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Summary

We introduce covariance reducing models for studying the sample covariance matrices of

a random vector observed in different populations. The models are based on reducing the

sample covariance matrices to an informational core that is sufficient to characterize the

variance heterogeneity among the populations. They possess useful equivariance properties

and provide a clear alternative to spectral models for covariance matrices.

Some key words: Central subspace, Dimension reduction, Envelopes, Grassmann manifolds,

Reducing subspaces.

1. Introduction

We consider the problem of characterizing the behavior of positive definite covariance

matrices Σg = cov(X|g), g = 1, . . . , h, of a random vector X ∈ R
p observed in each of h
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populations identified by the index g. Testing for equality or proportionality (Muirhead,

1982, Ch. 8; Flury, 1988, Ch. 5; Jensen & Madsen, 2004) may be useful first steps,

but lacking such a relatively simple characterization there arises a need for more flexible

methodology. Perhaps the most well-known methods for studying covariance matrices stem

from Flury’s (1987) spectral model of partial common principal components,

Σg = ΓΛ1,gΓ
T + ΓgΛ2,gΓ

T
g , (1)

where Λ1,g > 0 and Λ2,g > 0 are diagonal matrices and (Γ,Γg) is an orthogonal matrix with

Γ ∈ R
p×q, q ≤ p − 1, g = 1, . . . , h. The linear combinations ΓT X are then the q principal

components that are common to all populations. This model reduces to Flury’s (1984)

common principal component model when q = p − 1.

Situations can arise where the Σg’s have no common eigenvectors, but have cardinality

equal sets of eigenvectors that span the same subspace. This possibility is covered by

subspaces models. Flury’s (1987) common space models do not require the eigenvector sets

to have the largest eigenvalues, while the common principal component subspace models

studied by Schott (1991) do have this requirement. Schott’s rationale was to find a method

for reducing dimensionality while preserving variability in each of the h populations. Schott

(1999, 2003) developed an extension to partial common principal component subspaces that

targets the sum of the subspaces spanned by the first few eigenvector of the Σg’s. Boik (2002)

proposed a comprehensive spectral model for covariance matrices that allows the Σg’s to

share multiple eigenspaces without sharing eigenvectors and permits sets of homogeneous

eigenvalues.

Houle, Mezey & Galpern (2002; see also Mezey & Houle, 2003) considered the suitability
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of spectral methods for studying covariance matrices that arise in evolutionary biology.

They concluded that Flury’s principal component models perform as might be expected

from a statistical perspective, but they were not encouraging about their merits as an

aid to evolutionary studies. Judging from their simulations, their misgivings may stem

in part from the fact that spectral methods are not generally invariant or equivariant:

For a nonsingular matrix A ∈ R
p×p, the transformation Σg → AΣgA

T can result in new

spectral decompositions that are not usefully linked to the original decompositions. For

example, common principal components may not be the same or of the same cardinality

after transformation.

We propose in §1 a class of new covariance reducing models as an alternative to spectral

models for studying a collection of covariance matrices. Their relationship with some spec-

tral models is discussed in §2·3. Estimation is considered in §3. Inference methods for an

underlying dimension and for contributing variables are considered in §§5 and 6. §7 contains

illustrations of how the proposed methodology might be employed in practice. Proofs of

key results are given in the appendices.

The following notation will be used in our exposition. For positive integers p and q,

R
p×q stands for the class of real matrices of dimension p × q, and S

p×p denotes the class of

symmetric p × p positive definite matrices. For A ∈ R
p×p and a vector subspace S ⊆ R

p,

AS ≡ {Ax : x ∈ S}. A basis matrix for a subspace S is any semi-orthogonal matrix

whose columns are a basis for S. For a semi-orthogonal matrix A ∈ R
p×q, q ≤ p, the

matrix A0 denotes any completion of A so that (A,A0) ∈ R
p×p is an orthogonal matrix.

For B ∈ R
p×q, SB ≡ span(B) denotes the subspace of R

p spanned by the columns of B.

If B ∈ R
p×q with rank q and Σ ∈ S

p×p, then the projection onto SB relative to Σ has
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the matrix representation PB(Σ) ≡ B(BTΣB)−1BT Σ. PS indicates the projection onto

the subspace S in the usual inner product. The orthogonal complement S⊥ of a subspace

S is constructed with respect to the usual inner product, unless indicated otherwise. To

describe the distribution of a normal matrix Z ∈ R
p×q, we follow Muirhead (1982, p. 79)

and use the notation Z ∼ N(M,V ) to mean vec(ZT ) ∼ N{ vec(MT ), V }, where “ vec” is

the operator that maps a matrix to a vector by stacking its columns. The product of the

non-zero eigenvalues of a positive semi-definite symmetric matrix A is indicated by |A|0.

2. Population results

2·1. Covariance reductions

For samples of size ng +1 with ng ≥ p, let Σ̃g denote the sample covariance matrix from

population g computed with divisor ng and let Sg = ngΣ̃g, g = 1, . . . , h. Random sampling

may or may not be stratified by population, but in either case we condition on the observed

sample sizes. Our general goal is to find a semi-orthogonal matrix α ∈ R
p×q, q < p, with

the property that for any two populations j and k

Sj|(α
T Sjα = B,nj = m) ∼ Sk|(α

T Skα = B,nk = m). (2)

In other words, given αT Sgα and ng, the conditional distribution of Sg|(α
T Sgα, ng) must

not depend on g. In this way we may reasonably say that, apart from differences due to

sample size, the quadratic reduction R(S) = αT Sα : S
p×p → S

q×q is sufficient to account

for the heterogeneity among the population covariance matrices. Recalling that α0 denotes

a completion of α, (2) does not require αT
0 Sgα0 to be constant stochastically, but this must

be so conditionally given the sample size and αT Sgα. The matrix α is not identified since,
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for any full rank A ∈ R
q×q, (2) holds for α if and only if it holds for αA. Consequently,

(2) is a requirement on the subspace Sα rather than on its basis α. Our restriction to

orthonormal bases is for convenience only. For any α satisfying (2) we will call Sα a dimen-

sion reduction subspace for the sample covariance matrices Σ̃g, g = 1, . . . , h. The smallest

dimension reduction subspace can be identified and estimated, as discussed in §§2·2 and

3. This formulation does not appeal to variability preservation or spectral decompositions

for its motivation. Since it requires the conditional distribution of Sg|(α
T Sgα, ng) to be

independent of g, it seems more demanding than approaches like (1) that model just the

population covariance matrices Σg.

To make (2) operational we assume that the Sg’s are independently distributed as

Wishart random matrices, Sg ∼ W (Σg, p, ng), which is a common assumption in spec-

tral modeling (see, for example, Flury, 1987; Boik, 2002). The sum of squares matrices

Sg can then be characterized as Sg = ZT
g Zg, with Zg ∈ R

ng×p and Zg ∼ N(0, Ing
⊗ Σg).

Therefore we have the following two results: For g = 1, . . . , h,

Zg|(Zgα, ng) ∼ N [ZgPα(Σg), Ing
⊗ Σg{Ip − Pα(Σg)}] (3)

Sg|(Zgα, ng) ∼ W [Σg{Ip − Pα(Σg)}, p, ng; P T
α(Σg)Z

T
g ZgPα(Σg)], (4)

where W with four arguments describes a non-central Wishart distribution (Eaton, 1983, p.

316). From (4) we see that the distribution of Sg|(Zgα, ng) depends on Zgα only through

αT ZT
g Zgα = αT Sgα. It follows that the conditional distribution of Sg|(α

T Sgα, ng) is as

given in (4), and thus Sα is a dimension reduction subspace if and only if, in addition to ng,

(a) Pα(Σg) and (b) Σg{Ip − Pα(Σg)} (5)
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are constant in g. With normal populations, cov(X|αT X, g) = Σg{Ip−Pα(Σg)} (Cook, 1998,

p. 131). Thus, condition (5b) requires that cov(X|αT X, g) be nonrandom and constant in g.

The conditional means E(X|αT X, g) = E(X|g)+P T
α(Σg){X −E(X|g)} need not be constant

in g, but condition (5a) says that the centered means E(X|αT X, g)−E(X|g) must all lie in

the same subspace SΣα.

The following proposition, which does not require Wishart distributions, gives conditions

on Sα that are equivalent to (5). Let Σ =
∑h

g=1 fgΣg, where fg = ng/n and n =
∑h

g=1 ng.

Proposition 1. Let α ∈ R
p×q, q ≤ p, be any basis matrix for S ⊆ R

p. Condition (5)

and the following four statements are equivalent. For g = 1, . . . , h,

(i). Σ−1
g α0 = Σ−1α0,

(ii). the following two conditions hold

Pα(Σg) = Pα(Σ) (6)

Σg{Ip − Pα(Σg)} = Σ{Ip − Pα(Σ)}, (7)

(iii). Σg = Σ + P T
α(Σ)(Σg − Σ)Pα(Σ),

(iv). Σ−1
g = Σ−1 + α{(αT Σgα)−1 − (αT Σα)−1}αT .

Proposition 1 characterizes subspaces rather than particular bases since it holds for α if

and only if it holds for any basis matrix for Sα. Its first conclusion implies that Σ−1/2S⊥
α is an

eigenspace with eigenvalue 1 of each of the standardized covariance matrices Σ−1/2ΣgΣ
−1/2.

This provides a connection with Flury’s models of common principal components, but the

link is in term of the standardized variables Σ−1/2X rather than the original variables X.
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When h = 2 conclusion (i) is equivalent to Σ2Σ
−1
1 α0 = α0, which is related to Flury’s (1983)

proposal to use the eigenvectors of Σ−1
1 Σ2 to study the differences between two covariance

matrices. A broader relationship with Flury’s models in the scale of X is provided in §2·3.

The second conclusion gives the constant values of the matrices in condition (5) and the

final two conclusions give representations for Σ−1
g and Σg.

2·2. Central subspaces

There may be many dimension reduction subspaces and one with minimal dimension

is of special interest. When the intersection of all dimension reduction subspaces is itself

a dimension reduction subspace we call it the central subspace (Cook, 1994, 1998) and

denoted it by C with d = dim(C). If the Sg’s are independent Wishart matrices then Sα is

a dimension reduction subspace if and only if it satisfies Proposition 1. This equivalence

together with the next proposition implies the existence of C when the Sg’s are Wishart.

Proposition 2. If S and T are subspaces that satisfy Proposition 1, then S ∩ T also

satisfies Proposition 1.

The central subspace serves to characterize the minimal reduction. It is equivariant

under linear transformations: If C is the central subspace for Σ̃g then A−TC is the central

subspace for AΣ̃gA
T , where A ∈ R

p×p is nonsingular. This distinguishes the proposed

approach from spectral methods, which do not have a similar property. The parameter

space for C is a d dimensional Grassmann manifold G(d,p) in R
p; a single subspace in G(d,p)

is uniquely determined by choosing d(p − d) real numbers (Chikuse, 2003).

We will refer to models characterized by the conditions of Proposition 1 as covariance

reducing models. Part (iii) of Proposition 1 shows that Σg depends only on Σ, C and the

coordinate matrices αT Σgα for g = 1, . . . , h − 1, with parameter space being the Cartesian
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product of S
p×p, Gd,p and h − 1 repeats of S

d×d. Consequently the total number of reals

needed to fully specify an instance of the model is p(p + 1)/2+ d(p− d)+ (h− 1)d(d+ 1)/2.

This count will be used later when determining degrees of freedom for likelihood-based

inference.

2·3. Relationships with spectral models

Let Γ∗ ∈ R
p×(p−q) be a basis matrix for span(Γg) in model (1). Then ΓT X and ΓT

∗ X are

independent within each population, but the conditional covariance cov(ΓT X|ΓT
∗ X, g) =

cov(ΓT X|g) = ΓT ΣgΓ need not be constant in g. In the covariance reducing model, αT
0 X

and αT X may be dependent but the conditional covariance cov(αT
0 X|αT X, g) must be

constant in g. Because of this fundamental difference in structure it seems difficult to find

direct connections between the methods. However, a relationship can be found by using the

reducing subspaces of Σ. Since Σ ∈ S
p×p, a subspace S of R

p is a reducing subspace of Σ

if and only if ΣS = S (see, for example, Conway, 1990, p. 36). For example, the subspace

spanned by any set of eigenvectors of Σ is a reducing subspace of Σ.

Let EΣ(C) denote the intersection of all reducing subspaces of Σ that contain C and

let u = dim{EΣ(C)}, p ≥ u ≥ d. The subspace EΣ(C), which is called the Σ-envelope of C

(Cook, Li & Chiaromonte, 2007), provides a unique upper bound on C based on the reducing

subspaces of Σ. Since EΣ(C) is itself a reducing subspace of Σ we have the general form

Σ = γ0V0γ
T
0 + γV γT , where V0 ∈ S

(p−u)×(p−u), V ∈ S
u×u and γ ∈ R

p×u is a basis matrix

for EΣ(C). Substituting this relationship into identity (iii) of Proposition 1 and simplifying

we find that Σg can be parameterized in terms of the envelope EΣ(C) as

Σg = γ0M0γ
T
0 + γMgγ

T , (8)

8



for some M0 ∈ S
(p−u)×(p−u) and Mg ∈ S

u×u, g = 1, . . . , h. The spectral properties of

this envelope model (8) can be represented explicitly by using the spectral decompositions

M0 = v0D0v
T
0 and Mg = vgDgv

T
g , where v0 and vg are orthogonal matrices, and D0 and Dg

are diagonal matrices. Let η0 = γ0v0 and ηg = γgvg. Then (η0, ηg) is an orthogonal matrix

and

Σg = η0D0η
T
0 + ηgDgη

T
g . (9)

This relationship shows that all eigenvectors of Σg can be constructed to be in either EΣ(C)

or E⊥
Σ (C). The envelope model (8) is parameterized in terms of EΣ(C) ∈ G(u,p), and it uses

a total of u(p − u) + (p − u)(p − u + 1)/2 + u(u + 1)h/2 real parameters. Representation

(9) is a reparameterization in terms of the eigenvectors of Σg and their parameter space

is a Steifel manifold. More importantly, (9) can be seen as an instance of Flury’s (1987)

partial common principal components model (1), while (8) is an instance of his common

space model. The full versions of Flury’s models allow M0 and D0 to depend on g, while

the present formulation does not because of the sufficiency requirement (2). Additionally,

(9) requires no relationship between D0 and Dg so the common components ηT
0 X can be

associated with the largest or smallest eigenvalues of Σg. This discussion leads to the

conclusion that spectral models can be structured to provide an upper bound on C.

For example, consider the structure

Σg = Ip + σ2
gααT , g = 1, . . . , h, (10)

where α ∈ R
p, αT α = 1, the σg’s are distinct, and EΣ(C) = C = Sα. This setting can also be

described by Flury’s common principal component model, or his common space model. If
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the σ2
g ’s are sufficiently large then αT X may serve as a variance preserving reduction in the

sense of Schott (1991). If we perform a nonsingular transform A ∈ R
p×p and work in the

scale of Σ∗
g = AΣgA

T , then the corresponding central subspace is C∗ = A−TC, which is still

one dimensional. However, depending on the choice of A, the Σ∗ =
∑h

g=1 fgΣ
∗
g envelope of

C∗ may be R
p, and the Σ∗

g’s may share no eigenspaces other than R
p.

If we modify (10) to obtain Σ∗
g = A + σ2

gααT , where A ∈ S
p×p, then C∗ = A−1C is still

one-dimensional, but again the Σ∗
g’s may share no eigenspaces other than R

p, depending on

A. In short, covariance reducing models and the various spectral approaches can target the

same or very different population quantities.

3. Estimation of C with d specified

The following proposition summarizes maximum likelihood estimation when the Sg’s

are Wishart matrices and d = dim(C) is specified. The choice of d is considered in §5.

Proposition 3. The maximum likelihood estimator of Σ is its sample version Σ̂ =

∑h
g=1 fgΣ̃g. The maximum likelihood estimator Ĉ of C maximizes over S ∈ G(d,p) the log

likelihood function

Ld(S) = c −
n

2
log |Σ̂| +

n

2
log |PSΣ̂PS |0 −

h∑

g=1

ng

2
log |PS Σ̃gPS |0, (11)

where c is a constant depending only on p, ng and Σ̃g, g = 1, . . . , h. The maximum likelihood

estimator Σ̂g of Σg is constructed by substituting a basis matrix α̂ for Ĉ, Σ̃g and Σ̂ for the

corresponding quantities on the right of the equation in part (iii) of Proposition 1.

If C = R
p (d = p) then the log likelihood (11) reduces to the usual log likelihood

for fitting separate covariance matrices to the h populations. If C is equal to the origin
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(d = 0) then (11) becomes the log likelihood for fitting a common covariance matrix to all

populations. This corresponds to deleting the two terms of (11) that depend on S. The

following corollary confirms the invariance of the estimated reduction R̂ under full rank

quadratic transformations.

Corollary 1. If A ∈ R
p×p is full rank and R̂(S) = α̂T Sα̂, then R̂(ASAT ) =

γ̂T ASAT γ̂, with Sbγ = A−TSbα.

To illustrate basic properties of estimation we simulated observations from model (10)

with p = 6, α = (0, . . . , 0, 1)T , h = 3, σ1 = 1, σ2 = 4 and σ3 = 8. The use of the

identity matrix Ip in the construction of Σg was for convenience only since the results

are invariant under full rank transformations, as indicated in Corollary 1. The Σ̃g’s were

constructed using observed vectors X = ε + σgαǫ generated from independent vectors

(εT , ǫ) of independent standard normal variates, with ε ∈ R
p and ǫ ∈ R

1. The ε term in X

represents the component that is stochastically the same in all populations and the other

term represents the population-specific component. Maximization of the log likelihood (11)

was carried out using computer code developed from Liu, et al. (2004). Figure 1a shows the

sample quartiles from 400 replications of the cosine of the angle between Ĉ and C for several

sample sizes and normal errors. The method seems to respond reasonably to increasing

sample size.

4. Central mean subspaces

As represented in Proposition 1, the assumption of Wishart distributions for the Sg’s

implies informative and rather elegant equivariant characterizations of the covariance ma-

trices Σg in terms of a basis matrix α for C. While a straightforward connection between

C and Proposition 1 may be problematic without Wishart distributions, its equivalences
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Figure 1: Quartiles (a) and median (b) of the cosine of the angle between α̂ and C versus
sample size.

can be used without distributional assumptions as a model for the population covariance

matrices Σg, just as spectral decompositions like (1) have been used. Let M denote the

intersection of all subspaces that satisfy Proposition 1. It follows from Proposition 2 that

M also satisfies Proposition 1 and consequently it is a well-defined parameter that can be

used as an inferential target. We refer to M as the central mean subspace since its role is

to characterize the structure of the conditional means E(Σ̃g) = Σg. If the Sg’s are Wishart

matrices then C = M.

The following proposition shows that without Wishart distributions the likelihood (11)

still provides a Fisher consistent estimator of M. Consequently, (11) can be used as a

distribution-free objective function with the goal of modeling Σg in terms of the equivalences

of Proposition 1.
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Proposition 4. Let d = dim(M). Then for S ∈ G(d,p), Ld(S)/n converges to

Kd(S) = c + (1/2) log |PSΣPS |0 −
h∑

g=1

(fg/2) log |PSΣgPS |0 (12)

and M = arg maxKb(S), where c is a constant not depending on S.

Figure 1b shows the median over 400 replication of the cosine of the angle between M̂

and M = Sα for normal, t5, χ2
5 and uniform (0, 1) error (εT , ǫ) distributions with simulation

model (10) and parameter values stated in §3. The results in Figure 1b match so well that the

individual curves were not marked. This along with other unreported simulations suggest

that a normal error distribution is not essential for the likelihood-based objective function

(11) to give good results for the estimation of M.

In §§5 and 6 we consider methods for inference about d and tests for active predic-

tors. These methods are developed assuming Wishart distributions, and then applied in

simulations with non-Wishart distributions to gain insights into their behaviour in such

cases.

5. Choice of d

In this section we consider ways in which d = dim(C) can be chosen in practice, distin-

guishing the true value d from value d0 used in fitting.

The hypothesis d = d0 can be tested by using the likelihood ratio statistic Λ(d0) =

2{L̂p − L̂d0
}, where L̂p denotes the value of the maximized log likelihood for the full model

with d0 = p and L̂d0
is the maximum value of the log likelihood (11). Following standard

likelihood theory, under the null hypothesis Λ(d0) is distributed asymptotically as a chi-

squared random variable with degrees of freedom (p − d){(h − 1)(p + 1) + (h − 3)d}/2, for
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h ≥ 2 and d < p. The statistic Λ(d0) can be used in a sequential testing scheme to choose d:

Using a common test level and starting with d0 = 0, choose the estimate d̂ of d as the first

hypothesized value that is not rejected. The test for d = 0 is the same as Bartlett’s test for

equality of the Σg’s, but without his proportional correction of Λ(0) (Muirhead, 1982, Ch.

8). This method for dimension selection is common in dimension reduction literature (see

Cook, 1998, p. 205 for background).

A second approach is to use, for instance, the Akaike or Bayes information criterion. The

Bayes information criterion is consistent while Akaike’s is minimax-rate optimal (Burnham

& Anderson, 2002). In this approach d̂ is selected to minimize over d0 the information

criterion IC(d0) = −2 L̂d0
+ h(n)g(d0), where g(d0) is the number of parameters to be

estimated, and h(n) is equal to log n for the Bayes criterion and 2 for Akaike’s.

We use the sequential testing method to illustrate that useful inference for d is possible,

without recommending a particular method. There are many methods that could be used

to select d and a comprehensive comparison is outside the scope of this report. Table 1 gives

the empirical distribution of d̂ from 200 replications from the simulation model described

in §3. The first column labeled “Law” gives the distribution of the error (εT , ǫ). For normal

distributions d = dim(C) = dim(M), while for the non-normal distributions d = dim(M).

The second column gives the common intra-population sample size. All tests were performed

with constant nominal level 0·01. The relatively poor showing at ng = 15 with normal errors

seems due to the power of Barlett’s test at this small sample size. The method responded

well to increasing sample size and the expected asymptotic results were observed at ng = 40

with normal errors (N). Uniform errors (U) did not have a notable impact on the results, but

skewed and heavy tailed errors resulted in more overestimation than expected with normal

14



errors. On balance, we regard the sequential method as useful, although the development of

robust methods for dim(M) might mitigate overestimation due to skewed and heavy tailed

errors.

Table 1: Empirical distribution of d̂ in percent.

d̂

Law ng 0 1 2 3 4

N 15 13·0 75·5 8·0 3·0 0·5

N 20 2·5 94·0 3·0 0 0

N 30 0·5 95·0 2·0 1·5 0·5

N 40 0 99·0 1·0 0 0

U 40 0 100 0 0 0

χ2
5 40 0 88·5 9·5 2 0

t10 40 0 94·0 5·5 0·5 0

t7 40 0 82·0 15·0 2·5 0·5

N , standard normal; U , uniform (0, 1).

6. Testing variates

With d specified a priori or after estimation, it may of interest in some applications to

test an hypothesis that a selected subspace H of dimension k ≤ p − d is orthogonal to C

in the usual inner product. The restriction on k is to insure that the dimension of C is

still d under the hypothesis. The hypothesis PHC = 0 can be tested by using a standard

likelihood test. The test statistic is Λd(H) = 2(L̂d − L̂d,H), where L̂d is the maximum value

of the log likelihood (11), and L̂d,H is the maximum value of (11) with C constrained by the

hypothesis. Under the hypothesis PHC = 0 the statistic Λd(H) is distributed asymptotically

as a chi-squared random variable with dk degrees of freedom.
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The maximized log likelihood L̂d,H can be obtained by maximizing over S ∈ G(d,p−k)

the constrained log likelihood

Ld(S) = c −
n

2
log |Σ̂| +

n

2
log |PSHT

1 Σ̂H1PS |0 −

h∑

g=1

ng

2
log |PSHT

1 Σ̃gH1PS |0, (13)

where H1 ∈ R
p×(p−k) is a basis matrix for H⊥. When testing that a specific subset of k

variables is not directly involved in the reduction, the role of H1 in (13) is to select the

parts of Σ̂ and Σ̃g that correspond to the other variables.

Shown in Table 2 are the empirical levels based on 1000 simulations of nominal 1, 5

and 10 percent tests of the hypothesis that the first variate does not contribute directly

to the reduction in model (10) with α = (0, . . . , 0, 1)T , H = span{(1, 0, . . . , 0)T }. For the

three non-normal distributions the hypothesis tested is PHM = 0. The agreement seems

quite good for large samples, but otherwise the results indicate a clear tendency for the

actual level to be larger than the nominal, a tendency that is made worse by skewness or

heavy tails. Use of this test may be problematic when the sample size is not large and very

accurate test levels are required. However, in some settings it may be sufficient to have the

actual level be between 1 and 5 percent, and our results indicate that this can be achieved

by testing at the nominal 1 percent level.

7. Garter snakes

Phillips & Arnold (1999) used Flury’s hierarchy of principal component models to study

genetic covariance matrices for six traits of female garter snakes in costal and inland popu-

lations of northern California. We illustrate aspects of the proposed methodology using the

same covariance matrices. The sample sizes for the costal and inland populations are 90 and
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Table 2: Simulation results on the level of the variate test using the likelihood ratio statistic
Λd(H).

Law p ng 1% 5% 10%

N 6 20 3·0 8·6 15·2

N 6 40 1·5 5·8 10·9

N 10 50 2·2 8·9 14·6

N 10 70 1·4 5·4 11·2

N 15 80 1·3 6·5 13·6

N 15 120 1·2 5·6 10·7

U 10 70 1·6 5·9 13·0

χ2
5 10 70 1·6 6·8 12·3

t7 10 70 1·8 7·3 13·0

N , standard normal; U , uniform (0, 1).

139, so we expect the large-sample methods proposed here to be reasonable. Conclusion

(iii) of Proposition 1 implies that the difference Σg −Σ will be of rank d, g = 1, . . . , h. The

eigenvalues of Σ̃g − Σ̂ for the inland population are (0·69, 0·14, 0·09, 0·041, −0·10, −0·82).

The magnitude of these values suggests that d = 2 is plausible. The tests of d = 0, d = 1

and d = 2 resulted in the nominal p-values 4·3×10−9, 0·007 and 0·12, yielding the sequential

estimate d̂ = 2. The estimates based on the Bayes and Akaike information criteria were

d̂ = 1 and d̂ = 3. The estimate d̂ = 2 is also be reasonable under Akaike’s criterion since

the values of its objective function for d0 = 2 and d0 = 3 were quite close.

Phillips & Arnold (1999) concluded that the partial common principal component model

(1) with q = 4 common components is likely the best. We use the envelope (8) to contrast

this finding with that based on the covariance reducing model. Using the notation of

Proposition 3 and adapting the derivation of (11), it can be shown that the maximum
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likelihood estimator Ê of EΣ(C) maximizes over S ∈ G(u,p) the log likelihood function

Lu(S) = c −
n

2
log |Σ̂| −

n

2
log |PSΣ̂

−1
PS |0 −

h∑

g=1

ng

2
log |PSΣ̃gPS |0, (14)

where u = dim{EΣ(C)}. The maximum likelihood estimators of M0 and Mg are M̂ = γ̂T
0 Σ̂γ̂0

and M̂g = γ̂T Σ̃gγ̂, where γ̂ is a basis matrix for Ê , g = 1, . . . , h. The tests of u = 1, u = 2

and u = 3 based on (14) gave the nominal p-values 0·0088, 0·03 and 0·17. Accordingly, it

seems reasonable to conclude that u is either 2 or 3. At u = 2 Flury’s spectral model (1), the

covariance reducing model and the envelope model (8) can all agree with u = d = p− q = 2,

span(Γ) = span(α0) = span(γ0) and Λ1,g a constant in g. At u = 3 and d = 2 the models

can no longer agree since the envelope model requires that we condition on an additional

linear combination.

To emphasize the potential differences due to invariance properties, we re-estimated the

dimensions d and u after transforming each sample covariance matrix as Σg → AΣgA
T ,

where A ∈ R
6×6 was generated as a matrix of standard normal variates. As the theory

predicted, the transformation had no effect on the estimated dimension d̂ of the covariance

reducing model, but the estimated dimension of the envelope model was û = 6.

We continue this illustration using the covariance reducing model with d = 2, so two

linear combinations of the traits are needed to explain differences in variation. In units

of the observed trait standard deviations, the estimated direction vectors that span Ĉ are

α̂1 = (0·13, 0·31, −0·17, −0·91, 0·04, 0·17)T and α̂2 = (0·07, −0·13, −0·86, 0·33, −0·13, 0·34)T ,

where the trait order is as given by Phillips & Arnold (1999, Table 1). These results suggest

that the third and fourth traits are largely responsible for the differences in the covariance

matrices. The variate test of §6 applied to each trait individually resulted in the p-values
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(0·39, 0·24, 1·6× 10−6, 2·4× 10−9, 0·52, 0·01), which agrees with the qualitative impression

from the standardized spanning vectors. Testing the joint hypothesis that only the third and

fourth traits are involved in the conditioning resulted in a p-value of 0·04. These and other

unreported results indicate that the third and fourth traits are largely responsible for the

differences between the genetic covariance matrices at the two locations. The sixth trait may

also contribute to the differences but its relevance is not as clear. The overall indication then

is that only the third and fourth rows of α are non-zero. We have illustrated estimation of a

basis matrix α for C since that is needed prior to determining all other parameter estimates,

as shown in Proposition 3. The analysis could now continue in a variety of ways.

8. Discussion

We proposed a new point of view for the study of covariance matrices, gave first Wishart

methodology and included some results on the behaviour of that methodology in non-

Wishart settings. Our most ambitious goal is to reduce the sample covariance matrices to

an informational core αT Σ̃gα that is sufficient to characterize the variance heterogeneity

among the populations. The invariant and equivariant properties of covariance reducing

models seem particularly appealing. Nevertheless, if substantive questions in application

directly involve the spectral structures of the covariance matrices, then spectral modeling

would of course be appropriate. On the other hand, if such questions are not spectral-

specific then covariance reducing models may be a useful alternative. Both approaches

could be helpful in exploratory analyses.

There are many open questions and directions for future study. Of immediate interest

is the development of methodology for estimating C that does not require Wishart distribu-

tions, but perhaps constrains some of the conditional moments of Sg|(α
T Sgα, ng). Standard
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errors of identified functions of the parameters can be determined from the limiting distri-

butions of the estimates. With b ∈ R
p and Pα(Σ)b = 0, quantities of the form Σgb are

constant in g and may be of interest in some studies. In such cases it might be worthwhile

to consider inferences conditional on αT Sgα = B, g = 1, . . . , g. There may be new ideas

and methodology for the study of correlation matrices that parallels those expressed here

for covariance matrices. For instance, the equivalences of Proposition 1 still hold if we re-

interpret Σg as a correlation matrix and the likelihood function (11) will still give a Fisher

consistent estimator of the central mean subspace for correlation matrices.
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Appendix

Proofs

The first of the following two preliminary propositions was given by Rao (1973, p. 77).

Proposition A1. Let B ∈ S
p×p and let α ∈ R

p×d be a semi-orthogonal matrix. Then

α(αT Bα)−1αT + B−1α0(α
T
0 B−1α0)

−1αT
0 B−1 = B−1. (A1)
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As a consequence we have

(αT
0 B−1α0)

−1 = αT
0 Bα0 − αT

0 Bα(αT Bα)−1αT Bα0 (A2)

Ip − P T
α(B) = Pα0(B−1), (A3)

−(αT
0 B−1α0)

−1(αT
0 B−1α) = (αT

0 Bα)(αT Bα)−1. (A4)

Proposition A2. Suppose that B ∈ S
p×p and α ∈ R

p×d is a semi-orthogonal matrix. Then

|αT
0 Bα0| = |B||αT B−1α|.

Proof of Proposition A2. Let K ∈ R
p×p with first block of rows (Id, α

T Bα0) and second

block of rows (0, αT
0 Bα0). Since (α,α0) is an orthogonal matrix,

|αT
0 Bα0| = |(α,α0)K(α,α0)

T | = |ααT + ααT Bα0α
T
0 + α0α

T
0 Bα0α

T
0 |

= |B − (B − Ip)ααT | = |B||Id − αT (Ip − B−1)α| = |B||αT B−1α|.

Proof of Proposition 1. We will show that (i) ⇒ (5) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). We

begin by showing that condition (i) ⇒ (5). By applying (A3) with B = Σg:

Ip − P T
α(Σg) = α0(α

T
0 Σ−1

g α0)
−1αT

0 Σ−1
g = C1 (A5)

{Ip − P T
α(Σg)}Σg = α0(α

T
0 Σ−1

g α0)
−1αT

0 = C2, (A6)

where C1 and C2 are constant matrices since αT
0 Σ−1

g is constant by hypothesis (i).

If (5) is true then (A5) and (A6) must hold. This implies that αT
0 Σ−1

g is constant and

thus equal to αT
0 Σ−1. Conclusion (ii) follows from (5) by application of (A3) with B = Σ.

(iii) follows from (ii) by replacing Pα(Σg) with Pα(Σ) in the second condition of (ii) and
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rearranging terms: Σg − Σ = (Σg − Σ)Pα(Σ) = P T
α(Σ)(Σg − Σ)Pα(Σ).

Conclusion (iv) follows from (iii) by direct multiplication. Finally, multiplying (iv) on

the right by α0 immediately gives condition (i).

Proof of Proposition 2. Let α and β be two semi-orthogonal matrices that satisfy (5).

Then αT
0 Σ−1

g and βT
0 Σ−1

g are constant, and consequently (α0, β0)
T Σ−1

g is constant. This

implies that (S⊥
α + S⊥

β )⊥ is a dimension reduction subspace. The conclusion follows since

S⊥
α + S⊥

β = (Sα ∩ Sβ)⊥ (Greub, 1981, page 74).

The following characterization facilitates finding the maximum likelihood estimators for

the parameters when α satisfies (5a) and (5b).

Proposition A3. R(S) = αT Sα is a sufficient reduction if and only if the following

three conditions are satisfied for g = 1, . . . , h:

1. (αT
0 S−1

g α0)
−1 ∼ W{(αT

0 Σ−1α0)
−1, p − d, ng − d}

2. αT Sgα0|α
T Sgα ∼ N{−αT Sgα(αT Σ−1α0)(α

T
0 Σ−1α0)

−1, αT Sgα ⊗ (α0Σ
−1α0)

−1}

3. αT Sgα ∼ W (αT Σgα, d, ng)

and (αT
0 S−1

g α0)
−1 and (αT Sgα0, α

T Sgα) are stochastically independent.

Proof of Proposition A3. Using (A2) it follows that (Eaton, 1983; prop. 8.1 and 8.7),

(αT
0 S−1

g α0)
−1 ∼ W{(αT

0 Σ−1
g α0)

−1, p − d, ng − d}

αT Sgα0|α
T Sgα ∼ N{αT SgPα(Σg)α0, α

T Sgα ⊗ (α0Σ
−1
g α0)

−1}

αT Sgα ∼ W (αT Σgα, d, ng),

and that (αT
0 S−1

g α0)
−1 and (αT Sgα0, α

T Sgα) are stochastically independent. From Propo-

22



sition 1, αT
0 Σ−1

g = αT
0 Σ−1 and Pα(Σg) = Pα(Σ). The conditions of the proposition follow by

using (A4) to re-express Pα(Σ)α0.

Proof of Proposition 3. Transforming Sg to (α,α0)
T Sg(α,α0), we have from Proposi-

tion A3 that the log likelihood is the sum of the log likelihoods arising from the densities of

(αT
0 S−1

g α0)
−1, αT Sgα0|α

T Sgα and αT Sgα. Let D = (αT
0 Σ−1α0)

−1 and H = D(αT
0 Σ−1α).

For any semi-orthogonal matrix α ∈ R
p×d, the transformation of Σ ∈ S

p×p to (α,α0)
T Σ(α,α0)

is a one to one and onto. The transformation from S
p×p to S

d×d × S
p−d×p−d × R

(p−d)×d

given by αT Σα, D = αT
0 Σα0 −α0Σα(αT Σα)−1αT Σα0 and H = −(αT

0 Σα)(αT Σα)−1 is also

one to one and onto (Eaton, 1983, prop. 5.8). Proposition 1, (A2) and (A4) imply that

fixing α for each g the dimension reduction subspace model places no constraints on D, H

or αT Σgα, which are the parameters we used for the likelihood.

The likelihood Lg for population g can be expressed prior to notable simplification as

Lg = cg −
ng − d

2
log |D| −

ng − p − 1

2
log |αT

0 S−1
g α0| −

1

2
tr{D−1(αT

0 S−1
g α0)

−1}

−
ng

2
log |αT Σgα| +

ng − d − 1

2
log |αT Sgα| −

1

2
tr{(αT Σgα)−1(αT Sgα)}

−
p − d

2
log |αT Sgα| −

d

2
log |D|

−
1

2
tr{(αT Sgα)−1(αT Sgα0 + αT SgαHT )D−1(αT

0 Sgα + HαT Sgα)}.

where cg is a constant depending only on ng and p. Using (A2) and Proposition A2,

simplifying and absorbing the term (ng − p − 1)/2 log |Sg| into cg we have

Lg = cg −
ng

2
log |D| −

ng

2
log |αT Σgα| −

ng

2
tr{(αT Σgα)−1(αT Σ̃gα)}

−
1

2
tr(D−1αT

0 Sgα0) − tr(αT Sgα0D
−1H) −

1

2
tr(αT SgαHT D−1H).
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With α fixed, Lg is maximized over αT Σgα by αT Σ̃gα. Plugging this into Lg we get the

partially maximized form

L(1)
g = cg −

ng

2
d −

ng

2
log |αT Σ̃gα| −

ng

2
log |D|

−
1

2
tr(D−1αT

0 Sgα0) − tr(αT Sgα0D
−1H) −

1

2
tr(αT SgαHT D−1H).

Let L(1) =
∑h

g=1 L
(1)
g . Then

∂L(1)

∂H
= −

h∑

g=1

ngD
−1αT

0 Σ̃gα −
h∑

g=1

ngD
−1HαT Σ̃gα

giving the maximum at Ĥ = −αT
0 Σ̂α(αT Σ̂α)−1, where Σ̂ =

∑h
g=1 fgΣ̃g. Substituting this

into L(1) we obtain a second partially maximized log likelihood

L(2) =

h∑

g=1

cg −
n

2
d −

h∑

g=1

ng

2
log |αT Σ̃gα|

−
n

2
log |D| −

n

2
tr

{(
αT

0 Σ̂α0 + 2αT
0 Σ̂αĤT + ĤαT Σ̂αĤT

)
D−1

}
.

This is maximized over D at D̂ =
(
αT

0 Σ̂α0 + 2αT
0 Σ̂αĤT + ĤαT Σ̂αĤT

)
= (αT

0 Σ̂
−1

α0)
−1,

where the second equality follows from the definition of Ĥ and Proposition A1. Using

Proposition A2, the log likelihood maximized over all parameters except α can now be

written as

L(3) = c − (n/2) log |Σ̂| +
n

2
log |αT Σ̂α| −

h∑

g=1

ng

2
log |αT Σ̃gα|,

where c =
∑h

g=1 cg − np/2. The partially maximized log likelihood (11) now follows since

|PSαΣ̂PSα |0 = |αT Σ̂α|. Finally, since α, αT Σα, H and D uniquely determine Σ, it follows
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that the maximum likelihood estimator of Σ is Σ̂

Proof of Corollary 1. Let LA denote the log likelihood that depends on covariance

matrices matrices AΣ̃gA
T . Then

arg max
Sα

LA(Sα) = arg max
Sα



−

h∑

g=1

ng

2
log |αT AΣ̃gA

T α| +
n

2
log |αT AΣ̂AT α|





= arg max
A−T Sβ

L(Sβ).

And therefore arg max LA(Sα) = A−T arg maxL(Sα).

Proof of Proposition 4. Equation (12) is immediate. To show the second conclusion –

M = arg max Kd(S) – let B0 be a basis matrix for M⊥ and use Proposition A2 to write

Kb(S) = c +
1

2
log |BT

0 Σ−1B0| −

h∑

g=1

fg

2
log |BT

0 Σ−1
g B0| −

1

2
log |Σ| +

h∑

g=1

fg

2
log |Σg|

≤ c −
1

2
log |Σ| +

h∑

g=1

fg

2
log |Σg|,

where the inequality follows since log |BT
0 Σ−1B0| is a convex function of Σ. Using Proposi-

tion 1(i), we see that the upper bound is attained when B0 is a basis matrix for M⊥.
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