MONOTONE UNITARY FAMILIES

DANIEL GRIESER

ABSTRACT. A unitary family is a family of unitary operators U(z) acting on
a finite dimensional hermitian vector space, depending analytically on a real
parameter x. It is monotone if %U’(ac)U(:z:)’1 is a positive operator for each x.
We prove a number of results generalizing standard theorems on the spectral
theory of a single unitary operator Up, which correspond to the ’commutative’
case U(z) = e'®Up. Also, for a two-parameter unitary family — for which there
is no analytic perturbation theory — we prove an implicit function type theorem
for the spectral data under the assumption that the family is monotone in one
argument.

1. INTRODUCTION

Let U(z) be a family of unitary operators on a Hermitian vector space V of
dimension M < oo, depending real analytically on 2 € R (or an interval in R).
Then

(1) D(z) := 1U’(x)U(a:)7l

is symmetric. Here U’(x) is the derivative with respect to . We call U monotone
if D(z) is a positive operator for all x. Denote

W(z) =Ker(I —U(z)) and Z = {z: W(x) # {0}}.

Thus = € Z iff U(x) has eigenvalue one.

A model case for this setup is U(x) = e®®Uy for a unitary Uy. Then W (z) is the
eigenspace of Uy with eigenvalue e ™. Standard facts from the spectral theory of
Up may be restated in terms of Z and W (z), for example:

e Z is a 2m-periodic sequence, having exactly M terms in each half-open
interval of length 27 (counting 'multiplicities’).

e If I is an interval of length less than 27 then the spaces W (z), « € I, are
linearly independent (even pairwise orthogonal).

o If |(I — U(xmo))pll < ell¢]l for some ¢ € V'\ {0}, 2o € R and & > 0 then
e~ lies within distance € of an eigenvalue of Uy (and so dist(zg, Z) <
7e/2). Furthermore, if ¢’ > ¢ and P denotes the orthogonal projection to

@xﬂefixfefixo |<e’ W(CC) then

9
2 I = Poll < Sl

In this paper we prove generalizations of these facts to arbitrary monotone uni-
tary families, see Theorem [0l in Section 2] and Theorems [2 and [ in Section [B
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The estimates are expressed in terms of uniform bounds on the first and second
derivatives of U: Assume dpin, dmax, d2 > 0 are such that

(3) dminl < D(2) < dmaxI, ||U"(x)|| < dg for all z.

Of course, such constants exist always locally. However, in applications of our
results, see [2], it is essential that the estimates are uniform in terms of (@), and do
not depend on additional data like separation of elements of Z, see the explanation
below.

An important difference between a general unitary family and the model case is
that U(z) and U(z") do not in general commute for z # 2’. A consequence of this
is that, while one may take a logarithm of U, i.e. find an analytic family A(z) of
symmetric operators such that

(4) Ulz) =@ for all x,

it is usually not true that D(x) equals A’(x), or even that positivity of D(z) implies
positivity of A’(z). The opposite implication is true, however. See Section [

Finally, we prove a result on two-parameter perturbation theory. Recall the
main result of one-parameter perturbation theory (see [], [3]): For an analytic
family U(z) of unitary operators on V, there are real analytic functions p;(z),
p;(x) for j =1,...,M = dimV having values in R and V, respectively, such that
for each x the eigenvalues of U(x) are e (*) | with corresponding orthonormal basis
of eigenvectors ¢;(x):

() U(2)p;(z) = e g (x).

It is well-known that the analogous statement for two-parameter families of opera-
tors is false in general. However, we prove a related implicit function type theorem
for the spectral data of a two-parameter family for which the dependence on one
parameter is monotone. It may be regarded as the natural unitary family gen-
eralization of the one-parameter perturbation theory. See Theorem [7 in Section

The analytic functions p; and ¢; play a central role in the proofs of our theorems.
It is essential to control their derivatives. For p; this is easy from (B]). However,
¢; may vary wildly whenever e’ is very close to another eigenvalue. To control
this variation is the main technical problem in the proof of the generalization of
@), Theorem Bl Note that, unlike in the model case, one may not assume that
the i (*) for fixed = but varying j are uniformly separated, or equivalently that
the elements of Z are uniformly separated. This can already be seen in the simple
example U(x) = e, where L is a diagonal matrix with positive diagonal entries
that are independent over Q: If M > 2 then for any ¢ > 0 there are z,2’ € Z
satisfying 0 < |z — 2| < e.

The problems we study here arose in the context of a singular perturbation
problem: In [2] we study the eigenvalues and eigenfunctions of the Laplacian on a
space X"V which has a fixed compact part connected by cylindrical necks of length
N > 0, and in particular their asymptotic behavior as N — oo. The unitary families
arise from the scattering matrix of the limit problem (infinitely long necks’).
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2. EIGENVALUE DISTRIBUTION

Theorem 1. Let U be a monotone unitary family on R. Then Z C R is a discrete
subset, and more precisely for all A < B

B
(6) Z dim W (x) — 2—/ tr D(z)dz| < M(:=dimV)

1
™
r:A<x<B A

In the special case U(z) = e®*LUy, L > 0, this implies the asymptotics
tr L
Y dimW(a) ~ ;—B, B — co.
z:0<x<B g

This is the Weyl asympotitcs of a quantum graph, see for example [1I]. We give a
much simpler proof than [I].

First, we differentiate (O] and obtain monotonicity of the functions p; from
monotonicity of U:

1 _
(7) py = (;U/U Yoj,05) = (D), @;) > 0.
Also, for each x we have
(8) W (x) = span{p; () : () € 2nZ}

Proof of Theorem [l We have

> 5B =) = [ E D)@,y o

J - /B tr D(z) dz

A

Since the p; are strictly increasing, we get from (§)

m;A;wdimW(w) = Xj:#{k €Z: py(A) < 2k < p;(B)} zj: (M N Rj)

with |R;| < 1, and this gives (@). O

3. EIGENSPACES

In this section we consider monotone unitary families satisfying the estimates
@). By (@) we have

(9) dnin < pj(2) < dmax  forallzand j=1,..., M.
First, we have independence of eigenspaces.

Theorem 2. Let U be a monotone unitary family satisfying @)). Let I be an

interval of length at most 2dd2"]§’f. Then the spaces W (x), x € I, are independent, i.e.

(10) If o, € W(z) for each x € INZ and ZcpE =0 then ¢, =0 Vz.

The following theorem gives a stable version of almost orthogonality.
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Theorem 3. Let U be a monotone unitary family satisfying @3)). Assume o € V\0
satisfies

(11) (I = U(zo))ell <ellel.
Then

T €
12 di Z)< — .
(12 ist(zn, 2) < 3 -

Furthermore, there is a constant C only depending on dmin, dmagz, d2, M such that
the following holds: Suppose 0 < e <&’ < C~! and e/’ < C~1. Denote by Py the
orthogonal projection to W =€ ,_, <. W(x). Then
1
€\ M1
(13) le—Pwel <C ()™ lell

In the proofs of Theorems 2] and [B] we will need the following estimate, which
replaces orthogonality of the eigenspaces of a unitary operator.

Lemma 4. If p € W(x), ¥ € W(y) and x # y then

(14) [(D(x)p, )| < %lw =yl llell - l]l-
Proof. By Taylor’s formula,
VU@ =T+ (- a0 @)U + -2k, R <%,
so if U(x)e = ¢, U(y) = 1 then
(o 9) = (U(x) e, Uy) ") = (U)U ()" o, 9)

= (. 9) +ily — 2)(D(@)g, ) + (y — 2)* (R, ¥),
and this gives (I4]). O

Proof of Theorem[2. Let ¢, € W(x) for x € I N Z, and assume ) ¢, = 0. Let
¢z, have maximal norm among all ¢,. Then 0 = (D(20)@z,, 2., ¢=) gives with ()

and (I4)

dminH(P:cOHQ S <D($O)me07(pwo> = Z <D(:I;O)u Spwoa(pm>

T#xTo
da da 2
< D0 S lwll - llewll < (M = D] - llew |,
TH#x(
80 if dmin > (M — 1)%2|1| then ¢,, = 0 and hence ¢, = 0 for all z. This implies
the claim. O

Proof of Theorem[3. The first estimate follows easily from the fact that, by the
lower bound in (@), an eigenvalue close to one of U(zg) will turn into an eigenvalue
equal to one of U(z), for some z close to zo: Let B(x) = I —U(z) and let \;(z) =
1—e™i(®) be the eigenvalues of B(x). The assumption (IT]) implies that |\;(z0)| < ¢
for some j, and this implies dist(p; (7o), 27Z) < Fe, and then y; > dmin shows that
there is an x satisfying |z — zo| < me/2dmin and p;(z) € 27Z, hence x € Z, so (I2)
follows.
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For 6 > 0let Ps(z) denote the orthogonal projection to the sum of the eigenspaces
of B(z) with eigenvalues |A;(z)| < d. Then ||B(zo)¢|| < €|l¢| implies

9
(15) Il = Potzo)ell < Sl

(see (@), which also applies to normal operators). To make this a good estimate,
we want to take 0 >> e. Our goal is to replace Ps(zg) by Pw here. The idea is
that eigenspaces of B(x) with eigenvalue |\;(xo)| < ¢ will turn into nullspaces of
B(z) for some z within 26/dpmi, of 2o, by the first part of this proof. However, the
variation of eigenspaces is much less well behaved than the variation of eigenvalues:
An eigenspace may change rapidly with x if the eigenvalue is very close to another
eigenvalue. Therefore, we need to consider not single eigenspaces but rather clusters
of eigenspaces.

The variation of eigenspaces is given as follows (see [3]): Fix z. If B(x) has no
eigenvalue on the circle |A\| = § then, with a prime denoting derivative in z,

(16) = > Z

FiA;1<8 ki) Ag|>6 Aj =

i (PiB' P+ PB'P).

Here, all quantities are evaluated at z, and P; is the orthogonal projection to
span ;. Taking norms and using orthogonality of the P; one obtains from this,
using || B’|| < dmax,

-1
17 Pi|| < dpaxM min A — A
( ) H 5” = Uma (I)\j|<6;l|)\k>5| J k|)

We need to choose § carefully to make the spectral gap not too small: Let s =
(' /e)/(M+1) and consider the M disjoint subintervals

[es,esh T fork=1,...,M

of (g,¢’). Since B(zg) has M eigenvalues and one of them has absolute value < e,
at least one of these intervals contains no |\;(xg)|. Assume
(18) [6,05), 6 =es®, contains no |\;(zo)).
We then have:
A) The eigenvalues of B(x) with |Aj(x¢)| < d are in 1-1 correspondence with those
x € Z (counted with multiplicity dim W (x)) satisfying
26
dmin

|z — x| <0 =

(Proof: Each such eigenvalue turns into a zero of A;(x) for such an z, by
the argument at the beginning of this proof. Conversely, if A;(z) = 0 then
|\j(w0)| < |7—0|dmax since [N} = p1; < dmax and hence |A;(x0)| < 25% < ds
provided /¢’ is sufficiently small (and therefore s big), and by ([I8) this implies
turther |\;(z0)| < 9.)

B) The smaller interval (04262 dnax | 55— 2§ d"“"‘) contains no |\;(x)| for any = with
|z — x| < ¢’ (Follows dlrectly from INi] < dmax-)

The length of the interval in B) is d(s — 1 — 4%) which is > ds/2 > 0 if s
is sufficiently big. Choose & in this interval, then we get from (IT) [ P5(2)|| <
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dinax M (8s/2)" for |# — x| < 6. Integration gives

19) I1P5(2) ~ Py(ao)| < o1 1= &

S dmin

M for |z —zo| < ¢

This implies
(20) [ = Ps(zo)¥]| < erllpl  forz € 2, |w— a0l <0, ¥ € W(2)
since P;(x)Y = 1 then and P;(xo) = Ps(xo).

Next we want to extend this estimate to ¢y € W' := @, _, <5 W(z). For this
it is essential that, by (4] and the positive definiteness of D(z), the angles between
different W (z) are bounded away from zero. To carry this out, we first derive from
() an estimate where all D(x) are replaced by D(xg): From D’ = U"U~! + D?
we have || D’|| < da + dmax; integration yields || D(zo)|| < || D ()| + (d2 + dmax>)d’
for | — xo| < ¢’, and then ([[d) gives, with Dy := D(zg),

(21) |<D0¢rv¢y>| < 5//”1/}1” ' H‘/’y”v 5// = 5/(d2 + dmax2 + d2)

for ¢, € W(x), ¥y, € W(y), x #y and |x — xo| < &, |y — x| < ¢’. Introduce the
scalar product (¢,1)p, := (Dow, ) on V, with norm [|1||p, = 1/{(Dot, ©), then

(22) dinin[¥]1* < 911D, < dmaxl ¥
so (21)) gives
(23) |(¢w7¢U)Do| ||D0 ||¢U||Do

for the same 1,1, as there. By simple standard calculations this implies

(24) I3 v, 2 ( = )Z ™

where the sums are over all x € Z with |z — x| < &', ¢, € W(z) are arbitrary
and M is the number of summands. Now by A) above M < M. Since § < &’ the
expression in parantheses is > £ for sufficiently small &, so @4) gives > [|[vz[|3,, <

2>, wwHDD, which with (DZI) gives > lv2]1? < 2"lmax >, ¥,||? and so

dmin

dmax
(25) Sl < /205 S

We return to @0). If v € W' = @,_, < W(z), ¥ = 3_, s then we get from
@3)

1 = Ps(zo)v ]| <Y llvbe — Ps(wo)tbull < 1) [t

d
(26) S 62”’(/)”, E2 1= ¢&1 2M dmax
min
This means that W' is close to Wy := Ran Ps(z0). Now by A) above, W/ and W
have the same dimension, so this implies by standard arguments that Wy is also
close to W', more precisely, with Py : V — W’ the orthogonal projection,

(27) [ = Pwp|| < eof[¥ll, o € Wa.
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Finally, assume that ¢ € V satisfies (IT)). Then (&) with ¢ as above together with
@) give, again by standard facts about distances of subspaces,

9
(28) lle = Pwroll < (e2 + )l

Putting everything together, we have § = es* for some k € {1,..., M} with s =
(e'/e)Y MHD) | which implies /6 < s7! and §' < &’. Also, g = 4dmax apd ¢y =

min

811/2M(;':::. Altogether, the right hand side of ([28) is bounded by Cs~!|¢|,

and since the left hand side only decreases when replacing W’ by the bigger space
®|m,m0‘gs/ W (z), the Theorem is proven. O

4. MONOTONICITY OF U AND OF ITS LOGARITHM

Denote by S(V') and U(V') the spaces of symmetric resp. unitary operators on
V. The map S(V) — U(V), A — €4 has non-singular differential everywhere and
is surjective, so it is a covering map. Hence any curve U : & — U(z) in U (V) may
be lifted to a curve z — A(z) in S(V) (that is, U(z) = A for all ) and the
lift is unique if one prescribes it for one value of . Furthermore, the lifted curve is
analytic if U is.

Proposition 5. Let x — A(x) be a C* family of symmetric operators and U(x) =
et Then

1 1 .
(29) —U'UTt = / e AleT A dr.
¢ 0

Here, a prime denotes differentiation with respect to x, and U,U’, A, A" are taken
at a fized x.

Proof. Let W (t,x) = %%eim(z). Then

9 199 ywa_ 0 ita 1itA |

W o= 2 etA = At = Al AW.

o “ioror” " one oA

Now fix x, and let B(t) = A’e’*4. The solution of the ordinary differential equation
4y (t) = B(t) + iAY (t) with Y/(0) = 0 is

t
Y(t) = / e tIAB(T) dr
0

as can be verified directly. (This is called Duhamel’s principle.) Now W (-, z)
satisfies the same first order ODE and initial condition as Y, so it follows that
W (t,z) = Y (t) for all t. Now rewrite Y (t) = fot eTAB(t — 7)dr and set t = 1 to
obtain (29). O

Corollary 6. Let x — A(x) be a C* family of symmetric operators. If A'(x) > 0
for each x then the unitary family U(x) = ') s monotone.

Proof. Positivity of A’ implies positivity of e’”4A’e~*"4 for each 7, so the claim
follows from (29)). O

The converse is not true. As an example let Ay = (g _Oﬂ-), B = <_Ob (1))

. ; cos —sin . .
with 0 < b < 1 and A(x) = Ag+2B. Then €™ = ( m— m—> is rotation
sinmr  cosmT
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by n7, and a short calculation shows that fol e'TA BeT A dr = 17471 (this is also
clear without calculation since the result must be rotation invariant with trace
equal to tr B = 1 — b; in essence, the negative direction of B gets averaged away
against the positive direction). Therefore, U(x) = ¢*4(*) is monotone near x = 0
but A’(0) = B is not positive.

5. TWO PARAMETER FAMILIES

Theorem 7. Let U(x,y) be a unitary operator in a finite-dimensional Hermitian
vector space depending real analytically on x,y € R. Assume

(30) %%U_l >0 at(zo,yo)-

Then the set {(z,y) : U(z,y) has eigenvalue one} is, in a neighborhood of (xo,yo),
a union of real analytic curves x = xj(y). The corresponding projections P;(y)
to the eigenspace of U(x;(y),y) with eigenvalue one are also analytic functions
of y # vo, extending analytically to y = yo, and > ; Pj(yo) is the projection to

ker(I — U(zo,y0))-

Note that in general it is not true that the eigenvalues and eigenprojections of
U(z,y) may be arranged as real analytic functions of (z,y), see [3], I1.6.1. While
the example given there (in the analogous case of self-adjoint operators) does not
satisfy the positivity assumption (B0), it can be easily modified so it does, by
adding a multiple of the identity. Explicitly, one may take A(x,y) = (3; Z) and
U(z,y) = @Y and (z9,y0) = (0,0).

Note also that the statement of the theorem reduces to the well-known facts
of one-parameter perturbation theory in case U(z,y) = €U (y), for an analytic
one-parameter family of unitary operators U(y).

Proof. Let w.l.o.g. xg = yo = 0.

We first consider the case U(0,0) = I. Let A = 1logU near (z,y) = (0,0).
Then the operators A(x,y) are self-adjoint, A(0,0) =0, and dA/dz(0,0) > 0 since
it equals 122U7=1(0,0) by (), and we need to prove that the set S = {(z,y) :
A(x,y) is not invertible } is a union of real analytic curves as claimed

If A(z,y) = zA + yB is linear in z,y, then (since A > 0) A and B may be
diagonalized simultaneously, hence may be assumed to be diagonal, and then it is
obvious that S is a union of lines, z;(y) = yb;/a;, where a;,b; are the diagonal
entries of A, B, respectively. In general, write A(z,y) = A + yB + C(x,y) with
C(z,y) = O(|x,y|?) and w.l.o.g. A, B diagonal. Then, if the dimension of the vector

space is M,
M

det A(z,y) = [ [ (za; + ybs) + O(|a, y| ™),
j=1
and a standard argument (using polar coordinates) shows that the zero set of this
function is a union of real analytic lines z = x;(y), having tangents za; + yb; = 0
at the origin.
If U(0,0) is arbitrary, let W = U — I (where I denotes the identity) and Vp =
Ker W(0,0) and V; its orthogonal complement. Let Wy (z,y), k,I = 0,1, be the

1 am grateful to Y. Colin-de-Verdiere for a fruitful discussion on this
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'submatrices’ of W (x,y) corresponding to the decomposition Vo @ V1. Then Wy,
Wo1 and Wi vanish at (z,y) = (0,0), and Wi, is invertible at (0,0) and hence in
a neighborhood. Then the equation W(vy ® v1) = 0, where vy € Vp, v1 € V4, is
equivalent to W'vy = 0, where W’/ = Wyo — WOlellWlo, and vy = —Wﬁlevo.
Therefore, U(z,y) has eigenvalue one iff the operator U'(z,y) = W'(z,y) + Iy, on
Vo has eigenvalue one. One easily checks that U’ (z, y) is unitary. Since W'(0,0) =0
the claim now follows from the case considered first.

Let C;(y) = U(z;(y),y) and let P;(y) be the projection to Ker C;(y). Since Cj is
analytic in y, its eigenprojections are analytic for y # 0 (but near zero) and extend
analytically to y = 0 (see [3]), so this is in particular true for P;. (]
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