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Abstract

This paper is about the construction of numerical fluxes of the centred type for
one-step schemes in conservative form for solving general systems of conservation
laws in multiple space dimensions on structured and unstructured meshes. The work
is a multi-dimensional extension of the one-dimensional FORCE flux and is closely
related to the work of Nessyahu-Tadmor and Arminjon. The resulting basic flux is
first-order accurate and monotone; it is then extended to arbitrary order of accuracy
in space and time on unstructured meshes in the framework of finite volume and
discontinuous Galerkin methods. The performance of the schemes is assessed on a
suite of test problems for the multidimensional Euler and Magnetohydrodynamics
equations on unstructured meshes.
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1 Introduction

The pioneering work of Lax and Wendroff [31], and more recently that of
Hou and LeFloch [25], have established, theoretically, that numerical methods
for systems of non-linear hyperbolic conservation laws must be conservative.
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Then, a key task is the prescription of monotone intercell numerical fluxes.
These will then constitute the building block for a wide range of numerical
methods constructed in the frameworks of finite volume and discontinuous
Galerkin finite element methods, in either fully discrete or semi-discrete form,
on structured or unstructured meshes. The construction of numerical fluxes
has been a central research issue for over five decades, of which two very promi-
nent and representative examples are the Lax-Friedrichs flux [30] and the Go-
dunov flux [19]. These two methods introduced key ideas that have remained
the pillars of current research. They are representative of the two distinct
approaches for prescribing numerical fluxes, respectively termed centred (or
symmetric) and upwind (or Riemann-problem based, or characteristic-based).
Upwind schemes, explicitly use wave propagation information contained in
the differential equations for the construction of the numerical flux, which is
usually accomplished by solving a local one-dimensional Riemann problem, in
the direction normal to a cell interface. The (classical) Riemann problem is
the Cauchy problem for the relevant system of conservation laws along with
piece-wise constant initial conditions, usually the cell averages on each side of
the interface. Centred schemes, on the other hand, do not explicitly use wave
propagation information contained in the corresponding Riemann problem.
That is, centred schemes do not solve the Riemann problem in the conven-
tional manner. However these schemes are not independent of the Riemann
problem, as they use both the differential equations and the initial conditions
of the Riemann problem.

This paper is about the construction of numerical fluxes of the centred type,
for general hyperbolic systems in conservation-law form, in multiple space di-
mensions. The schemes are derived for Cartesian and non-Cartesian structured
elements and for unstructured triangular and tetrahedral elements. A key in-
gredient of the present centred schemes is an averaging operator that results
from the integral form of the conservation laws applied to appropriately chosen
control volumes. Such operator is valid for both classical and weak solutions
of conservations laws and is applicable to the one and the multi-dimensional
cases. The present work builds upon two lines of current developments re-
garding centred methods. The first relates to the centred schemes reported
by Nessyahu and Tadmor [36]. For extensions to unstructured meshes see the
work of Arminjon and collaborators, e.g. [2], and for high order extensions
see the work presented in [33,5,34]. The second line results from the FORCE
scheme proposed by Toro and Billett [46]. As a matter of fact, the present work
is a multidimensional extension of the FORCE scheme. Both approaches have
the common feature of applying an averaging operator on staggered control
volumes. In the Nessyahu-Tadmor approach the schemes consist of a two-step
procedure on staggered grids and do not have a conservative form; in addi-
tion, the scheme is subject to a CFL restriction of 1/2. The FORCE scheme
is a one-step procedure on a non-staggered grid and has a conservative form
with a corresponding numerical flux, called the FORCE flux; it is subject to



a CFL restriction of unity. The Nessyahu-Tadmor scheme is second-order ac-
curate for smooth solutions and essentially non-oscillatory for discontinuous
solutions, while the FORCE scheme is first-order accurate and monotone. The
Nessyahu-Tadmor schemes have also been applied to multidimensional prob-
lems on regular Cartesian grids by Jiang and Tadmor [28], and to unstruc-
tured triangular and tetrahedral meshes by Arminjon and collaborators, see
for example [2]. Available theoretical results for the Nessyahu-Tadmor schemes
include proofs of convergence; Haasdonk et al. [21] proved convergence of the
first-order version of the Nessyahu-Tadmor scheme for non-linear scalar con-
servation laws on unstructured triangular meshes. For the FORCE scheme
convergence was proved by Chen and Toro [6] for the case of two non-linear
systems of conservation laws in one space dimension, namely the isentropic
equation of gas dynamics and the non-linear shallow water equations with a
source term due to bed elevation.

In this paper we extend the FORCE approach to non-linear multidimensional
systems of hyperbolic equations in conservation-law form. The schemes are
one-step schemes in conservative form on unstaggered general meshes, where
numerical fluxes emerge in a very natural way. Centred fluxes may be seen
as being an appropriate solution of the Riemann problem without resolving
the wave structure. For the purpose of analysis, FORCE schemes are also
constructed on regular Cartesian meshes in two and three space dimensions.
Various stencil configurations are explored and detailed analysis of monotonic-
ity, linear stability and numerical viscosity is carried out. The most successful
stencil configurations are extended to triangular meshes in two space dimen-
sions and tetrahedral elements in three space dimensions.

The rest of the paper is structured as follows. Section 2 sets the background
and reviews the FORCE and Nessyahu-Tadmor approaches, discussing com-
mon features and differences. In Section 3 we extend the FORCE approach
and construct numerical fluxes for two and three dimensional general meshes;
we also specialize the FORCE schemes to regular Cartesian meshes in two and
three space dimensions for the purpose of analysis of the schemes. In Section
4 we analyse the monotonicity, linear stability and numerical viscosity of the
multidimensional FORCE schemes on Cartesian meshes. In Section 5 we ex-
tend the first-order monotone multidimensional FORCE schemes to arbitrary
order of accuracy in both space and time following the ADER, approach, on
unstructured meshes in two and three space dimensions. In section 6 we assess
the numerical schemes via s suite of carefully chosen test problems for the Eu-
ler and MHD equations, analyze convergence rates for smooth solutions and
asses the performance of the schemes for shocked flows. Conclusions are drawn
in section 7.



2 Background

Here we review the one-dimensional FORCE flux in the framework of finite
volume methods and discuss its relation with the Nessyahu-Tadmor approach.

2.1 The Finite Volume Framework

We consider a one-dimensional system of m non-linear hyperbolic equations
in conservation-law form

0,Q + 0,F (Q) =0, reR,t>0, (1)

where Q(x,t) is the vector of conserved variables and F (Q) is the vector of
fluxes. We consider the Cauchy problem for (1) with initial condition of the
form

Q(z,t") = Q(a). (2)
Given the control volume V' = [z,_1 1, Tyl 1] x [t", "] of dimensions At =

"t — " and Az = Tipl — Ti_ L, one can mtegrate system (1) in space and

time ezactly, and divide by the cell width Az to obtain the averaging operator

th% xi+%
1 n+1 _ n
< / Qe ")z = - / Q(z, ")
Ii_% Ii_%
At 1 tn+1 tn+1
T R / 0)dt]| - (3)

Ax | At A

This operator defines an average of the solution of the Cauchy problem (1)
at time ¢ = t"* for x € [z,_1 L Z+1] requiring the spatial integration of the
initial condition and the evaluation of the flux time integrals at = T L and

x = x;; 1. Bquation (3) can also be written as

N . At
Q = Q - Al'[ z+% - szﬁ] ) (4)
with the following definitions
Q-5 [, Foy-g [0 FQEE. 6
LT Ax o i3 T At e Tivy

t\)

Recall that the exact relation (4) gives rise to finite volume methods to solve
(1) approximately in which QP and F,; L1 are interpreted as approximations
to the respective integrals (5).



2.2  Classical Finite Volume Schemes

The Godunov approach [19] exploits the piece-wise constant distribution of
the data QP and, locally, defines (classical) Riemann problems

PDEs: 9,Q + 0,F(Q) =0,

Qr ifz<0, (6)
IC: Q(z,0) =

QY ifx >0,

with similarity solutions denoted by Q; 1 (x/t), where x and ¢ are understood
as local coordinates. Then the Godunov intercell numerical flux is

Fip1 =F(Q;1(0)). (7)

The solution Q; 1 (x/t) could be exact or approximate. In addition one could
define approximations F, "y directly, without requiring a state Q, +%(x/t).
For background on Godunov methods, see for example, [17], [32] and [45].
Methods that explicitly exploit wave propagation information emanating from
the solution of the Riemann problem are generally called upwind methods.
The simplest upwind method is Rusanov’s method [40], which only extracts
an estimate for an upper bound for the maximum propagation speed in the
local Riemann problem. One can define this scheme as a ”one-wave solver”.
A two-wave solver is the HLL scheme [22], which requires estimates for lower
and upper bounds for the speeds emanating from the local Riemann problem.
We shall speak of a complete Riemann solver for the one whose wave model
contains all m characteristic fields present in the exact solution. Otherwise,
the Riemann solver will be termed incomplete .

It is possible to construct numerical fluxes F very approximately, with-

it
out explicitly solving the Riemann problem (6),2pr0vided that what actually
defines the Riemann problem is preserved, that is, the differential equations
and the initial condition. Methods of this type include the so called centred
methods, or symmetric methods. Classical centred methods include the Lax-
Wendroff method [31], the Lax-Friedrichs method [30] and the Godunov cen-

tred method [18], not to be mistaken with the Godunov upwind method.

The popular two-step version of the Lax-Wendroff method uses the averaging
operator (3) in the control volume [2;, ;1] X [t", t"+ 1 At] to obtain an integral
average of the solution of the Riemann problem (6) at time " + 1A¢, for
x € [z, x;41] as follows

1 1At
ﬂg = §(Q? +Qf1) — 5@[5‘( i) —F(Q)]. (8)



Then, the numerical flux is

R = FQLY). 0

The Godunov centred method is analogous to the Lax-Wendroff method, it
first computes an averaged state at the full time level

At

= (Q”+Qz+1) A, F(Qi) — F(QL)] (10)

and then computes the corresponding numerical flux as

Fi =F(Qi1). (11)

Compare the Godunov upwind flux (7) with the centred fluxes (9) and (11).
Also, the classical Lax-Friedrichs method may be constructed with reference
the (staggered) Riemann problem

PDEs: 9,Q + 9,F(Q) =0,

rifx; <0, (12)
IC: Q(z,0) =

One can define directly a cell average Q"*" at the new time level for cell i
as an average of the solution Q;(z,t) this Riemann problem at the half-time

level, namely
1

1
n+l _ i+3 n4 A 1
Q! Ax/le(,t—i—Q t)dz . (13)
2

Now, instead of solving the Riemann problem (12) to calculate (13) explicitly
one applies the averaging operator to obtain

Q= QL) - FQR) - FQE), ()

which if written in conservative form (4) has numerical flux

1 1A
Pl = SIF(Q)) + F(QR,)] — 55, Qi — Q1) - (15)

2.3 The FORCE scheme

The FORCE flux, first communicated in [44], was derived as a deterministic
analogue of the staggered-grid version of Glimm’s method [16], or Random
Choice Method (RCM). This version of RCM advances the solution in two



steps by randomly sampling exact solutions of Riemann problems using a
staggered grid. The FORCE approach replaces randomly sampled exact solu-
tions of classical (piece-wise constant data) Riemann problems in a two-stage
procedure by an averaging operator at each stage. The end result is a deter-
ministic one-step method, in conservative form, on a non-staggered grid, with
a numerical flux, the FORCE flux. We note that there is a close relationship
between the FORCE scheme and the scheme proposed earlier by Nessyahu
and Tadmor [36], as we shall explain later.

Given the two local Riemann problem solutions Q; 1 (x/t) and QH%(x/t), at

the (local) time t = %At we apply the averaging operator to obtain, respec-
tively

n+3 n n n n
Qi_; :%( i—1+Qi)_%§_[ (Q ) ( z—l)]a
(16)
Q)7 =1(Qr+ Q) — 1ALF(QL,) — F(Q))] -
The complete solutlon is restored back to the cell I; = [z; 1 1 Z+1] in the
second step by averaging the solution of the Riemann problem
PDEs: 8,Q + 0,F(Q) =0, )
1
Q7 ifw; <0, (17)
IC: Q(z,0) = n:l
2 .
Qi+§ if z; >0 )
at time ¢ = At, obtaining
1 n+ n+ 1 At n+‘l TL+‘l
n+1:_ 2 2 ———F ,12 —F .12 . ]-

The solution Q"' at the complete time step t = At (globally, at time ¢ =
1" + At = t"™!) may now be expressed in terms of the conservative one-step
formula (4), yielding, as a by product, the intercell numerical flux

RE% = 2 {RQ) + L IR@) +F@L) - 5@ - QD) L (19

called the FORCE flux. It turns out that this flux is in fact the mean between
the two-step version of the Lax-Wendroff flux (9) and the Lax-Friedrichs flux
(15) , that is

1
FFf1 = 2(FL +FLF ). (20)

We also recall some basic properties of FORCE and related schemes in terms
of the model hyperbolic equation

Oq(x,t) + N0pq(z,t) =0, A: constant . (21)



Accuracy |Linear stability Monotonicity

GODUNOV UPWIND First order 0<|¢ <1 Yes

LAX-WENDROFF Second order| 0<|c <1 No

GODUNOV CENTRED | First order | 0 < |c| < 3v2 | Not for 0 < |¢| < 3

LAX-FRIEDRICHS First order 0<] <1 Yes
FORCE First order 0< ] <1 Yes
Table 1
Accuracy, linear stability and monotonicity of selected schemes.
Table 1 summarizes the results, where ¢ = 22¢ is the Courant number. Note

Ax
that the first-order Godunov centred scheme is not monotone in its full range

of linear stability. The FORCE scheme, as the classical Lax-Friedrichs scheme,
is monotone in its full range of linear stability.

For more properties of the FORCE flux see [46]. See also [6], where the scheme
is shown to be convergent for the non-linear shallow water equations and for
isentropic gas dynamics.

Modern numerical methods for hyperbolic conservation laws are, first of all,
conservative. This requires a numerical flux. If first order of accuracy is re-
garded as sufficient, then the numerical flux must be monotone (for the scalar
case). If high accuracy, ideally in both space and time, is desirable, for smooth
solutions, then the schemes must also be free from spurious oscillations in
the vicinity of large gradients, shock waves in particular. But according to
Godunov’s theorem [19], these two requirements are contradictory, for lin-
ear schemes. The only way out is to construct non-linear schemes. These are
based on two basic building blocks: non-linear spatial reconstruction opera-
tors and a basic first-order monotone flux. From this point of view, the only
useful schemes from Table 1 are the Godunov upwind, Lax-Friedrichs and the
FORCE schemes. However, it is known that it is not possible to construct
second-order TVD schemes based on the Lax-Friedrichs scheme, as reported
in [46], leaving the Godunov upwind scheme and the FORCE scheme. The
former resolves more fully the Riemann problem and the latter approximates
the solution of the Riemann problem by a combination of averages.

2.4  The Nessyahu-Tadmor Scheme

The Nessyahu and Tadmor approach [36] in one space dimension considers a
sequence of generalized (non classical) Riemann problems, whose initial con-
ditions are given by piece-wise non-linear reconstructions of first degree poly-



nomials. Then the averaging operator is applied in a two-step, staggered-grid
fashion. In the first step one considers the Riemann problem

PDEs: 9,Q + 9,F(Q) =0, )
Pi(z) = Q] + (z — m)A; fo <z, ( (22)
IC: Q(z,0) = 2
Pin(#) = Qi+ (@ —zip) Ay if >0,

where A; is a vector of suitable slopes, chosen so as to control spurious oscil-
lations. Applying the averaging operator (3) in the control volume [x;, x;11] X
[t", 1™ + dt] one obtains an integral average of the solution at time " + dt, for
x € [x;,x:41], as follows

Qi1 = 5(QF + Qi) — gAT(A; — Ajyy)

[S1E

(23)
— (& SR (QUain, 1) dt — L [ F Qg 1)) dt]

The fluxes are computed by a mid-point rule approximation to the time inte-
grals. For example, for the flux at x; the Nessyahu-Tadmor approach proceeds
as follows. By means of the Cauchy-Kowalewski method one obtains, at z;, a
state QZ given as

. 1 1
Q=Q;+ 55753to =Q - §5taxF(Q?) - (24)
Then the required flux approximation is
F,=F(Q). (25)

An analogous procedure is applied at x;,1. For the second step of the method
one has the set of cell averages {Q, +%} at the interfaces. Again, a reconstruc-
tion operator is applied and a generalized Riemann problem

PDEs: 8,Q + 9,F(Q) =0, 7
Pi_l(ﬁ) = Qi_; + (z — %‘—l)Ai—l if v <, (26)
IC: Q(z,0) = ¢ ? A ? ’ ) 2
Pi—l—%(l‘) = Qi-l—% +(z — l‘i-}-%)Ai-}-% ifz>ux; J

is considered. Applying the averaging operator (3) in the control volume
[xif%,xi%] X [t" + §t,t™ + dt + Jt] one obtains an integral average of the

solution of the Riemann problem (26) at time " 4 8¢ + bt, for z € [%’—% : xi+%],

completing the solution procedure after a time At = 5t+(§t, restoring solution
values back to the centres of the volumes.



Remarks on the FORCE and Nessyahu-Tadmor schemes: First we note that
none of the methods discussed so far can escape the Riemann problem. Up-
wind methods resolve, exactly or approximately, the details of the wave struc-
ture emanating from the interface. Instead, the so-called centred methods,
using the integral form of the conservation laws, average the solution of the
Riemann problem in appropriately chosen control volumes. The Nessyahu-
Tadmor scheme averages solutions of generalized Riemann problems, result-
ing in a second order accurate scheme, for smooth solutions, and essentially
non-oscillatory at shocks, which requires non-linear reconstructions twice, one
in each sub-step. Moreover, each sub-step is subject to the CFL restriction
Ceq1 < 1/2 and the time steps 0t and ot are not necessarily related. We note
also that the stencil of the complete Nessyahu-Tadmor scheme has 6 points,
in contrast to most one-step TVD methods.

The relationship between the FORCE and the Nessyahu-Tadmor schemes can
be summarised as follows: the former can be obtained from the latter if the fol-
lowing conditions were observed: (i) no reconstruction in the Nessyahu-Tadmor
scheme, (i) 6t = ot = +A imposed, (iii) algebraic manipulations performed
so as to end up with a one-step conservative scheme, with a corresponding
numerical flux.

The next section addresses the first main point of this paper, which is the
construction of a multi-dimensional version of the FORCE scheme that is
applicable to general meshes in two and three space dimensions.

3 FORCE Schemes in Multiple Space Dimensions

Consider a general system of non-linear conservation laws in « space dimen-
sions

2,Q +div(E (Q)) =0. (27)

We first construct the schemes in the setting of general meshes and later, for

the purpose of analysis of the schemes, we specialize the approach to Cartesian
meshes in two and three space dimensions.

3.1 FORCE Schemes on General Meshes

We assume a conforming tesselation 7q of the computational domain 2 C R®
by elements T; such that

To=UT, (28)

10



Fig. 1. Notation for a general configuration on an unstructured triangular mesh.

Each element T; has n; plane faces 8Tij of area S;, with associated outward
pointing face normal vectors 7i;. The total volume |T;| of element T; is sub-
divided into sub-volumes V™ generated by connecting the barycentre of ele-
ment T; with the vertices of face j. The corresponding adjacent sub-volume in
the neighboring element that shares face 9T! with element T; is denoted as Vj+.
Fig. 1 illustrates the above definitions and notation for the two-dimensional
case. Note that the intersection of V;~ and Vfr gives the edge j of the element
T;. With reference to Fig. 1 we distinguish two kinds of elements: primary
elements T;, at which the solution is sought at each time step, and secondary
elements formed by V;~ U V;-J“, for j =1,2,3. Obviously, the sub-volumes |V |
add up to the total volume of T}, that is

ny
Tl =2 1Vl (29)
j=1

Now, an extension of the averaging operator (3) is obtained by integrating the
conservation law (27) over a space-time control volume T; x [t",¢""!], namely

At U
Q' =Qr - Y [ E(Q-idv (30)
|1—17/| j:18 i

where Q7 is the cell average at time level n and At = t"*! — " is the time
step.

Our multi-dimensional extension of the FORCE flux on unstructured meshes
is now obtained as follows: first, assuming averages in each primary elements
at time ¢ = " we obtain an averaged state for each face 0T/ at the half-
time level "2 = " 4 +At, by integrating the conservation laws (27) over the
the secondary elements, that is the space-time control volume {V;_ U V;Jr} X

[t™; t”*é]. The averaged state at the half time level on each face AT/ is given

11



ny ny/+ AS n n -
:Qv}j%ﬂ ;ﬁ( (@) -E@)-i. (1)

[T,

n+
Qs

With these initial conditions at time "2 = " + %At, by averaging over the
primary elements T; X [t”+%,t”+1] yields averages at time t"T! = " + At,
namely

Qi+t = |T| Z < QV, _ —AtS F <Q"+2> .ﬁj> , (32)

Equations (31) and (32) constitute a first-order accurate, explicit two-step
method for solving (27) on a staggered mesh. Following the FORCE approach
[46], this scheme can now be written as a one-step scheme in conservative
form on a non-staggered mesh, with a corresponding numerical flux. After
some algebraic manipulations involving Gauss’ theorem (3, S;ii; = 0) and
normalizing the face-normal vectors (772 = 1), we can recast the scheme (31)-

i
(32) into the sought conservative form

n+1 n FORCEa i

where the resulting FORCE flux for general meshes in multiple space dimen-
sions, called FORCE« in the following, is defined as

1
B = (B (@ Q) +E (@n ). e
The FORCE flux on general meshes in multiple space dimensions is then
the arithmetic average of two fluxes: a two-point flux of the Lax-Wendroff
type and a two-point flux of the Lax-Friedrichs type. These two component
fluxes appear to be new and are natural generalizations of the one-dimensional
Lax-Wendroff and Lax-Friedrichs fluxes to general meshes in multiple space
dimensions. The Lax-Wendroff type flux is given by the physical flux F eval-

uated at the intermediate state obtained from the first averaging procedure
(31):

Fi'e(QQ)) =F (Qﬁj) , (35)
ny/- ny/+ ‘
Q:if _ Q'Vim +QjV; 1 ALS; (F (Qn) B E(Q?)) 7. (36)

R
The Lax-Friedrichs-type flux for general meshes in multiple space dimensions
is defined as follows:

FLFa ( Qn) _ E (Qn) - V;JFE (Q?) B Vjiijr 2
=ity \V Vo + Vit Vi 4+ Vi AtS,

(@F - ).
(37)

12



Using these generalized Lax-Wendroff and Lax-Friedrichs fluxes we will also
consider a further generalization of the multi-dimensional FORCE flux ob-
tained as the weighted average (0 < w < 1) of these two fluxes, namely
GFORCEa __ LWa n n LF o n n
EST = wE ( i,Qj)+(1—w)g.+%( nQy) . (39)
This will be called the GFORCE« flux and is a straight generalization of the
one-dimensional GFORCE scheme.

In the next section we study two-dimensional and three-dimensional FORCE
schemes on Cartesian meshes.

3.2 FORCE Schemes on Cartesian Meshes

Here, for the purpose of analysis, we apply the FORCE scheme in Cartesian
meshes, in two and three space dimensions. Recall that the FORCE approach
consists of identifying primary and secondary volumes or elements, application
of an averaging operator on each type of control volumes in succession and
recovery of the conservation form of the scheme, with an appropriate numerical
flux. The primary volumes are perfectly Cartesian squares in two dimensions
and cubes in three dimensions. As secondary volumes we consider two choices:
edge-based secondary volumes and vertex-based secondary volumes. We study
monotonicity, linear stability and numerical viscosity of the resulting schemes.

3.2.1 FORCE scheme on edge-based secondary volumes

Fig. 2 illustrates the primary volumes and secondary volumes for the two-
dimensional Cartesian mesh case. Here, in the first step of the scheme one
chooses edge-based secondary volumes. FORCE schemes on uniform Cartesian

meshes in « dimensions can be derived from equations (34)-(37) as special
cases. In one space dimension the secondary volumes are V;-Jr =V, = %Am and
the face surface area is S; = 1. In two space dimensions we have the secondary
volumes V;" = V;7 = {Az? and the face surface S; = Az. Finally, in three
space dimensions we get V;-J“ =V, = %Ax?’ for the secondary volumes and
S; = Az? for the face surface. This leads to the following Cartesian versions of
the multi-dimensional FORCE fluxes, which are still averages of Lax-Wendroff

type and Lax-Friedrichs type fluxes. The flux in the z-direction is

1
FORCE _ LWa LF«
Fi+% - Q(FH% + Fi+§ ) J (39)
with .
FiY° = F <ij§ ) , (40)

13



Qi Vst V| Qi V| V" < Qinny

Fig. 2. Primary and secondary control volumes for the FORCE scheme on a regular
Cartesian grid in two space dimensions. The secondary volumes are edge-based.

Q=@ ean) - (P - F@)) ()
and , -
Pt =3 (F(@Q7) +F(Q))) - 50[—; (Qn. - Q) , (42)

The fluxes in the other Cartesian directions have analogous form and are not
reproduced here. There are two classes of numerical methods associated with
the generalized Lax-Wendroff (40) and generalized Lax-Friedrichs (42) fluxes.
For each value of the dimension parameter o there corresponds a numerical
scheme. The case o = 2 gives a generalized Lax-Wendroff flux that is not
new; it is in fact identical to the Godunov centred flux. The generalized Lax-
Friedrichs schemes for a@ = 2 appears to be new. In fact we have studied
in detail the properties of the one-dimensional schemes corresponding to the
generalized Lax-Wendroff and generalized Lax-Friedrichs schemes, regarding
the dimension « a parameter open to choice. The results are omitted.

3.2.2 FORCE scheme on vertez-based secondary volumes

Here we keep the perfectly Cartesian primary volumes C;; of area Az?, as
previously, but as secondary volumes we choose vertex based control volumes.
This stencil was considered by Jiang and Tadmor [28]. In the first step the
averaging operator is applied to perfectly squared secondary volumes of area
Az? around each of the four vertexes of a given primary cell C; ;, with initial
conditions at time ¢ = t". In the second step the averaging is applied inside
the primary cell C; ; with initial conditions obtained from the first step. The

four vertices of cell C;; are denoted by (i — 5,7 — 1), (i+3,5—3), (i + 3,/ +

1

5), (i— %, Jj+ %) The first step applied to the vertex-based secondary volumes

14



Qi,%,j,% = i(Q?—l,jfl +QF  + QN+ Q)
A
— e F L P L - F Gy - G+ G - G
(43)
n+% _ 1 n n n n
Qi1 = a(Qifor + Qi + Qi + Q1) }
A
— 5l —Fl  + Pl —F + Gl — Gy + G - G
(44)
n—l—% 1 n n n n
Qi+§’]+§ = 4(QF + Q' + Qi + Q)
A
— aar i —FL +Fl 0 — Fl o+ Gl — Gl + Gy — G
(45)
n+% _ 1 n n n n
Qi_%’j+§ = QY+ QY + Q1 + Q)
A
- i_;[F?J —F o+ - F Gl -G+ Gy — G ]
(46)
The second step applied to the primary volume Cj ; with initial conditions at
time t = t" + %At gives the solution at time ¢t = ¢"*! = ¢" 4- At in the primary

volume C; ;

n+1 —

1,J

After some

as

1 1 1 1
4(Qz’—%,j—% + Qi+§,j—l + Qz’—l—%,j-ﬁ-% + Qi—%,j+%)
1 1 1 1
_ LAttt nts nts nts
nalFigy gt R —F g 47
1 1 1 1
1At GTL+§ Gn+§ Gn+§ GTL+§

algebraic manipulations, the complete scheme can be written in

conservation form

with numerical fluxes

F

At
n+1 __ n
i = Qi ity —Figy +Gijey — Gijal (48)
50 Z(FH;jf% + Fi+§,j+%)
-+ %(FZ]_I —+ F?—I—l,j—l - %%(QH‘IJ*I - Qi,jfl)) (49)
+ %(Q(F?] +FNa ) — 3%(Qi+1,j - Qij))
+ %(Fﬁjﬂ +F i — 332(Qit1j41 — Qiji)) J
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and

(GZ:;,JJrl T G:L—JF;,H ) W
(Gl + Gl 1J+1—%%(Qz 1+ — Qi)
16(2(GE; + GPypy) = 357 (Qign — Qi)

%6( z+1] + Gz-}-l,]—l—l %%(Qiﬂ,jﬂ - Qi+1,j)) - )

=

ity T

_|_

(50)

_|_

_|_

In the following section we study the properties of the derived numerical
schemes.

4 Properties of the FORCE Schemes

Here we study monotonicity, linear stability and numerical viscosity of the
schemes. The study is based on the linear advection equation with constant
coefficients, in two and three space dimensions

Orq + 0o f(q) + 9y9(q) + 0:h(q) =0, (51)

with the fluxes f (¢) = Mg, g (¢) = X2q and h (q) = A3q.
4.1 FORCE scheme on edge-based secondary volumes

We first study multidimensional version (38) of the GFORCE« schemes. The
GFORCE« fluxes on Cartesian meshes contain the two parameters w and «,
where « is the number of space dimensions and 0 < w <1 is a weight.

The numerical scheme for equation (51) is written as

) At
qz,jl:: = QZ,]k Al‘ <f 1 - f 2,]7 >

7'+27];

At At
Ay <gi,j+%,k - gi,j%,k) N (hi,j,kJr% N hi,j,k%) ’ (52)

where the numerical fluxes are given by

fi+%’j’k = % (QZj,k + Q?+1,j,k) - 22:—1% [W (04202 - 1) + 1] (qzn—i-l,j,k — Gk ) ;
Jigete = 9 D (n+ k) — % [ (o) = 1) + 1] (af510 — @) -
hi,j,k-i—% = % (qgfj,k + q?fj,kﬂ) - %iz [W (QZCz N 1) + 1] (qu,kH qm’f)

(53)
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3 <w <1 ld <|=22] | lealsleyl < 7552 | leal s leyls fesl < | =522
Table 2

Monotonicity regions for the numerical schemes in one, two and three space dimen-
sions, as function of the Courant number ¢ and the weighting parameter w. In the
one-dimensional case the dimension « is also left as a parameter.

with directional Courant numbers ¢, = ’\i—ﬁt, Cy = ’\Z—@t and ¢, = ’\Z—ét. The
numerical scheme reads

1 1 1

qfﬁ - Z Z Z Blima @iyt j4mptr > (54)

[=—1m=—1r=-1

with coefficients

3 It ac " (1 —a%ﬁ) 3 l—ac " <1 —a%i)
1,00 = 5 —W|l—Fo—|,P100= Wl
” 200 2 ” 2 200

1+ acy, 1—-a’c 1 —agy 1-a’c
50’1’0—7—“’(7 R A G

1+ ac, 1 — o?c? 1—ac, 1 — a?c?
Boo,—1 = —w( =) Boor = —w =,
w 2 2 ” 2 2
6070,0260(1—0[65—0[62—0162) (55)

The monotonicity regions of the schemes are established from (54)-(55) by
requiring that the coefficients be non-negative. The results obtained are sum-
marized in Table 2 and note that the monotonicity regions coincide with the
linear stability regions.

We analyze the linear stability of the schemes by means of the von Neumann
method. For the one-dimensional case, but keeping the dimension a as a pa-
rameter we obtain the following linear stability region

a(wlt;rj}l) if 0<w< OzL-I-l’
le| < (56)
SJwwra—1) if 5 <w<l1.

17



Stable
Stable i - &

Monotone Monotone

Fig. 3. Linear stability regions for the multidimensional FORCE schemes. Left pic-
ture depicts the two-dimensional case in the ¢, — ¢, plane. The right picture shows a
cut through the stability region in the c¢; — ¢, plane for the three-dimensional case.

For the special case w = % the stability condition is

o] < Y2221 657)
a

which coincides with the monotonicity condition, see Table 2. This interesting
property does not hold when w # %; that is the schemes are not monotone in
the whole linear stability range. It is easy to verify that the condition contains
the well-known special cases w = 3, & = 1 (classical FORCE), w =1, a =1
(the Lax-Wendroff scheme) and w = 0, @« = 1 (Lax-Friedrichs scheme), see
Table 1.

For the two and three-dimensional cases we use the numerical technique re-
ported in [46] to obtain an indication of the linear stability stability region
of the scheme. Fig. 3 (left) shows the results in the ¢, — ¢, plane. The region
of linear stability coincides with the region of monotonicity. For the three-
dimensional case the linear stability region is the sphere ¢ + C; +c? < %
Some results are depicted in Figure 3 (right). Again, the linear stability region
coincides with the monotonicity region.

Regarding the numerical viscosity of the schemes we first consider the one-
dimensional case, with the dimension « left as a parameter. The numerical
viscosity has the expression

1 Az? 1
- (1 - 2.2\ —/~ - 2A
1 Qa( w+wac)At 2)\ t, (58)
which for w = { in (58) gives

Az? 1 A2
N_EE+EAt(a_2) . (59)
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We note that the numerical viscosity is an increasing function of the dimension
a. However, for low speeds of propagation, the numerical viscosity decreases
as « increases. Note that for & = 2 the numerical viscosity does not depend on
the speed \. Expression (58) allows us to compute the numerical viscosity in
multi-dimensional schemes in the Cartesian directions x, y, z, by just setting
« to the appropriate value. Note that in the multi-dimensional case there is
numerical viscosity in the transversal direction. In the two-dimensional case
we have

and in the three dimensional case the numerical viscosities in transversal di-
rections are

My = —)\1)\2At, Mgz = _)\1)\3At; Hyz = _)‘2)\3At : (61)

4.2 FORCE scheme on vertex-based secondary volumes

Here we study the properties of the FORCE schemes using vertex-based sec-
ondary volumes. For the two-dimensional case the stencil is identical to that
used by Jiang-Tadmor [28] for their second-order schemes. The monotonicity
region is given by the following conditions

Cz+¢y <1, (62)

lez — ¢y <1 (63)
and

a4 <1, (64)

The most restrictive constraints are (62) and (63), which results in a squared
region in the ¢, —c, plane, centred at (0, 0). Restriction (64) is a circle of radius
r = 1 and centre (0,0). Fig. 4 shows the linear stability and monotonicity
regions for the scheme. The FORCE scheme based on the Jiang-Tadmor stencil
has a monotonicity region (square in full line) that is smaller than its linear
stability region (the outer circle). Also shown in Fig. 4 are the stability and
monotonicity regions for the two-dimensional FORCE scheme on edge-based
secondary volumes (circle in dotted line); as said earlier here the stability and
monotonicity regions coincide, and are smaller than the monotonicity region
of the FORCE schemes on vertex-based secondary volumes, the Jiang-Tadmor
stencil.

The numerical viscosity of the FORCE schemes on vertex-based secondary
volumes, the Jiang-Tadmor stencil, has numerical viscosity

T R N B )
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Fig. 4. Linear stability and monotonicity regions for the two-dimensional FORCE
scheme on vertex-based secondary volumes (square in full line). Also shown are
the stability and monotonicity regions for the two-dimensional FORCE scheme on
edge-based secondary volumes (circle in dotted line).

5 High-Order Extensions

Once the first order building block of the scheme has been set up and for-
mulated as a two-point flux, as done in the previous sections, the high order
extension in space and time is straightforward. In the Finite-Volume frame-
work, high order in space is easily obtained using an ENO or WENO recon-
struction procedure, see for example [23,27,1,42,26]. High order in time can
be achieved either following the method-of-lines approach using TVD Runge-
Kutta time discretizations [20], or a fully-discrete one-step approach as shown
e.g. in [23,43]. Recently, also the high order accurate discontinuous Galerkin
schemes have received many attention for the solution of hyperbolic conserva-
tion laws, see e.g. [7,9,8]. It is a particular feature of this discontinuous finite
element approach that the boundary integral term is evaluated introducing
a numerical flux function, where we also can directly apply our unstructured
FORCE method as developed in this paper. In fact, we are convinced that it
is a main key feature of the first order version of our unstructured FORCE
method that it can be cast into a two-point numerical flux, which can then
be simply implemented in a straightforward manner in existing high order
codes for hyperbolic conservation laws, using either the finite volume or the
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discontinuous Galerkin framework.

In this paper, we implement the unstructured FORCE flux in the unified
framework of PyPy schemes presented in [12] that contains fully-discrete
one-step high order finite volume and discontinuous Galerkin finite element
schemes as special cases. In the case of finite volume schemes, the monotonicity
is assured by a high-order WENO reconstruction as presented in [13] and
[14] for unstructured meshes in two and three space dimensions. A particular
feature of the one-step Py P schemes is that they are completely quadrature-
free at high order accuracy in space and time and thus they only need one
nonlinear flux evaluation per element face. The higher order terms are taken
into account in a corrector flux, which, however, must be a linear function in its
four arguments, see [13] and [12] for details. In the following applications, we
use the unstructured FORCE« flux (34) as a leading flux and the unstructured
Lax-Friedrichs-type flux (37) as a corrector flux.

5.1  Numerical Convergence Studies

The convergence studies of the two-dimensional high order extension of the
proposed unstructured FORCE schemes are carried out solving the Euler
equations of compressible gas dynamics, with conservative variables Q =

(p, pvj, pE)" and the flux tensor defined as
PU;
E = | pvivy +p 6ij : (66)
vi(pE + p)

To close the system we use the equation of state of a perfect gas

p=(=1) (pB = Sp(u? +07)) (67)

We consider the smooth two-dimensional example of a convected isentropic
vortex given in detail for example in [26] or [14,12]. The initial condition is a
linear superposition of a homogeneous background field and some perturba-
tions 9:

(p,u,v,p) = (14 0p,1 +6u, 1+ dv,1 + dp). (68)

The perturbations of the velocity components v and v as well as the pertur-
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bations of entropy S = ,% and temperature 7" of the vortex are given by

4] 2 [ —(y—5 — 2 )
S DI e I T 0= ()
ov 2m (x —5) 8ym

with 72 = (z —5)* + (y — 5)°, the vortex strength ¢ = 5 and the ratio of
specific heats v = 1.4.

We use the sequence of irregular triangular meshes shown in Fig. 5 and set the
Courant number to 0.7. All computations are performed on one single CPU
core of an Intel Core 2 Duo processor with 2.0 GHz clock speed and 2GB of
RAM.

We first run this test case for high order finite volume schemes from second
to sixth order of accuracy in space and time, which are denoted as PyPjs
schemes in the general Py P,; framework. For comparison, we run the same
test once with the new unstructured FORCE flux presented in this paper and
with the classical Rusanov flux, as already done in [12], and the HLLE flux.
The results are shown in Table 3. The L? error norms with the associated
convergence rates for the density are presented. The first column of Table 3
entitled Ng characterizes the reciprocal mesh size and denotes the number
of triangle edges used per space dimension. From Table 3 we conclude that
for such smooth problems high order finite volume schemes seem to be more
efficient than the low order version of the schemes. We also note that the
unstructured FORCE flux gives slightly better error norms than the Rusanov
scheme and in most cases is also slightly cheaper.

We then run this test case again using pure DG schemes (Py Py ) from second
to sixth order of accuracy in space and time and to conclude, we also put
some representatives of the new general Py P,; class, namely a P,P; and a
P3 Ps scheme of fourth and sixth order of accuracy in space and time. We note
that the two Py Py schemes are slightly more accurate and faster than the
corresponding DG schemes at the same formal order of accuracy. More details
on this topic can be found in [12].

6 Applications

Here we apply the high-order version of the unstructured FORCE scheme of
this paper to established test problems for the Euler and MHD equations.
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Table 3
Numerical convergence results obtained with Py Py finite volume schemes with the
new unstructured FORCE flux (left), the Rusanov scheme (middle) and the HLLE
flux (right). Second to sixth order in space and time.

NG L2 OL2 tCPU[S] L2 OLQ tCPU[S] L2 OLQ tCPU[S]
FORCE Rusanov HLLE
PPy (02)
16 3.40E-01 1.0 | 3.87E-01 1.1 2.68E-01 1.1
32 1.06BE-01 1.7 9.2 1.27E-01 1.6 9.0 | 7.84E-02 1.8 9.1
64 3.13BE-02 1.8 67.6 |3.78E-02 1.7 717 |217E-02 1.9 723
128 9.08E-03 1.8 626.1 | 9.97E-03 1.9 659.7 | 5.31E-03 2.0 671.1
PyP, (03)
16  3.04E-01 1.8 | 3.46E-01 1.9 2.47E-01 2.0
32 T7.17E-02 2.1 14.5 | 8.67E-02 2.0 17.1 | 5.14E-02 2.3 15.3
64 1.35B-02 2.4 112.0 | 1.66E-02 2.4  120.0 | 9.91E-03 24 1204
128 2.13E-03 2.7 1053 | 2.40E-03 2.8 1139 | 1.37E-03 29 1075
PyP3 (04)
16 T7.01E-02 3.5 | 8.44E-02 3.5 5.89E-02 3.7
32 1.57BE-02 2.2 278 |191E-02 2.1 27.0 | 1.15E-02 24 275
64 1.10E-03 3.8 199.0 | 1.41E-03 3.8 207.5 | 827E-04 3.8 211.8
128 7.62E-05 3.8 1994 | 8.78E-05 4.0 1989 | 5.13E-05 4.0 1874
PPy (O5)
16  6.41E-02 7.2 7.54E-02 6.8 5.32E-02 8.0
32 1.30E-02 23  50.0 |1.58E-02 23  51.7 |1.0lE-02 24  54.8
64 6.62E-04 4.3  390.0 | 8.31E-04 4.2 397.7 | 5.18E-04 4.3  402.6
128 2.75E-05 4.6 3501 | 3.14E-05 4.7 3604 | 1.88E-05 4.8 3516
PyPs (06)
16  4.79E-02 13.7 | 5.18E-02 13.5 | 5.27E-02 18.1
32 3.07E-03 4.0 108.3 | 3.56E-03 3.9 105.8 | 2.39E-03 4.5 113.7
64 8.73E-05 5.1 767.1 1.08E-04 5.0 783.4 | 6.58E-05 5.2 775.8
128 1.37E-06 6.0 6329 1.49E-06 6.2 6450 9.06E-07 6.2 6472
PRRROCOAXAREE of
O UOVAYAVAVAVAVAVAVA S U 8
O OAVAVAVAVAVAYA 0 =
SRERERENSAAARIKPE (& s
SRRERSIBORIRERE] R R g et
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iﬁiiﬁ%&i&yymﬁ%ﬂ 2¢] mggguwmvmv&vv s
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X

Fig. 5. Sequence of triangular meshes used for the two-dimensional convergence
studies.
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Table 4
Numerical convergence results obtained with high order one-step Py Pjs schemes
using the new unstructured FORCE flux. Second to sixth order in space and time.

Ng L2 OLQ tCPU[S] L2 OL2 tCPU[S]
P P, (02) PP, (03)
16  6.10E-02 40  1.23E-02 11.9
24 247E-02 22 131  4.70E-03 24 439
32 1.11E-02 28 319 247E-03 22 925
64 2.16E-03 24 2769 3.81E-04 27 7408
P,P; (04) P3P (04)
16  3.52E-03 21.0  4.46E-03 33.7
24 721E-04 39 705 883E-04 40 1088
32 2.08E-04 4.3 1655 2.85E-04 3.9 2568
64 1.31E-05 4.0 1287.7 1.91E-05 3.9 2013.0
P3P (06) PsDPs (06)
16 2.11E-04 149.2  2.13E-04 259.8
24 207E-05 57 420.0 1.94E-05 5.9 7345
32 3.66E-06 6.0 956.9 3.27E-06 6.2 1674.5
64 7.59E-08 5.6 67144 6.49E-08 5.7 11789.2

6.1 Shock Tube Problems

6.1.1 3D FEuler Equations

In this section we consider classical one-dimensional shock tube problems, but
computed in a fully three-dimensional setting. We choose a computational
domain 2 = [—0.5;0.5] x [—0.03;0.03]* with periodic boundary conditions in
y and z direction and transmissive boundaries in x direction. The unstructured
tetrahedral mesh used for our computations is depicted in Fig. 6 and contains
28398 tetrahedral elements with a typical edge length of 0.01. This corresponds
to an equivalent one-dimensional resolution of 100 cells. We solve the full
three-dimensional Euler equations with v = 1.4 using a third order (PyP;)
WENO finite volume scheme [13,14,12] with the new unstructured FORCE
flux presented in this paper. The initial condition is given by

(pLauLaoaoapL) if x < 07

70
(PR;URaOaOapR) if z > 0. ( )

(pyu, v, w,p) (%,0) = {

The values of the left and right initial states for the various test cases are
given in Table 5.

The first test case is known as the Lax shock tube problem and was proposed
by Lax in [30] and is often computed in the research literature on high or-
der WENO schemes. The second case corresponds to a modification of the
standard Sod test case, proposed in [45]; this test contains a sonic point in
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Table 5
Initial states left and right and simulation end times for the 3D shock tube problems.
Test Case  pr ur, L PR UR PR  tend
1 0.445 0.698 3.528 0.5 0.0 0.571 0.14
2 1.0 0.75 1.0 0.125 0.0 0.1 0.20
3 1.0 -2.0 0.4 1.0 2.0 04 0.15

the rarefaction fan that exposes entropy-violating schemes as well as some
entropy-satisfying schemes via the well-known sonic glitch problem [35]. Test
case 3 contains two very strong rarefaction waves that generate a low density
region in the middle of the computational domain; this test is also known and
the 123 problem.

The results depicted in Fig. 7 show the solution for density p and pressure
p on 100 equidistant sample points taken on the z-axis (y = z = 0) at the
final output times t,q given in Table 5. For all test cases we note a very good
agreement with the exact reference solution.

6.1.2 2D Relativistic MHD FEquations

The relativistic MHD (RMHD) equations form a very complicated hyper-
bolic system. Particular complications arise from the fact that the primitive
variables, which enter the physical flux, can not be expressed any more in a
closed analytical form in terms of the conserved quantities. The details about
this very interesting hyperbolic system can be found in [3,48,15,24,39]. For
the multi-dimensional version of the equations, we enforce the divergence-free
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Fig. 6. Unstructured tetrahedral mesh used for the 3D shock tube problems.
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Fig. 7. Results obtained for density (left) and pressure (right) for the shock tube
problems using Py P, schemes with the new FORCE flux on unstructured tetrahedral
meshes. Top row: Lax problem, middle row: modified Sod problem and last row: the
123 problem. The symbols represent the numerical solution on a cut along the z-axis
on 100 equidistant sample points, the continuous line shows the exact solution for
comparison.

condition of the magnetic field using the hyperbolic divergence-cleaning ap-
proach proposed by Dedner et al. [11] setting the divergence cleaning speed
equal to unity. We use the notation of [48], except for the momentum vector,
which we call M; in this paper. The vector of conserved variables Q is then
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given in terms of the primitive variables p, v;, p, B; and ¥ by

D vp
M; VWiotVj — by
Q=| F | = 72wtot — 0% — Ptot | - (71)
B; B;
L \\J

The flux tensor is defined in multiple space dimensions as

YPYi,
Y Wi VU — by + Prot0ij
F = YV2wierv; — LU . (72)
UZ‘B]' — BZ'U]' + \I’(SZ]
C,%Bl

The equation of state is

p
e=pPtr_ (73)

the Lorentz factor, denoted as 7 in this section, is defined by

1
= 74
1= = (74)
and further quantities appearing in (71) and (72) are given by
. B B?

bo = ’YUkBk, b = 7 + vvi(kak), |b|2 = ? + (UkBk)Q, (75)

from which total enthalpy and total pressure are then finally defined as

2 L2

Wioy =€ +p+ [, Prot :p+§ 10" (76)

In this entire section, the speed of light is supposed to be set to unity. The com-
putation of the primitive variables p, v, and p from the vector u, of conserved
quantities is very complicated. It can not be done analytically but requires
necessarily the use of an iterative technique such as Newton’s method. A very
elegant, robust and efficient way of transforming the conservative variables to
primitive variables using the analytic inversion of a third degree polynomial
together with one nonlinear scalar equation to which subsequently Newton’s
method is applied is given in [48].

As in [12] we solve two-dimensional version of two standard shock tube test
cases proposed originally in one space dimension in [3]. The initial condition
consists of two piecewise constant states on the left and the right of the dis-
continuity located at x = 0.5. The initial states are summarized in Table 6. In
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Table 6
Initial states left (L) and right (R) for the RMHD shock tubes with final times t..
Case p P U v w By B, B, t
1L 1.0 1.0 0.0 00 00 10 00 05 04
1R 0125 0.1 0.0 00 00 -1.0 0.0 0.5
2L 108 09 04 03 02 03 03 20 0.55
2R 1.0 1.0 -045 -0.2 02 -0.7 0.5 20

test case 1 we use I' = 2 and in the second one we use I' = 5/3, according to
[3]. We solve these test cases in the computational domain 2 = [0; 1] x [0; 0.05]
on an unstructured triangular mesh consisting of 17628 elements in two space
dimensions, corresponding to an equivalent one-dimensional resolution of 400
points. We apply periodic boundary conditions in y-direction and transmis-
sive boundaries in x-direction. The shock capturing is again achieved via the
unstructured WENO reconstruction procedure described in [13] and [14]. A
cut through the computational results at y = 0.025 is shown in Figs. 8 - 9 and
a 3D visualization of the solution together with the mesh is depicted in Fig.
10.
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Fig. 8. Results for the RMHD Riemann problem 1 at £ = 0.4 computed in 2D on
17628 triangles. PyP, WENO scheme (circles) and exact reference solution [15].
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Fig. 9. Results for the RMHD Riemann problem 2 at ¢ = 0.55 computed in 2D on
17628 triangles. PyP, WENO scheme (circles) and exact reference solution [15].

Fig. 10. RMHD Riemann problem 2 at ¢ = 0.55. 3D view of the numerical solution
obtained with a PyP» WENO scheme on a mesh consisting of 17628 triangles.

29



6.2 Two-Dimensional Explosion Problem

Here, we solve a strong two-dimensional explosion test problem in a circular
computational domain €2 with radius R = 1 using again a third order WENO
finite volume scheme with the new unstructured FORCE flux as building
block on an unstructured triangular mesh with 100970 triangles. The gov-
erning equations are the two-dimensional Euler equations with v = 1.4. The
initial condition is given by

(10,0,0,0,1000) if r < 0.4,

(1,0,0,0,0.1)  ifr > 0.4, (77)

(%%%wwﬂim:{

with 2 = 2% + y?. The pressure jumps over four orders of magnitude and
thus will produce a very strong outward traveling shock wave. The reference
solution is computed using the symmetry of the problem in angular direction
solving an equivalent one-dimensional hyperbolic PDE with source terms on
a very fine mesh (10000 cells) using a second order TVD scheme, see [45] for
details. A total view of the solution is given in Fig. 11 a) and one-dimensional
cuts through the solution along the z-axis are shown in Fig. 11 b)-d) are
shown for density, radial velocity and pressure. The presented third order
computation with the new unstructured FORCE flux on the unstructured
two-dimensional mesh agrees very well with the reference solution.

6.3 Double Mach Reflection Problem

In this section we consider a very well-known test case with reflecting wall
boundary conditions, the so-called double Mach reflection problem, originally
proposed by Woodward and Colella in [47]. It exhibits very strong discontinu-
ities, wall-bounded flows and furthermore develops rich small-scale structures
in time, which are difficult to resolve. The governing equations are still the
two-dimensional Euler equations with v = 1.4. The test consists in a moving
shock wave (shock Mach number M; = 10) that hits a 30° ramp. The initial
condition for this problem is given by the Rankine-Hugoniot conditions as

follows:
(8.0,8.25,0.0,116.5) if x < 0.1,

78
(1.4,0.0,0.0.,1.0) if 2 > 0.1, (78)

(p 1, v,p) (7,0) = {

Due to the unstructured formulation of the scheme, we compute the problem
directly in its original physical setup, as proposed in [41] for block-structured
meshes and in [14] for unstructured triangular meshes. We solve the problem
with a third order Py, WENO finite volume scheme using the unstructured
FORCE flux proposed in this article using the following characteristic triangu-
lar mesh spacings: h = 1/200, h = 1/400 and h = 1/800. Solid wall boundary
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Fig. 11. Results of the 2D explosion test problem at time ¢ = 0.03 using a PyP;
scheme with the new FORCE flux on an unstructured triangular mesh. a) 2D pres-
sure distribution. b) density, ¢) velocity and d) pressure shown on a cut along the
Z-axis.

conditions are imposed on the ramp and on the upper boundary (y = 2). Our
results obtained at ¢ = 0.21 for the density (31 equidistant contour levels from
1.5 to 21.5) are depicted in Fig. 12. The contour lines agree qualitatively with
the results shown in previous publications on this test problem [4,26,27,43,14].

6./ Orszag-Tang Vortex Problem

In this last test case we solve the two-dimensional system of ideal MHD equa-
tions. In order to preserve a divergence-free magnetic field, we use the hyper-
bolic generalized Lagrangian multiplier (GLM) divergence cleaning approach
proposed in [11]. The vector of conservative quantities of the augmented GLM-
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Fig. 12. Results obtained for the Double Mach Reflection Problem at £ = 0.21 with
the PyP, scheme and the new FORCE flux on triangular meshes with A = 1/200,
h =1/400 and h = 1/800 respectively.

MHD system is Q = (p, pv;, pE, Bj, ¥)" with the flux tensor

pU;
puv; + (p+ £ B?) 6 — £ B,B;
F=|v(pE+p+LB% — LBi(wBy) | (79)
v;iBj — Bjv; + ¥4
i B;

17

and the following equation of state (EOS):

p=(y= (B - 37~ o). (50)

We solve the vortex system of Orszag and Tang [37], which was studied ex-
tensively in [38] and [10]. The computational domain is Q = [0; 27]°. We use
the parameters of the computation of Jiang and Wu [29], scaling the magnetic
field by v/4m due to the different normalization of the governing equations.
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The initial condition of the problem is given by
(p,u,v,p, By, By) = (72, —sin(y), sin(x), v, —V4rsin(y), V4r sin(2x)) , (81)

with w = B, = 0 and v = g The problem is solved up to ¢ = 5.0 using a
third order PyP, WENO scheme with the unstructured FORCE flux on an
unstructured triangular mesh with 89832 elements (h = 555). The divergence
cleaning speed is set to ¢, = 2.0. The results for pressure are shown in Fig.
13 for t = 0.5, t = 2.0, t = 3.0 and t = 5.0, showing an excellent agreement
with the fifth order WENO finite difference solution computed by Jiang and

Wu [29] on a 1922 Cartesian grid.

1 o
5 6

Fig. 13. Evolution of the pressure field of the Orszag-Tang problem at times ¢ = 0.5,
t =2.0,¢t=3.0 and t = 5.0 (top left to bottom right) using the Py P, scheme with
the new FORCE flux on a triangular mesh.

7 Concluding remarks

A generalization of the one-dimensional FORCE flux to multiple space di-
mensions for solving hyperbolic equations in conservation-law form on general
meshes has been presented. Monotonicity, linear stability and numerical vis-
cosity of the schemes have been analyzed for the case of structured meshes
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in two and three space dimensions. We have then extended the new FORCE
fluxes to high order of accuracy in space and time in the framework and fi-
nite volume and discontinuous Galerkin finite element methods. Results for
schemes of up to sixth order of accuracy in space and time on unstructured
meshes have been shown. For smooth solutions the convergence rates of the
schemes have been analyzed and compared with that of Godunov-type meth-
ods with the simple Riemann solvers of Rusanov and HLLE; errors and CPU
times have also been compared. For shocked flows the performance of the
numerical schemes has been assessed by solving some well-established test
problems for the Euler and MHD equations on unstructured meshes. The
main feature of the proposed schemes is simplicity; it does not require explicit
knowledge of the eigenstructure of the system, nor the availability of a Rie-
mann solver. This is attractive for very complex hyperbolic systems, for which
a Riemann solver may not be available, or if available it might not be suitable.
Generality is the other main feature of the new FORCE schemes; no matter
how complicated the equations are, provided they are written in conservation-
law form, the schemes of this paper are readily applicable. Finally we note
that the proposed FORCE schemes can be extended to high order of accuracy
in space and time in a straight forward manner and can be incorporated in
any existing finite volume or DG finite element solver. This is possible since
the first order FORCE method can be cast into a one-step flux-conservative
form whose numerical fluxes only depend on the left and right state at the
edge.

Ongoing research on this topic concerns the extension of the unstructured
FORCE schemes to nonlineaer systems of non-conservative hyperbolic sys-
tems. Preliminary results of the authors indicate that this is possible.
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