose we have a training set {(y(i)
tr ,x

(i)
tr )}m

i=1 of m independent

observations and a test set {(y(i)
te ,x

(i)
te )}N−m

i=1 of N − m independent

observations, where x(i) = (x
(i)
1 , . . . , x

(i)
p )T is the i-th observed p-variate

feature vector x, and y(i) ∈ {1, 2} is its observed univariate class label.

Let us also assume that each observation {(y(i),x(i))} follows an iden-

tical distribution so that testing based on the training results makes

sense. In order to simplify the notation, let xtr denote {(x(i)
tr )}m

i=1, and

similarly define xte, y
tr

and y
te

. Meanwhile, a discriminant function

λ(α) = log{p(y = 1|x)/p(y = 2|x)}, which is equivalent to a Bayes

classifier ŷ(x) = argmaxy p(y|x), is used for the 2-class classification.

5.1. For Discriminative Classifiers

Discriminative classifiers estimate the parameter α of the discriminant

function λ(α) through α̂ = argmaxα p(y
tr
|xtr, α), the maximisation of a

conditional probability; such an estimation procedure can be regarded

as a kind of maximum likelihood estimation with p(y
tr
|xtr, α) as the

likelihood function. It is well known that, if the 0 − 1 loss function is

used so that the misclassification error rate is the total risk, the Bayes

classifiers will attain the minimum error rate [9]. This implies that,

under such a loss function, the discriminative classifiers are in fact
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using the same criterion to optimise the estimation of the parameter α

and the performance of classification.

In this context, the following claims, supported by the simulation

study in Section 4, can be proposed.

First, if the same dataset is used to train and test, i.e., xtr as xte

and y
tr

as y
te

, then the discriminative classifiers should always provide

the best performance, no matter how large the training-set size m is,

provided that the 0 − 1 loss function is used and the modelling of

p(y|x, α), such as the linearity of λ(α), is correctly specified for all

the observations, and thus the only work that remains is to estimate

accurately the parameter α.

Secondly, if m is large enough to make (y
tr

,xtr) representative of all

the observations including (y
te

,xte), then the discriminative classifiers

should also provide the best prediction performance on (y
te

,xte), i.e.,

with the best asymptotic performance, provided that the modelling of

p(y|x, α) is correctly specified for all the observations.

Finally, if m is not large enough to make (y
tr

,xtr) representative of

all the observations, and (y
te

,xte) is not exactly the same as (y
tr

,xtr),

then the discriminative classifiers may not necessarily provide the best

prediction performance on (y
te

,xte), even though the modelling of p(y|x, α)

may be correct.

5.2. For Generative Classifiers

Generative classifiers estimate the parameter α of the discriminant

function λ(α) through first maximising a joint probability function,

i.e. θ̂ = argmaxθ p(y
tr

,xtr|θ), to obtain a maximum likelihood estimate
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(MLE) θ̂ of θ, the parameter of the joint distribution of (y,x), and then

calculate α̂ as a function α(θ) at θ̂. Under some regularity conditions,

such as the existence of the first and second derivatives of the log-

likelihood function and the inverse of the Fisher information matrix

I(θ), the MLE θ̂ is asymptotically unbiased, efficient and normally

distributed. Accordingly, by the delta method, α̂ is also asymptotically

normally distributed, unbiased and efficient, given the existence of the

first derivative of the function α(θ).

Therefore, the following claims, supported by the simulation study

in Section 4, can be proposed.

First, asymptotically, the generative classifiers will provide the best

prediction performance on (y
te

,xte), dependent on the premise that the

modelling of p(y,x|θ), instead of p(y|x, α), is correctly specified for all

the observations.

Secondly, if m is large enough to make (y
tr

,xtr) representative of

all the observations including (y
te

,xte), then the generative classifiers

should also provide the best prediction performance on (y
te

,xte), i.e.,

with the best asymptotic performance, given that the modelling of

p(y,x|θ), instead of p(y|x, α), is correctly specified for all the obser-

vations.

Finally, if m is not large enough to make (y
tr

,xtr) representative of

all the observations, then the generative classifiers may not necessarily

provide the best prediction performance on (y
te

,xte).
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5.3. Summary

In summary, it may not be so reliable to claim the existence of the two

distinct regimes of performance between the generative and discrimi-

native classifiers with regard to the training-set size m.

For real world datasets such as those demonstrated in Sections 3.1

and 3.3, so far there is no theoretically correct, general criterion for

choosing between the discriminative and the generative classifiers; the

choice depends on the relative confidence we have in the correctness

of the specification of either p(y|x) or p(y,x) for the data. This can

be to some extent a demonstration of why Ref. [3] and [7] prefer LDA

when no model mis-specification occurs but other empirical studies may

prefer linear logistic regression instead.

Ref. [6] provided theoretical proof that the discriminative classifiers

need m ∈ Ω(p) (i.e., m ≥ M1 p where M1 > 0) training observations

to approach its asymptotic error rate with high probability, whereas

the generative classifiers need only m ∈ Ω(log(p)) (i.e., m ≥ M2 log(p)

where M2 > 0) training observations. We observe the following. First,

for two distinct regimes to occur, it is necessary that M1 p ≥ M2 log(p).

Secondly, such a higher efficiency of the generative classifiers might be

also attained because of the bias induced by its model mis-specification,

such as using LDA-Λ/the näıve Bayes classifiers for the cases in which

it would be better to adopt LDA-Σ/QDA-Σg . For real-world data,

application of such a mis-specified model is likely; the bias-variance

tradeoff may then play a role in determining the occurrence of the two

distinct regimes.
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In addition, a similar pattern of two distinct regimes with regard

to m was also reported in Ref. [8], based on the performance of logis-

tic regression and tree induction; they found that logistic regression

performs better with smaller m and tree induction with larger m.

Therefore, although tree induction and logistic regression are not a

pair of generative and discriminative classifiers, it could be interesting

to explore such a pattern for other pairs of classifiers.
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