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Abstract

An important tool for statistical research are moment inequalities for sums of independent
random vectors. Nemirovski and coworkers (1983, 2000) derived one particular type of such
inequalities: For certain Banach spaces (B, ‖ · ‖) there exists a constant K = K(B, ‖ · ‖) such
that for arbitrary independent and centered random vectors X1, X2, . . . , Xn ∈ B, their sum
Sn satisfies the inequality IE ‖Sn‖2 ≤ K

∑n
i=1 IE ‖Xi‖2. We present and compare three dif-

ferent approaches to obtain such inequalities: Nemirovski’s results are based on deterministic
inequalities for norms. Another possible vehicle are type and cotype inequalities, a tool from
probability theory on Banach spaces. Finally, we use a truncation argument plus Bernstein’s
inequality to obtain another version of the moment inequality above. Interestingly, all three
approaches have their own merits.

1 Introduction

A major theme in current statistical research concerns problems in which the “sample size” (or

number of independent units) n is small or moderate, say on the order of 102 or 104, while the

number d of items measured for each independent unit is large, say on the order of 106 or 107.

Studies of the properties of statistical methods for such problems often rely on “maximal inequali-

ties” for sums of independent random variables. Such inequalities and related tools are the subject

of empirical process theory as developed in Dudley (1999), Pollard (1990), van de Geer (2000),

and van der Vaart and Wellner (1996). The maximal inequalities developed in empirical process

theory typically involve large (uncountable) classes of functions, are usually formulated in terms

of (uniform) covering numbers or bracketing entropy numbers, and are built up from basic in-

equalities for finite classes of functions via chaining arguments; see e.g. section 2.2 of van der

Vaart and Wellner (1996), section 3 of Pollard (1990), section 5.1 of de la Peña and Giné (1999),

or section 3.2 of van de Geer (2000). Similar inequalities for finite classes of functions (or sums

of independent random vectors) have been derived by way of probabilistic methods for Banach

spaces, and via deterministic inequalities for norms. One interesting inequality of the latter type

due to Nemirovski and Yudin (1983) and Nemirovski (2000) was used by Greenshtein and Ritov
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(2004) in their study of the “persistence properties” of lasso methods for regression in small n,

large d problems.

Our goals in this paper are to compare the inequalities resulting from the three different ap-

proaches (deterministic inequalities for norms, probabilistic methods for Banach spaces, empirical

process theory) in the case of finite classes of functions or random vectors and to refine or improve

the constants involved in each case. The improved constants in these inequalities for finite classes

of functions may be of interest for development of sharpened versions of the empirical process

inequalities for large classes of functions F with explicit constants.

Generally we are aiming at inequalities of the following type: LetX1, X2, . . . , Xn be stochas-

tically independent random vectors with values in a (real) Banach space (B, ‖ · ‖) such that

IEXi = 0 and IE ‖Xi‖2 <∞. With Sn :=
∑n

i=1Xi we want to show that

IE ‖Sn‖2 ≤ K

n∑
i=1

IE ‖Xi‖2 (1.1)

for some constant K depending only on (B, ‖ · ‖).

An important special case are Hilbert spaces (B, 〈·, ·〉, ‖ · ‖). Here inequality (1.1) turns out to

be an equality with constant K = 1, because

IE ‖Sn‖2 =
n∑

i,j=1

IE〈Xi, Xj〉 =
n∑
i=1

IE ‖Xi‖2

by independence and mean zero of the random vectors Xi.

For statistical applications, the case B = Rd and ‖ · ‖ = ‖ · ‖r for some r ∈ [1,∞] is of

particular interest. Here the r-norm of a vector x ∈ Rd is defined as

‖x‖r :=


( d∑
j=1

|xj |r
)1/r

if 1 ≤ r <∞,

max
1≤j≤d

|xj | if r =∞.
(1.2)

Nemirovski’s inequality in the form stated in Nemirovski (2000) and used by Greenshtein and

Ritov (2004) says that (1.1) holds with K = C min(r, log(d)) if d ≥ 2 for some universal, but

unspecified constant C.

The remainder of this paper is organized as follows: In Section 2 we review several determin-

istic inequalities for norms and, in particular, key arguments of Nemirovski (2000). Our exposition

includes explicit and improved constants. While finishing the present paper we became aware of

yet unpublished work of Nemirovski (2004) and Juditsky and Nemirovski (2008) who also im-

proved some inequalities of Nemirovski (2000). Rio (2008) uses similar methods in a different
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context. In Section 3 we present inequalities of type (1.1) which follow from type and co-type

inequalities developed in probability theory on Banach spaces. Section 4 presents an alternative

approach for the special case of B = Rd and ‖ · ‖ = ‖ · ‖∞ which is based on truncation and

Bernstein’s inequality. Finally, in Section 5 we compare the inequalities resulting from these three

approaches. In that section we relax the assumption that IEXi = 0 for a more thorough under-

standing of the differences between the three approaches. Proofs are deferred to Section 6.

2 Nemirovski’s approach: Deterministic inequalities for norms

In the this section we review and refine inequalities of type (1.1) based on deterministic inequalities

for norms. The considerations for B = Rd and ‖ · ‖ = ‖ · ‖r follow closely the arguments of

Nemirovski (2000).

2.1 Some inequalities for Rd and the norms ‖ · ‖r

Throughout this subsection let B = Rd, equipped with one of the norms ‖ · ‖r defined in (1.2).

A first solution. Recall that for any x ∈ Rd,

‖x‖r ≤ ‖x‖q ≤ d1/q−1/r‖x‖r for 1 ≤ q < r ≤ ∞. (2.1)

Moreover, as mentioned before,

IE ‖Sn‖22 =
n∑
i=1

IE ‖Xi‖22.

Thus for 1 ≤ q < 2,

IE ‖Sn‖2q ≤ (d1/q−1/2)2 IE ‖Sn‖22 = d2/q−1
n∑
i=1

IE ‖Xi‖22 ≤ d2/q−1
n∑
i=1

IE ‖Xi‖2q ,

whereas for 2 < r ≤ ∞,

IE ‖Sn‖2r ≤ IE ‖Sn‖22 =
n∑
i=1

IE ‖Xi‖22 ≤ d1−2/r
n∑
i=1

IE ‖Xi‖2r .

Thus we may conclude that (1.1) holds with

K = KN (d, r) :=

{
d2/r−1 if 1 ≤ r ≤ 2,
d1−2/r if 2 ≤ r ≤ ∞.

Example 2.1 In case of 1 ≤ r ≤ 2, the preceding result is sharp, as can be seen from the following

example: Let b1, b2, . . . , bd be the standard basis of Rd, and for i = 1, 2, . . . , d let Xi := εibi with

independent Rademacher variables ε1, ε2, . . . , εd ∼ Unif{−1, 1}. Then IEXi = 0, ‖Xi‖r = 1

and ‖Sd‖r = d1/r, so that IE ‖Sd‖2r = d2/r−1
∑d

i=1 IE ‖Xi‖2r .
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A refinement for r > 2. In what follows we shall obtain a substantially smaller constant

KN (d, r) for large r. The main ingredient is the following result:

Lemma 2.2 For arbitrary fixed r ∈ [2,∞) and x ∈ Rd \ {0} let

h(x) := 2‖x‖2−rr

(
|xi|r−2xi

)d
i=1

while h(0) := 0. Then for arbitrary x, y ∈ Rd,

‖x‖2r + h(x)>y ≤ ‖x+ y‖2r ≤ ‖x‖2r + h(x)>y + (r − 1)‖y‖2r .

Nemirovski and Yudin (1983) and Nemirovski (2000) stated Lemma 2.1 with the factor r − 1

on the right side replaced with Cr for some (absolute) constant C > 1. Lemma 2.2, which is a

special case of the more general Lemma 2.6 in the next subsection, may be applied to the partial

sums S0 := 0 and Sk :=
∑k

i=1Xi, 1 ≤ k ≤ n, to show that for 2 ≤ r <∞,

IE ‖Sk‖2r ≤ IE
(
‖Sk−1‖2r + h(Sk−1)>Xk + (r − 1)‖Xk‖2r

)
= IE ‖Sk−1‖2r + IEh(Sk−1)> IEXk + (r − 1) IE ‖Xk‖2r

= IE ‖Sk−1‖2r + (r − 1) IE ‖Xk‖2r ,

and inductively we obtain a second candidate for K(d, r):

IE ‖Sn‖2r ≤ (r − 1)
n∑
i=1

IE ‖Xi‖2r for 2 ≤ r <∞.

Finally, we apply (2.1) again: For 2 ≤ q ≤ r ≤ ∞ with q <∞,

IE ‖Sn‖2r ≤ IE ‖Sn‖2q ≤ (q − 1)
n∑
i=1

IE ‖Xi‖2q ≤ (q − 1)d2/q−2/r
n∑
i=1

IE ‖Xi‖2r .

This inequality entails our first (q = 2) and second (q = r <∞) preliminary result, and we arrive

at the following refinement:

Theorem 2.3 For arbitrary r ∈ [2,∞],

IE ‖Sn‖2r ≤ KN (d, r)
n∑
i=1

IE ‖Xi‖2r

with

KN (d, r) := inf
q∈[2,r]∩R

(q − 1)d2/q−2/r.
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This constant KN (d, r) satisfies the (in)equalities

KN (d, r)


= d1−2/r if d ≤ 7
≤ r − 1
≤ 2e log d− e if d ≥ 3,

and

KN (d,∞) ≥ 2e log d− 3e.

Corollary 2.4 In case of B = Rd, d ≥ 3, and ‖ · ‖ = ‖ · ‖∞, inequality (1.1) holds with constant

K = 2e log d− e. If the Xi’s are also identically distributed, then

IE ‖n−1/2Sn‖2∞ ≤ (2e log d− e) IE ‖X1‖2∞.

Remark 2.5 At least for r = ∞ and large d, the constant K = 2e log d − e cannot be im-

proved substantially. For let X1, . . . , Xn be independent, identically distributed on {−1, 1}d.

Then IEXi = 0 and ‖Xi‖∞ = 1, while n−1/2Sn converges in distribution to a standard Gaussian

random vector Z ∈ Rd as n → ∞. But it is well-known that ‖Z‖∞ =
√

2 log d + op(1) as

d→∞. Hence any surrogate K∗(d,∞) for KN (d,∞) will satisfy

lim inf
d→∞

K∗(d,∞)
2 log d

≥ 1.

2.2 Arbitrary Lr-spaces

Lemma 2.2 is a special case of a more general inequality: Let (T,Σ, µ) be a σ-finite measure

space, and for 1 ≤ r < ∞ let Lr(µ) be the set of all measurable functions f : T → R with finite

(semi-) norm

‖f‖r :=
(∫
|f |r dµ

)1/r
,

where two such functions are viewed as equivalent if they coincide almost everywhere with respect

to µ. In what follows we investigate the functional

f 7→ V (f) := ‖f‖2r

on Lr(µ). Note that (Rd, ‖·‖r) corresonds to (Lr(µ), ‖·‖r) if we take T = {1, 2, . . . , d} equipped

with counting measure µ.

Note again that V (·) is convex, so for arbitrary f, g ∈ Lr(µ), the directional derivative

DV (f, g) := lim
t↓0

t−1
(
V (f + tg)− V (f)

)
5



exists and is a sublinear function of g. Moreover it is well known from convex analysis that

V (f) +DV (f, g) ≤ V (f + g).

The next theorem provides an explicit expression for DV (f, g) and an upper bound for V (f + g)

which improves an inequality of Nemirovski and Yudin (1983).

Lemma 2.6 Let r ≥ 2. Then for arbitrary f, g ∈ Lr(µ),

DV (f, g) =
∫
h(f)g dµ with h(f) := 2|f |r−2f ∈ Lq(µ),

where q := r/(r − 1). Moreover,

V (f) +DV (f, g) ≤ V (f + g) ≤ V (f) +DV (f, g) + (r − 1)V (g).

Remark 2.7 The upper bound for V (f +g) is sharp in the following sense: Suppose that µ(T ) <

∞, and let f, go : T → R be measurable such that |f | ≡ |go| ≡ 1 and
∫
fgo dµ = 0. Then our

proof of Lemma 2.6 reveals that

V (f + tgo)− V (f)−DV (f, tgo)
V (tgo)

→ r − 1 as t→ 0.

Remark 2.8 In case of r = 2, Lemma 2.6 is well known and easily verified. Here the upper

bound for V (f + g) is even an equality, i.e.

V (f + g) = V (f) +DV (f, g) + V (g).

Lemma 2.6 leads directly to the following result:

Corollary 2.9 In case of B = Lr(µ), inequality (1.1) is satisfied with K = r − 1.

2.3 A connection to geometrical functional analysis

For any Banach space (B, ‖ · ‖) and Hilbert space (H, 〈·, ·〉, ‖ · ‖), their Banach-Mazur distance

D(B,H) is defined to be the infimum of

‖T‖ · ‖T−1‖

over all linear isomorphisms T : B→ H, where ‖T‖ and ‖T−1‖ denote the usual operator norms

‖T‖ := sup
{
‖Tx‖ : x ∈ B, ‖x‖ ≤ 1

}
,

‖T−1‖ := sup
{
‖T−1y‖ : y ∈ H, ‖y‖ ≤ 1

}
.
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(If no such bijection exists, one defines D(B,H) :=∞.) Given such a bijection T ,

IE ‖Sn‖2 ≤ ‖T−1‖2 IE ‖TSn‖2

= ‖T−1‖2
n∑
i=1

IE ‖TXi‖2

≤ ‖T−1‖2‖T‖2
n∑
i=1

IE ‖Xi‖2.

This leads to the following observation:

Corollary 2.10 For any Banach space (B, ‖ ·‖) and any Hilbert space (H, 〈, ·, ·, 〉, ‖ ·‖) with finite

Banach-Mazur distance D(B,H), inequality (1.1) is satisfied with K = D(B,H)2.

A famous result from geometrical functional analysis is John’s theorem (cf. Tomczak-Jaeger-

mann 1989, Johnson and Lindenstrauss 2001) for finite-dimensional normed spaces. It entails that

D(B,Rdim(B)) ≤
√

dim(B), where Rd is equipped with the standard inner product. This entails

the following fact:

Corollary 2.11 For any normed space (B, ‖ · ‖) with finite dimension, inequality (1.1) is satisfied

with K = dim(B).

3 The probabilistic approach: Type and co-type inequalities

3.1 Rademacher type and cotype inequalities

Let {εi} denote a sequence of independent Rademacher random variables. Let 1 ≤ p < ∞. A

Banach space B with norm ‖ · ‖ is said to be of (Rademacher) type p if there is a constant Tp such

that for all finite sequences {xi} in B,

IE
∥∥∥ n∑
i=1

εixi

∥∥∥p ≤ T pp

n∑
i=1

‖xi‖p.

Similarly, for 1 ≤ q <∞, B is of (Rademacher) cotype q if there is a constant Cq such that for all

finite sequences {xi} in B,

IE
∥∥∥ n∑
i=1

εixi

∥∥∥q ≥ C−qq

(
n∑
i=1

‖xi‖q
)1/q

.

Ledoux and Talagrand (1991), page 247, note that type and cotype properties appear as dual

notions: If a Banach space B is of type p, its dual space B′ is of cotype q = p/(p− 1).

One of the basic results concerning Banach spaces with type p and cotype q is the following

proposition (due to Hoffmann-Jørgensen):
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Proposition 3.1 (Ledoux and Talagrand, 1991, Proposition 9.11, page 248).

If B is of type p ≥ 1 with constant Tp, then

IE ‖Sn‖p ≤ (2Tp)p
n∑
i=1

IE ‖Xi‖p.

If B is of cotype q ≥ 1 with constant Cq, then

IE ‖Sn‖q ≥ (2Cq)−q
n∑
i=1

IE ‖Xi‖q.

As shown in Ledoux and Talagrand (1991), page 27, the Banach space Lr(µ) with 1 ≤ r <∞

(cf. section 2.2) is of type r when r ≤ 2 and of type 2 for r ≥ 2. Similarly, Lr(µ) is co-type r for

r ≥ 2 and co-type 2 for r ≤ 2.

In case of r ≥ 2 = p, explicit values for the constant Tp in Proposition 3.1 can be obtained

from the optimal constants in Khintchine’s inequalities due to Haagerup (1982).

Lemma 3.2 For 2 ≤ r <∞, the space Lr(µ) is of type 2 with constant T2 = Br, where

Br := 21/2

(
Γ((r + 1)/2)√

π

)1/r

.

Corollary 3.3 For B = Lr(µ), 2 ≤ r <∞, inequality (1.1) is satisfied with K = 4B2
r .

Remark 3.4 Note that B2 = 1 and

Br√
r
→ 1√

e
as r →∞.

Thus for large values r, the conclusion of Corollary 3.3 is weaker than the one of Corollary 2.9.

3.2 Gaussian type 2 inequalities

Another connecting link is via Gaussian type constants. Here one replaces the Rademacher se-

quence {εi} with a sequence {Zi} of independent standard Gaussian random variables. A Banach

space B is called Gaussian type p, if there exists a constant Tp > 0 such that

IE
∥∥∥∑

i

Zixi

∥∥∥p ≤ T pp
∑
i

‖xi‖p

for arbitrary fixed finite sequences {xi} in B. Let TR2 (B) and TG2 (B) be the smallest possible

Rademacher and Gaussian type 2 constants, respectively. Then

TG2 (B) ≤ TR2 (B) ≤
√
π/2TG2 (B); (3.1)

8



see e.g. (Pisier, 1986, Proposition 3.2, page 187) and our proof in Section 6.

For the special space `d∞ := (Rd, ‖ · ‖∞), it follows from Sidák’s theorem (Šidák, 1968) that

TG2 (`d∞) = cd :=
√

IE max
1≤j≤d

Z2
j , (3.2)

and

cd ≤
√

2 log d if d ≥ 3. (3.3)

Combining these facts shows that

TR2 (`d∞) ≤
√
π/2 cd ≤

√
π log d if d ≥ 3.

Using this result together with the Hoffmann-Jørgensen inequality (Proposition 3.1) yields another

Nemirovski type inequality:

Corollary 3.5 If (B, ‖ · ‖) = `d∞ for some d ≥ 3, then inequality (1.1) holds with

K = KT2(d,∞) := 2πc2d ≤ 4π log d.

4 The empirical process approach: Truncation and Bernstein’s in-
equality

The random vectors Xi ∈ Rd are split into two random vectors via truncation. Namely, let Xi =

X
(a)
i +X

(b)
i with

X
(a)
i := 1[‖Xi‖∞≤κo]Xi and X

(b)
i := 1[‖Xi‖∞>κo]Xi

for some constant κo > 0 to be specified later. Then we write Sn = An + Bn with the centered

random sums

An :=
n∑
i=1

(X(a)
i − IEX(a)

i ) and Bn :=
n∑
i=1

(X(b)
i − IEX(b)

i ).

The sum An involves centered random vectors in [−2κo, 2κo]d and will be treated by means

of Bernstein type inequalities. To this end we introduce the linexp function

e(L) := exp(1/L)− 1− 1/L, L > 0.

Lemma 4.1 Let Z ∈ [−κ, κ] have mean zero and variance σ2. Then for any L > 0,

log IE exp
( Z
κL

)
≤ log

(
1 +

σ2e(L)
κ2

)
≤ σ2e(L)

κ2
.
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Lemma 4.2 Suppose that Xi = (Xi,j)dj=1 satisfies ‖Xi‖∞ ≤ κ and max1≤j≤d Var(Xi,j) ≤ σ2
i

for all i. Let Γ :=
∑n

i=1 σ
2
i . Then for d ≥ 3 and any L > 0,√

IE ‖Sn‖2∞ ≤ κL log(2d) +
ΓL e(L)

κ
.

Theorem 4.3 In case of (B, ‖ · ‖) = `d∞ for some d ≥ 3, inequality (1.1) holds with

K = KTB(d,∞) :=
(
1 + 3.46

√
log(2d)

)2
.

If the random vectors Xi are symmetrically distributed around 0, one may even set

K =
(
1 + 2.9

√
log(2d)

)2
.

5 Comparisons

In this section we compare the three approaches just described in the special case of (B, ‖·‖) = `d∞

with d ≥ 3. As to the random vectorsXi, we broaden our point of view and consider three different

cases:

General case: The random vectors Xi are independent with IE ‖Xi‖2∞ <∞ for all i.

Centered case: In addition, IEXi = 0 for all i.

Symmetric case: In addition, L(Xi) = L(−Xi) for all i.

In view of the general case, we reformulate inequality (1.1) as follows:

IE ‖Sn − IESn‖2∞ ≤ K
n∑
i=1

IE ‖Xi‖2∞. (5.1)

One reason for this extension is that in some applications, particularly in connection with empirical

processes, it is easier and more natural to work with uncentered summands Xi. Let us discuss

briefly the consequences of this extension in the three frameworks:

Nemirovski’s approach: Between the centered and symmetric case there is no difference. If

(1.1) holds in the centered case for some K, then in the general case

IE ‖Sn − IESn‖2∞ ≤ K

n∑
i=1

IE ‖Xi − IEXi‖2∞ ≤ 4K
n∑
i=1

IE ‖Xi‖2∞.

The latter inequality follows from the general fact that

IE ‖Y − IEY ‖2 ≤ IE
(
(‖Y ‖+ ‖ IEY ‖)2

)
≤ 2 IE ‖Y ‖2 + 2‖ IEY ‖2 ≤ 4 IE ‖Y ‖2.
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This looks rather crude at first glance, but in case of the maximum norm and high dimension d, the

factor 4 cannot be reduced. For let Y ∈ Rd have independent components Y1, . . . , Yd ∈ {−1, 1}

with IP(Yj = 1) = 1− IP(Yj = −1) = p ∈ [1/2, 1). Then ‖Y ‖∞ ≡ 1, while IEY = (2p− 1)dj=1

and

‖Y − IEY ‖∞ =

{
2(1− p) if Y1 = · · · = Yd = 1,
2p else.

Hence
IE ‖Y − IEY ‖2∞

IE ‖Y ‖2∞
= 4

(
(1− p)2pd + p2(1− pd)

)
.

If we set p = 1− d−1/2 for d ≥ 4, then the latter ratio converges to 4 as d→∞.

The approach via Rademacher and Gaussian type 2 inequalities: The first part of Propo-

sition 3.1, involving the Rademacher type constant Tp, remains valid if we drop the assumption

that IEXi = 0 and replace Sn with Sn − IESn. Thus there is no difference between the general

and the centered case. In the symmetric case, however, the factor 2p in Proposition 3.1 becomes

superfluous. Thus, if (1.1) holds with a certain constant K in the general and centered case, we

may replace K with K/4 in the symmetric case.

The approach via truncation and Bernstein’s inequality: Our proof for the centered case does

not utilize that IEXi = 0, so again there is no difference between the centered and general case.

However, in the symmetric case, the truncated random vectors 1{‖Xi‖∞ ≤ κ}Xi and 1{‖Xi‖∞ >

κ}Xi are centered, too, which leads to the substantially smaller constant K in Theorem 4.3.

Summaries and comparisons. Table 1 summarizes the constantsK = K(d,∞) we have found

so far by the three different methods and for the three different cases. Table 2 contains the corre-

sponding limits

K∗ := lim
d→∞

K(d,∞)
log d

.

Interestingly, there is no global winner among the three methods. But for the centered case, Ne-

mirovski’s approach yields asymptotically the smallest constants. In particular,

lim
d→∞

KTB(∞, d)
KN (∞, d)

=
3.462

2e
=̇ 2.20205,

lim
d→∞

KT2(∞, d)
KN (∞, d)

=
2π
e

=̇ 2.31145,

lim
d→∞

KTB(∞, d)
KT2(∞, d)

=
3.462

4π
=̇ 0.95267.
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Truncation and Bernstein’s inequality yields a better constant than the type 2 inequalities for ex-

tremely large d. It is easily checked that the former wins for dimensions larger than approximately

9.40433× 1071! Figure 1 shows the constants K(d,∞) for the centered case over a certain range

of dimensions d.

General case Centered case Symmetric case
Nemirovski 8e log d− 4e 2e log d− e 2e log d− e

Type 2 inequalities 2πc2d ≤ 4π log d 2πc2d ≤ 4π log d π log d
Truncation/Bernstein

(
1 + 3.46

√
log(2d)

)2 (
1 + 3.46

√
log(2d)

)2 (
1 + 2.9

√
log(2d)

)2
Table 1: The different constants K(d,∞).

General case Centered case Symmetric case
Nemirovski 8e =̇ 21.7463 2e =̇ 5.4366 2e =̇ 5.4366

Type 2 inequalities 4π =̇ 12.5664 4π =̇ 12.5664 π =̇ 3.1416
Truncation/Bernstein 3.462 = 11.9716 3.462 = 11.9716 2.92 = 8.41

Table 2: The different limits K∗.

Figure 1: Comparison of K(d,∞) obtained via the three proof methods: Blue (bottom) = Ne-
mirovski; Red and Black (middle) = type 2 inequalities; Green (top) = truncation and Bernstein
inequality

6 Proofs

6.1 Proofs for Section 2

Proof of (2.1). In case of r =∞, the asserted inequalities read

‖x‖∞ ≤ ‖x‖q ≤ d1/q‖x‖∞ for 1 ≤ q <∞
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and are rather obvious. For 1 ≤ q < r <∞, note first that

‖x‖qq = ‖x‖qr
d∑
i=1

(
|xi|/‖x‖r

)q
≥ ‖x‖qr

d∑
i=1

(
|xi|/‖x‖r

)r
= ‖x‖qr,

because |xi|/‖xi‖r ≤ 1. Moreover, it follows from Jensen’s inequality that

‖x‖rq = dr/q
( d∑
i=1

d−1|xi|q
)r/q

≤ dr/q
d∑
i=1

d−1
(
|xi|q

)r/q
≤ dr/q−1

d∑
i=1

|xi|r

=
(
d1/q−1/r‖x‖r

)r
. 2

Proof of Lemma 2.6. In case of r = 2, V (f + g) is equal to V (f) + DV (f, g) + V (g). In

case of r ≥ 2 and ‖f‖r = 0, both DV (f, g) and
∫
h(f)g dµ are equal to zero, and the asserted

inequalities reduce to the trivial statement that V (g) ≤ (r − 1)V (g). Thus let us restrict our

attention to the case r > 2 and ‖f‖r > 0.

Note first that the mapping

R 3 t 7→ ht := |f + tg|r

is pointwise twice continuously differentiable with derivatives

ḣt = r|f + tg|r−1sign(f + tg)g = r|f + tg|r−2(f + tg)g,

ḧt = r(r − 1)|f + tg|r−2g2.

By means of the inequality |x + y|b ≤ 2b−1
(
|x|b + |y|b

)
for real numbers x, y and b ≥ 1, a

consequence of Jensen’s inequality, we can conclude that for any bound to > 0,

max
|t|≤to

|ḣt| ≤ r2r−2
(
|f |r−1|g|+ tr−1

o |g|r
)
,

max
|t|≤to

|ḧt| ≤ r(r − 1)2r−3
(
|f |r−2|g|2 + tr−2

o |g|r
)
.

13



The latter two envelope functions belong to L1(µ). This follows from Hölder’s inequality which

we rephrase for our purposes in the form∫
|f |λr|g|(1−λ)r dµ ≤ ‖f‖λrr ‖g‖(1−λ)r

r for 0 ≤ λ ≤ 1.

Hence we may conclude via dominated convergence that

t 7→ ṽ(t) := ‖f + tg‖rr

is twice continuously differentiable with derivatives

ṽ′(t) = r

∫
|f + tg|r−2(f + tg)g dµ,

ṽ′′(t) = r(r − 1)
∫
|f + tg|r−2g2 dµ.

This entails that

t 7→ v(t) := V (f + tg) = ṽ(t)2/r

is continuously differentiable with derivative

v′(t) = (2/r)ṽ(t)2/r−1ṽ′(t) =
∫
h(f + tg)g dµ.

For t = 0 this entails the asserted expression for DV (f, g). Moreover, v(t) is twice continuously

differentiable on the set {t ∈ R : ‖f + tg‖r > 0} which equals either R or R \ {to} for some

to 6= 0. On this set the second derivative equals

v′′(t) = (2/r)ṽ(t)2/r−1ṽ′′(t) + (2/r)(2/r − 1)ṽ(t)2/r−2ṽ′(t)2

= 2(r − 1)
∫
|f + tg|r−2

‖f + tg‖r−2
r

g2 dµ− 2(r − 2)
(∫ |f + tg|r−2(f + tg)

‖f + tg‖r−1
r

g dµ
)2

≤ 2(r − 1)‖g‖2r = 2(r − 1)V (g)

by virtue of Hölder’s inequality. Consequently,

V (f + g)− V (f)−DV (f, g) = v(1)− v(0)− v′(0)

=
∫ 1

0
(v′(t)− v′(0)) dt

≤ 2(r − 1)V (g)
∫ 1

0
t dt

= (r − 1)V (g). 2

14



Proof of Theorem 2.3. The first part is an immediate consequence of the considerations pre-

ceding the theorem. It remains to prove the (in)equalities and expansion for KN (d, r). Note that

KN (d, r) is the infimum of h(q)d−2/r over all real q ∈ [2, r], where h(q) := (q − 1)d2/q satisfies

the equation

h′(q) =
d2/q

q2
(
(q − log d)2 − (log d− 2) log d

)
.

Since 7 < e2 < 8, this shows that h is strictly increasing on [2,∞) if d ≤ 7. Hence

KN (d, r) = h(2)d−2/r = d1−2/r if d ≤ 7.

For d ≥ 8, one can easily show that log d−
√

(log d− 2) log d < 2, so that h is strictly decreasing

on [2, rd] and strictly increasing on [rd,∞), where

rd := log d+
√

(log d− 2) log d

{
< 2 log d,
> 2 log d− 2.

Thus for d ≥ 8,

KN (d, r) =

{
h(r)d−2/r = r − 1 < 2 log d− 1 if r ≤ rd,
h(rd)d−2/r ≤ h(2 log d) = 2e log d− e if r ≥ rd.

Moreover, one can verify numerically that KN (d, r) ≤ d ≤ 2e log d− e for 3 ≤ d ≤ 7.

Finally, for d ≥ 8, the inequalities r′d := 2 log d− 2 < rd < r′′d := 2 log d yield

KN (d,∞) = h(rd) ≥ (r′d − 1)d2/r′′d = 2e log d− 3e,

and for 1 ≤ d ≤ 7, the inequality d = KN (d,∞) ≥ 2e log(d)− 3e is easily verified. 2

6.2 Proofs for Section 3

Proof of Lemma 3.2. Let x1, . . . , xn be fixed functions in Lr(µ). Then by Haagerup (1981),

for any t ∈ T , {
IE
∣∣∣ n∑
i=1

εixi(t)
∣∣∣r}1/r

≤ Br

( n∑
i=1

|xi(t)|2
)1/2

. (6.1)

To use inequality (6.1) for finding an upper bound for the type constant for Lr, rewrite it as

IE
∣∣∣ n∑
i=1

εixi(t)
∣∣∣r ≤ Br

r

( n∑
i=1

|xi(t)|2
)r/2

.
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It follows from Fubini’s theorem and the previous inequality that

IE
∥∥∥ n∑
i=1

εixi

∥∥∥r
r

= IE
∫ ∣∣∣ n∑

i=1

εixi(t)
∣∣∣r dµ(t)

=
∫

IE
∣∣∣ n∑
i=1

εixi(t)|rdµ(t)

≤ Br
r

∫ ( n∑
i=1

|xi(t)|2
)r/2

dµ(t).

Using the triangle inequality (or Minkowski’s inequality), we obtain{
IE
∥∥∥ n∑
i=1

εixi

∥∥∥r
r

}2/r

≤ B2
r

{∫ ( n∑
i=1

|xi(t)|2
)r/2

dµ(t)
}2/r

≤ B2
r

n∑
i=1

(∫
|xi(t)|r dµ(t)

)2/r

= B2
r

n∑
i=1

‖xi‖2r .

Furthermore, since g(v) = v2/r is a concave function of v ≥ 0, the last display implies that

IE
∥∥∥ n∑
i=1

εixi

∥∥∥2

r
≤
{

IE
∥∥∥ n∑
i=1

εixi

∥∥∥r
r

}2/r

≤ B2
r

n∑
i=1

‖xi‖2r . 2

Proof of (3.2). Let xi ∈ `d∞ for i = 1, . . . , n. Then V :=
∑n

i=1 Zixi has distribution Nd(0,Σ)

with covariance matrix

Σ =
n∑
i=1

xix
′
i.

Thus we want to show that

IE max
1≤j≤d

V 2
j ≤ c2d

n∑
i=1

‖xi‖2∞

with c2d = IE max1≤j≤d Z
2
j . We may assume without loss of generality that

∑n
i=1 ‖xi‖2∞ = 1.

For otherwise we could replace xi with xi/
√∑n

i=1 ‖xi‖2∞. Then it remains to be shown that

IE max
1≤j≤d

V 2
j = IE

∥∥∥ n∑
i=1

Zixi

∥∥∥2

∞
≤ c2d. (6.2)

Now we have

Var(Vj) =
n∑
i=1

x2
ij ≤

n∑
i=1

‖xi‖2∞ = 1. (6.3)
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By (Šidák, 1968, Corollary 3, page 1428) and (6.3) it follows that

IP
(

max
1≤j≤d

|Vj | < t
)

= IP
(
|V1| ≤ t, . . . , |Vd| < t

)
≥

d∏
j=1

P (|Vj | < t) ≥
d∏
j=1

P (|Zj | < t) = IP
(

max
1≤j≤d

|Zj | < t
)
.

This implies that (6.2) holds and hence the conclusion, since

IE max
1≤j≤d

|Vj |2 = 2
∫ ∞

0
tP ( max

1≤j≤d
|Vj | ≥ t) dt

≤ 2
∫ ∞

0
tP ( max

1≤j≤d
|Zj | ≥ t) dt = IE max

1≤j≤d
|Zj |2.

To prove the inequality in (3.2) we will use the upper bound of Exercise 2.3.5 of van der Vaart

and Wellner (1996), which holds, in fact, for every to > 0. Thus for every to > 0

c2d ≡ IE max
1≤j≤d

|Zj |2 ≤ t2o + d

∫ ∞
to

P (Z > t)dt2

= t2o + 2d
∫ ∞
to

t(1− Φ(t))dt

≤ t2o + 2d
∫ ∞
to

φ(t)dt (by Mills’ ratio)

= t2o + 2d(1− Φ(to)).

Evaluating this bound at to =
√

2 log(d/
√

2π) yields

c2d ≤ 2 log(d/
√

2π) + 2d(1− Φ(
√

2 log(d/
√

2π)))

≤ 2 log d− 2
1
2

log(2π) + 2d
φ(
√

2 log(d/
√

2π))√
2 log(d/

√
2π)

= 2 log d− log(2π) +
√

2√
log(d/

√
2π)

(6.4)

≤ 2 log d

where the last inequality holds if
√

2√
log(d/

√
2π)
≤ log(2π),

or equivalently if

log d ≥ 2
(log(2π))2

+
log(2π)

2
= 1.51104...,

and hence if d ≥ 5 > e1.51104... =̇ 4.53. The claimed inequality is easily verified numerically

for d = 3, 4. (It fails for d = 2.) As can be seen from (6.4), 2 log d − log(2π) gives a good

approximation to IE max1≤j≤d Z
2
j for large d.
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Proof of (3.1). Let xi ∈ B and let {εi} and {Zi} be sequences of independent Rademacher and

N(0, 1) random variables which are themselves independent. Then, since IE |Zi| =
√

2/π for all

i, Jensen’s inequality yields

IE
∥∥∥ n∑
i=1

εixi

∥∥∥2
= IEε

∥∥∥ n∑
i=1

εi
IE |Zi|√

2/π
xi

∥∥∥2

=
π

2
IEε IEZ

∥∥∥ n∑
i=1

εiZixi

∥∥∥2

=
π

2
IE
∥∥∥ n∑
i=1

Zixi

∥∥∥2 (
since εiZi

d= Zi
)

≤ π

2
TG2 (B)2

n∑
i=1

‖xi‖2.

This implies that TR2 (B) ≤
√
π/2TG2 (B). To prove the left inequality in (3.1), note that

IE
∥∥∥ n∑
i=1

Zixi

∥∥∥2
= IE

∥∥∥ n∑
i=1

εiZixi

∥∥∥2
= IEZ IEε

∥∥∥ n∑
i=1

εi(Zixi)
∥∥∥2

≤ IEZ
{
TR2 (B)2

n∑
i=1

Z2
i ‖xi‖2

}
= TR2 (B)2

n∑
i=1

‖xi‖2,

whence TG2 (B) ≤ TG2 (B). 2

6.3 Proofs for Section 4

Proof of Lemma 4.1. It follows from IEZ = 0, the Taylor expansion of the exponential function

and the inequality IE |Z|m ≤ σ2κm−2 for m ≥ 2 that

IE exp
( Z
κL

)
= 1 + IE

{
exp
( Z
κL

)
− 1− Z

κL

}
≤ 1 +

∞∑
m=2

1
m!

IE |Z|m

(κL)m
≤ 1 +

σ2

κ2

∞∑
m=2

1
m!

1
Lm

= 1 +
σ2e(L)
κ2

.

2

Proof of Lemma 4.2. Applying Lemma 4.1 to the j-th components Xi,j of Xi and Sn,j of Sn

yields for all L > 0,

log IE exp
(±Sn,j

κL

)
=

n∑
i=1

log IE exp
(±Xi,j

κL

)
≤

n∑
i=1

Var(Xi,j)e(L)
κ2

≤
n∑
i=1

σ2
i e(L)
κ2

=
Γe(L)
κ2

.
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Equivalently

IE exp
(±Sn,j

κL

)
≤ exp

(Γe(L)
κ2

)
.

Hence

IE exp
(‖Sn‖∞

κL

)
− 1 = IE max

1≤j≤d

(
exp
( |Sn,j |
κL

)
− 1
)

≤
d∑
j=1

IE
(

exp
( |Sn,j |
κL

)
− 1
)

≤
d∑
j=1

IE
(

exp
(Sn,j
κL

)
+ exp

(−Sn,j
κL

)
− 1
)

≤ 2d exp
(Γe(L)

κ2

)
− d.

Since z 7→ h(z) := log2(z) is increasing on [1,∞) and concave on [e,∞), it follows from

Jensen’s inequality that Y := ‖Sn‖∞/(κL) satisfies

IEY 2 = IEh(exp(Y )) ≤ IEh
(
e+ exp(Y )− 1

)
≤ h

(
e+ IE exp(Y )− 1

)
≤ log2

{
e+ 2d exp

(Γe(L)
κ2

)
− d
}

≤
{

log(2d) +
Γe(L)
κ2

}2
(because d ≥ e).

This entails that

IE ‖Sn‖2∞ ≤
{
κL log(2d) +

ΓL e(L)
κ

}2
,

which is equivalent to the inequality stated in the lemma. 2

Proof of Theorem 4.3. For fixed κo > 0 we split Sn into An + Bn as described before. Let us

bound the sum Bn first: For this term we have

‖Bn‖∞ ≤
n∑
i=1

{
1[‖Xi‖∞>κo]‖Xi‖∞ + IE(1[‖Xi‖∞>κo]‖Xi‖∞)

}
=

n∑
i=1

{
1[‖Xi‖∞>κo]‖Xi‖∞ − IE(1[‖Xi‖∞>κo]‖Xi‖∞)

}
+ 2

n∑
i=1

IE(1[‖Xi‖∞>κo]‖Xi‖∞)

=: Bn1 +Bn2.
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Therefore, since IEBn1 = 0,

IE ‖Bn‖2∞ ≤ IE(Bn1 +Bn2)2 = IEB2
n1 +B2

n2

=
n∑
i=1

Var
(
1[‖Xi‖∞>κo]‖Xi‖∞

)
+ 4
( n∑
i=1

IE(‖Xi‖∞1[‖Xi‖∞>κo])
)2

≤
n∑
i=1

IE ‖Xi‖2∞ + 4
( n∑
i=1

IE ‖Xi‖2∞
κo

)2

= Γ + 4
Γ2

κ2
o

,

where we define Γ :=
∑n

i=1 σ
2
i with σ2

i := IE ‖Xi‖2∞.

The first sum, An, may be bounded by means of Lemma 4.2 with κ = 2κo, utilizing the bound

Var(X(a)
i,j ) = Var

(
1[‖Xi‖∞≤κo]Xi,j

)
≤ IE

(
1[‖Xi‖∞≤κo]X

2
i,j

)
≤ σ2

i .

Thus

IE ‖An‖2∞ ≤
{

2κoL log(2d) +
ΓL e(L)

2κo

}2
.

Combining the bounds we find that√
IE ‖Sn‖2∞ ≤

√
IE ‖An‖2∞ +

√
IE ‖Bn‖2∞

≤ 2κoL log(2d) +
ΓLe(L)

2κo
+
√

Γ + 2
Γ
κo

= ακo +
β

κo
+
√

Γ,

where α := 2L log(2d) and β := Γ(L e(L) + 4)/2. This bound is minimized if κo =
√
β/α with

minimum value

2
√
αβ +

√
Γ =

(
1 + 2

√
L2e(L) + 4L

√
log(2d)

)√
Γ,

and for L = 0.407 the latter bound is not greater than(
1 + 3.46

√
log(2d)

)√
Γ.

In the special case of symmetrically distributed random vectors Xi, our treatment of the sum

Bn does not change, but in the bound for IE ‖An‖2∞ one may replace 2κo with κo. Thus√
IE ‖Sn‖2∞ ≤ κoL log(2d) +

ΓLe(L)
κo

+
√

Γ + 2
Γ
κo

= α′κo +
β′

κo
+
√

Γ
(
with α′ := L log(2d), β′ := Γ(L e(L) + 2)

)
=

(
1 + 2

√
L2e(L) + 2L

√
log(2d)

)√
Γ

(
if κo =

√
β′/α′

)
.

For L = 0.5 the latter bound is not greater than(
1 + 2.9

√
log(2d)

)√
Γ. 2
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6.4 Proofs for Section 5

Notes on the crossings claimed at the end of section 5. First we show that

KTB(∞, d) = (1 + 3.46
√

log(2d))2 ≤ 4π log d =: K ′T2(∞, d)

for d ≥ 9.40433 ∗ 1071. Letting y ≡
√

log(2d), a = 3.46, b2 = 4π, c = 4π log(2), the inequality

above becomes

(1 + ay)2 ≤ b2y2 − c.

Thus we seek a solution of

(1 + ay)2 = b2y2 − c;

or, equivalently of

(b2 − a2)y2 − 2ay − (c+ 1) = 0.

This has positive solution

y0 =
2a+

√
4a2 + 4(b2 − a2)(c+ 1)

2(b2 − a2)

=
2(3.46) +

√
4(3.46)2 + 4(4π − (3.46)2)(4π log(2) + 1)

2(4π − (3.46)2)
= 12.9003 . . . .

Thus the claimed inequality holds if d ≥ d0 ≡ exp(y2
0)/2 ≈ 9.40433 ∗ 1071.

Now we show that

KTB(∞, d) = (1 + 3.46
√

log(2d))2 ≤ 2πc2d = KT2(∞, d) (6.5)

for d ≥ 5.82884 · 1086. From a lower bound similar to the upper bound in (6.4) we have

c2d = IE max
1≤j≤d

|Zj |2 ≥ 2 log d− log(2π).

Thus to prove (6.5) it suffices to show that

KTB(∞, d) = (1 + 3.46
√

log(2d))2 ≤ 2π(2 log d− log(2π)) ≤ 2πc2d =: K ′′TB(∞, d).

Letting y ≡
√

log(2d), a = 3.46, b2 = 4π, c = 2π log(8π), the inequality in the last display

becomes

(1 + ay)2 ≤ b2y2 − c,
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which is exactly the same form as in the previous crossing argument with only a different value of

the constant c. Thus we seek a solution of

(1 + ay)2 = b2y2 − c;

or, equivalently of

(b2 − a2)y2 − 2ay − (c+ 1) = 0.

This has positive solution

y0 =
2a+

√
4a2 + 4(b2 − a2)(c+ 1)

2(b2 − a2)

=
2(3.46) +

√
4(3.46)2 + 4(4π − (3.46)2)(2π log(8π) + 1)

2(4π − (3.46)2)
= 14.159 . . . .

Thus the claimed inequality holds if d ≥ d0 ≡ exp(y2
0)/2 ≈ 5.82884× 1086. 2
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