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Abstract
We prove the Law of Large Numbers and the Central Limit Theorem for analogs of U - and V -

(von Mises) statistics of eigenvalues of random matrices as their size tends to in�nity. We show
�rst that for a certain class of test functions (kernels), determining the statistics, the validity
of these limiting laws reduces to the validity of analogous facts for certain linear eigenvalue
statistics. We then check the conditions of the reduction statements for several most known
ensembles of random matrices, The reduction phenomenon is well known in statistics, dealing
with i.i.d. random variables. It is of interest that an analogous phenomenon is also the case for
random matrices, whose eigenvalues are strongly dependent even if the entries of matrices are
independent.

1 Introduction
In recent decades there has been a considerable activity in studying asymptotic properties of linear
eigenvalue statistics

Nn[ϕ] =
n∑

l=1

ϕ(λ(n)
l ) (1.1)

for various classes of random symmetric or hermitian matrices. We denote in (1.1) {λ(n)
l }n

l=1 eigen-
values of n × n random matrix M , assuming that they are indexed in the non-decreasing order,
and ϕ : R → R a function, called often the test function (or the kernel of statistic). It has been
proved that for a rather broad class of random matrix ensembles and any bounded and continuous
test function n−1Nn[ϕ] converges either in probability or with probability 1 to a non-random limit

∫

R
ϕ(λ)N(dλ), (1.2)

where N is a probability measure known as the Integrated Density of States of the ensemble. In
other words, if for any ∆ ⊂ R

Nn(∆) = ]{λ(n)
l ∈ ∆, l = 1, ..., n}/n, (1.3)

i.e., Nn is the Normalized Counting Measure of eigenvalues of M , then Nn converges either in
probability or with probability 1 to a non-random measure N (see [2, 11, 10, 22, 24] for results and
references).

This can be viewed as an analog of the Law of Large Numbers for linear eigenvalue statistics.
Note that the eigenvalues of random matrices are strongly dependent random variables even in the
case, when the entries of matrices are independent (modulo the symmetry condition of course).
Nevertheless, the analogs of the Central Limit Theorem (CLT) for linear eigenvalue statistics have
also been found in various instances (see e.g. [1, 3, 6, 8, 9, 12, 13, 14, 15, 25, 26]) although the
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situation with CLT in the random matrix theory is more subtle up to certain cases, where other
limiting laws of �uctuations emerge (see e.g. [23]). The reason is that due to mention above strong
dependence of eigenvalues the variance of linear eigenvalue statistics of many random matrices does
not grow with n, and the mathematical mechanism of the limiting Gaussian law is more subtle than
just the "collective e�ect" of large number of small random and independent random variables.

Note now that the linear statistic (1.1) is an analog of an additive observable of statistical
mechanics and condensed matter theory, where the binary, ternary, etc. observables are also of
considerable interest. Their analogs exist also in statistics and known as U-statistics. Thus, it
is natural to consider similar objects for eigenvalues of random matrices, de�ned via a bounded
symmetric ϕ : Rp → R, p ≥ 1 as

Upn[ϕ] =
∑

1≤l1<l2...<lp≤n

ϕ
(
λ

(n)
l1

, ..., λ
(n)
lp

)
. (1.4)

One can also consider a bit di�erent object that we call the multilinear statistic and that is known
in statistic as V- or von-Mises statistics

Npn[ϕ] =
n∑

l1,..,lp=1

ϕ
(
λ

(n)
l1

, ..., λ
(n)
lp

)
, (1.5)

that can also can be written as the function of the pth tensor power of M :

Npn[ϕ] = Tr(M⊗p) (1.6)

As was mentioned above, the eigenvalues of random matrices are strongly dependent random vari-
ables. Thus, the methods, developed in statistics for the analysis of U-statistics and von-Mises
statistics (analogs of (1.4) and (1.5) with i.i.d. random variables instead of {λ(n)

l }n
l=1) and based

mainly on the martingale theory ideas [16, 17], are not applicable for random matrices. Neverthe-
less, we show below that the analysis of multilinear statistics essentially reduces to that of linear
statistics, similarly to the situation in statistics. This allows us to use the known results for linear
eigenvalue statistics to prove analogs of the Law of Large Numbers and the Central Limit Theorem
for multilinear statistics of several important classes of random matrices.

The paper is organized as follows. In Section 2 we study the analogs of the Law of Large
Numbers and in Section 3 the analogs of the Central Limit Theorem. In both cases we prove �rst
a general statement, allowing us to reduce the case p ≥ 2 in (1.5) to the case p = 1, and than we
check the validity of the hypotheses of the reduction statements for various random matrices.

2 Law of Large Numbers for Multilinear Statistics
We give here the assertions, corresponding to the Strong Law of Large Numbers (convergence with
probability 1) and the Weak Law of Large Numbers (convergence in probability). The results are
rather simple consequences of those for linear statistics.

Theorem 2.1 Let M be an n× n real symmetric or hermitian random matrix. We have:

(i) if the Normalized Counting Measure of eigenvalues of M (see (1.3)) converges weakly with
probability 1 to a non-random probability measure N :

lim
n→∞Nn = N, (2.1)

then for any bounded, continuous, and symmetric ϕ : Rp → R the normalized statistics
n−pNpn[ϕ] and n−pUpn[ϕ], where Npn and Upn are given by (1.5) and (1.4), converge with
probability 1 to the non-random limit:

lim
n→∞n−pNpn[ϕ] = p! lim

n→∞n−pUpn[ϕ] = Lp[ϕ], (2.2)
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where
Lp[ϕ] =

∫

Rp

ϕ(λ1, ..., λp)N(dλ1)...N(dλp); (2.3)

(ii) if for any ∆ ⊂ R
lim

n→∞E{|Nn(∆)−N(∆)|} = 0, (2.4)

then for any bounded, continuous, and symmetric ϕ : Rp → R

lim
n→∞E{|n−pNpn[ϕ]− Lp[ϕ]|} = lim

n→∞E{|n−pUpn[ϕ]− (p!)−1Lp[ϕ]|} = 0. (2.5)

Proof. (i) It is known that if a sequence of measures {mn} on R converges weakly to a
probability measure m on R, then the sequence of p-fold product measures {m⊗p

n } on Rp converges
weakly to the p-fold product m⊗p of the measures m (see e.g. [4], Theorem 3.2). This fact and the
hypothesis of assertion (i) imply its validity for Npn. To prove the assertion for Upn we note that
since ϕ is symmetric in its arguments

n−p((p!)−1Npn[ϕ]− Upn[ϕ])

is the �nite number (depending only on p) sums of the type (1.5) but having at least two coinciding
indices. Since the summands are bounded by n−1 supλ∈Rp |ϕ(λ)| and their number in every sum is
np−1 at most, we obtain the bound

n−p
∣∣(p!)−1Npn[ϕ]− Upn[ϕ]

∣∣ ≤ Cpn
−1 sup

λ∈Rp
|ϕ(λ)|,

where Cp depends only on p. The bound and the validity of assertion (i) for Npn imply its validity
for Upn.

(ii) To prove the assertion we �rst choose ε > 0 and a cube CA ⊂ Rp, centered in the origin,
having the side length A, and such that N(R\[−A,A]) < ε. Let now

CA =
ν⋃

α=1

Cα

be a partition of CA in which Cα's are so small that the variation of ϕ in every Cα does not exceed
ε. Then we have

n−pNpn[ϕ] ≤
ν∑

α=1

(ϕ(λα) + ε)N⊗p
n (Cα) + sup

λ∈Rp
|ϕ(λ)|N⊗p

n (R\CA)

and
n−pNpn[ϕ] ≥

ν∑

α=1

(ϕ(λα)− ε)N⊗p
n (Cα)− sup

λ∈Rp
|ϕ(λ)|N⊗p

n (R\CA).

Writing analogous inequalities for Lp[ϕ] and subtracting them from the above, we obtain that

E{n−pNpn[ϕ]− Lp[ϕ]} ≤ 2ε
ν∑

α=1

E{N⊗p
n (Cα)−N⊗p(Cα)}

+ sup
λ∈Rp

|ϕ(λ)|(E{N⊗p
n (R\CA)}+ N⊗p(R\CA)),

Passing subsequently in this bound to the limits n →∞ and A →∞ and taking into account (2.1),
we obtain assertion (ii) of the theorem, concerning Npn. An analogous assertion for Upn follows
from the argument similar to that used in the proof of assertion (i).
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We will list now several classes of random matrices for which the hypotheses of Theorem 2.1 are
known to be valid:

(i). Classical Ensembles: GOE, GUE, Wishart, Laguerre, etc. (see e.g. [19, 10] for their
de�nitions and properties), as well as their deformed versions H(0) + M , where H(0) is non-random
(or random but independent of M) and such that its Normalized Counting Measure converges
weakly to a probability measure of compact support. For these ensembles the limiting relation (2.1)
is known since long time (see e.g. [2, 11, 22] and references therein). In particular, for H(0) = 0 the
limiting measure is absolutely continuous (under certain conditions for the Wishart and Laguerre),
and the corresponding density is

(2π)−1
√

4− λ21{|λ|≤2}, (2.6)
and

(2πλ)−1
√

(a+ − λ)(λ− a−)1{λ∈[a−,a+]}, (2.7)
where c ≥ 1, a± = (1±√c)2.

(ii). Wigner Ensembles, where M = n−1/2W , W = {Wjk}n
j,k=1, Wjk = Wkj in the real sym-

metric case, Wjk = W kj in the hermitian case, and {Wjk}1≤j≤k≤∞ is the in�nite collection of i.i.d.
random variables of zero mean and variance 1, as well as their "deformed" versions. The limiting
measure exists and is the same as for the Gaussian Ensembles.

(iii). The sample covariance matrices M = n−1X∗X, as well as their "deformed" versions, where
"*" denotes the matrix transposition in the real symmetric case and the hermitian conjugation in
the hermitian case, and X = {Xαj}m,n

α,j=1 is the m× n random matrix whose entries are taken from
the in�nite collection {Xαj}∞α,j=1 of i.i.d. (real or complex) random variables, and limn→∞m/n =
c ∈ [0,∞). The limiting measure coincides with that for the Wishart and Laguerre Ensembles. For
the validity of (2.1) in these cases see again [2, 11] and references therein.

(iv). The "triangular array" versions of the Wigner and the sample covariance random matrices,
where W = {W (n)

jk }n
j,k=1 and X = {X(n)

αj }m,n
α,j=1, i.e., the entries are independent (modulo symmetry)

random variables, whose probability law depends now on j, k, and n, and we do not assume that
the entries for all n are de�ned on the same probability space. In these cases one has to use
the convergence in probability (or its a bit stronger version (2.4)), and for its validity we refer to
[20, 21, 2, 11] and references therein.

(v). Real symmetric and hermitian matrices, whose probability law is

Z−1
nβ exp

{− nβ TrV (M)/2
}
dβM, (2.8)

where β = 1 for real symmetric matrices, β = 2 for hermitian matrices, V : R → R+ is locally
Lipshitz function with the power α ∈ (0, 1) in the corresponding inequality,

V (λ) ≥ (2 + ε) log(1 + |λ|), |λ| ≥ L (2.9)

for some ε > 0 and L < ∞, Znβ is the normalization constant, and

d1M =
∏

1≤j≤k≤n

dMjk, d2M =
n∏

j=1

dMjj

∏

1≤j<k≤n

d<Mjkd=Mjk. (2.10)

In this case the validity of (2.4) is proved in [5, 13, 24]. The corresponding limiting measure N is a
unique minimizer of a certain variational problem and has a compact support.
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3 Fluctuations of Multilinear Statistics
In this section we study analogs of the CLT for statistics (1.4) and (1.5) of eigenvalues of random
matrices. The following proposition establishes the stochastic equivalence of centered multilinear
statistics and certain linear statistics.

Proposition 3.1 Let M be an n× n real symmetric or hermitian random matrix. Assume that
(i) the measure Nn = E{Nn}, where Nn is de�ned in (1.3), converges weakly to a probability

measure N :
lim

n→∞Nn = N, (3.1)

(ii) for
un(t) = Tr eitM = n

∫

R
eiλtNn(dλ), (3.2)

we have
Var{un(t)} ≤ C(t), (3.3)

where C(t) is a n-independent polynomial in |t| with positive coe�cients.
Then for any symmetric and integrable ϕ : Rp → R, p ≥ 2, such that its Fourier transform

ϕ̂(t) =
1

(2π)p

∫

Rp

e−i(x,t)ϕ(x)dpx (3.4)

satis�es the condition ∫

Rp

C1/2(t1)C1/2(t2)|ϕ̂(t)|dpt < ∞, (3.5)

we have uniformly in x ∈ R, varying in any �nite interval

lim
n→∞

(
E

{
eixn−p+1N ◦

pn[ϕ]
}−E

{
eixN ◦

1n[ϕ∗p]
})

= 0, (3.6)

and

lim
n→∞

(
E

{
eixn−p+1U◦pn[ϕ]

}−E
{
eixN ◦

1n[(p!)−1ϕ∗p]
})

= 0, (3.7)

where
N ◦

pn[ϕ] = Npn[ϕ]−E{Npn[ϕ]}, U◦pn[ϕ] = Upn[ϕ]−E{Upn[ϕ]},
and ϕ∗p : R→ R is

ϕ∗p(λ) = p

∫

Rp−1

ϕ(λ, λ2, .., λp)N(dλ2)...N(dλp), p ≥ 1. (3.8)

Proof. It follows from the inequality |eia − eib| ≤ |a− b|, a, b ∈ R that
∣∣∣E

{
eixn−p+1N ◦

pn[ϕ]
}−E

{
eixN ◦

1n[ϕ∗p]
}∣∣∣

≤ |x|E{∣∣n−p+1N ◦
pn[ϕ]−N ◦

1n[ϕ∗p]
∣∣}. (3.9)

Thus it su�ces to prove that the expectation on the right vanishes as n →∞.
We have from (1.5) and (3.4):

Npn[ϕ] =
∫

Rp

ϕ̂(t)
p∏

q=1

un(tq)dpt, (3.10)
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where un is de�ned in (3.2). Writing

un = u◦n + un, un = E{un},
and using the symmetry of ϕ̂, we present (3.10) as

Npn[ϕ] =
p∑

q=0

(
p
q

) ∫

Rp

ϕ̂(t)u◦n(t1)...u◦n(tq)un(tq+1)...un(tp)dpt. (3.11)

Applying to the identity the operation of expectation and subtracting the result from (3.11), we
obtain that

N ◦
pn[ϕ] = p

∫

Rp

ϕ̂(t)u◦n(t1)
p∏

q=2

un(tq)dpt

+
p∑

q=2

(
p

q

) ∫

Rp

ϕ̂(t)
( q∏

r=1

u◦n(tr)−E
{ q∏

r=1

u◦n(tr)
}) p∏

r=q+1

un(tr)dpt. (3.12)

Denoting
vn(t) = n−1un(t) = n−1 Tr eitM , vn(t) = n−1un(t),

and taking in account the inequalities

|vn(t)| ≤ 1, |vn(t)| ≤ 1, ∀t ∈ R, (3.13)

following from the unitarity of eitM in (3.2), we obtain from (3.12)

E
{∣∣∣n−p+1N ◦

pn[ϕ]−
∫

Rp

pϕ̂(t)u◦n(t1)
p∏

q=2

vn(tq)dpt
∣∣∣
}

≤ 2n−1
p∑

q=2

2q−2

(
p

q

) ∫

Rp

|ϕ̂(t)|E{u◦n(t1)u◦n(t2)}dpt, (3.14)

and then (3.3) and the Schwarz inequality imply

E
{∣∣∣n−p+1N ◦

pn[ϕ]−
∫

Rp

pϕ̂(t)u◦n(t1)
p∏

q=2

vn(tq)dpt
∣∣∣
}

≤ 3pn−1

∫

Rp

|ϕ̂(t)|C1/2(t1)C1/2(t2)dpt. (3.15)

Denote v the Fourier transform of N of (3.1). It follows from (3.1) that

lim
n→∞ vn(t) = v(t)

uniformly in t on any compact set of R. Thus
∏p

q=2 vn(tq) converges to
∏p

q=2 v(tq) uniformly on
any compact set of Rp−1, and taking into account (3.3) and (3.5), we conclude that the error of
replacing in (3.15)

∏p
q=2 vn(tq) by

∏p
q=2 v(tq) vanishes as n →∞.

Note now that according to (3.2) and the spectral theorem
∫

Rp

pϕ̂(t)u◦n(t1)
p∏

q=2

v(tq)dpt =
∫

R
ϕ̂p(t1)u◦n(t1)dt1

=
∫

R
ϕ∗p(λ1)N◦

n(dλ1) =: N ◦
1n[ϕ∗p],
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where ϕ∗p is the inverse Fourier transform of

ϕ̂p(t1) = p

∫

Rp−1

ϕ̂(t1, t2, .., tp)
p∏

q=2

v(tq)dt2..dtp.

It follows from (3.5) that ϕ∗p coincides with the r.h.s. of (3.8). This proves (3.6). As for (3.7) we
consider the simplest case p = 2, containing already the essence of general case of an arbitrary p.

We have from (1.4) and (1.5) that

n−1U2n[ϕ] = (2n)−1N2n[ϕ]− (2n)−1

∫

R
ϕ(λ, λ)Nn(dλ).

Now an argument similar to that in the proof of (3.15) yields

E
{∣∣∣n−1U◦2n[ϕ]−N ◦

1n[2−1ϕ∗2]
∣∣∣
}
≤ 2−1E

{∣∣∣n−1N2n[ϕ]−N1n[ϕ∗2]
∣∣∣
}

+ (2n)−1

∫

R2

|ϕ̂(t1, t2)|E{u◦n(t1 + t2)}dt1dt2.

In view of (3.5) the second term on the right is bounded by

(2n)−1

∫

R2

C1/2(t1 + t2)|ϕ̂(t1, t2)|dt1dt2.

Since C is a polynomial in |t| with positive coe�cients, it admits the bound C(t1 + t2) ≤ A(C(t1)+
C(t2)), where A depends only on the degree of C. This, (3.6), and (3.5) imply (3.7).

Remark 3.2 The same argument can be used to prove the CLT for multilinear (U - and V -) statis-
tics of i.i.d. random variables {ξl}l≥1. In this case (3.1) is just the weak Law of Large Numbers
for sums of i.i.d. random variables and (3.3) is valid with C(t) = const. Thus, Proposition 3.1 im-
plies the stochastic equivalence of centered multilinear statistics for i.i.d. random variables and test
functions with integrable Fourier transform and the centered linear statistics for the same random
variables and test functions ϕ∗p of (3.8). Since ϕ∗p is bounded in this case and since the CLT for
linear statistics is valid for such test functions, we conclude that the CLT for multilinear eigenvalue
statistics of i.i.d. random variables is valid for test functions with integrable Fourier transform. One
can then extend the CLT for wider classes of test functions, up to those, satisfying the condition
Var{ϕ∗p(ξ1)} ∈ (0,∞), usual in statistics and resulting form the martingale techniques (see e.g.
[17], Section 3.1). The extensions can be obtained by a standard approximation procedure (see e.g.
its version in item (i) below, treating the Gaussian Ensembles).

We discuss now random matrices for which the hypotheses of the proposition are true, giving
also the form of the corresponding variance and the class of test functions.

(i). Gaussian Ensembles (GOE and GUE), see e.g. [19] for their de�nitions and properties.
The measure N is here the Wigner semicircle law (2.6). The CLT for linear statistics with C1 test
functions of compact support is proved in several papers (see e.g. [12] and references therein), and
the corresponding variance is

V1β[ϕ] =
1

2βπ2

∫ 2

−2
dλ

∫ 2

−2

(
ϕ(λ)− ϕ(µ)

λ− µ

)2 42 − λµ√
42 − λ2

√
42 − µ2

dµ, (3.16)

where β = 1 for the GOE and β = 2 for the GUE. Besides, it follows from the Poincaré inequality
for Gaussian matrices [7, 22] that the polynomial C in (3.5) is 2t2/β. Thus, assuming that ϕ of
(1.5) is a smooth enough function decaying su�ciently fast at in�nity to have

∫

Rp

|t1||t2||ϕ̂(t)|dpt < ∞, (3.17)
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we �nd from Proposition 3.1 that the CLT for (1.5) is valid and the corresponding variance is

Vpβ[ϕ] = V1β[ϕ∗p], (3.18)

provided that ϕ∗p is not identically constant in [−2, 2]. It is natural to view the last condition as
that describing the "generic" situation. We do not consider here in detail non-generic situations
that may lead to di�erent normalizations and limiting laws.

Here is a simple example. Let p = 2 and ϕ(λ1, λ2) = ψ(λ1)ψ(λ2), where ψ is a bounded C1

function that is not identical constant for |λ| ≤ 2 and
∫ 2

−2
ϕ(λ)

√
4− λ2dλ = 0. (3.19)

Hence, ϕ?
2 = 0 and V2β[ϕ] = 0. Note however that we have here

N2n[ϕ] =

(
n∑

l=1

ψ
(
λ

(n)
l

))2

= (N1n[ψ])2 .

Since E{N1n[ψ]} = 0 in view of (3.19) and since the CLT is valid for linear eigenvalue statistics
of the GOE and the GUE matrices with bounded C1 test function, we conclude that in this case
N2n[ϕ] converges in distribution to the square of the Gaussian random variable with zero mean and
the variance V1β[ψ].

Analogous results are valid for (1.4).
Let us show now that the CLT for (1.4) and (1.5) is valid with the same variance (3.18) for

bounded functions in Rp such that ∂ϕ/∂λ1 is bounded in Rp and is continuous on any compact set
of Rp. To this end we introduce the cube CA ⊂ Rp centered in the origin and of the side length A
for any A > 2, and write

ϕ = ϕA + ψA, (3.20)
where supp ϕA ⊂ CA and ∂ϕA/∂λ1 is continuous in CA, and supp ψA ⊂ Rp \ CA−1 and ∂ϕA/∂λ1

is bounded (and locally continuous).
Representation (1.6) and the Poincaré inequality for Gaussian matrices [7, 22] imply that

Var{n−p+1Npn[ϕ]} ≤ 2E{n−pTrϕ1(M⊗p)ϕ∗1(M
⊗p)}

= 2
∫

Rp

|ϕ1(λ)|2
p∏

q=1

Nn(dλq), (3.21)

where ϕ1(λ) = ∂ϕ/∂λ1. Let {ϕk} be sequence of su�ciently smooth functions whose support is in
CA (hence the CLT for (1.5) is valid for every ϕk by Proposition 3.1) and such that

lim
k→∞

(
sup

λ∈CA

|ϕA(λ)− ϕk(λ)|+ sup
λ∈CA

∣∣∣∂ϕA

∂λ1
− ∂ϕk

∂λ1

∣∣∣
)

= 0. (3.22)

We have from (3.20) and (3.21)

Var{n−p+1Npn[ϕ− ϕk]} ≤
∫

CA

∣∣∣∂ϕA

∂λ1
− ∂ϕk

∂λ1

∣∣∣
2

p∏

q=1

Nn(dλq)

+ 4
∫

Rp\CA−1

∣∣∣∂ψA

∂λ1

∣∣∣
2

p∏

q=1

Nn(dλq) (3.23)
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The second term on the r.h.s. is bounded by

Cϕ

∫

|λ|>A−1
Nn(dλ). (3.24)

Denote
Zn = E

{
exp{ixn−p+1N ◦

pn[ϕ]}}, Znk = E
{

exp{ixn−p+1N ◦
pn[ϕk]}

}

and
Zk = e−x2Vpβ [ϕk]/2, Z = e−x2Vpβ [ϕ]/2.

Then by using an analog of (3.9) and the Schwarz inequality we have:

|Z − Zn| ≤ |Zn − Znk|+ |Znk − Zk|+ |Zk − Z|
≤ |x|Var1/2{n−p+1Npn[ϕ− ϕk]}+ |Znk − Zk|+ |Zk − Z|. (3.25)

The limit n →∞ in this bound replaces by zero the second term on the right (recall that the CLT
valid for every ϕk) and replaces Nn by N in the bound (3.23) � (3.24) of the �rst term (recall that
Nn converges weakly to N). The subsequent limit k →∞ replaces by zero the third term of (3.25)
(Vpβ of (3.18) and (3.16) is continuous in the metric, determined by the expression under the "lim"
sign in (3.22)), and replaces by 0 the �rst term on the right of (3.23) (in view of (3.22)). Finally,
the limit A →∞ replaces by zero the r.h.s. of (3.24) with Nn replaced by N .

We obtain that the characteristic function Zn of n−p+1N ◦
pn[ϕ] converges to Z, the characteristic

function of the Gaussian law with mean zero and variance Vpβ[ϕ], where ϕ : Rp → R is bounded
symmetric, ∂ϕ/∂λ1 is bounded in Rp, and such that ϕp is not identically constant in [−2, 2] (generic
situation for the CLT).

Analogous result is valid for Upn[ϕ] of (1.4).
(ii). The Wishart and the Laguerre Ensembles (see [10] for their de�nitions and properties). Here

similar results can be obtained by using an argument similar to that for the Gaussian Ensembles,
however the variance of the corresponding GLT for linear statistics is

1
2π2β

∫ a+

a−
dλ

∫ a+

a−

(
ϕp(λ)− ϕp(µ)

λ− µ

)2 4c− (λ− am)(µ− am)√
4c− (λ− am)2

√
4c− (µ− am)2

dµ, (3.26)

where a± = (1±√c)2, am = c + 1, c = limn→∞m/n ∈ [1,∞).
(iii). Wigner Ensembles (see (ii) of previous section). Here (3.1) is known since the long time

(see [21, 2, 11]). Relation (3.3) is also valid if

sup
n

max
1≤j,k≤n

E{(W (n)
jk )6} < ∞

with C(t) = A(1 + |t|3)2, and the CLT for linear statistics is valid for test functions, satisfying
∫

R
(1 + |t|4)|ϕ̂(t)|dt < ∞

and with the variance
V1β +

κ4

2π2

(∫ 2

−2
ϕ(λ)

2− λ2

√
4− λ2

)2

,

where V1β is de�ned in (3.16) and κ4 is the fourth cumulant of W
(n)
jk , assumed to be independent

of j, k, and n [18]. Thus, Proposition 3.1 implies the validity of the CLT for multilinear statistics
with test functions, satisfying

∫

Rp

(1 + |t1|4)(1 + |t2|4)|ϕ̂(t)|dpt < ∞.
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(iv). Sample covariance matrices. By using [18], it is possible to prove results, analogous to those
for the Wigner matrices, given in (iii).

(v). Hermitian matrix models, given by (2.8) � (2.10) with b = 2. The corresponding limiting
measure N is a unique minimizer of a certain variational problem and has a compact support (see
e.g. Theorem 2.1 of [24]). Condition (3.1) follows from Proposition 2.1 and Theorem 2.1 (ii) of [24].
To prove (3.3) we use the formula

Var{Nn[ϕ]} =
1
2

∫

R2

(ϕ(λ)− ϕ(µ))2K2
n(λ, µ)dλdµ (3.27)

for the variance of linear statistics (1.1) of hermitian matrix models. The formula is an easy conse-
quence of the determinant formulas for the marginals of the joint probability law of these random
matrices (see e.g. [19], Section 6.2), where Kn is the reproduce kernel of orthogonal polynomials
with respect to the weight e−nV . The case of (3.2) corresponds to ϕ(λ) = eitλ in (3.27), hence

Var{Nn[ϕ]} ≤ t2

2

∫

R2

(λ− µ)2K2
n(λ, µ)dλdµ.

Now, Lemma 3.1 of [24] implies that the integral on the r.h.s. is uniformly bounded in n, hence
the polynomial C in (3.3) is At2 with a n-independent A. The CLT for linear eigenvalue statistics
of the hermitian matrix model was proved in [13] for polynomial V in (2.8), such that the support
of the limiting measure N is a connected interval and the variance of the limiting Gaussian law is
(3.16) (see also [23] for more general cases). It follows then from Proposition 3.1 that the CLT for
multilinear statistics is valid for test function, satisfying (3.17) and with variance (3.18), where ϕp

of (3.8).
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