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Abstract

In this paper we analyze a long standing problem of the appearance of spurious,

non-physical solutions arising in the application of the effective mass theory to low

dimensional nanostructures. The theory results in a system of coupled eigenvalue PDEs

that is usually supplemented by interface boundary conditions that can be derived

from a variational formulation of the problem. We analyze such a system for the

envelope functions and show that a failure to restrict their Fourier expansion coefficients

to small k components would lead to the appearance of non-physical solutions. We

survey the existing methodologies to eliminate this difficulty and discuss a simple and

effective solution. This solution is demonstrated on an example of a two-band model

for both bulk materials and low-dimensional nanostructures. Finally, based on the

above requirement of small k, we derive a model for nanostructures with cylindrical

symmetry.

Keywords: Effective envelope theory, abrupt interfaces, plane wave approximations, k
space, Fourier coefficients, variational formulation, interface boundary conditions, band gap,
spurious solutions, low dimensional semiconductor nanostructures

1 Introduction

The electronic structure calculation is among the most fundamental problems in modern
science and engineering. While achieving a higher accuracy in the methods for such calcula-
tions remains an important issue, our ability to construct simpler computational algorithms
that would allow us to obtain reliable results in a more efficient and cost-effective man-
ner is paramount for our progress at the practical level with far reaching ramifications in
technological applications.

From a mathematical point of view, most methodologies for the construction of such al-
gorithms are based on effective theories where we attempt to reduce the degrees of freedom
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and to bridge modelling scales [27, 26]. One such theory, derived with the application of the
effective mass theorem [32] and known as the multiband effective mass approximation, pro-
vides a fundamental tool in predicting electronic properties of structures. We are interested
in the development of an efficient computational tool for predicting electronic properties
of quantum heterostructures, that is the low-dimensional (semiconductor) nanostructures
where the motion of electrons is restricted, forcing them into a quantum confinement [37].
Examples of such structures include quantum wells, quantum wires, or quantum dots, where
the motion of electrons is restricted in one, two, or all three directions, respectively. Prop-
erties of these small nanocrystals, containing often from a few hundred to a few thousand
atoms, are very different from the same material in bulk, which results in a wide range of
their current and potential applications, from biological tags for proteins to applications in
quantum computing, and to a new generation of optoelectronic devices.

The reason for such an undertaking stems from the fact that typical characteristic dimen-
sions of nanostructures is ranging between 1 to 100 nm while the characteristic dimensions
of atoms are between 0.1 to 0.7nm. As a result, in many situations of dealing with nanos-
tructures, atomistic approaches become not only unpractical, but often prohibitive. This
is particularly true when we have to account for a multiscale nature of the problem (e.g.,
[25, 20]) and its multiphysics character where several physical fields, such as mechanical and
electric, act simultaneously (e.g., [38, 27]).

In dealing with (nano)crystals we use the fact of crystal symmetry characterized by
the transformations which in the bulk case leave the structure, and hence its Hamiltonian
(the energy operator), invariant. As explained in the Appendix, the representations of the
translation group are characterized by a vector k in the first Brillouin zone of the crystal.
The relevance of the k vector is clearly seen from the Bloch theorem, stating that any solution
for a periodic structure (bulk material) can be represented in the form:

ψnk(r) = exp(ikr)Unk(r), (1)

where Unk has the given periodicity. The n in Eq. (1) reflects a multiband nature of
the energy operator spectrum and the basic task in the k-space can be formulated as the
determination of this spectrum throughout one Brillouin zone (usually, the first Brillouin
zone, see Appendix). In the case of a nanocrystal this theorem does not apply anymore.
Instead, the wave function can be expanded in terms of Bloch solutions:

ψ(r) =
∑

n

∫

cn(k) exp(ikr)Unk(r)d
3k, (2)

where the integral is over the first Brillouin zone. It turns out that it is advantageous to
rewrite the expansion in term of a specific set of periodic solutions, and the zone-center solu-
tions Un0 are usually chosen for this purpose. Hence, by using Unk(r) =

∑

n′ dnn′(k)Un′0(r),
we get:

ψ(r) =
∑

n

∫

F̃n(k) exp(ikr)d3kUn0(r) =
∑

n

Fn(r)Un0(r), (3)

where F̃n(k) =
∑

n′ cn′(k)dn′n(k). The idea of the envelope function (EF) based on the
representation (3) is a key to a substantial simplification of the original problem in deter-
mining properties of the heterostructures. This representation leads to a major advantage
of the EF multiband effective mass methodologies compared to computationally intensive
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ab initio and atomistic approaches and allows us to extend the energy-band theory beyond
perfectly periodic crystals. Known for bulk materials since 50-ies (e.g., [24, 1, 31, 9]), this
methodology has successfully been extended to situations that allow us to treat efficiently
lattice-mismatched heterostructures where we frequently have to deal with two (or more)
materials with different properties, both theoretically and computationally [3, 4, 11, 5, 19].
One of the main difficulties in implementing multiband effective mass models is the appear-
ance of spurious solutions. Although these solutions are correct solutions of the multiband
model in question, they have nothing to do with the physics of the problem as they are not
solutions to the original problem (e.g., [21, 22]).

The goal of this paper is two fold. First, we want to highlight the reason for the ap-
pearance of spurious solutions using a simple one dimensional two band model and give
an overview of different approaches for the removal of spurious solutions. Second, within
one of the approaches, the so-called cut-off method, we show how additional symmetries
can be taken into account. More specifically, we show how a three dimensional cylindrical
symmetric problem can be simplified.

The structure of the rest of the paper is as follows. In the next section we explain
the main difficulties in applying the effective mass theory to the analysis of nanostructures
and provide an overview of existing methodologies directed to the elimination of spurious
solutions. In this section we also provide the reader with a brief discussion of the main
approaches in this field to the treatment of interface boundary conditions. In Section 3 we
give details of the basic model obtained from the generalized envelope function theory in one
dimension, followed by two examples. The first example is concerned with a stepwise constant
crystal potential and deal with the bulk situation. The second example is concerned with
the treatment of a heterostructure where we have to deal with abrupt interface conditions.
This example demonstrates difficulties in the application of the envelope function theory
in practice, connected with the spurious solution phenomenon. We highlight the physical
roots of this problem and a computational procedure to circumvent arising difficulties. In
Section 4 we demonstrate this procedure on an example of cylindrically symmetric systems.
Conclusions and future directions are presented in Section 5.

2 Interface boundary conditions, spurious solutions,

and existing methodologies

As a framework for the discussion we show in Fig. 1 a schematic representation of a nanoscale
heterostructure. The first question that arises in the context of the model we are considering
here is about the regularity of the envelope function at the interface (the abrupt hetero-
junction), in particular whether this function is continuous or discontinuous. If the Fourier
components of the envelope function are clustered around the center of the interval where the
problem is considered, then the model is reducible to the standard Sturm-Liouville eigenvalue
problem for the second order differential operator. Otherwise, a higher order model needs
to be considered. Connection rules (or the interface boundary conditions) are needed to link
the solutions from two different regions at the interface. Such rules can be continuous and
represented by certain phenomenological conditions with empirical coefficients that play the
role of material parameters characterizing the interface [34] or discontinuous, in agreement
with traditional concepts. In the first case, the regularity of the envelope function must be
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Figure 1: Schematic picture of a nanoscale heterostructure.

relaxed. In the second case, we usually use bulk properties for an extrapolation across the
interface defining the connection rules which are in this case discontinuous with the interface
width of the order of a lattice constant [13]. Both cases are physically equivalent. Further-
more, the envelope-function theory can be applied to the analysis of nanostructures even
in the latter case [4, 11, 6]. According to this theory, the solution to the eigenvalue PDE
problem

HF = EF (4)

with H being the effective mass Hamiltonian can be represented in terms of momentum
matrix elements and band gaps, including the interfaces. This is shown by deriving a set
of integro-differential equations for envelope functions and restricting our attention to the
behavior of such functions on the scale larger than the lattice constant by neglecting nonlocal
terms. From an experimental point of view, even in the case of large lattice mismatches,
many nanostructures, including nanowire heterostructures, exhibit defect-free interfaces [10],
making such an assumption well justified. In the general case, the validity of such an ap-
proximation in a narrow region near the interface requires, strictly speaking, linking the
proposed approach to atomistic methodologies. Another approach, based on an averaging
procedure around the interface and valid to the order of around 1Å (the distance between
interface atoms) was proposed in [33]. It is important to emphasize here that the problem of
formulating correct interface boundary conditions is not limited to the effective mass theory
and is debated in the literature in the context of other models in the multiscale hierarchy
of mathematical models for nanostructures, e.g. for pseudopotential-based models as well
as for tight-binding models [23]. As mentioned, the physical reason behind this debate is
the fact that the internal structure of the heterointerface cannot be represented in terms of
bulk parameters [34]. This fact and the required reparametrization due to necessary fittings
to experimental data may lead to non-trivial difficulties in the formulation of model (4)
satisfying ellipticity properties [35]. On the other hand, it is exactly the internal structure
of the heterointerface that leads to unique properties of such nanostructures and lend them
wide applicability. Several recent approaches have been proposed to overcome the problem
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in the context of the effective mass theory based on additional requirements. For example,
in [29] the authors used the conservation property of probability density to derive boundary
conditions for the envelope functions from the conservation of the current normal to the
interface. The derivation of the variational principle for the effective mass theory model has
recently been discussed in [30] where phenomenological parameters, in addition to the bulk
parameters, are required for the implementation.

An accurate fit to all experimental effective masses in the multi-band effective mass
Hamiltonian H from model (4) may lead to spurious, non-physical solutions that contradict
one of the most fundamental physical observations, the existence of a band gap in these
semiconductor materials. It is a long standing problem known from the literature for quite
some time [36]. If we do retain all solutions, there are repeated arguments in the literature
that spurious bands have negligible effect on the bound-state eigenfunction properties, but
it has been shown that this methodology may lead to the results that contradict physical
observations [12]. The premises of the effective mass theory lies with the fact that the model
Hamiltonian is accurate in the vicinity of k = 0. Therefore, the main ideas for eliminating
spurious solutions should rely either on the manipulations with higher order terms k2 in the
Hamiltonian [18], modifying the model, or on rejecting the larger-k solutions as unphysical
from the outset [17]. The first approach is not as easy to implement in practice as we might
think, e.g. Hamiltonian modifications should remain invariant with respect to symmetry
operations of the corresponding groups. In what follows, we base our discussion on the second
approach. Before proceeding further, we mention that for efficient practical implementations
it is important also to choose a basis that is a good approximation to the Bloch waves of the
bulk materials the nanostructure is made of. This can be achieved in several different ways.
For example, we can use an averaging procedure around the interface valid to the order of
the distance between interface atoms and maintain the continuity of the envelope function
as we mentioned before [33]. Alternatively, we can keep the discontinuity across the interface
defining it via the connection rules and choose an appropriate basis (by choosing appropriate
transformation parameters) such that spurious unphysical solutions are eliminated [12, 14].
The latter methodology has several advantages. For example, the matrix of the resulting
system of linear equations under this approach is sparse allowing an efficient computational
implementation. This methodology requires an additional assumption on operator ordering
in the Hamiltonian.

3 Multiband effective mass theory in one dimension

Consider the eigenvalue PDE problem (4) for a one dimensional crystalline heterostructure
described by the following Hamiltonian:

H = −
~

2

2m

∂2

∂x2
+ V (x), (5)

in some region Ω ⊆ R (see Fig. 1), where m is the free electron mass, ~ = h/(2π), and
h is Planck’s constant. In this case, the two length scales mentioned in the introduction,
i.e., the atomistic and the heterostructure scales, are contained within the potential V (x),
see section 3.2 for an example. The idea behind k·p theory is to replace one of these length
scales, namely the atomistic scale, with material specific parameters. In this paper we use
the envelope function theory developed by Burt [4] to achieve this.
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Following [3] we start by expanding the wave function ψ in a complete set of periodic
and orthonormal functions Un:

ψ =
∑

n

Fn(x)Un(x), (6)

where

Fn(x) =

∫ π/a

−π/a

F̃n(k)eikxdk, (7)

and a is the length of the period. The completeness of the set Un only relates to functions
with the given periodicity. In effective mass theory the periodicity is usually given by the
principal lattice cell although this need not be the case. The Fourier expansion is restricted
to the first Brillouin zone only because this ensures uniqueness of the envelope functions Fn

as is seen from the expansion in periodic Bloch functions in Eq. 2 (the first Brillouin zone is
in the one dimensional case given by the interval ]− π/a, π/a]). The usual choice of basis is
the zone-center solutions Un0 as indicated in section 2. Based on this expansion the following
infinite set of coupled differential equations can be derived for the envelope functions [3]:

−
~

2

2m

∂2Fn

∂x2
(x) +

∑

n′

−i~

m
pnn′

∂Fn′

∂x
(x) +

∑

n′

∫

Ω

Hnn′(x, x′)Fn(x′)dx′ = EFn(x), (8)

where

pnn′ = −i~

∫

Ωa

U∗
n(x)

∂Un′

∂x
(x)dx, (9)

Hnn′(x, x′) = Knn′δ(x− x′) + Vnn′(x, x′), (10)

Knn′ = −
~

2

2m

∫

Ωa

U∗
n(x)

∂2Un′

∂x2
(x)dx, (11)

Vnn′(x, x′) = aU∗
n(x′)V (x′)Un′(x′)∆(x− x′), (12)

∆(x) =
1

2π

∫ π/a

−π/a

eikxdk. (13)

Here Ωa denotes the region of one period, e.g., ]0, a]. It is worth noting that the non-local
term (the last term on the right of Eq. (8)) is a direct consequence of the first Brillouin zone
cut-off. This is most easily seen by writing the set of equations in k-space instead of real
space:

~
2

2m
k2F̃n(k) +

∑

n′

~

m
pnn′kF̃n′(k) +

∑

n′

∫ π/a

−π/a

H̃nn′(k − k′)F̃n(k′)dk′ = EF̃n(k), (14)

where

H̃nn′(k − k′) = Knn′δ(k − k′) +
a

2π

∫

Ω

U∗
n(x)V (x)Un′(x)e−i(k−k′)xdx. (15)

If the integral in the third term on the left of Eq. (14) was not restricted to the first Brillouin
zone the equations would be local in real space.

Either of these infinite sets of equations (Eq. (8) or Eq. (14)) can not be solved in general
so we need to reduce the infinite set to a finite set of equations. This can in principle be
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achieved by finding a unitary operator U which block diagonalizes the problem. To be more
specific, let us write Eq. (14) in a slightly different form:

∫ π/a

−π/a

Ĥnn′(k, k′)F̃n′(k′)dk′ = EF̃n(k), (16)

where

Ĥnn′(k, k′) =

[

~
2

2m
k2δnn′ +

~

m
pnn′k

]

δ(k − k′) + H̃nn′(k − k′). (17)

We now divide the set Un into two groups, a finite group denoted A which we want to solve
for, and the rest we denote with R, these are called remote bands. We want to find a unitary
operator U so that Hnn′(k, k′) = [U †ĤU ]nn′(k, k′) = 0 for all k, k′ whenever Un ∈ A and
Un′ ∈ R, where operator multiplication is given by:

[MN ]nn′(k, k′) =
∑

l

∫ π/a

−π/a

Mnl(k, k
′′)Nln′(k′′, k′)dk′′. (18)

We assume that [MN ]nn′(k, k′) <∞ for all n, n′ and k, k′. In section 3.2 we give an example
where this requirement is easily seen to be fulfilled. Under the assumption that such a
unitary matrix U exists we can reduce the problem to a finite set of equations. Although it
is impossible in generally to find U , this procedure suggests an approximation scheme. We
first write U in terms of an operator S given so that U = eS. We then expand S in terms of
a power series with respect to a part of Ĥ assumed to be small. More specifically, we split
Ĥ into two parts, a part assumed to be the main part of Ĥ :

Ĥ0
nn′(k, k′) = H̃nn(0)δnn′δ(k − k′), (19)

and the rest Ĥ1
nn′(k, k′) = Ĥnn′(k, k′) − Ĥ0

nn′(k, k′) is assumed to be small compared to Ĥ0.

For each specific application it is important to verify that Ĥ1 is indeed small compared to
Ĥ0. This turns out to be the root of the problem with spurious solutions. We will come
back to this in section 3.2. Now, we expand around the center of the first Brillouin zone.
We then write S as:

S = S1 + S2 + S3 + · · · , (20)

where Si is of order i with respect to elements of Ĥ1. Using

e−SHeS = H + [H,S] +
1

2
[[H,S], S] + · · · , (21)

we can write H in terms of Si collecting terms of a given order in Ĥ1, e.g., to the second
order in Ĥ1:

H = Ĥ0 + Ĥ1 + [Ĥ0, S1] + [Ĥ1, S1] + [Ĥ0, S2] +
1

2
[[Ĥ0, S1], S1] + · · · . (22)

We can now choose S1 so that H is block diagonal to the second order in Ĥ1, i.e., we choose
S1 so that:

[Ĥ0, S1]nn′ = −Ĥ1
nn′ , (23)
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Figure 2: Bulk potential.

for Un ∈ A and Un′ ∈ R, i.e.,

S1
nn′(k, k′) =

{

Ĥ1

nn′
(k,k′)

H̃n′n′(0)−H̃nn(0)
for Un ∈ A and Un′ ∈ R

0 else.
(24)

We then choose S2 so that H is block diagonal to third orders in Ĥ1 and so on. Using this
procedure we can reduce the problem to the finite set A to any order in Ĥ1. It is usual to
disregard terms of third and higher orders in Ĥ1 resulting in the following set of equations:

Hnn′(k, k′) =
[

~
2

2m
k2δnn′ + ~

m
pnn′k

]

δ(k − k′) + H̃nn′(k − k′)

+1
2

∑

r∈R

(

1
H̃nn(0)−H̃rr(0)

+ 1
H̃n′n′ (0)−H̃rr(0)

)

∫ π/a

−π/a
Ĥ1

nr(k, k
′′)Ĥ1

rn(k
′′, k′)dk′′,

(25)
for Un, Un′ ∈ A, where r ∈ R stands for Ur ∈ R. This type of equations are called multiband
equations although they are usually formulated in the form of PDEs, see section 3.2.

We now give two examples. In the first example we study bulk properties, i.e., we study
the simple situation where the potential is periodic. This serves as a good test example for the
application of mulitband equations as the results can be compared to exact (semi-analytical)
solutions. It also serves as a framework for more difficult problem with heterostructures. In
the second example we investigate a heterostructure for the explicit purpose of showing why
spurious solutions appear. We also provide an example of how such spurious solutions can
be removed.

3.1 Stepwise Constant Crystal Potential in the Bulk Case

Let us study the case where we have a completely periodic potential V (x) given by a stepwise
constant potential (Fig. 2):

V (x) = V0 + V1θ(x), (26)

where

θ(x) =

{

−1
2

for a
4
< x < 3a

4
1
2

else
(27)

for x ∈ [0, a] and then repeated throughout R, i.e., in this example Ω = R. The problem
can in this case be solved semi-analytically in the sense that the solutions are given by
zeros of a transcendental function. The exact solutions are found by using Bloch’s theorem
which states that solutions are given by eikxUnk(x) where Unk(x) are periodic solutions to
the equation:

−
~

2

2m

∂2Unk

∂x2
(x) −

i~2

m
k
∂Unk

∂x
(x) +

~
2

2m
k2Unk + V (x)Ukn(x) = EnkUnk. (28)
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Figure 3: The solid lines show the three first exact dispersion curves and the dots show the
dispersion curves found using the two band model. All results are with V0 = 0 eV, V = 5
eV and a = 5 Å.

This equation can easily be solved by setting up a set of linear equations for the coefficients
of the general solutions e±ikix in each region with constant potential resulting in a transcen-
dental equation for the energies Enk. In Fig. 3 we show the band structure for a specific
example, i.e., a plot showing eigen energies as a function of k.

Although we can easily find the exact solutions to this problem, there is still a lot to be
learned by applying the above method. In the case of a periodic potential Eq. (15) reduces
to:

H̃nn′(k − k′) = δ(k − k′)

∫ a

0

U∗
n(x)HUn′(x)dx. (29)

This suggests that periodic zone center eigen solutions to H will be a good choice for the
periodic basis , i.e., Un = Un0. With this choice H̃nn′(k, k′) is diagonal and the diagonal
elements are given by the periodic eigen energies, i.e.,

H̃nn′(k − k′) = En0δnn′δ(k − k′), (30)

and

Ĥ1
nn′(k, k′) =

[

~
2

2m
k2δnn′ +

~

m
pnn′k

]

δ(k − k′). (31)

It is clear from this that the elements of Ĥ1
nn′ will be small as long as k is small. In the

general case, the question of how small is a currently unresolved non trivial issue. A rule of
thumb is that k should be within the first 20% of the first Brillouin zone. Using Eq. (31),
the multiband equation Eq. (25) takes on the simple form:

Hnn′(k, k′) =
[

~2

2m
γnn′k2 + ~

m
pnn′k + En0δnn′

]

δ(k − k′), (32)

where

γnn′ = δnn′ +
1

m

∑

r∈R

pnrprn

(

1

En0 −Er0

+
1

En′0 − Er0

)

. (33)
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Figure 4: An example of the potential of a heterostructure.

If we choose the second and third zone center solutions, i.e., U20 and U30 from Eq. (28), as
our set A we get:

(

~2

2m
γ22k

2 + E20
~

m
p23k

~

m
p32k

~
2

2m
γ33k

2 + E30

) (

F̃2(k)

F̃3(k)

)

= E

(

F̃2(k)

F̃3(k)

)

. (34)

This would correspond to the valence and conduction band in a semiconductor. The above
multiband equation has the solutions:

E(k) =
1

2

(

~
2

2m
(γ22 + γ33)k

2 + E20 + E30

)

±
1

2

√

(
~2

2m

(

γ22 − γ33)k2 + E20 − E30

)2
− 4

~2

m2
p23p32k2. (35)

From the dispersion curves in Fig. 3 we see that the two band model is quite accurate within
most of the first Brillouin zone, although this is by no means always the case, see for example
[14]. Note also that it is not generally possible to evaluate the infinite sum in Eq. (33), so
we truncate it to a sufficient set of remote bands (elements of R). Usually we do not need to
include that many remote bands as the denominator ensures that we can disregard remote
bands sufficiently far away in energy from the energies of the set A.

3.2 Heterostructure Example

In this section we study the example of a heterostructure consisting of Nb periods of one
material, called the barrier material, and Nw periods of another material, called the well
material, i.e., the potential is given by:

V (x) = (1 − θh(x))Vb(x) + θh(x)Vw(x), (36)

where Vb(x) and Vw(x) are bulk potentials with different V0 and V values but the same period
length a and

θh(x) =

{

1 for − aNb/2 < x < aNb/2
0 else

, (37)

for x ∈ [−a(Nb + Nw)/2, a(Nb + Nw)/2], see Fig. 4 for an example. We impose periodic
boundary conditions on the outside of our structure, i.e., we extend V to Ω = R periodically
and impose Fn(x + NL) = Fn(x) for all N = Z, where L = a(Nb + Nw). Alternatively, we
could use Dirichlet boundary conditions, however, we are mainly interested in bound states
and they are unaffected (or weakly affected) by boundary conditions sufficiently far away
from the well region. We use periodic boundary conditions because they are natural for
periodic structures as they would insure translational invariance.
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Figure 5: A schematic picture showing the spatial dependence of γ22.

3.2.1 k·p Theory in Practice and the Appearance of Spurious Solutions

One of the major reasons for using k·p theory is to be able to use bulk values also in
the case of a heterostructure. The bulk parameters are much easier to determine (either
by ab initio calculations or experiments) than parameters appearing in the equations for
a heterostructure derived above. Also, if bulk parameters can be used, we do not need
to determine heterostructure parameters for each specific structure. For this reason, we
would like to treat each material as a bulk material. This corresponds to working with
different sets of periodic bases for each material and, as a result, the derivation of multiband
equations needs to be modified, see [16]. Alternatively, bulk multiband models for the
different materials can be used and connected via interface boundary conditions as discussed
in section 2. Which interface boundary conditions to use is still an active area of research and
we do not enter this discussion here. Instead, we choose to use interface boundary conditions
found using a symmetrization procedure as they serve to highlight why spurious solutions
appear.

The multiband equation that we use is given by:

∑

n′

[

−
~

2

2m

∂

∂x

(

γnn′(x)
∂

∂x

)

− i
~

m

(

δn<n′pnn′(x)
∂

∂x
+ δn′<n

∂

∂x
pnn′(x)

)

+ Vn(x)δnn′

]

Fn′(x)

= EFn(x), (38)

where δn<n′ = 1 for n < n′ and zero otherwise, n, n′ ∈ A and all parameters are stepwise
constant with the bulk value in each material. Note that for our setup pnn = 0 as the periodic
functions are either even or odd. The fact that the parameters are stepwise constant give
rise to the interface boundary conditions:

Fn(x) and
∑

n′

[

~
2

2m

(

γnn′(x)
∂

∂x

)

+ i
~

m
δn′<npnn′(x)

]

Fn′(x) (39)

continuous at the interface. Our two band model for a heterostructure is then given by:

(

− ~2

2m
∂
∂x
γ22(x)

∂
∂x

+ V2(x) −i ~

m
p23(x)

∂
∂x

−i ~

m
∂
∂x
p32(x) − ~2

2m
∂
∂x
γ33(x)

∂
∂x

+ V3(x)

) (

F2(x)
F3(x)

)

= E

(

F2(x)
F3(x)

)

, (40)

where V2 and V3 are given by the zone-center energies. In Fig. 5 we show a sketch of γ22

(the other parameters have a similar x dependence).
It turns out that in some cases the solutions to this kind of multiband equations are

completely incorrect solutions in terms of the original problem (even in the cases where
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Figure 6: The bound states (the energies in the band gap of the barrier material) for a
heterostructure consisting of 20 well and 20 barrier periods. The solid lines show the location
of the bulk zone center energies E20 and E30 of the well material. The barrier potential is
given by Vb0 = 0 eV, Vb = 5 eV, the well potential is given by Vw0 = 0 eV, Vw = 3 eV and
a = 5 Å. a) The energies calculated using the heuristic two band model. b) The correct
energies.

more accurate interface boundary conditions are used). In Fig. 6a) the energy spectrum
is shown for a specific example. In between the solid lines is the band gap for the well
material, i.e., the region in between bulk zone center energies E20 and E30. We do not
expect to see solutions in the band gap, so this suggests that the energies highlighted by a
circle are incorrect. In order to check that these solutions are wrong indeed, we have carried
out calculations for the case where a finite but large number of periodic functions have been
used without treating the rest as remote bands, that is we have solved Eq. (14) including
a large but finite Un set. We have checked the accuracy of this approach by doubling the
number of Un states and comparing the eigen energies. It turns out that with a choice of
the 10 lowest (in terms of energy) Un, the error in the energies of interest is less than 0.1%
(we refer further to these values, obtained with sufficient accuracy, as correct). The correct
eigen energies are shown in Fig. 6b). From the two figures it is clear that the energies with
a circle around are incorrect solutions. These solutions are known as spurious solutions as
they have nothing to do with the original problem, although they are correct solutions to
the multiband equation.

Our model is, in reality, over-specified. Indeed, the two band model (Eq. (40)) together
with periodic boundary conditions and interface boundary conditions (Eq. (39)) result in
8 linear independent equations for the 8 unknown coefficients of the general solutions (4
general solutions in each material region). However, we also have the requirement that the
Fourier expansion should be restricted to small k components. It is this last requirement
which is not satisfied for the spurious solutions. In Fig. 7 we show the envelope function F2

and its Fourier coefficients. We see that the major Fourier components are outside the first
Brillouin zone. There are two separate issues here. First, from the exact envelope function
theory we have the requirement that the Fourier expansion of the envelope function should
be restricted to the first Brillouin zone to ensure uniqueness. This is not a major problem,
however, as relaxing uniqueness requirements has been discussed in the literature, see [5].
Second, the assumption that Ĥ1 is small relies heavily on the assumption that only small k
components of the envelope functions are non zero. This can be seen from the bulk expression
(Eq. (31)) that is used to derive the differential equations for each separate material (the
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Figure 7: a) The real part of the envelope function F2 (the imaginary part is zero). The solid
black lines show the location of the interfaces. b) The real part of the Fourier coefficients of
the F2 (the imaginary part is zero), the solid lines show the boundary of the first Brillouin
zone. The same parameters as in Fig. 6 have been used.

first and second terms grow quadratically and linearly with k, respectively). So if we have
non-zero components for large k values the procedure used to derive multiband equations
breaks down. The reason why the spurious solutions appear is that large k components are
needed to satisfy the interface boundary conditions. So the problem with spurious solutions
is that what would normally be considered a complete set of interface boundary conditions,
i.e., 2N boundary conditions for a N band model, results in an over-specified problem, hence
a reduced set of interface boundary conditions is needed. For approaches along these lines
see, e.g. [29, 17].

Another way of getting around this problem is to reformulate the set of coupled equations
in k space and to restrict the problem to the first Brillouin zone (or in some cases to a smaller
region in k space, see [40]). In order to implement this idea, we expand the solutions in plane
waves and make a cut-off beyond a small neighborhood of k = 0, see e.g. [40]. In table 1 we
show the energy spectrum found using this approach together with both the correct energy
spectrum and the energy spectrum found using the two band model. We see that energies
found using the cut-off approach have an error of less than 0.1% compared to the correct
energies. This shows that the present approach combined with plane wave cut-off removes
the spurious solutions and gives quite accurate results. In Fig. 8a) we show the correct wave
function together with the wave function found using the two band model with plane wave
cut-off. The wave function of the two band model is given by:

ψTwoBand(x) =
3

∑

n=2

Fn(x)
[

Un0,b(x)(1 − θh(x)) + θh(x)Un0,w(x)
]

, (41)

where Un0,b(x) is the zone-center solutions for the barrier and Un0,w(x) is the zone-center
solutions for the well. That is, we have taken into account that the periodic bases are
different in the well and the barrier. The correct wave function is given by:

ψCorrect(x) =
N

∑

n=1

Fn(x)Un0,b(x), (42)

where N is the number of periodic solutions included in the calculations. From Fig. 8a) it is
hard to see any difference between the two solutions. Hence, in order to quantify the error
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Exact Two Band Two Band
with Cut-Off

5.7292
5.8325
5.8405

5.8690 5.8723 5.8723
6.1151
6.1229

6.3643 6.3681 6.3682
6.4042
6.4115

6.5501 6.5546 6.5546
6.6995
6.7062

Table 1: The energies of the bound states. All energies are in eV. The same parameters as
in Fig. 6 have been used.
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Figure 8: a) The wave function found using the exact approach (20 bands included) together
with the wave function found using the two band model with plane wave cut-off. b) The
difference between the two wave functions. The same parameters as in Fig. 6 have been
used.

introduced by using the two band model with cut-off we also show the difference between
the two (Fig. 8b)). These figures show that the wave function too is well captured by
the two band model with plane wave cut-off. We also note that the difference between the
two solutions is largest close to the interfaces. We have made no attempt to model the
interface more accurately, so this is not surprising. Using a more correct procedure to model
the interface would result in increased accuracy of the two band wave function around the
interfaces.

We point out that by using the cut-off approach we are actually solving a slightly different
problem compared to the original two band differential equation (Eq. 40). This is most easily
seen by noting that the original interface boundary conditions are not satisfied anymore as
the envelope functions within the cut-off approach are smooth and the interface boundary
conditions give rise to discontinuities in the first derivative of the envelope functions. The
ordering of the material dependent parameters, i.e., the interface boundary conditions, is
still an issue, however, as different orderings will result in different k space equations. For
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example, a term like

−
~

2

2m

∂

∂x
γ22(x)

∂

∂x
(43)

gives in k space rise to
~

2

2m
kγ̃22(k − k′)k′, (44)

and a term like

−
~

2

2m
γ22(x)

∂2

∂x2
(45)

gives in k space rise to
~

2

2m
γ̃22(k − k′)k′k′. (46)

A disadvantage of using plane wave expansions is that the resulting matrix eigenvalue
problem is a problem where most of the elements of the matrix will be non-zero, as opposed
to local approaches, such as finite element methods, which give rise to sparse problems.
From a computational point of view, it is a concern because the full problem becomes more
computationally demanding and hard to parallelize.

Another issue in working with plane waves with cut-off is that it is not obvious how to
reduce the complexity of a problem using symmetries of the system. For example, if we
have a three dimensional cylindrically symmetric problem, it is not obvious how to use this
symmetry and at the same time to restrict the Fourier component to small k. This latter
issue can be resolved and we do this in the next section.

4 Reduction of 3D models for nanostructures with cylin-

drical symmetry

In this section we consider three dimensional problems with cylindrical symmetry. The
theory of Section 3 can easily be extended to three dimensions, see [4]. The focus of this
section is on how to reduce the problem to a two dimensional problem and at the same
time to ensure that the envelope functions are restricted to small k components. To simplify
matters we choose to use the one band model for a cubic heterostructure:

Ĥψ = [−〈∇, A(~r)∇〉 + V (~r)]ψ(~r) = Eψ(~r), (47)

where A(~r) = ~
2

2m∗(~r)
, m∗ is the effective mass, V is the effective potential (the conduction

band edge), ∇ is the gradient. The effective mass is, in terms of the γ parameters of section
3.1, given by 1/m∗ = γSS/m, where S denotes the periodic zone-center solution for the
condution band. The gradient of f is defined by:

〈~v,∇f〉 = D~vf, (48)

where 〈·, ·〉 is the Euclidean inner product in R
3. The problem is cylindrically symmetric as

long as the effective mass m∗, the effective potential V and the domain of our system Ω are
cylindrically symmetric. For simplicity we assume that Ω = R

3. We are looking for solutions
in the form:

ψ(~r) =

∫

Ωk

ψ̂(~k)ei〈~k,~r〉d3k, (49)
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where Ωk is a small neighborhood of ~k = 0 to be defined later (it needs to reflect the
cylindrical symmetry). Using

∇ei〈~k,~r〉 = i~kei〈~k,~r〉, (50)

we can reformulate the one band model in k space as follows:

∫

Ωk

[〈~k′, Â(~k′, ~k)~k〉 + V̂ (~k′, ~k)]ψ̂(~k)d3k = Eψ̂(~k′), (51)

where

Â(~k′, ~k) =
1

(2π)3

∫

Ω

A(~r)ei〈~k−~k′,~r〉d3r and V̂ (~k′, ~k) =
1

(2π)3

∫

Ω

V (~r)ei〈~k−~k′,~r〉d3r. (52)

Due to the cylindrical symmetry we know that

[Ĥ, Ŝθ] = 0, (53)

where [·, ·] is the commutator, Ŝθf(~r) = f(Sθ~r) for any function f and Sθ is the operator that
rotates R

3 by the angle θ around the symmetry axis. Choosing the Cartesian coordinates
(~r = (x, y, z)) where the third axis points along the symmetry axis, we have:

Sθ =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 . (54)

Because of the commutation relation (53) we can find wave functions ψ which are simulta-
neous eigen solutions of Ŝθ, i.e., we can find solutions ψl so that:

Ŝθψl = eilθψl, (55)

where l is an integer. This can be verified by differentiating the eigenvalue problem Ŝθψ =
λθψ with respect to θ, evaluating it at θ = 0, and using the periodicity condition Sθ = Sθ+2π.
Using the Fourier expansion we have:

eilθψl(~r) = Ŝθψl(~r)
= ψl(Sθ~r)

=
∫

Ωk
ψ̂l(~k)e

i〈~k,Sθ~r〉d3k

=
∫

Ωk
ψ̂l(~k)e

i〈S−θ
~k,~r〉d3k

=
∫

Ωk
ψ̂l(Sθ

~k)ei〈~k,~r〉d3k.

(56)

From this it is easily seen that:
eilθψ̂l(~k) = ψ̂l(Sθ

~k). (57)

This equation has the solution:

ψ̂l(~k) = eilθkψ̃(k, kz), (58)

where
kx = k cos(θk) and ky = k sin(θk). (59)
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Using cylindrical coordinates

x = r cos(θr) and y = r sin(θr) (60)

and using the fact that A is a function of r and z only we find:

Â(~k′, ~k) =
1

(2π)3

∫

A(r, z)ei(kr cos(θk−θr)−k′r cos(θk′−θr)+(kz−k′

z)z)rdrdθrdz

= 1
(2π)3

∫

A(r, z)
∑

n,n′(i)n+n′

Jn(kr)Jn′(−k′r)ein(θk−θr)e−in′(θk′−θr)ei(kz−k′

z)zrdrdθrdz

= 1
(2π)3

∫

A(r, z)
∑

n,n′(i)n+n′

(−1)n′

Jn(kr)Jn′(k′r)ei(nθk−n′θk′ )ei(n′−n)θrei(kz−k′

z)zrdrdθrdz

= 1
(2π)2

∫

A(r, z)
∑

n Jn(kr)Jn(k′r)ein(θk−θk′)ei(kz−k′

z)zrdrdz,

(61)
where we have used that:

eix cos(φ) =
∑

n

inJn(x)eiφn, (62)

and the domain of integration is 0 ≤ r < rmax(z), zmin < z < zmax and 0 ≤ θ < 2π. Here
zmin, zmax and rmax(z) are determined by Ω. In the case where Ω = R

3 we have zmin = −∞,
zmax = ∞ and rmax(z) = ∞. The same arguments apply to V̂ :

V̂ (~k′, ~k) = 1
(2π)2

∫

V (r, z)
∑

n Jn(kr)Jn(k′r)ein(θk−θk′ )ei(kz−k′

z)zrdrdz. (63)

We are now in a position to integrate out all angle dependent terms in the one band model,
Eq. (51). Assuming that the region in k space Ωk is given by kz,min < kz < kz,max,
0 ≤ k < kmax and 0 ≤ θk < 2π we get:

2πEψ̃(k′, k′z) =

∫

[

Â(~k′, ~k)(kk′ cos(θ′k − θk) + k′zkz)
]

eilθkψ̃(k, kz)e
−ilθk′kdkdθkdkzdθk′

+
∫

V̂ (~k′, ~k)eilθkψ̃(k, kz)e
−ilθk′kdkdθkdkzdθk′

= 1
(2π)2

∫

A(r, z)
∑

n Jn(kr)Jn(k′r)ein(θk−θk′ )ei(kz−k′

z)zr

×
[

kk′ cos(θk′ − θk) + k′zkz

]

eilθkψ̃(k, kz)e
−ilθk′kdrdzdkdθkdkzdθk′

+ 1
(2π)2

∫

V (r, z)
∑

n Jn(kr)Jn(k′r)ein(θk−θk′)ei(kz−k′

z)zr

×eilθk ψ̃(k, kz)e
−ilθk′kdrdzdkdθkdkzdθk′

= 1
2

∫

A(r, z)(kk′
[

J−l−1(kr)J−l−1(k
′r) + J−l+1(kr)J−l+1(k

′r)) + k′zkzJ−l(kr)J−l(k
′r)

]

×ei(kz−k′

z)zψ̃(k, kz)krdrdzdkdkz

+
∫

V (r, z)J−l(kr)J−l(k
′r)ei(kz−k′

z)zψ̃(k, kz)krdrdzdkdkz.
(64)

All in all, we have:

Eψ̃(k′, k′z) =
∫ kz,max

kz,min

∫ kmax

0

Ãl+1(k
′,k′

z,k,kz)+Ãl−1(k
′,k′

z,k,kz)

2
k′kψ̃(k, kz)dkdkz

+
∫ kz,max

kz,min

∫ kmax

0
Ãl(k

′, k′z, k, kz)k
′
zkzψ̃(k, kz)dkdkz

+
∫ kz,max

kz,min

∫ kmax

0
Ṽl(k

′, k′z, k, kz)ψ̃(k, kz)dkdkz,

(65)

where

Ãl(k
′, k′z, k, kz) =

k

2π

∫ zmax

zmin

∫ rmax(z)

0

A(r, z)Jl(kr)Jl(k
′r)ei(kz−k′

z)zrdrdz, (66)

Ṽl(k
′, k′z, k, kz) =

k

2π

∫ zmax

zmin

∫ rmax(z)

0

V (r, z)Jl(kr)Jl(k
′r)ei(kz−k′

z)zrdrdz, (67)
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and we have used J−l(x) = (−1)lJl(x).
We have now reduced the problem to a two dimensional problem while ensuring that

the Cartesian plane wave expansion is restricted to small k components. It is not surprising
that the radial part should be expanded in Bessel functions as these functions are the radial
solutions to the Laplace eigenvalue equation in cylindrical coordinates. It is, however, not
obvious that restricting to small k components of the Bessel functions (and kz components)
is equivalent to the restriction to small k components.

5 Conclusions and future directions

In this paper we focused on a long standing problem in the application of the multiband
effective mass theory to low dimensional nanostructures that manifests itself in the appear-
ance of non-physical spurious solutions. Due to its fundamental significance and a wide
range of applications in science and engineering, there have been a substantial number of
attempts to resolve this problem. We reviewed some of such approaches together with avail-
able techniques for formulating interface boundary conditions for the associated model for
the envelope functions. Next, based our discussion on the generalized envelope function
theory, we derived multiband equations for the one dimensional case. We demonstrated that
a failure to restrict the Fourier expansion of the envelope functions to small k components,
which is in the heart of the multiband model derivation, may lead to spurious solutions
with no physical meaning. On an example of a heterostructure, we provided details of a
procedure of how such non-physical solutions can be removed and evaluated the accuracy of
the results obtained. Finally, we exemplified this approach by a reduction of a three dimen-
sional cylindrically symmetric problem to a two dimensional problem within the plane wave
cut-off approach. The resulting model provides a computationally efficient framework for
the analysis of cylindrical symmetric systems and details of such an analysis will be reported
elsewhere. Finally, we note that an appropriate choice of the basis for our multiband model
may bring further computational advantages leading to the effect of the Gibbs phenomenon
being minimized while moving from the k-space to the real physical space. The resulting
systems of linear equations will be sparse, as we pointed out in Section 2, reducing further the
computational cost and providing additional advantages of this methodology as compared
to ab initio and atomistic techniques. This issue deserves further discussion in a separate
publication.
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Appendix

Any periodic lattice is completely specified by its principle lattice vectors a1, a2 and a3

defined such that any translation vector R (a vector connecting two lattice points) can be
written as:

R = m1a1 +m2a2 +m3a3, (68)

for some m1, m2, m3 ∈ Z. Based on the principle lattice vectors, the reciprocal lattice can
be defined as those vectors b that satisfy:

exp(ibR) = 1. (69)

It can be shown that any reciprocal lattice vector is given by:

b = n1b1 + n2b2 + n3b3, (70)

for some n1, n2, n3 ∈ Z, where b1 = 2π/Ω0[a2×a3], b2 = 2π/Ω0[a3×a1], b3 = 2π/Ω0[a1×a2]
and Ω0 = a1[a2 × a3].

There are many reasons for the construction of the reciprocal lattice. The one we focus
on here is its relation to irreducible representations of the translational group related to the
translation vectors R (that is the translational symmetry of the system). It can be shown
that any irreducible representation of the translational group is completely determined by
λ1 = exp(−ika1), λ2 = exp(−ika2), λ3 = exp(−ika3) where vector k is determined up to an
arbitrary reciprocal lattice vector, see [2]. The ambiguity in k can be removed by restricting
to the first Brillouin zone (the Wigner-Seitz cell of the reciprocal lattice).
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