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Abstract

We study the corner-to-corner resistance of an M ×N resistor net-
work with resistors r and s in the two spatial directions, and obtain an
asymptotic expansion of its exact expression for large M and N . The
resulting asymptotic expansion reproduces numerical results obtained
from a Neville table determination in the case of M = N and r = s.

1 Introduction

A classic problem in the theory of electric circuits is the computation of
the resistance between two nodes in a resistor network. Formulated by
Kirchhoff [1] more than 160 years ago, the problem has been studied by
numerous authors over many years (see, for example, [2, 3]). Kirchhoff
explored the graph-theoretical aspect of the algebraic formulation and
obtained the two-point resistance in terms of 2-rooted spanning forests
and spanning trees. But the formulation, while elegant, does not pro-
vide sufficient physical insights. Past studies have instead focused on
infinite networks for which analysis can be carried to fruition [4].

The computation of the asymptotic expansion of the corner-to-
corner resistance of a rectangular resistor network has been of interest
for some time, as its value provides a lower bound to the resistance
of compact percolation clusters in the Domany-Kinzel model of a di-
rected percolation [5]. The corner-to-corner resistance has been stud-
ied by one of us (JWE) numerically using the method of a differential
approximants [6] together with a Neville table analysis [7].
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Recently, one of us (FYW) has re-visited the two-point resistance
problem [8], and deduced a closed-form expression for the resistance
between arbitrary two nodes for finite networks. However, the exact
expression obtained in [8] is in the form of a double summation whose
mathematical and physical contents are not immediately apparent. In
this paper, we take a closer look at this summation formula and obtain
its asymptotic expansion for large lattices.

The organization of this paper is as follows: In Sec. 2 we recall the
expression of the corner-to-corner resistance in an M ×N resistor net-
work obtained in [8], and reduce it to a form more manageable for our
purposes. The dominant term in the exact expression of the resistance
is next deduced in Sec. 3 by using the Euler-Maclaurin summation
formula. The asymptotic expansion of the exact expression for large
M, N is obtained in Sec. 4 and we summarize the results in Sec. 5.
We also show that the exact expression of the asymptotic expansion
yields results in agreement with those determined numerically [7].

2 Formulation of the summation formula

Consider a rectangular M × N network of resistors with resistances r
and s on edges of the network in the respective horizontal and vertical
directions. For definiteness, we consider both M, N even, and expect
the asymptotic expansion to be independent of this choice. The exam-
ple of an M = 6, N = 4 network is shown in Fig. 1.

(0,0)

(M-1,N-1)

r rrrr

s

s

s

Figure 1: An M × N resistor network.

Using Eq. (37) of [8], the resistance between opposite corner nodes
(0, 0) and (M − 1, N − 1) of the network is

R{M×N}(r, s) =
r(M − 1)

N
+

s(N − 1)
M

+
2

MN

M−1∑

m=1

N−1∑

n=1

[
cos

(
1
2θm

)
cos

(
1
2φn

)
− cos

(
M − 1

2

)
θm cos

(
N − 1

2

)
φn

]2

r−1(1 − cos θm) + s−1(1 − cos φn)

(1)

where θm = mπ/M, φn = nπ/N. Re-arranging the numerator in the
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summand, (1) becomes

RM×N (r, s) =
r(M − 1)

N
+

s(N − 1)
M

+
8

MN

M−1∑

m=1

N−1∑

n=1(m+n odd)

cos2(θm/2) cos2(φn/2)
r−1(1 − cos θm) + s−1(1 − cos φn)

(2)

There are two possibilities for the restriction m + n = odd to hold,
namely,

m = 2p − 1, n = 2q, p = 1, 2, .., M/2, q = 1, 2, ...,N/2,

n = 2p− 1, m = 2q, p = 1, 2, .., N/2, q = 1, 2, ..., M/2.

Splitting the sum into two parts accordingly and introducing the no-
tation

Aq =
qπ

N
, Bp =

(
p −

1
2

) π

M
,

we obtain

RM×N (r, s) = (rs)
1
2 [RM×N(r/s) + RN×M (s/r)] (3)

where

RM×N (ρ) =
√

ρ(M − 1)
N

+
4
√

ρ

MN

M/2∑

p=1

N/2∑

q=1

[
cos2 Aq(1 + ρ sin2 Aq)

ρ sin2 Aq + sin2 Bp

− cos2 Aq

]
. (4)

Sums of the term cos2 Aq can be carried out using the identity

N/2∑

q=1

cos2
(qπ

N

)
=

N

4
− 1

2
. (5)

This yields

RM×N(ρ) =
√

ρ

(
M

N
− 1

2

)
+ SM×N (ρ)

and

RM×N(r, s) =
√

rs

[
√

ρ

(
M

N
− 1

2

)
+

1
√

ρ

(
N

M
− 1

2

)

+ SM×N (ρ) + SN×M (1/ρ)
]

(6)

where

SM×N (ρ) =
4
√

ρ

N

N/2∑

q=1

(cos2 Aq)(1 + ρ sin2 Aq) Sq,M,N (ρ) (7)
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with

Sq,M,N (ρ) =
1
M

M/2∑

p=1

[
ρ sin2 Aq + sin2 Bp

]−1

=
1
M

(M/2)−1∑

k=0

[
ρ sin2 Aq + sin2

( (k + 1
2)π

M

)]−1

. (8)

The summation (8) can be evaluated in a closed form (see Lemma (29)
in Sec. 4). However, for a better understanding it is useful to sort out
the dominant contribution in Sq,M,N (ρ) by using the Euler-Maclaurin
summation formula.

3 Evaluation of the summation by an in-
tegral

The dominant contribution of (8) can be obtained using the Euler-
Maclaurin sum formula ([9] equation 5.8.18)

r−1∑

k=0

gk+ 1
2

=
1
h

∫ xr

x0

g(x)dx

−
m∑

i=1

(1 − 21−2i)B2ih
2i−1

(2i)!

[
g(2i−1)(xr) − g(2i−1)(x0)

]
+ Em(ξm)

(9)

where g(x) is such that gi = g(x0 + ih), the integer r is finite, and

Em(ξm) = −r
(1 − 2−1−2m)B2m+2h

2m+2

(2m + 2)!
g(2m+2)(ξm), x0 < ξm < xr,

where B2m are Bernoulli numbers.
Using (9) with x0 = 0, xr = π/2, h = π/M , r = M/2,

g(x) =
1

ρ sin2 Aq + sin2 x
, (10)

and noting that the odd derivatives vanish at the endpoints, we obtain

Sq,M,N (ρ) =
1
π

∫ π/2

0

g(x)dx + Em(q, N, ξm)

=
1

2
√

ρ sin Aq

√
1 + ρ sin2 Aq

+ Em(q, N, ξm), (11)

indicating that the dominant term in Sq,M,N (ρ) is the first term in
(11). The error term Em(q, N, ξm) can be written as

Em(q, N, ξm) = (−1)m+1
(
1 − 1

22m+1

) ζ(2m + 2)
(2M )2m+1

g(2m+2)(q, ξm),

0 < ξm < π/2,
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where ζ(2m + 2) is the Riemann zeta function bounded in the above
by ζ(2) = π2/6, and we have used B2n = (−1)n−12(2n)!ζ(2n)/(2π)2n

([10] equation 9.616). Since the denominator of (10) can be very small
for small q, Em(q, N, ξm) does not necessarily vanish in the limit of
m → ∞.

Write the correction to the dominant contribution in SM×N (ρ) as

∆M,N (ρ) = SM×N (ρ) − S
(1)
N (ρ), (12)

where

S
(1)
N (ρ) =

2
N

N/2∑

q=1

cos2 Aq

sin Aq

√
1 + ρ sin2 Aq (13)

is the dominant term depending only on N . Further write

∆M,N (ρ) =
N/2∑

q=1

∆q,M,N (ρ) , (14)

with

∆q,M,N (ρ) =D
(1)
q,M,N (ρ) − D

(2)
q,N (ρ), (15)

D
(1)
q,M,N (ρ) =

4
√

ρ

MN

(M/2)−1∑

k=0

cos2 Aq(1 + ρ sin2 Aq)
ρ sin2 Aq + sin2[(k + 1

2) π
M ]

(16)

D
(2)
q,N (ρ) =

2
N

·
cos2 Aq

√
1 + ρ sin2 Aq

sinAq
. (17)

Numerical evaluation of the difference ∆q,M,N (1) using (15) for
M = N and small values of q shows that it initially decreases with N
but ultimately shows a rapid increase. For q = 1 the turning point is
N = 6 and for q = 2 it is N = 12. However ∆q,M,N (ρ) for fixed N
decreases exponentially with increasing q, a fact which will be seen to
hold for general M and N later (see Eq. (42) below). The sum in (14)
therefore converges rapidly.

The asymptotic form of S
(1)
N (ρ) is now deduced using the alternate

Euler-Maclaurin sum formula ([9] equation 5.8.13)

r∑

p=1

fp =
1
h

∫ xr

x0

f(x)dx +
1
2
[
f(xr) − f(x0)

]

+
m∑

i=1

B2ih
2i−1

(2i)!

[
f (2i−1)(xr) − f (2i−1)(x0)

]
+ Em(ηm) (18)

where r is finite and the error term is given by

Em(ηm) = r
B2m+2h

2m+2

(2m + 2)!
f (2m+2)(ηm), x0 < ηm < xr. (19)

But the direct application of (18) to effect the summation in (13) leads
to a divergent integral so we add and subtract 1/Aq to the summand
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and use (18) with f(x) given by

f(x) ≡ fρ(x) =
cos2 x

sin x

√
1 + ρ sin2 x − 1

x
. (20)

Using x0 = 0, xr = π/2, h = π/N, r = N/2 and since fρ(x) does not
diverge at small x, the error term Em is of the order of O(N−(2m+1)
and can be neglected in m → ∞. Denoting by UN (ρ) and LN (ρ) the
respective correction to the integral at the upper an lower limits, we
obtain

S
(1)
N (ρ) = I(ρ) + SN + UN (ρ) + LN (ρ) , (21)

where I(ρ) is the integral

I(ρ) =
2
π

∫ π/2

0

fρ(x)dx

=
1
π

[
− 1 + 4 log2 − 2 log π − log(1 + ρ) +

ρ − 1
√

ρ
tan−1 √ρ

]
.

(22)

The second term in (21) is the added summation SN , which can be
evaluated using the result ([9] chapter 5, problem 26) as

SN =
2
N

N/2∑

q=1

1
Aq

=
2
π

N/2∑

q=1

1
q

=
2
π

(
log

N

2
+ γ +

1
N

−
∞∑

m=1

4mB2m

2mN2m

)
,

(23)

where γ = 0.577 215 664 901 53 . . . is Euler’s constant.
The first part of fρ(x) is antisymmetric about π/2 so the odd deriva-

tives at the upper limit arise entirely from the −1/x term and is inde-
pendent of ρ. Hence for j odd f

(j)
ρ (π/2) = (−1)j+1j!(2/π)j+1 and the

correction to the integral from the upper limit is

UN (ρ) =
1
N

f
(π

2

)
+

2
N

m∑

i=1

B2ih
2i−1

(2i)!
f (2i−1)

ρ

(π

2

)
=

−2
πN

+
2
π

m∑

i=1

4iB2i

2iN2i

(24)
which, as m → ∞, cancels terms of the inverse powers of N in SN .

At the lower limit we have fρ(0) = 0 and

LN (ρ) = − 2
π

m∑

i=1

B2i

(2i)!

( π

N

)2i

f (2i−1)
ρ (0). (25)

Using Bernoulli numbers B2 = 1/6, B4 = −1/30, B6 = 1/42 ([9] equa-
tion 5.8.8), the leading terms in LN are

LN (ρ) =
2
π

[
− π2

12N2
f (1)

ρ (0) +
π4

720N4
f (3)

ρ (0) − π6

30240N6
f (5)

ρ (0) + O
( 1
N8

)]

(26)

with

f (1)
ρ (0) =

1
6
(−5 + 3ρ),

f (3)
ρ (0) =

1
60

(67 − 210ρ − 45ρ2),

f (5)
ρ (0) =

1
126

(−95 + 3843ρ + 2835ρ2 + 945ρ3). (27)
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Combining (21) - (24), we obtain from (12) the result

SM×N (ρ) = I(ρ) +
2
π

[
log

N

2
+ γ

]
+ LN (ρ) +

N/2∑

q=1

∆q,M,N (ρ), (28)

where ∆q,M,N (ρ) is given by (15).

4 Evaluation of ∆q,M,N(ρ)

4.1 Exact evaluation

We now evaluate the term ∆q,M,N (ρ) in (28) exactly. The exact eval-
uation makes use of a summation identity which we state as a lemma.
Lemma:

(M/2)−1∑

k=0

1
ρ sin2 Aq + sin2[(k + 1

2
) π

M
]

= R(y∗)

≡ M tanh(πy∗)

2
√

ρ sin Aq

√
1 + ρ sin2 Aq

,

(29)

where M = even and y∗ is defined by

sinh
πy∗

M
=
√

ρ sin Aq. (30)

y

x

0=x
2
Mx =

*iy

*iy−

−∞=y

∞=y

2
1−M

2
1

2
3

2
5

Figure 2: Contour of integration C in (31). Solid circles denote simple poles
enclosed by C.

Proof. Consider the contour integral

Jq,M,N (ρ) =
1

2πi

∮

C

π tan(πz)dz

sin2 (πz
M

) + ρ sin2 Aq

(31)
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where the contour C consists of the lines

x =
M

2
, y = −∞, y = ∞ (32)

and the imaginary axis x = 0 with two half circles of radii ε → 0
around the two points z = ±iy∗ as shown in Fig. 2. The contour
encloses M

2 + 2 simple poles of the integrand at z = ± iy∗ and z =
1
2 , 3

2 , ..., M−1
2 . The residue is R(y∗) at the simple poles on the y-axis

and −[ρ sin2 Aq + sin2(k + 1
2) π

M ]−1 at z = k + 1
2 , k = 0, 1, ....

The integration along the contour C vanishes on the lines y = ±∞,
and on the straight line portions of x = 0, M

2 since the integrand is odd
in y. Hence the contour integral is nonzero only on the two half circles.
The integrand is odd in z so that the integral along the lower half
circle is equal to the integral in the anti-clockwise direction along the
reflection of the upper half circle in the y−axis. The integral Jq,M,N (ρ)
along the contour C may therefore be obtained by integrating round a
circle centered on iy∗ . Thus, by the residue theorem, the residue at iy∗

is equal to the sum of the residues of the M
2

+ 2 simple poles enclosed
by C, hence

R(y∗) = 2R(y∗) −
(M/2)−1∑

k=0

1
sin2[(k + 1

2) π
M ] + ρ sin2 Aq

, (33)

which yields (29).

Substituting (29) into (16), one obtains

D
(1)
q,M,N (ρ) =

2
N

·
cos2 Aq

√
1 + ρ sin2 Aq

sinAq
· tanh πy∗

= D
(2)
q,N (ρ) · tanh(πy∗), (34)

so that from (12) and (15) we obtain the result

SM×N (ρ) = S
(1)
N (ρ) +

N/2∑

q=1

∆q,M,N (ρ) ,

with

∆q,M,N (ρ) = D
(2)
q,N (ρ)

[
tanh(πy∗) − 1

]
, (35)

where S
(1)
N (ρ) has been evaluated in (21) and D

(2)
q,N (ρ) is given by (17).

Equation (17) can be further written as

D
(2)
q,N (ρ) =

2
qπ

+
2
N

fρ(
πq

N
)

=
1
qπ

[
2 + 2f (1)

ρ (0)
(qπ

N

)2

+
1
3
f (3)

ρ (0)
(qπ

N

)4

+ · · ·
]
. (36)

where the derivatives are given in (27).
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4.2 Asymptotic expansion

We now deduce the asymptotic expansion of ∆M,N (ρ).
For large M, N with M/N = λ fixed, we use

sinh−1(
√

ρ sin x) =
√

ρ x
[
1 − 1 + ρ

6
x2 +

(1 + ρ)(1 + 9ρ)
120

x4 + · · ·
]

(37)

and (30) to obtain

πy∗ = (π q̃)
[
1 − 1 + ρ

6

(qπ

N

)2

+
(1 + ρ)(1 + 9ρ)

120

(qπ

N

)4

+ · · ·
]

(38)

where q̃ = λ
√

ρ q. This leads to

tanh(πy∗) = tanh(πq̃) − 1 + ρ

6
(π q̃) sech2(π q̃)

(πq

N

)2

+
[ π q̃

120
(1 + ρ)(1 + 9ρ)

− (π q̃)2

36
(1 + ρ)2 tanh(π q̃)

]
sech2(π q̃)

(πq

N

)4

+ · · · . (39)

Substituting (39) into (35), we obtain

∆q,M,N (ρ) = D
(2)
q,N (ρ)

[
tanh(πy∗) − 1

]

= D
(2)
q,N (ρ)

[
tanh(πq̃) − 1

]

+ D
(2)
q,N (ρ) × (πq̃)

[
− 1 + ρ

6
sech2(π q̃)

(πq

N

)2

+ (1 + ρ)sech2(πq̃)
[1 + 9ρ

120
− 1 + ρ

36
(πq̃) tanh(πq̃)

] (πq

N

)4

+ · · ·
]
. (40)

This leads to, after introducing (36), the asymptotic expansion

∆q,M,N (ρ) =
∞∑

i=0

∆q,2i(λ, ρ)
N2i

(41)

with expansion coefficients

∆q,0(λ, ρ) =
2
πq

[
tanh(πq̃) − 1

]
,

∆q,2(λ, ρ) = 2πqf (1)
ρ (0)

[
tanh(πq̃) − 1

]
−

λ
√

ρ(πq)2

3
(1 + ρ) sech2(πq̃),

∆q,4(λ, ρ) =
(πq)3f (3)

ρ (0)
3

[
tanh(πq̃) − 1

]
(42)

+ λ
√

ρ(πq)4(1 + ρ)
[53 − 3ρ

180
− (1 + ρ)

18
(πq̃) tanh(πq̃)

]
sech2(πq̃).

As remarked earlier, values of these coefficients decrease exponentially
as q increases.
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q 2∆q,0 2∆q,2 2∆q,4

1 -0.0047465399754997281 -0.082316647898659221 0.038515173969807909
2 −4.4402067094342628 10−6 -0.00067582947581056974 -0.032940604383097552
3 −5.5279070728467383 10−9 −2.9215219029290850 10−6 -0.00060979439982744305
4 −7.7422874638854272 10−12 −9.8350012986547643 10−9 −5.3264158004237130 10−6

5 −1.1566622761121781 10−14 −2.8935175541424704 10−11 −3.2098297733739912 10−8

Σq -0.0047509857178701073 -0.082995408760387631 0.004959416517708477

Table 1: The coefficients ∆q,2i(1, 1) in (47).

5 Results

5.1 Summary of asymptotic expansions

Results obtained so far may be summarised as follows: the resistance
RM×N (r, s) is given by (3), with RM×N (ρ) expanded as

RM×N (ρ) =
2
π

log N +
√

ρ
(M

N
− 1

2

)
+

1
π

[
2γ − 1 + 2 log

( 2
π

)

− log(1 + ρ) +
ρ − 1
√

ρ
tan−1 √ρ

]
+ LN (ρ) +

N/2∑

q=1

∆q,M,N (ρ), (43)

where γ = 0.577 215 664 90153 . . . is Euler’s constant, LN (ρ) is given
by (25) and ∆q,M,N (ρ) given by (41).

As N → ∞ with λ = M/N fixed, (43) can be written as

RM×N(ρ) =
2
π

log N + C(λ, ρ) +
∞∑

i=1

b2i(λ, ρ)
N2i

(44)

where

C(λ, ρ) =
√

ρ
(
λ − 1

2

)
+

1
π

[
2γ − 1 + 2 log

( 2
π

)

− log(1 + ρ) +
ρ − 1
√

ρ
tan−1 √ρ

]
+

∞∑

q=1

∆q,0(λ, ρ),

b2i(λ, ρ) = −
(2B2iπ

2i−1

(2i)!

)
f (2i−1)

ρ (0) +
∞∑

q=1

∆q,2i(λ, ρ). (45)

Here, the Bernoulli numbers are B2 = 1/6, B4 = −1/30, B6 = 1/42
([9] equation 5.8.8). The function fρ(x) is defined by (20) and its first
few derivatives are given in (27). Equation (41) gives an expansion
of ∆q,M,N (ρ) in inverse powers of N2 correct to O(1/N4) and the
coefficients decay exponentially with q so that accurate results may be
obtained using only the first few terms of the sum. This is illustrated
in table 1 in the case λ = ρ = 1.
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5.2 The case M=N, r=s=1

For an N × N network with r = s = 1 we have λ = ρ = 1. From (3)
and (44) we obtain

RN×N (1, 1) = 2RN×N (1)

=
4
π

log N + c0 +
c2

N2
+

c4

N4
+ O(

1
N6

), (46)

where

c0 = 2C(1, 1) + 2
∞∑

q=1

∆q,0(1, 1)

= 1 +
2
π

[
2γ − 1 + log

( 2
π2

)]
+

4
π

∞∑

q=1

(tanh(πq) − 1
q

)

= (0.082 069 879 627 328 · · ·) − (0.004 750 985 717 870 046 5 · · · )
= 0.077 318 893 909 458 · · · ,

c2 = −2πB2f
(1)
1 (0) + 2

∞∑

q=1

∆q,2(1, 1)

= 0.266 070 441 638 478 · · · ,

c4 = −π3B4

6
f

(3)
1 0) + 2

∞∑

q=1

∆q,4(1, 1)

= −0.534 779 473 843 066 · · · . (47)

where we have used the data in table 1. This reproduces numerical
values of the coefficient c0 determined from a differential approximant
analysis [6] of the first 29 values of RN×N (1, 1) together with a Neville
table analysis [7]. We have further extended the Neville table analysis
of [7] to the next two coefficients, and obtained results in agreement
with the theoretical values of c2 and c4.

Finally, the asymptotic expansion (46) is to be compared to that
of the resistance between nodes (0, 0) and (N − 1, N − 1) in an infinite
square lattice [4],

RN×N,∞(1, 1) =
1
π

[
logN + γ + 2 log2

]
+ · · · . (48)
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