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Abstract:
This paper investigates correct variable selection in finite samples via `1 and `1+`2 type penalization

schemes. The asymptotic consistency of variable selection immediately follows from this analysis. We
focus on logistic and linear regression models. The following questions are central to our paper: given
a level of confidence 1 − δ, under which assumptions on the design matrix, for which strength of the
signal and for what values of the tuning parameters can we identify the true model at the given level of

confidence ? Formally, if Î is an estimate of the true variable set I∗, we study conditions under which

P(Î = I∗) ≥ 1− δ, for a given sample size n, number of parameters M and confidence 1− δ. We show
that in identifiable models, both methods can recover coefficients of size 1√

n
, up to small multiplicative

constants and logarithmic factors in M and 1
δ

. The advantage of the `1 + `2 penalization over the
`1 is minor for the variable selection problem, for the models we consider here. Whereas the former
estimates are unique, and become more stable for highly correlated data matrices as one increases the
tuning parameter of the `2 part, too large an increase in this parameter value may preclude variable
selection.
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1. Introduction

The literature on various theoretical aspects of `1 empirical risk minimization has enjoyed substantial growth
over the last few years, partly as a necessity to complement the flourishing field of convex optimization. The
main attraction, from both theoretical and computational perspectives, is the proved ability of such methods
to recover sparse approximations of the true underlying model when the number of parameters is large relative
to the sample size. The principal theoretical topics of interest are therefore focused on optimality properties
that involve the notion of sparsity. Whereas the theoretical properties of the `1 + `2 penalized estimates,
sometimes referred to as elastic net estimates, a phrase introduced by [23] in linear models, have not been
investigated for the models we consider, the properties of the `1 penalized estimates, typically referred to as
the Lasso-type estimates, have received considerable attention. The topics studied range from finite sample
results concerning sparsity oracle inequalities for the risk of the estimators, in regression and classification,
e.g., [4], [5], [19], [26], [20], [2], [11] to the asymptotic behavior of the estimates, including the consistency of
subset selection, e.g. [9], [10], [13], [22], [21], [25], [6] [3], [17], [12], [14].

This work is motivated by the emergence of a large number of variations and improvements of the `1
penalization schemes in regression and classification. To appreciate the need for such variations it is im-
portant therefore to investigate the limitations of the original method. When the number of variables M is
large relative to n, an asymptotic analysis of the variable selection problem may obscure issues that arise in
finite samples. In this paper we investigate the finite sample accuracy of variable selection via the `1 and the
closely related `1 +`2 penalization schemes in regression models. We also discuss asymptotic alternatives and
asymptotic consequences of our results. Our goal is to review existing results, and to offer a self-contained,
back-to-back analysis of these important models and respective penalization schemes.

Formally, let (Xi, Yi), 1 ≤ i ≤ n, be i.i.d. pairs distributed as (X, Y ) with probability measure P, where
Y ∈ {0, 1} or Y ∈ R and X = (X1, . . . , XM ) ∈ RM . We assume that E(Y |X = x) = g(

∑
j∈I∗ β

∗
j xj), where

I∗ ⊆ {1, . . . ,M} is an unknown subset and g is a known link function. In our analysis, M is allowed to
∗Research partially supported by NSF grant DMS 0706829 and the Isaac Newton Institute, Cambridge, UK.
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depend and be larger than the sample size n, and the size of I∗ may depend on n. The goal of this paper is
to provide an understanding of the merits and possible limitations of variable selection via these two penal-
ization schemes when used to answer the following central questions: given a level of confidence 1− δ, given
the number of variables M and the sample size n, under which assumptions on the design matrix, for which
strength of the signal and for what values of the tuning parameters do we identify the true model at the given
level of confidence ? Formally, if Î is an estimate of I∗, we study conditions under which P(Î = I∗) ≥ 1− δ.

We will focus on variable selection in logistic regression, corresponding to the link function g(z) =
ez/(1 + ez), and also present a full analysis of the problem for linear models, corresponding to g(z) = z, to
facilitate the comparison of the results. We will conduct separate analyses of the corresponding estimates,
as different arguments are needed for models with possibly unbounded response, such as the linear model.

We denote by β∗ the vector in RM with components β∗j for j ∈ I∗ and zero otherwise. We begin our analysis
in Section 2 by establishing upper bounds on the `1 distance between the Lasso and elastic net estimators,
respectively, and the parameter β∗. These results are connected with the sparsity oracle inequalities recently
obtained for the Lasso estimators in [4] and [2], in linear regression models, and [19], in generalized linear
regression models. The focus in these works is on the predictive performance of the estimators, rather than
on the accuracy of variable selection, as considered here. For us, these results are an intermediate, albeit
essential, step in discussing the conditions under which an estimate Î of the set I∗ satisfies P(Î = I∗) ≥ 1−δ.
It is intuitively clear that if the estimates β̂ are too far from β∗, we cannot hope to recover the true coefficient
set I∗ with high probability. It is interesting to note, however, that under some conditions on the design
matrix, we can still estimate the true subset correctly even if the distance between β∗ and the estimates is
not close to zero, but can still be controlled as in Section 2. Although this may appear surprising, it is this
phenomenon that sets the variable selection problem apart from the problem of estimating well β∗ itself:
here we aim at identifying a non-zero coefficient. Even if the estimate of this coefficient is relatively far from
the real value, it only matters whether it is different than zero, not whether it is very close to the truth.

The rest of paper is organized as follows. In Section 2.1 we re-visit the conditions on the design matrix
under which sparsity oracle inequalities for the Lasso estimates have been previously established and discuss
weaker conditions. In Sections 2.2 and 2.3 we show that these results continue to hold under the weaker
conditions. If one considers a slight modification of the `1 penalty that consists in the addition of a properly
scaled `2 term, one can further weaken the requirements on the design matrix, while maintaining the sparsity
of the resulting estimator. This motivates the study the `1 + `2 estimates, which have not been, to the
best of our knowledge, investigated theoretically from this perspective in these models. Section 2.3 also
contains an alternative asymptotic analysis of the `1 norm of the difference β̃ − β∗ for estimates in logistic
regression, motivated by the presence of possibly large constants in the finite sample oracle bounds. Under
weak conditions on a weighted version of the design matrix, we obtain improved oracle bounds, that hold
with probability converging to one.

In Section 3, which is central to our paper, we discuss in detail when the Lasso and the elastic net
methods can provide accurate variable selection, in linear and logistic regression models. We show that
obtaining results of the type P(I∗ = Î) ≥ 1 − δ depends crucially on a combination of conditions on the
design matrix and the signal strength. This analysis complements the existing asymptotic results for Lasso
estimates in linear regression models, and shows that similar phenomena occur in generalized linear models,
for which the variable selection problem has not been investigated from this perspective; we refer to the the
very recent work in [17] for related results in binary graphical models. Moreover, we provide the parallel
study of the elastic estimates, and investigate to which extent they can be used for variable selection. We
note that in a non-asymptotic framework, the study of P(I∗ = Î) is well posed only if Î is unique. Since the
elastic net estimates of β∗ are unique, as shown in Appendix B, so is the corresponding Î. Recall that, in
contrast, the Lasso-type estimators of β∗ may not be unique. However, in that case, the problem studied
here is still well posed: even when the Lasso estimates of β∗ are not unique, the corresponding Î is. This
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property has been used implicitly in [15], and then in [13], for linear models, without an explicit proof, and
not investigated outside linear models. For completeness, we present a proof of this result in Appendix B.

In the Conclusions section we summarize our findings and discuss the relative merits of the Lasso and
elastic net estimates. The proofs of our main results are in Appendix A. Additional technical results are
collected in Appendix B.

1.1. Notation

In the following sections we will denote by β̂ the penalized least squares estimates, for both the `1 and `1 +`2
penalties and, similarly, by β̃ the penalized logistic regression estimates, for either penalty. The estimates are
of course different, but we opted for the same notation to keep the exposition simple. It will always be clear
from the context to which combination model/penalty they correspond to. In the same way, Î will always
denote the set of selected variables, and I∗ will denote the set of truly associated variables. We denote by
k∗ the cardinality of I∗. For simplicity, we assume that the observations on the X variables are normalized
and centered, that is 1

n

∑n
i=1X

2
ij = 1 and 1

n

∑n
i=1Xij = 0, for all j. This is in no way crucial, but it allows

for cleaner results and easier interpretation of the assumptions. We will also assume that for all i and j the
variables Xij are bounded by a common constant L > 0, with probability 1. For any vector in a ∈ RM we
denote by |a|1 =

∑M
j=1 |aj | the `1 norm of a vector.

2. Sparse balls for the `1 and `1 + `2 penalized estimates

In this section we establish upper bounds on the `1 balls |β̂−β∗|1 and |β̃−β∗|1, for the Lasso and elastic net
estimates, in linear and logistic regression, respectively. We show that these bounds are, up to constants that
we make precise below, of the form k∗r, where r is the tuning parameter corresponding to the `1 penalty
and k∗ is the number of non-zero components of β∗. Since the `1 norm is a sum of M terms, but the bound
only involves the unknown and possibly much lower dimension k∗, we call the corresponding balls sparse.

2.1. Conditions on the design matrix

In [5] and [19] it was showed that the Lasso type-estimates belong to sparse `1 balls centered at the true
parameter, in linear models and generalized linear models, respectively. These results were established un-
der variants of a condition on the design matrix typically referred to as the mutual coherence condition,
introduced in [8]. We state below a mild version of this condition, which we will also use in Section 3 of this
paper. Let

ρkj =
1
n

n∑
i=1

XkiXji, 1 ≤ j, k ≤M.

Condition Identif: We assume that there exists a constant 0 < d ≤ 1 such that

P( max
j∈I∗,k 6=j

|ρkj | ≤
d

k∗
) = 1.

This condition guarantees separation of the variables in the true set I∗ from one another and from the rest,
where the degree of separation is measured in terms of the size of the correlation coefficients. We regard it
here as an identifiability condition. It will be used as a sufficient condition for correct variable selection in
Section 3 below. However, it is not needed for sparse oracle inequalities, as we detail below.

In Sections 2.2 and 2.3 below we show that Condition Identif can be relaxed if one is only interested in
prediction or the global behavior of the estimates measured, as in these sections, by the `1 distance to the
truth. To formulate the weaker condition let α > 0, ε ≥ 0 be given. Define the set

Vα,ε =

v ∈ RM :
∑
j /∈I∗
|vj | ≤ α

∑
j∈I∗
|vj |+ ε

 . (2.1)
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Let Σ be the M ×M matrix with entries ρkj .

Condition Stabil. Let α, ε > 0 be given. There exist 0 < b ≤ 1 such that

P

v′Σv ≥ b∑
j∈I∗

v2
j − ε

 = 1, for any v ∈ Vα,ε.

Remark. We denote generically one of the estimates of β∗ studied below by β̆. We will motivate the definition
of the set Vα,ε by showing, in the course of the proofs of Theorems 2.2 - 2.7, that β̆ − β∗ ∈ Vα,ε, with high
probability, for specific parameters α and ε. For instance, we will show that α is either 3, for the `1 penalized
estimates, or 4, for the `1 + `2 penalized estimates. The parameter ε will be either zero, for the least squares
estimates, or exponentially small, for each M and n, in the case of the logistic regression estimates. The
term ε in the definition of Vα,ε is needed for purely technical reasons, and does not affect the results or
their interpretation. Condition Stabil corresponding to α = 3 and ε = 0 has been introduced, for an analysis
similar to the one we conduct here, by [2], for a comparative study of the predictive performance of the
Dantzig and Lasso estimators in linear models.

One possible intuitive interpretation of Condition Stabil is as follows. If ε = 0, Condition Stabil is immediately
implied by P(Σ− bD ≥ 0) = 1, where D is the M ×M matrix containing the k∗ × k∗ identity matrix corre-
sponding to indices in I∗, and with zero elements otherwise. This asserts that the correlation matrix remains
semi-pozitive definite if we decrease the diagonal elements corresponding to the true variables slightly, and
leave all other entries unchanged. Since this modification affects only k∗ of M2 entries, it can be regarded as
a stability requirement on the correlation structure. Condition Stabil is even milder than P(Σ− bD ≥ 0) = 1,
since it is only required to hold for v ∈ Vα,ε, for some given α and ε.

The following lemma establishes the relationship between the two conditions, and shows that Condition
Stabil is less restrictive. A brief argument establishing this link is also offered in [2], for α = 3 and ε = 0; we
include a full proof here for the general case, for completness.

Lemma 2.1. Let α > 0 and ε ≥ 0 be given. If Condition Identif holds for some 0 < d < 1/(1 + 2α+ ε),
then Condition Stabil holds for any 0 < b ≤ 1− d(1 + 2α+ ε).

Proof. Let Σ∗ be the k∗ × k∗ matrix with entries ρkj , k, j ∈ I∗. For any v ∈ RM denote by v∗ the vector in
Rk∗ obtained from v by retaining only the components corresponding to I∗. Then

v′Σv ≥ v′∗Σ
∗v∗ − 2

∑
j∈I∗

∑
k/∈I∗
|ρkj ||vj ||vk|

≥ v′∗Σ
∗v∗ −

2d
k∗

∑
j∈I∗
|vj |

∑
k/∈I∗
|vk|, under Condition Identif

≥ v′∗Σ
∗v∗ −

2αd
k∗

(
∑
j∈I∗
|vj |)2 − 2dε

k∗

∑
j∈I∗

v2
j , for v ∈ Vα,ε

≥ v′∗Σ
∗v∗ − 2αd

∑
j∈I∗

v2
j −

2dε
k∗

√
k∗(
∑
j∈I∗

v2
j )1/2, by the Cauchy -Schwarz inequality

≥ v′∗Σ
∗v∗ − (2α+ ε)d

∑
j∈I∗

v2
j − dε, since 2xy ≤ x2 + y2

≥ (1− d(1 + 2α+ ε))
∑
j∈I∗

v2
j − ε.

The last inequality follows from Condition Identif, which also implies that v′∗Σ
∗v∗ ≥ (1 − d)

∑
j∈I∗ v

2
j and

so Condition Stabil holds for any b with 0 < b ≤ 1− d(1 + 2α+ ε) . �
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Thus, for instance, for the study of the Lasso estimates in linear models, we have α = 3 and ε = 0 and so
if Condition Identif holds for some d, then Condition Stabil holds for 0 < b ≤ 1 − 7d, which imposes the
restriction 0 < d < 1

7 .

The results of Sections 2.2 and 2.3 below will be established directly under the less restrictive Condition
Stabil, which requires the specification of a constant b. Notice that if b is very small, the condition is almost a
tautology, as Σ ≥ 0 by construction. However, as it will become apparent from the results established below,
a very small value of b will increase the radius of the `1 balls covering the estimator. This motivates the
parallel study of the elastic net estimates. We show that they are less affected by potentially small values of
b .

2.2. Sparse `1 balls for estimates in linear regression models

Throughout all sections on linear regression in this paper we assume that the model generating that data is
E(Y |X = x) =

∑
j∈I∗ β

∗
j xj , for X ∈ RM and I∗ ⊆ {1, . . . ,M}. This is the most popular model for regression

with unbounded response Y . It is also becoming increasingly common in regression models with Y ∈ {0, 1},
when the data supports it. Its usage in this context dates back to [1].

2.2.1. An `1 penalized least squares estimator

We estimate β∗ by

β̂ = arg min
β

1
n

n∑
i=1

{Yi − β′Xi}
2 + 2r

M∑
j=1

|βj |, (2.2)

where r =: rn,M (δ) is a tuning sequence depending on n,M and a user specified parameter δ. In what follows
we determine r such that P(|β̂ − β∗|1 ≥ Crk∗) ≥ 1− δ, and we make C > 0 precise.

In the following theorem we will use Condition Stabil corresponding to the set Vα,ε defined in (2.1) for ε = 0
and α = 3. Let σ2 = Var (Y ) and recall that L denotes a common bound on Xj , 1 ≤ j ≤M .

Theorem 2.2. Assume that Condition Stabil is satisfied for some 0 < b ≤ 1. If we choose

r ≥ 2

√
2 ln 2M

δ

n
, if Y ∈ {0, 1},

or

r ≥ 4Lσ

√
ln 4M

δ

n
∨ 8L

ln 4M
δ

n
, if Y ∈ R,

then

P
(
|β̂ − β∗|1 ≤

4
b
rk∗
)
≥ 1− δ,

for β̂ given in (2.2).

Remark 1. In practice one can replace σ in the tuning sequence by an estimator, as discussed in detail in [4].

Remark 2. It is interesting to note that although the results above indicate that the radius of the `1 ball is
small if k∗r ≤ 1, the proofs make no use of this restriction on k∗; in particular k∗ >

√
n is allowed. It is clear

that in this case the bounds are large but, perhaps surprisingly, this does not affect the validity of variable
selection, for some design matrices. We discuss this in detail in the next section.
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Theorem 2.2 above shows that the bound on |β̂ − β∗|1 becomes large if Condition Stabil is satisfied only for
very small values of b. One remedy is provided by a slightly modified estimator, which retains the sparsity
properties of the Lasso estimates, but is less affected by small values of b. The modified estimate will be
penalized least squares with a combined `1 and `2 penalty and we discuss it in the next subsection.

2.2.2. An `1 + `2 penalized least squares estimator

We estimate now β∗ by β̂, where

β̂ = arg min
β

1
n

n∑
i=1

{Yi − β′Xi}
2 + 2r

M∑
j=1

|βj |+ c

M∑
j=1

β2
j . (2.3)

As before, the goal is to find r =: rn,M (δ) and c =: cn,M (δ) for which we can construct sparse balls for the
estimates.

In the following theorem we will use Condition Stabil corresponding to the the set Vα,ε defined in (2.1) for
ε = 0 and α = 4.

Theorem 2.3. Assume that Condition Stabil is satisfied for some 0 < b ≤ 1. If maxj∈I∗ |β∗j | ≤ B, for some
B > 0, independent of n, and if

r ≥ 2

√
2 ln 2M

δ

n
, c =

r

2B
, if Y ∈ {0, 1},

or

r ≥ 4Lσ

√
ln 4M

δ

n
∨ 8L

ln 4M
δ

n
, c =

r

2B
, if Y ∈ R,

then

P
(
|β̂ − β∗|1 ≤

4.25
b+ c

rk∗
)
≥ 1− δ,

for β̂ given in (2.3).

Remark. The result above shows that even if Condition Stabil holds with b very close to 0, the bound on
|β̂ − β∗|1 stays finite, for any given M and n. Note that it may still be large, since c is restricted to take
relatively small values, dictated by the sizes of r and B. However, we cannot choose a much larger value for
c: in that case the `2 penalty would become prevalent, and no estimates will be set to zero in finite samples.

2.3. Sparse `1 balls for estimates in logistic regression models

We denote the logistic loss function by

l(β) =: l(β;x, y) =: −yβ′x+ log(1 + expβ′x),

and denote by Pl(β) = El(β;Y,X) the associated risk. Define β∗ = arg minβ∈RM l(β). Throughout all sections
on logistic regression we will assume that

E(Y |X = x) = p(x) =
exp(

∑
j∈I∗ β

∗
j xj)

1 + exp(
∑
j∈I∗ β

∗
j xj)

. (2.4)
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2.3.1. An `1 penalized logistic regression estimator

We estimate β∗ by

β̃ = arg min
β

1
n

n∑
i=1

−Yi
M∑
j=1

βjXij + log

1 + exp
M∑
j=1

βjXij

+ 2r
M∑
j=1

|βj |. (2.5)

We will determine the tuning sequence r = rn,M (δ), different than the one above, for which we can construct
sparse balls for these estimators. We will analyze the estimates under the assumption that p(x) is bounded
away from zero and one for all x. This is implied by:

Assumption A: There exists D > 0 such that |β∗|1 ≤ D,

in combination with the assumption that all X variables are bounded by L.

In the following theorem we will use Condition Stabil corresponding to the set Vα,ε defined for

ε =
log 2

2(M∨n)+1
× 1
r
,

with r given below, and for α = 3. Also, let s be a constant depending on L and D, which decreases with D.

Theorem 2.4. Assume Condition Stabil is satisfied for some 0 < b ≤ 1. If Assumption A holds and if

r ≥ (6 + 4
√

2)L

√
2 log 2(M ∨ n)

n
+ 2L

√
2 log(1

δ )
n

+
1

4(M ∨ n)
,

then

P
(
|β̃ − β∗|1 ≤

4
sb
rk∗ + (1 +

1
r

)ε
)
≥ 1− δ, (2.6)

for β̃ given by (2.5).

Remark. Notice that the term (1+ 1
r )ε is roughly n

2M∨n
and therefore negligible. As noted above, the bound on

|β̃−β∗|1 becomes large for very small values of b, which motivates the study of the `1+`2 penalized estimators
in the next section. Also, the constant 1/s, the exact form of which is given in the course of the proof of
this theorem, can be very large for large D; similar results, based on different arguments and slightly more
restrictive assumptions on Σ have also been obtained in [19]. However, if we content ourselves with asymptotic
statements, we can obtain an improved bound on |β̃−β∗|1, with 1/s replaced by a quantity arbitrarily close
to 1. These results will hold with probability converging to 1, and under more stringent requirements on the
design. They are based on the following fact, which is of independent interest: it establishes the sup-norm
consistency of β̃′x as an estimate of β∗′x.

Proposition 2.5. Let δ =: δn be any sequence converging to zero with n. If maxj∈I∗ |β∗j | ≤ B, for some
B > 0, independent of n, and k∗r → 0, then for any η > 0 we have

P
(

sup
x
|β̃′x− β∗′x| ≥ η

)
−→ 0,

as n→∞.

Remark. It is interesting to note that this result holds independently of the assumptions on the design.

The next result is obtained under a condition similar to Condition Stabil, but required to hold for a
weighted version of the matrix Σ. Let g(z) = ez/(1 + ez). Let Σ1 be the M × M matrix with entries
1
n

∑n
i=1 g

′(β∗′Xi)XkiXji, 1 ≤ j, k ≤M .
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Condition LStabil. Let α > 0, ε ≥ 0 be given. There exist 0 < b ≤ 1 such that

P

v′Σ1v ≥ b
∑
j∈I∗

v2
j − ε

 = 1, for any v ∈ Vα,ε.

Theorem 2.6. Assume Condition LStabil is satisfied for some 0 < b ≤ 1. Let

r ≥ (6 + 4
√

2)L

√
2 log 2(M ∨ n)

n
+ 2L

√
2 log( 1

δn
)

n
+

1
4(M ∨ n)

,

for any sequence δn → 0. If maxj∈I∗ |β∗j | ≤ B, for some B > 0 independent of n, and k∗r → 0, then

P
(
|β̃ − β∗|1 ≤

4
wb
rk∗ + (1 +

1
r

)ε
)
−→ 1, (2.7)

for β̃ given by (2.5) and for a constant w arbitrarily close to one.

2.3.2. An `1 + `2 penalized logistic regression estimator

In this section we obtain similar results for estimators of β∗ given by

β̃ = arg min
β

1
n

−Yi
M∑
j=1

βjXij + log

1 + exp
M∑
j=1

βjXij

+ 2r
M∑
j=1

|βj |+ c

M∑
j=1

β2
j . (2.8)

In the following theorem we will use Condition Stabil corresponding to the set Vα,ε defined in (2.1) for

ε =
log 2

2(M∨n)+1
× 1
r
,

for r given below, and α = 4. Let s > 0 be the constant given in Theorem 2.4 above.

Theorem 2.7. Assume that Assumption A holds and that Condition Stabil is satisfied for some 0 < b < 1.
Let B > 0 such that max |β|∗j ≤ B and take

r ≥ (6 + 4
√

2)L

√
2 log 2(M ∨ n)

n
+

1
4(M ∨ n)

+ 2L

√
2 log(1

δ )
n

, c =
r

2B
.

Then

P
(
|β̃ − β∗|1 ≤

4.25rk∗

sb+ c
+ (1 +

1
r

)ε
)
≥ 1− δ,

for β̃ given by (2.8).

The comments and remarks of Section 2.2.1 apply here with no change: the `1 + `2 penalized estimates are
more stable, in that the radius of the `1 ball covering the estimate is less affected by small values of b and
s. However, care must be exercised in choosing too large a c, as in that case the sparsity properties will be
lost. We can also derive, in a similar manner, versions of Proposition 2.5 and Theorem 2.6 for the `1 + `2
penalized estimate. Since the results are nearly identical we do not include them here.
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3. Correct subset selection

The asymptotic properties of subset selection via the Lasso in linear models have been studied recently by
a number of authors: [13] studied selection Gaussian graphical models, [21] investigated subset selection in
linear regression on for what was termed incoherent design matrices, [3] studied approximating regression
models under design matrices satisfying Condition Identif introduced in Section 2 above and previously
discussed in [4], and [25] investigated a three stage procedure in linear models. A nice overview of the con-
nections between incoherent design matrices and matrices satisfying conditions similar to our Condition
Identif is given in [14]. An interesting asymptotic analysis, in which one studies the interplay between the
sample size n, the sparsity level k∗ and the number of variables M for average asymptotic consistency in
linear regression models with Gaussian design is presented in [24]. There the coefficient set I∗ is assumed to
have been selected uniformly at random from {1, . . . ,M}, and one studies asymptotically the average error
probability, where one averages over all possible choices of I∗. We refer to the work of [6] for a non-asymptotic
investigation of the accuracy of model selection via the Lasso in linear models, but under model assumptions
different than ours: the coefficient set I∗ is again assumed to have been selected uniformly at random from
{1, . . . ,M}, and conditionally on I∗ the signs of βj , j ∈ I∗, are assumed to be equally likely to be 1 or -1. The
properties of the Lasso-type estimates used for correct subset selection in logistic regression have not been
investigated from the perspective considered here. After finishing this paper, we learned of the recent work
of [17], which investigates the very related topic of asymptotic model selection consistency in binary graphs;
we comment on connections with our work in Section 3.2.2. The finite sample properties of variable selection
via the elastic net have not been investigated in either of the models considered here. For a discussion of its
usage in linear regression models with different target parameters than those considered here we refer to [23].

We study in this section the non-asymptotic merits of the Lasso and elastic net estimates when used for
variable selection. We conclude the section with the asymptotic implications of these results.

All estimates of β∗ analyzed in Theorems 2.2 - 2.7 have zero coefficients. These theorems, however, do
not necessarily guarantee that the corresponding set of the non-zero coefficients of these estimates is exactly
equal with I∗, with high probability: we can either omit some of the true variables or include variables that
do not belong to I∗ while still being able to control the radii of the `1 balls. In this section we find estimates
of β∗ that have the properties discussed in Section 2 and for which, in addition, we have P(I∗ = Î) ≥ 1− γ,
for some given small γ > 0. Since P(I∗ = Î) ≥ 1− P(I∗ 6⊆ Î)− P(Î 6⊆ I∗), we find the subset Î such that

P(I∗ ⊆ Î) ≥ 1− γ1 and P(I∗ ⊇ Î) ≥ 1− γ2,

with γ1 + γ2 = γ.

3.1. Correct inclusion of all true variables in the selected set

In this section we discuss conditions under which we can obtain results of the type

P(I∗ ⊆ Î) ≥ 1− γ1,

for some given γ1 > 0, for estimates having the properties discussed in Section 2 above. Lemma 3.1 below
shows what governs the size of P(I∗ ⊆ Î). We discuss in detail to which extent we can use the results of
Section 2 directly for this study. Recall that the cardinality of I∗ is k∗.

Lemma 3.1. Let β∗ and β̆ be a combination parameter/estimator from Section 2. Let Î be the index set of
the non-zero components of β̆. Then

P
(
I∗ 6⊆ Î

)
≤ P

(
|β̆ − β∗|1 ≥ min

l∈I∗
|β∗l |

)
. (3.1)
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Proof. The following display follows directly from the definitions of Î and I∗.

P(I∗ 6⊆ Î) ≤ P(j /∈ Î for some j ∈ I∗)
≤ P(β̆j = 0 and β∗j 6= 0, for some j ∈ I∗)

≤ P(|β̆j − β∗j | = |β∗j |, for some j ∈ I∗)

≤ P(|β̆j − β∗j | ≥ min
l∈I∗
|β∗l |, for some j ∈ I∗)

≤ P
(
|β̆ − β∗|1 ≥ min

l∈I∗
|β∗l |

)
. �

3.1.1. Detection of large signals

The purpose of this subsection is to point out that the study of P(I∗ ⊆ Î) via a direct application of the
sparse oracle bounds derived in the previous section may lead to suboptimal results. We argue this in what
follows. Inequality (4.15) in the proof of Lemma 3.1 above makes it clear that the rate at which P(I∗ 6⊆ Î)
decays is governed by how small we can make the probability of estimating a non-zero component of β∗ by
zero. However, if we further bound this probability and arrive at (3.1), we can use Theorems 2.2 - 2.7 of the
previous section directly. We thus arrive at the following corollary.

Corollary 3.2. Let 0 < δ < 1 be fixed. Assume Condition Stabil holds, for the parameters specified in the
statements of Theorems 2.2 - 2.7, respectively.

1. `1 penalized least squares in linear models:

If minj∈I∗ |β∗j | ≥ 4
b rk
∗ with r given by Theorem 2.2, then P(I∗ ⊆ Î) ≥ 1− δ.

2. `1 + `2 penalized least squares in linear models:

If 4.25
b+c rk

∗ ≤ minj∈I∗ |β∗j | ≤ maxj∈I∗ |β∗j | ≤ B, for some B > 0, and with r and c given by Theorem
2.3, then P(I∗ ⊆ Î) ≥ 1− δ.

3. `1 penalized logistic regression:

If minj∈I∗ |β∗j | ≥ 4
sbrk

∗ + (1 + 1
r )ε, with s, r and ε given by Theorem 2.4 and if Assumption A holds,

then P(I∗ ⊆ Î) ≥ 1− δ.

4. `1 + `2 penalized logistic regression:

If 4.25
sb+crk

∗ + (1 + 1
r )ε ≤ minj∈I∗ |β∗j | ≤ maxj∈I∗ |β∗j | ≤ B , with r, c and ε given by Theorem 2.7 and

if Assumption A holds, then P(I∗ ⊆ Î) ≥ 1− δ.

Remark. The lower bounds on the minimum size of the true coefficients stated in Corollary 3.2 are all of the
type

min
j∈I∗
|β∗j | ≥ Crk∗, (3.2)

possibly up to the small additive term ε defined in the previous section.

For stable design matrices, when the constant C is close to 1, and if the true model is supported on a space
of dimension k∗, with very low k∗ satisfying rk∗ < 1, then such lower bounds imply that we can detect
moderate sized signals. Clearly, for large k∗, the lower bounds on the coefficient size are too conservative,
especially since the constant C may also be large. We discuss below when one can weaken this requirement.
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3.1.2. Detection of weaker signals

Propositions 3.3 and 3.4 below show that the lower bounds on the signal strength can be significantly weak-
ened under further conditions on the design matrix. The intuition is the following: if the signal is very weak
and the true variables are highly correlated with one another and with the rest, one cannot hope to recover
the true model with high probability. We will therefore work, for the remainder of this paper, under the
assumption that the true model is identifiable, as quantified in Condition Identif stated in Section 2 above.
Recall that this condition only requires that the true variables be separated from on another and from the
rest, and it does not impose any restrictions on the variables placed outside the true set.

Detection of weak signals via `1 and `1 + `2 penalized least squares in linear models.

We show below that if the identifiability condition is met, then we can recover coefficients with sizes
above the noise level n−1/2. The following result shows that, if the identification is to be performed at some
given confidence level δ, the size of the signal will also depend on δ. Moreover, it will depend on M , via a
logarithmic term: this is the price to pay for simultaneous identification of the true variables, among all M
possibilities. In what follows we will use the following tuning parameters, depending whether Y ∈ {0, 1} or
Y ∈ R. Let 0 < δ < 1 be fixed. Let K be an upper bound on k∗. Since k∗ is unknown, one can always use the
conservative bound M . However, if in practical situations K is known, one can use it instead of the larger
bound M . Consider

r ≥ 2

√
2 ln( 2KM

δ )
n

, if Y ∈ {0, 1} (3.3)

or

r ≥ 4Lσ

√
ln 4KM

δ

n
∨ 8L

ln 4KM
δ

n
, if Y ∈ R.

Proposition 3.3. For r given above we assume that

min
j∈I∗
|β∗j | ≥ 2r.

(1) If Condition Identif is satisfied for d ≤ 1
15 and Î corresponds to the `1 penalized least squares estimate,

then
P(I∗ ⊆ Î) ≥ 1− δ − δ

M
.

(2) We assume, in addition, that maxj∈I∗ |β∗j | ≤ B for some B > 0. We choose c = r
2B . If Condition Identif

is satisfied for d ≤ 1+c
17.5 and Î corresponds to the `1 + `2 penalized least squares estimate, then

P(I∗ ⊆ Î) ≥ 1− δ − δ

M
.

Remark. Notice that although Corolarry 3.2 is established under the weaker Condition Stabil, it only guar-
antees that P(I∗ ⊆ Î) for the collection I∗ for which minj∈I∗ |β∗j | ≥ 4

b rk
∗. In contrast, if Condition Identif

holds, we can detect variables corresponding to the set I∗ for which minj∈I∗ |β∗j | ≥ 2r. This is a substantial
relaxation of the lower bound on the signal strength, which no longer depends on either the possibly large k∗

or the possibly small b. Similar relaxations of the requirements on minj∈I∗ |β∗j | have also been obtained by
[24] and [6], but for models in which I∗ is assumed to be random, as discussed at the beginning of Section 3.

Proposition 3.3 above allows an immediate comparison between the selection properties of the Lasso and
the elastic net. Their behavior is almost the same, the only difference is in the restriction on the constant d:
slightly larger values of d can be allowed for the elastic net estimate. This translates into saying that if the
correlations between the true variables, and between the true variables and the rest are slightly larger than
what is allowed for the Lasso, then the `1 + `2 penalized estimate may provide an alternative . However, as
we noted in Section 2, although it would be tempting to increase the value of c, in order to allow for a larger
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degree of correlation, this would result in not setting any components of the estimate to zero.

Detection of weak signals via `1 and `1 + `2 penalized logistic regression.

The identifiability condition needed for linear models needs to be adjusted to the nature of the logistic
regression model, in a manner similar to that of replacing Condition Stabil by Condition LStabil. We impose
below a new condition: a weighted correlation matrix should exhibit the same type of separation we required
of the correlation matrix of the data. The weights depend on the link function. This perhaps comes with
little surprise: the correlation matrix appears explicitly in the expression of the least squares estimates in
linear models, and this is not typically the case for other models and estimates. We formalize this below. For
a given 0 < δ < 1, M and n, let

r ≥ (6 + 4
√

2)L

√
2 log 2(M ∨ n)

n
+ 2L

√
2 log(2M

δ )
n

+
1

4(M ∨ n)
, (3.4)

ε =
log 2

2(M∨n)+1
× 1
r
,

where we recall that L is a common bound on the Xj ’s. Let d be as required by Condition Identif. Recall
that for such 0 < d < 1 there exists a 0 < b < 1 for which Condition Stabil holds, as specified in Lemma 2.1.
For this b define

U =

a ∈ Rn : max
1≤i≤n

|ai −
M∑
j=1

β∗jXij | ≤
4Lrk∗

sb
+ L(1 +

1
r

)ε

 ,

for s > 0 given in Theorem 2.4. The definition of U is justified by the properties of the estimates β̃ dis-
cussed in Section 2, which have been proved under Condition Stabil and Assumption A. Let g(z) = ez/(1+ez).

Condition Lidentif. Let d be the constant required by Condition Identif. We assume that

sup
a∈U

P( max
j∈I∗,k 6=j

| 1
n

n∑
i=1

g′(ai)XijXik| ≤
d

k∗
) = 1.

Remark 1. We give a formal justification of this condition in the course of the proof of Proposition 3.4 in
Appendix A below. It is a natural condition that appears via a linearization of the likelihood function. The
term containing ε in the definition of U is exponentially small, and can be essentially ignored for practical
purposes; its role is purely technical.

Proposition 3.4. Let r and ε be as in (3.4) above and s > 0 as in Theorem 2.4. Let Assumption A hold.

(1) Assume that Conditions Identif and Lidentif are met with d ≤ s
16+2s(7+ε) , for a set U corresponding to

b ≤ 1− d(7 + ε). If

min
j∈I∗
|β∗j | ≥ 3.5r + 3(1 +

1
r

)ε,

and Î corresponds to the `1 penalized logistic regression estimate then

P(I∗ ⊆ Î) ≥ 1− 3δ.

(2) Let B > 0 be such that maxk∈I∗ |β∗k | ≤ B and choose c = 2r
B . Assume that Conditions Identif and Lidentif

are met with d ≤ s+c
17+2s(8+ε) , for a set U corresponding to b ≤ 1− d(8 + ε). If

min
k∈I∗
|β∗k | ≥ 3.5r + (1 +

1
r

)ε,

and Î corresponds to the `1 + `2 penalized logistic regression estimate then

P(I∗ ⊆ Î) ≥ 1− 3δ.
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Remark 2. Notice that if g(x) = x is the linear link, Condition Lidentif becomes Condition Identif. Since ε
is exponentially small, the requirement on the minimum size of the coefficients is essentially

min
k∈I∗
|β∗k | ≥ 3.5r.

As discussed in the remark following Proposition 3.3 above, Corollary 3.2 shows that P(I∗ ⊆ Î) can
also be controlled under the less restrictive Condition Stabil, but in that case we can only recover sets I∗

corresponding to the large signal strength minj∈I∗ |β∗j | ≥ 4
sbrk

∗+(1+ 1
r )ε. In contrast, Proposition 3.4 shows

that we can detect weaker signals, however the correlation structure needs to follow the more restrictive
Conditions Lidentif and Identif. As discussed before, similar properties are valid for the elastic net estimate,
for an appropriate choice of the tuning sequence c. Refinements of this result, that replace the possibly small
constant s by a term close to 1 are possible, if instead of statements that hold with probability larger than
1− δ we consider statements that hold with probability converging to one. For this, one can use Proposition
2.5 and Theorem 2.6. Since these results are very similar to those above, we do not include them here, for
brevity.

3.2. Correct subset selection

The set estimates Î of the previous section satisfy P(I∗ ⊆ Î) ≥ 1− γ1, for an appropriate γ1. In what follows
we show that Î also satisfies P(Î ⊆ I∗) ≥ 1−γ2, thereby guaranteeing that P(Î = I∗) ≥ 1−γ, for γ1 +γ2 = γ.

3.2.1. Correct selection via the Lasso and the elastic net in linear regression models

Theorem 3.5. Let K be an upper bound on k∗ and take

r ≥ 2

√
2 ln( 2KM

δ )
n

, if Y ∈ {0, 1},

or

r ≥ 4Lσ

√
ln 4KM

δ

n
∨ 8L

ln 4KM
δ

n
, if Y ∈ R.

Assume that
min
j∈I∗
|β∗j | ≥ 2r

(1) Assume that Condition Identif is met for d ≤ 1
15 . If Î corresponds to the `1 penalized least squares

estimator, then

P(Î = I∗) ≥ 1− 3δ − δ

M
.

(2) Assume, in addition, that maxj∈I∗ |β∗j | ≤ B for some B > 0 and choose c = r
2B . If Condition Identif is

met for d = 1+c
17.5 and Î corresponds to the `1 + `2 penalized least squares estimator, then

P(Î = I∗) ≥ 1− 3δ − δ

M
.

Remark. Since k∗ is unknown, one can always take K = M . However, if in some instances one has a rough
idea of the order of magnitude of k∗, one can use that value instead of the conservative bound M . The
remarks on the relative merits of the Lasso versus the elastic net from the previous sections apply here with
no change.

Recall that the Lasso parameter estimates β̂ may not be unique. However the set estimates Î are unique,
for each given tuning sequence r. This result, which we prove in Appendix B, is needed throughout the paper
to ensure that the problem is well posed. We mention it again here, since it will be used constructively in
the proof of Theorem 3.5 in Appendix A.
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Theorem 3.5 has immediate asymptotic implications. It guarantees that I∗ will be consistently estimated by
Î if M , the number of candidate variables is polynomial in n, i.e M = O(nζ), for some ζ ≥ 0. To obtain this
result it suffices to replace δ by any sequence converging to zero with n. For instance, choosing δ = 1/n and
restating the value of r in terms of order of magnitude we have the following corollary.

Corollary 3.6. Let r = O(
√

logn
n ) and assume that minj∈I∗ |β∗j | = O(

√
logn
n ). Then, under the assumptions

(1) or (2), respectively, of Theorem 3.5 we have

lim
n→∞

P(Î = I∗) = 1,

for Î either the `1 or the `1 + `2 penalized least squares estimator.

3.2.2. Correct variable selection via `1 or `1 + `2 penalized logistic regression

In this subsection we show that the type of results that hold for `1 or `1 + `2 penalized least squares continue
to hold for penalized logistic regression, under requirements on the correlation matrix that are tailored to
this type of loss function.

Theorem 3.7. Under the assumptions of Proposition 3.4 we have:

(1) If Î corresponds to the `1 penalized logistic regression estimate then

P(I∗ = Î) ≥ 1− 5δ.

(2) If Î corresponds to the `1 + `2 penalized logistic regression estimate then

P(I∗ = Î) ≥ 1− 5δ.

The asymptotic implications of Theorem 3.7 are again immediate. If M is polynomial in n and for δ = 1/n
we therefore obtain:

Corollary 3.8. Let r = O(
√

logn
n ) and assume that minj∈I∗ |β∗j | = O(

√
logn
n ). Then, under Assumption A

and the assumptions on the design required for (1) or (2), respectively, of Theorem 3.7 we have

lim
n→∞

P(Î = I∗) = 1,

for Î either the `1 or the `1 + `2 penalized logistic regression estimator.

Remark. In the proofs of Corollary 3.8 and Theorem 3.7 above we invoked Theorem 2.4 of Section 2.3.1 and
therefore used its hypotheses. If instead one invoked the asymptotic result of Theorem 2.6, one could obtain
a version of Corollary 3.8 with Assumption A replaced by the conditions maxk∈I∗ |β∗k | ≤ B and rk∗ → 0.
For polynomially large M , the order of our tuning sequence is r = O( logn√

n
). The condition rk∗ → 0 therefore

places the restriction k∗ ≤ C
√
n

(logn)2 on the size of the true model, for some positive constant C. In this
context, similar results, based on different arguments, have been independently obtained by [17], under the
slightly more stringent requirements k∗ ≤ C( n

logn )1/3 and mink∈I∗ |β∗k | ≥ 1
k∗ , but under slightly more relaxed

conditions on the weighted matrix of the design.

4. Conclusions

The scope of this paper is to offer finite sample, non-asymptotic, benchmarks on the performance of the Lasso
and the closely related elastic net methods for variable selection in logistic and linear regression methods. We
showed that the methods can be used for correct variable selection in identifiable models, where we defined
identifiability via Condition Identif and Condition Lidentif. The added requirement for correct selection,
versus good prediction, is on the size of the signal strength: we can detect coefficients larger than a small
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constant multiplied by the tuning parameter of the `1 penalty. This tuning parameter is a function of n, M
and the level of confidence, δ. The size of the tuning parameter has to be larger than the noise level, typi-
cally of order 1√

n
, up to factors that are logarithmic in M and 1

δ . Our contribution can be detailed as follows.

Lasso and the elastic net in linear regression. The properties of the `1 penalized least squares in regression
models are becoming well understood, while those of the `1 + `2 penalized least squares have not been in-
vestigated from this perspective. We complemented the existing results on the Lasso estimates by providing
a refinement of assumptions. We showed in Section 2 that the `1 penalized estimates belong to sparse `1
balls under Condition Stabil, also proposed in [2]. We included a full proof of this result to facilitate the
comparison with the elastic net estimates, which allow for a slightly higher degree of correlation between the
X variables than the one permitted by the Lasso estimate. We discussed in Section 2 the precise interplay
between this degree of correlation and the choice of the tuning parameters. If the tuning parameter of the `2
term is smaller than the tuning parameter of the `1 term, this estimator is also sparse: it belongs to a sparse
`1 ball centered at the true value and can be used to recover the true coefficient set I∗ with high probability.
However, care must be taken when using this estimate: if the tuning sequence accompanying the extra `2 term
is too large we would essentially have a ridge regression estimate, and no variable selection will be performed.

In Section 3 we provided a non-asymptotic analysis of the subset selection problem in linear models, which
complements the existing asymptotic results. We showed that the signal detection boundaries suggested by
previous asymptotic analyses can be relaxed. In the works of [21] and [3], which investigate aspects of
selection consistency, the minimal signal strength is required to be n−

1
2 +θ, for some θ > 0, up to unspecified

and possibly large constants. The work in [3] requires Condition Identif from Section 2 above. In [21] a less
restrictive assumption on the design matrix is imposed, namely the irrepresentable design condition, which
is almost necessary and sufficient for the sign consistency of the estimators, which implies consistent subset
selection. The work of [14] uses a coherence-type condition similar to our Condition Identif, which is shown
to be a sufficient condition for the sign consistency of a further thresholded Lasso estimator. The price to pay
is a stronger requirement on the minimum size of the detectable coefficients: this size depends on sequences
involved in the definition of their coherence condition and k∗. These requirements are similar in spirit to
those discussed in our Corollary 3.2 above, and share similar drawbacks.

We showed here that if one concentrates directly on the study of P(Î = I∗), instead of sign consistency, and
studies the original (untruncated) Lasso estimator under Condition Identif, one can relax the requirement on

minj∈I∗ |β∗j |. We showed in Theorem 3.5 that one only needs minj∈I∗ |β∗j | be larger than
√

2 ln( 2M2
δ )

n , up to
small constants independent of the design. For M polynomial in n and the choice δ = 1/n one can therefore

detect, with the untruncated Lasso, coefficients of order O(
√

log n
n ).

Lasso and the elastic net in logistic regression models. We showed in this article that the `1 and `1 + `2 pe-
nalized logistic regression estimators have features that are similar to `1 and `1 + `2 penalized least squares
estimators, but the study of the estimates depends on conditions on a weighted correlation matrix of the data.

The predictive performance and adaptation to unknown sparsity of the Lasso penalized estimates in gen-
eralized linear models received very little attention, with the notable exceptions of [19], [26] and [11] in
regression and classification. Here we revisited some of these issues, and showed that the `1 penalized logistic
regression estimators, as well as the elastic net estimates belong to sparse `1 balls under the weaker Condi-
tion Stabil. The size of the radii of these balls can be improved asymptotically under Condition LStabil. We
also showed that the `1 + `2 penalized logistic regression estimators, which have not yet been investigated,
exhibit the same adaptation to unknown sparsity as the Lasso estimates, for appropriate choices of the tun-
ing parameters given in Section 2.3. We showed in Theorem 3.7 that, similar to linear models, `1 or `1 + `2
penalized logistic regression can be used to estimate I∗ with very high probability. The difference is in the
conditions on the correlation matrix, which need to be adapted to the nature of this model, as in Condition

Lidentif. The size of the coefficients that are detectable via this method is also of the order O(
√

log n
n ), where

the constants involved in this bound are independent of the design or sparsity level.
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Appendix A

Proof of Theorem 2.2 Let Xi be the M dimensional vector with entries Xij , 1 ≤ j ≤ M . For ease of
notation, let rn,M (δ) = r. By the definition of the estimator, and with Wi = Yi − E(Yi|Xi), we obtain

(β∗ − β̃)′
{

1
n

n∑
i=1

X′iXi

}
(β∗ − β̂) ≤

M∑
j=1

|β∗j − β̂j |

{
2
n

∣∣∣∣∣
n∑
i=1

WiXij

∣∣∣∣∣
}

+ 2r
M∑
j=1

|β∗j | − 2r
M∑
j=1

|β̂j |. (4.1)

Define the event

A =
M⋂
j=1

{∣∣∣∣∣ 2n
n∑
i=1

WiXij

∣∣∣∣∣ ≤ r
}
. (4.2)

Notice that on the event A display (4.1) yields, via simple algebra, that∑
j /∈I∗
|β̂j − β∗j | ≤ 3

∑
j∈I∗
|β̂j − β∗j |.

Therefore, on the set A we have β̂ − β∗ ∈ V , with V defined in (2.1), for ε = 0 and α = 3.

Adding r|β̂ − β∗|1 to both sides of (4.1) and re-arranging the terms we also have

(β∗ − β̂)′
{

1
n

n∑
i=1

X′iXi

}
(β∗ − β̂) + r|β̂ − β∗|1 ≤ 4r

∑
j∈I∗
|β∗j − β̂j |. (4.3)

Using the Cauchy-Schwarz inequality in the right hand side of the inequality above, followed by an inequality
of the type 2uv ≤ au2 + v2/a, for any a > 1, we further obtain

(β∗ − β̂)′
{

1
n

n∑
i=1

X′iXi

}
(β∗ − β̂) + r|β̂ − β∗|1 ≤ 4ar2k∗ +

1
a

∑
j∈I∗

(β∗j − β̂j)2.

Since β̂ − β∗ ∈ V we can invoke Condition Stabil and, by taking a = 1/b, we obtain, on the set A, that

|β̂ − β∗|1 ≤
4
b
rk∗.

To conclude the proof we determine now r = rn,M (δ) such that P(Ac) ≤ δ. If Y ∈ {0, 1} we use Hoeffding’s
inequality to obtain

P(Ac) ≤
M∑
j=1

P

(∣∣∣∣∣ 2n
n∑
i=1

WiXij

∣∣∣∣∣ ≥ r
)
≤ 2M exp(−nr2/8), (4.4)

and the choice

rn,M (δ) ≥ 2

√
2 ln( 2M

δ )
n

guarantees that P(Ac) ≤ δ. If Y ∈ R we use Bernstein’s inequality to obtain

P(Ac) ≤
M∑
j=1

P

(∣∣∣∣∣ 2n
n∑
i=1

WiXij

∣∣∣∣∣ ≥ r
)
≤ 2M

(
exp(− nr2

16L2σ2
) + exp(−nr

8L
)
)
, (4.5)

and the choice
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rn,M (δ) ≥ 4Lσ

√
ln 4M

δ

n
∨ 8L
n

ln
4M
σ

guarantees that P(Ac) ≤ δ. This concludes the proof. �

Proof of Theorem 2.3. Using the definition of the estimator, the fact that maxj∈I∗ |β∗j | ≤ B and our
choice of c = r

2B we obtain, on the event A, that∑
j /∈I∗
|β̂j − β∗j | ≤ 4

∑
j∈I∗
|β̂j − β∗j |.

Therefore, on the set A we have β̂ − β∗ ∈ V , with V defined in (2.1), for ε = 0 and α = 4.

We use the same reasoning as in Theorem 2.2, and invoke Condition Stabil to obtain the analogue of display
(4.3). The only difference is that we complete the square generated by the `2 part of the penalty:

b
∑
j∈I∗

(β∗j − β̂j)2 + c
∑
j∈I∗

(β∗j − β̂j)2 + r|β̂ − β∗|1 ≤ 2c
∑
j∈I∗

β∗j (β∗j − β̂j) + 4r
∑
j∈I∗
|β∗j − β̂j |, (4.6)

and so, under the assumption that maxj∈I∗ |β∗j | ≤ B and our choice of c = r
2B we obtain, for any a > 1

(b+ c)
∑
j∈I∗

(β∗j − β̂j)2 + r|β̂ − β∗|1 ≤ 4.25ak∗r2 +
1
a

∑
j∈I∗

(β∗j − β̂j)2, (4.7)

and the remaining part of the proof is identical to that of Theorem 2.2, if we now choose a = 1
b+c . �

Proof of Theorem 2.4 Recall that we denoted the logistic loss function by

l(β) =: l(β;x, y) =: −yβ′x+ log(1 + expβ′x),

and the associated risk by Pl(β) = El(β;Y,X). We also denote the empirical risk by

Pnl(β) =
1
n

n∑
i=1

−Yi
M∑
j=1

βjXij + log

1 + exp
M∑
j=1

βjXij

 .

With this notation and letting r = rn,M (δ), the estimator satisfies, by definition

Pnl(β̃) + 2r
M∑
j=1

|β̃j | ≤ Pnl(β∗) + 2r
M∑
j=1

|β∗j |.

By adding and subtracting P(l(β̃)− l(β∗)) + r
∑M
j=1 |β̃j − β∗j | to both sides and rearranging terms we obtain

r|β̃ − β∗|1 + P
(
l(β̃)− l(β∗)

)
≤ (Pn − P)

(
l(β∗)− l(β̃)

)
+ r|β̃ − β∗|1 (4.8)

+ 2r
M∑
j=1

|β∗j | − 2r
M∑
j=1

|β̃j |.

Let

Ln = sup
β∈RM

(Pn − P)(l(β∗)− l(β))
|β − β∗|1 + ε

.
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F. Bunea/Honest variable selection 18

Notice first that if we change the ith pair (Xi, Yi) while keeping the others fixed, the value of Ln changes
by at most 4L

n , where L is a common bound on all Xij . To see why, recall that Pn = 1
n

∑n
i=1 δXi,Yi is

the empirical measure putting mass 1/n at each observation (Xi, Yi). Let P′n be the empirical measure
Pn = 1

n

(∑n−1
i=1,i6=l δXi,Yi + δX′

l
,Y ′
l

)
corresponding to changing the pair (Xl, Yl) to (X′l, Y

′
l ). Then

(Pn − P)(l(β∗)− l(β))
|β − β∗|1 + ε

− (P′n − P)(l(β∗)− l(β))
|β − β∗|1 + ε

=
1
n

l(β∗;Yl,Xl)− l(β;Yl,Xl)− l(β∗;Y ′l ,X′l) + l(β;Y ′l ,X
′
l)

|β − β∗|1 + ε

≤ 4L
n

|β − β∗|1
|β − β∗|1 + ε

≤ 4L
n
, (4.9)

where the inequality follows immediately by a first order Taylor expansion and the assumption that all X
variables are bounded by L. Therefore we can apply the bounded difference inequality (e.g. Theorem 2.2,
page 8 in [7]) to obtain that

P(Ln − ELn ≥ u) ≤ exp−nu
2

8L2
.

Thus, if we take

u > 2L

√
2 log 1

δ

n
,

we have

P(Ln − ELn ≥ u) ≤ δ.

We will use Lemma 3 in [26] to obtain a bound on Ln. We re-state it here for ease of reference, adapting it
to our notation.

Lemma 3, [26]. Let Jn be an integer such that 2Jn ≥ n. Then, if Ln defined above corresponds to a Lips-

chitz loss and the components of X are bounded by L, with probability one, then ELn ≤ C1

√
2 log 2(M∨n)

n +
C2

Jn
2(M∨n)2 , where C1, C2 are positive constants depending on the Lipschitz constant and L.

Our loss is Lipschitz in t = β′x, with constant 2. Also, inspection of the chaining argument used in the
proof of the Lemma shows that we can take Jn = (M ∨ n) and ε = log 2

2(M∨n)+1 × 1
r . Therefore, by making the

constants precise we obtain

ELn ≤ 6L

√
2 log 2(M ∨ n)

n
+

1
4(M ∨ n)

.

Define the event
E = {Ln ≤ r} . (4.10)

From the previous displays we then conclude that if

r ≥ 6L

√
2 log 2(M ∨ n)

n
+

1
4(M ∨ n)

+ 2L

√
2 log(1

δ )
n

,

then P (E) ≥ 1− δ.

Since P
(
l(β̃)− l(β∗)

)
> 0, by the definition of β∗, display (4.8) yields
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F. Bunea/Honest variable selection 19

r

M∑
j=1

|β̃j − β∗j | ≤
M∑
j=1

2r|β̃j − β∗j |+
M∑
j=1

2r|β∗j | −
M∑
j=1

2r|β̃j |+ rε

≤ 2r
M∑
j=1

|β̃j |+ 2r
M∑
j=1

|β∗j |+ 2r
M∑
j=1

|β∗j | −
M∑
j=1

2r|β̃j |+ rε

≤ 4r|β∗|1 + rε,

on the set E. Therefore, if Assumption A holds, we obtain

M∑
j=1

|β̃j − β∗j | ≤ 4D + ε ≤ 5D, (4.11)

where we used the possibly conservative bound D on ε to keep the exposition clear.

By Example 4.5 in [18] we have Pl(β̃) − Pl(β∗) ≥ ‖g
β̃
− gβ∗‖2, where gβ(x) = exp(β′x)

1+exp(β′x) and ‖ ‖ is the
L2 norm with respect to the distribution of X. A first order Taylor expansion gives g

β̃
(x) − gβ∗(x) =

exp(β̄′x)

(1+exp(β̄′x))2
(f
β̃
(x) − fβ∗(x)), where fβ(x) = β′x and β̄′x is an intermediate point between β̃′x and β∗′x.

Let A = 6LD, and let s = (1 + eA)−4. Then, since Assumption A and (4.11) hold, we have ‖g
β̃
− gβ∗‖2 ≥

s‖f
β̃
− fβ∗‖2.

Thus, on the event E, display (4.8) further yields

r

M∑
j=1

|β̃j − β∗j |+ s‖f
β̃
− fβ∗‖2 ≤

M∑
j=1

2r|β̃j − β∗j | (4.12)

+
M∑
j=1

2r|β∗j | −
M∑
j=1

2r|β̃j |+ rε

≤ 4
∑
j∈I∗

r|β̃j − β∗j |+ rε.

Via simple algebra, display (4.12) yields∑
j /∈I∗
|β̃j − β∗j | ≤ 3

∑
j∈I∗
|β̃j − β∗j |+ ε,

on the set E. Therefore β̃ − β∗ ∈ V , for the set V given by (2.1) of Section 2, with α = 3 and ε as in the
statement of the theorem.

Let γkj = EXkXj , for k, j ∈ {1, . . . ,M} and let Γ be the M × M matrix with entries γkj . Notice that
‖f
β̃
− fβ∗‖2 = (β∗ − β̃)′Γ(β∗ − β̃) and so, using a reasoning identical to the one used in display (4.3) of

Theorem 2.2, we further obtain

r

M∑
j=1

|β̃j − β∗j |+ s(β∗ − β̃)′Γ(β∗ − β̃) ≤ 4ar2k∗ +
1
a

∑
j∈I∗

(β∗j − β̃j)2 + rε.

Since on the set E we have β̃ − β∗ ∈ V , we can use Condition Stabil. The condition implies that (β∗ −
β̃)′Γ(β∗ − β̃) ≥ sb

∑
j∈I∗(β

∗
j − β̃j)2 − ε and so
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r

M∑
j=1

|β̃j − β∗j |+ sb
∑
j∈I∗

(β∗j − β̃j)2 ≤ 4ar2k∗ +
1
a

∑
j∈I∗

(β∗j − β̃j)2 + (r + 1)ε. (4.13)

Taking a = 1/sb we obtain, on the set E, that

M∑
j=1

|β̃j − β∗j | ≤
4rk∗

sb
+ (1 +

1
r

)ε.

Since we have shown above that P (E) ≥ 1− δ, the proof is complete. �

Proof of Proposition 2.5.

First notice that on the event E defined in the previous theorem, display (4.8) yields

P
(
l(β̃)− l(β∗)

)
≤ 4r|β∗|1 + rε.

Then, the assumptions of this proposition imply that the righthandside of the above display converges to
zero with n and so we have that for any ϑ > 0

P
(
|P(l(β̃)− l(β∗)| ≥ ϑ

)
→ 0, (4.14)

since P(Ec) ≤ δn → 0.

Observe that Pl(β) = PXPY |Xl(β), where we regard the expectations as being taken with respect to a pair
(X, Y ) independent of the sample. By the definitions of the loss l and p(x) we have

PY |X=xl(β) = log(1 + eβ
′x)− p(x)β′x.

Let θ > 0 be arbitrary, fixed. Simple algebra shows that if supx |β̃′x − β∗′x| ≥ θ then PY |X=xl(β̃) >

PY |X=xl(β∗), for all x, and so there exists ϑθ > 0 such that P(l(β̃)− l(β∗)) ≥ ϑθ. Then

P
(

sup
x
|β̃′x− β∗′x| ≥ θ

)
≤ P

(
P(l(β̃)− l(β∗) ≥ ϑθ

)
−→ 0,

where the convergence to zero follows by (4.14) above. This concludes the proof of this proposition. �

Proof of Theorem 2.6. The proof differs from the proof of Theorem 2.4 above only in the way we obtain
the lower bound on P(l(β̃) − l(β∗)). For quantities defined in the discussion immediately following display
(4.11) above we write

exp(β̄′x)
(1 + exp(β̄′x))2

(
f
β̃
(x)− fβ∗(x)

)
= exp(β̄′x− β∗′x)

(
1 + exp(β∗′x)
1 + exp(β̄′x)

)2

(β̃ − β∗)′xp(x)(1− p(x)),

where we recall that β̄′x is an intermediate point between β̃′x and β∗′x and that we defined p(x) = exp β∗′x)
1+exp(β∗′x) .

Let θ > 0 be arbitrarily close to zero. Let Aθ be the set for which

sup
x
|β̃′x− β∗′x| ≤ θ,

and recall that, by Proposition 2.5 we have P(Aθ)→ 1. On the set Aθ we have

exp(β̄′x− β∗′x)
(

1 + exp(β∗′x)
1 + exp(β̄′x)

)2

≥ e−θ =: w,
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for all x and with w arbitrarily close to 1. Let Γ1 be the matrix with entries Ep(X)(1 − p(X))XkXj , for
k, j ∈ {1, . . . ,M}. Therefore, on Aθ we have ‖g

β̃
− gβ∗‖2 ≥ w(β∗− β̃)′Γ1(β∗− β̃). Invoking condition LStabil

we obtain (β∗ − β̃)′Γ1(β∗ − β̃) ≥ wb
∑
j∈I∗(β̃j − β∗j )2 and the rest of the proof carries on unchanged, with

results holding now on the set Aθ ∩ E. �

Proof of Theorem 2.7. The proof is identical to the one of Theorem 2.4 above, up to the following display

r

M∑
j=1

|β̃j − β∗j |+ sb
∑
j∈I∗

(β∗j − β̃j)2 + c

M∑
j=1

β̃2
j − c

M∑
j=1

β∗j
2 ≤ 4r

∑
j∈I∗
|β∗j − β̃j |+ (r + 1)ε.

To arrive at this display we observe that the elastic net satisfies∑
j /∈I∗
|β̃j − β∗j | ≤ 4

∑
j∈I∗
|β̃j − β∗j |+ ε,

and so β̃ − β∗ ∈ V , for the set V given by (2.1) of Section 2, with α = 4 and ε as in the statement of the
theorem. Therefore the use of Condition Stabil in the derivations above is valid.

For the remaining of the proof we reason as in Theorem 2.3 above. We complete the square in the left hand
side of the inequality above and invoke the assumption maxj∈I∗ |β∗j | ≤ B to obtain

r

M∑
j=1

|β̃j − β∗j |+ sb
∑
j∈I∗

(β∗j − β̃j)2 + c
∑
j∈I∗

(β̃j − β∗j )2 ≤ 4r
∑
j∈I∗
|β∗j − β̃j |+ (r + 1)ε

+ 2cB
∑
j∈I∗
|β∗j − β̃j |,

which immediately implies, by choosing c such that 2cB = r, that

r

M∑
j=1

|β̃j − β∗j |+ (sb+ c)
∑
j∈I∗

(β∗j − β̃j)2 ≤ 2× 2.5r
∑
j∈I∗
|β∗j − β̃j |+ (r + 1)ε.

Then, we use again the Cauchy-Schwarz inequality followed by 2xy ≤ ax2 + y2/a to obtain

r

M∑
j=1

|β̃j − β∗j |+ (sb+ c)
∑
j∈I∗

(β∗j − β̃j)2 ≤ (2.5)2ak∗r2 +
1
a

∑
j∈I∗

(β∗j − β̃j)2 + (r + 1)ε.

Choosing now a = 1
sb+c gives, on the event E defined in (4.10) above

M∑
j=1

|β̃j − β∗j | ≤
4.25r
sb+ c

k∗ + (1 +
1
r

)ε.

Since we showed in the proof of Theorem 2.4 that P(Ec) ≤ δ, this completes the proof. �

Proof of Proposition 3.3. Recall that we denoted the cardinality of I∗ by k∗. First observe that by the
definitions of Î and I∗ and by the union bound we have

P(I∗ 6⊆ Î) ≤ P
(
k /∈ Î for some k ∈ I∗

)
≤ P

(
β̂k = 0 and β∗k 6= 0, for some k ∈ I∗

)
≤ k∗max

k∈I∗
P
(
β̂k = 0 and β∗k 6= 0

)
.
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We first show that P(I∗ ⊆ Î) ≥ 1−δ− δ
M for the `1 penalized least squares estimator. It follows immediately

from Lemma 4.1 in Appendix B below that if β̂k = 0 is a component of the solution β̂ then∣∣∣∣∣∣ 2n
n∑
i=1

Yi − M∑
j=1

β̂jXij

Xik

∣∣∣∣∣∣ ≤ 2r.

Therefore

P(I∗ 6⊆ Î) ≤ k∗max
k∈I∗

P
(
β̂k = 0 and β∗k 6= 0

)
≤ k∗max

k∈I∗
P

∣∣∣∣∣∣ 2n
n∑
i=1

[Yi −
M∑
j=1

β̂jXij ]Xik

∣∣∣∣∣∣ ≤ 2r; β∗k 6= 0


= k∗max

k∈I∗
P

∣∣∣∣∣∣2β∗k +
2
n

n∑
i=1

WiXik +
∑
j 6=k

(β̂j − β∗j )(
2
n

n∑
i=1

XijXik)

∣∣∣∣∣∣ ≤ 2r


≤ k∗max

k∈I∗
P

|β∗k | − | 1n
n∑
i=1

WiXik| − |
∑
j 6=k

(β̂j − β∗j )(
1
n

n∑
i=1

XijXik)| ≤ r


= k∗max

k∈I∗
P

| 1
n

n∑
i=1

WiXik|+
∑
j 6=k

|β̂j − β∗j ||
1
n

n∑
i=1

XijXik| ≥ |β∗k | − r

 ,

where the penultimate inequality follows by the triangle inequality |a+b+c| ≥ |c|−|a|−|b|. Under Condition
Identif and since minj∈I∗ |β∗j | ≥ 2r we further obtain

P(I∗ 6⊆ Î) ≤ k∗max
k∈I∗

P

(
| 1
n

n∑
i=1

WiXik| ≥ r/2

)
+ k∗P

(
|β̂ − β∗|1 ≥

rk∗

2d

)
.

We argue exactly as in the course of the proof of Theorem 2.2 to bound the probabilities above. We use
either Hoeffding’s inequality, for Y ∈ {0, 1} or Bernstein’s inequality, for Y ∈ R to bound the first term by
k∗δ
KM ≤

δ
M , for r given by (3.3). Similarly, for this choice of r, we have

k∗P
(
|β̂ − β∗|1 ≥

4rk∗

b

)
≤ k∗ × δ

K
≤ δ,

for a constant b for which Condition Stabil holds. By Lemma 2.1 in Section 2, Condition Identif implies
Condition Stabil with b = 1−7d. Notice that for this value of b we have 1/2d ≥ 4/b for d ≤ 1/15, as required
in statement of this theorem. Therefore, combining these results we obtain

P(I∗ 6⊆ Î) ≤ δ

M
+ δ.

We establish now similar results for the `1 + `2 penalized least squares estimator. By the characterization
of a zero component of the solution, given in Lemma 4.3 in Appendix B below, we also have

P(I∗ 6⊆ Î) ≤ P

∣∣∣∣∣∣ 2n
n∑
i=1

[Yi −
M∑
j=1

β̂jXij ]Xik

∣∣∣∣∣∣ ≤ 2r, β∗k 6= 0

 ,

and so the proof is identical to the one above. The only modification is in terms of constants: in this case
Condition Identif implies Condition Stabil with b = 1− 9d. From Theorem 2.3 we obtain for the choice of r
given by (3.3) that

P
(
|β̂ − β∗|1 ≥

4.25rk∗

b+ c

)
≤ δ

K
.
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As above, we note 1/2d ≥ 4.25/(b+c) for d ≤ 1+c
17.5 . Invoking now Theorem 2.3 with these constants concludes

the proof. �

Proof of Proposition 3.4. As in the previous proof, recall that we denoted the cardinality of I∗ by k∗ and
that

P(I∗ 6⊆ Î) ≤ P
(
k /∈ Î for some k ∈ I∗

)
≤ k∗max

k∈I∗
P
(
β̂k = 0 and β∗k 6= 0

)
.

We begin by establishing the result for the `1 penalized estimator. By Lemma 4.1 in the Appendix below it
follows that if β̃k = 0 is a component of the solution β̃ then∣∣∣∣∣ 1n

n∑
i=1

Xik

exp
∑M
j=1 β̃jXij

1 + exp
∑M
j=1 β̃jXij

− 1
n

n∑
i=1

YiXik

∣∣∣∣∣ ≤ 2r.

Let now

Sn =
1
n

n∑
i=1

Xik

{
exp

∑M
j=1 β̃jXij

1 + exp
∑M
j=1 β̃jXij

−
exp

∑M
j=1 β

∗
jXij

1 + exp
∑M
j=1 β

∗
jXij

}
.

Then, since Yi = Yi − p(Xi) + p(Xi) =: Wi + p(Xi), where p(Xi) is given by (2.4), we obtain:

P(I∗ 6⊆ Î) ≤ k∗max
k∈I∗

P

(∣∣∣∣∣Sn − 1
n

n∑
i=1

WiXik

∣∣∣∣∣ ≤ 2r; β∗k 6= 0

)
.

Define

Bn =
M∑
j=1

(β̃j − β∗j )

(
1
n

n∑
i=1

XijXik

)
.

Recalling that 1
n

∑n
i=1X

2
ik = 1 we obtain, for every k ∈ I∗, that

P

(∣∣∣∣∣Sn −Bn +Bn −
1
n

n∑
i=1

WiXik

∣∣∣∣∣ ≤ 2r; β∗k 6= 0

)

≤ P

(
|Bn| − |Sn −Bn| −

∣∣∣∣∣ 1n
n∑
i=1

WiXik

∣∣∣∣∣ ≤ 2r; β∗k 6= 0

)

= P

|β∗k | − |∑
j 6=k

(β̃j − β∗j )
1
n

n∑
i=1

XijXik| − |Sn −Bn| −

∣∣∣∣∣ 1n
n∑
i=1

WiXik

∣∣∣∣∣ ≤ 2r

 .

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

WiXik

∣∣∣∣∣ ≥ r

2

)

+ P

 M∑
j=1

|β̃j − β∗j ||
1
n

n∑
i=1

XijXik| >
r

2
+ (1 +

1
r

)ε


+ P

(
|Sn −Bn| ≥

r

2
+ (1 +

1
r

)ε
)
,

where the last inequality follows from the assumption that minj∈I∗ |β∗j | ≥ 3.5r + 3(1 + 1
r )ε. We bound the

first term above using Hoeffding’s inequality:

P

(∣∣∣∣∣ 1n
n∑
i=1

WiXik

∣∣∣∣∣ ≥ r/2
)
≤ δ

M
, (4.15)
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since, in particular, r ≥ 2L
√

2 log( 2M
δ )

n .

If Condition Identif holds, we can bound the second term of the last inequality of the display above by

P
(
|β̃ − β∗|1 >

rk∗

2d
+ (1 +

1
r

)ε
)
≤ δ

M
, (4.16)

as in Theorem 2.4, if 1
2d ≥

4
sb , with b given by Condition Stabil. By Lemma 2.1, Condition Identif implies

Condition Stabil with b = 1− d(7 + ε), and so the restriction on d is d ≤ s
8+s(7+ε) .

It remains to bound the term P(|Sn − Bn| ≥ r
2 + (1 + 1

r )ε. For this, let g(z) = ez/(1 + ez) and notice that
Taylor’s formula gives g(u) − g(v) = g′(a)(u − v), for a point a between u and v, where 0 < g′(a) < 1.
Therefore

|Sn −Bn| ≤
M∑
j=1

|β̃j − β∗j ||
1
n

n∑
i=1

(1− g′(ai))XijXik|, (4.17)

where ai is a point between
∑M
j=1 β̃jXij and

∑M
j=1 β

∗
jXij , for each i, and so

|ai −
M∑
j=1

β∗jXij | ≤ L
M∑
j=1

|β̃j − β∗j |, for each i.

Let

Gn =


M∑
j=1

|β̃j − β∗j | ≤
4rk∗

sb
+ (1 +

1
r

)ε)

 .

Therefore, by Theorem 2.4, for b chosen as in the discussion following display (4.16) above, we have

P(Gcn) ≤ δ.

Notice that on the event Gn we have

|ai −
M∑
j=1

β∗jXij | ≤
4rLk∗

sb
+ L(1 +

1
r

)ε, for each i.

This justifies the definition of the set U in Condition Lidentif.

Combining the results above with (4.17) we obtain

P
(
|Sn −Bn| ≥

r

2
+ (1 +

1
r

)dε)
)
≤ P

 M∑
j=1

|β̃j − β∗j ||
1
n

n∑
i=1

(1− g′(ai))XijXik| ≥
r

2
+ (1 +

1
r

)ε
⋂

Gn


+ δ.

Note that if Condition Identif and Lidentif both hold for d/2 then

| 1
n

n∑
i=1

(1− g′(ai))XijXik| ≤
d

k∗
.

Thus, if d ≤ s
16+2s(7+ε) , and with b chosen as in the discussion following display (4.16) above we have

P
(
|Sn −Bn| ≥

r

2
+ (1 +

1
r

)dε)
)
≤ P(Gcn ∩Gn) +

δ

M
=

δ

M
.
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Therefore, collecting the bounds above, we obtain

P(I∗ 6⊆ Î) ≤ 3k∗δ
M
≤ 3δ.

The result for the `1 + `2 penalized estimator follows in an identical manner. By Lemma 4.3 in Appendix B
below, if β̃k = 0 is a component of the solution β̃ then∣∣∣∣∣ 1n

n∑
i=1

Xik

exp
∑M
j=1 β̃jXij

1 + exp
∑M
j=1 β̃jXij

− 1
n

n∑
i=1

YiXik

∣∣∣∣∣ ≤ 2r.

Therefore the remainder of the proof is identical to the proof above, if we invoke Theorem 2.7 instead of
Theorem 2.4. �

Proof of Theorem 3.5. In light of Proposition 3.3, it is enough to show that P(Î ⊆ I∗) ≥ 1− 2δ, for both
the `1 and `1 + `2 penalized least squares estimators.

We begin by showing that P(Î ⊆ I∗) ≥ 2δ for the `1 penalized estimate. Let

h(µ) =
1
n

n∑
i=1

{Yi −
∑
j∈I∗

µjXij}2 + 2r
∑
j∈I∗
|µj |,

and define

µ̂ = arg min
µ∈Rk∗

h(µ). (4.18)

Let

B =
⋂
k/∈I∗


∣∣∣∣∣∣ 2n

n∑
i=1

Yi −∑
j∈I∗

µ̂jXij

Xik

∣∣∣∣∣∣ < 2r

 .

Let, by abuse of notation, µ̂ ∈ RM be the vector that has the components of µ̂ in positions corresponding to
the index set I∗ and components equal to zero otherwise. By standard results in convex analysis, e.g. Lemma
4.1 in the Appendix B below it follows that, on the set B, µ̂ is a solution of (2.2). Recall that β̂ is a solution
of (2.2) by construction. Then, by Proposition 4.2 in Appendix B, any two solutions have non-zero elements
in the same positions. Since, on the set B, β̂k = 0 for k ∈ I∗c we conclude that Î ⊆ I∗ on the set B. Clarify
like this. By definition β̂ 6= 0 for k ∈ Î. By construction, µ̂k 6= 0 for k ∈ S ⊆ I∗, for some subset S. By
Proposition 4.2 in Appendix B, any two solutions have non-zero elements in the same positions, therefore
Î = S ⊆ I∗ on B. Hence

P(Î 6⊆ I∗) ≤ P(Bc) ≤
∑
k/∈I∗

P

| 2
n

n∑
i=1

[Yi −
∑
j∈I∗

µ̂jXij ]Xik| ≥ 2r


≤

∑
k/∈I∗

P

(
1
n
|
n∑
i=1

WiXik| ≥
r

2

)
+
∑
k/∈I∗

P

|∑
j∈I∗

(µ̂j − β∗j )(
1
n

n∑
i=1

XijXik)| ≥ r

2


≤

M∑
k=1

P

(
1
n
|
n∑
i=1

WiXik| ≥
r

2

)
+
∑
k/∈I∗

P

|∑
j∈I∗

(µ̂j − β∗j )(
1
n

n∑
i=1

XijXik)| ≥ r

2


≤

M∑
k=1

P

(
1
n
|
n∑
i=1

WiXik| ≥
r

2

)
+
∑
k/∈I∗

P

∑
j∈I∗
|µ̂j − β∗j | ≥

rk∗

2d

 ,
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where we used Condition Identif to obtain the last inequality. Recall now that if Y ∈ {0, 1} the choice

r ≥ 2

√
2 ln( 2M

δ )
n

,

guarantees, as in display (4.4) of the proof of Theorem 2.2, that

M∑
k=1

P

(
1
n
|
n∑
i=1

WiXik| ≥
r

2

)
≤ δ.

Repeating now the proof of Theorem 2.2, with β̂ replaced by µ̂ and using only the variables corresponding
to I∗, we obtain

|µ̂− β∗|1 ≤
rk∗

2d
on the set

A1 =
⋂
j∈I∗

{∣∣∣∣∣ 2n
n∑
i=1

WiXij

∣∣∣∣∣ ≤ r
}
.

By Hoeffding’s inequality
P(Ac1) ≤ 2k∗ exp(−nr2/8),

and the choice

rn,k∗(δ) ≥ 2

√
2 ln( 2k∗M

δ )
n

(4.19)

implies that P(Ac1) ≤ δ/M , which in turn implies that

∑
k/∈I∗

P

∑
j∈I∗
|µ̂j − β∗j | ≥

rk∗

2d

 ≤ δ.
Here we used again the fact that, by Lemma 2.1, Condition Identif implies Condition Stabil and then rea-
soned as in Proposition 3.3 to conclude that the analogue of Theorem 2.2 can be used, for d ≤ 1

15 .

The same conclusion holds if Y ∈ R, by invoking Bernstein’s inequality as in (4.5) and corresponding value
of r from the statement of this proposition, instead of Hoeffding’s inequality.

Of course, the choice in (4.19) is not implementable, as k∗ is not known in practice, and we can always
replaced it by a known upper bound, or the conservative bound M . This completes the proof for this part
of the proposition.

It remains to show that P(Î ⊆ I∗) ≥ 1− 2δ for the `1 + `2 penalized estimate. We reason as above and let

m(µ) =
1
n

n∑
i=1

{Yi −
∑
j∈I∗

µjXij}2 + 2r
∑
j∈I∗
|µj |+ c

∑
j∈I∗

µ2
j ,

and define

µ̂ = arg min
µ∈Rk∗

m(µ). (4.20)

Then, by Lemma 4.3 in the Appendix B, b̂ = (µ̂, 0), where 0 is a vector corresponding to indices in I∗c, is a
solution of (2.3) on the set

B =
⋂

k∈I∗c


∣∣∣∣∣∣ 2n

n∑
i=1

Yi −∑
j∈I∗

b̂jXij

Xik

∣∣∣∣∣∣ < 2r

 .
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Recall that β̂ is a solution of (2.3) by construction, and that by Lemma 4.3 in the Appendix B, the solution
is unique. Since, on the set B, b̃k = 0 for k ∈ I∗c, by construction, and β̃k = 0 on Îc, by definition, we
conclude that Î ⊆ I∗ on the set B. Therefore the proof is identical to the one above, where we now invoke
Condition Identif with d ≤ 1+c

17.5 and the analogue of the proof of Theorem 2.3. �

Proof of Theorem 3.7. By Proposition 3.4, it is enough to show that P(Î ⊆ I∗) ≥ 1− 2δ for both the `1
and `1 + `2 penalized estimate.

We begin by showing that P(Î ⊆ I∗) ≥ 1− 2δ for the `1 penalized logistic regression estimate. Let

H(µ) =
1
n

n∑
i=1

{−Yiµ′Xi + log(1 + expµ′Xi)}+ 2r
∑
j∈I∗
|µj |,

and define

µ̃ = arg min
µ∈Rk∗

H(µ). (4.21)

Let

B1 =
⋂
k/∈I∗

{∣∣∣∣∣ 1n
n∑
i=1

Xik

exp
∑
j∈I∗ µ̃jXij

1 + exp
∑
j∈I∗ µ̃jXij

− 1
n

n∑
i=1

YiXik

∣∣∣∣∣ ≤ 2r

}
.

Let, by abuse of notation, µ̃ ∈ RM be the vector that has the components of µ̃ in positions corresponding
to the index set I∗ and components equal to zero otherwise. By standard results in convex analysis, e.g.
Lemma 4.1 in the Appendix below it follows that, on the set B1, µ̃ is a solution of (2.2). Recall that β̃ is
a solution of (2.2) by construction. Then, by Proposition 4.2 in the Appendix B, any two solutions have
non-zero elements in the same positions. Since, on the set B1, β̃k = 0 for k ∈ I∗c we conclude that Î ⊆ I∗

on the set B1. Hence, reasoning as in Theorem 3.5 above

P(Î 6⊆ I∗) ≤ P(Bc1) (4.22)

≤
∑
k/∈I∗

P

(
1
n
|
n∑
i=1

WiXik| ≥ r

)
+
∑
k/∈I∗

P

∑
j∈I∗
|µ̃j − β∗j |

∣∣∣∣∣ 1n
n∑
i=1

g′(ai)XijXik

∣∣∣∣∣ ≥ r


≤
M∑
k=1

P

(
1
n
|
n∑
i=1

WiXik| ≥
r

2

)
+
∑
k/∈I∗

P

∑
j∈I∗
|µ̃j − β∗j |

∣∣∣∣∣ 1n
n∑
i=1

g′(ai)XijXik

∣∣∣∣∣ ≥ r

2

 .

≤ δ +
∑
k/∈I∗

P

∑
j∈I∗
|µ̃j − β∗j | ≥ rk∗/2d


≤ δ +

∑
k/∈I∗

P

∑
j∈I∗
|µ̃j − β∗j | ≥ rk∗/2d

 ∩Dn

+
∑
k/∈I∗

P(Dc
n),

where, as in (4.15), we used Hoeffding’s inequality to bound by δ the first term, we used Condition Lidentif
for the second term, and where

Dn =

∑
j∈I∗
|µ̃j − β∗j | ≤

4rk∗

sb
+ (1 +

1
r

)ε

 ,

with b = 1− d(7 + ε) and

ε =
log 2

2(M∨n)+1
× 1
r
.

Notice that by the definition of ε and r, and since 0 < b, s ≤ 1, we always have (1 + 1
r )ε ≤ rk∗

sb . Thus, for our
choice of d, we have rk∗/2d > 4rk∗

sb + (1 + 1
r )ε. Therefore
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P(Î 6⊆ I∗) ≤ δ +
∑
k/∈I∗

P(Dn ∩Dc
n) +

∑
k/∈I∗

P(Dc
n) = δ +

∑
k/∈I∗

P(Dc
n) ≤ δ +

M∑
k=1

P(Dc
n).

Repeating now the proof of Theorem 2.4, with β̃ replaced by µ̃, where we are now using only the variables
corresponding to I∗ we obtain that

|µ̃− β∗|1 ≤
4
b
rk∗ + (1 +

1
r

)ε

on the set

A2 =

{
sup
β∈Rk∗

|(Pn − P)(l(β∗)− l(β))|
|β − β∗|1 + ε

≤ r

}
,

where, as in Theorem 2.4, we can show that P(Ac2) ≤ δ/M , for our choice of r. Therefore

P(Î 6⊆ I∗) ≤ 2δ.

It remains to show that the result above also holds for the `1 + `2 penalized estimator. Define

M(µ) =
1
n

n∑
i=1

−Yi ∑
j∈I∗

µjXij + log(1 + exp
∑
j∈I∗

µjXij)

+ 2r
∑
j∈I∗
|µj |+ c

∑
j∈I∗

µ2
j ,

and let

µ̃ = arg min
µ∈Rk∗

M(µ). (4.23)

Let

B1 =
⋂
k/∈I∗

{∣∣∣∣∣ 1n
n∑
i=1

Xik

exp
∑
j∈I∗ µ̃jXij

1 + exp
∑
j∈I∗ µ̃jXij

− 1
n

n∑
i=1

YiXik

∣∣∣∣∣ ≤ 2r

}
.

Let, by abuse of notation, µ̃ ∈ RM be the vector that has the components of µ̃ in positions corresponding to
the index set I∗ and components equal to zero otherwise. By standard Lemma 4.3 in the Appendix B below
it follows that, on the set B1, µ̃ is a solution of (2.2). Recall that β̃ is a solution of (2.2) by construction.
Also by Lemma 4.3 in the Appendix B, the solution is unique. Since, on the set B1, β̃k = 0 for k ∈ I∗c we
conclude that Î ⊆ I∗ on the set B1. Therefore the remainder of the proof is identical to the one above. �.

Appendix B

4.1. Properties of `1 penalized least squares and logistic regression solutions

The solution of the `1 penalized optimization problem may not be unique. However, in this case, all solutions
have zero elements in the same positions, as we show below. We denote by Y = (Y1, . . . , Yn) and by X the
n × M matrix with entries Xij . We let L(β) = L(X ,Y;β) be a function depending on the data and a
parameter β ∈ RM . Let

β̄ = arg min
β

L(β) + λ

M∑
j=1

|βj | =: arg min
β

f(β), (4.24)

for some fixed λ > 0. Let S be the set of indices corresponding to the non-zero components of a solution β̄ :

S = {k : β̄k 6= 0, 1 ≤ k ≤M}.
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Lemma 4.1. If L is differentiable in β and if for any minima β̄(1), β̄(2)

∂L(β̄(1))
∂βj

=
∂L(β̄(2))
∂βj

, for all 1 ≤ j ≤M, (4.25)

then all β̄ satisfying (4.24) have non-zero components in the same positions .

Proof. We recall that for any convex function f : RM → R the subdifferential of f at a point β is the set
Dβ = {w ∈ RM : f(u)− f(β) ≥ 〈w, u− β〉}. For the function f defined in (4.24) this becomes

Dβ = {w ∈ RM : w = ∇L(β) + λv},

where ∇L(β) is the M -dimensional vector having ∂L(β)
∂βj

as components and v ∈ RM is such that

vj = 1, if βj > 0
vj = −1, if βj < 0
vj ∈ [−1, 1], if βj = 0.

By standard results in convex analysis, β̄ ∈ RM is a point of local minimum for a convex function f if and
only if 0 ∈ Dβ̄ , where 0 ∈ RM .

Therefore, β̄ satisfies (4.24) if and only if∣∣∣∣∂L(β̄)
∂βj

∣∣∣∣ = λ|v|, for all 1 ≤ j ≤M,

and so the index set S of non-zero components of a solution is given by

S =
{

1 ≤ j ≤M :
∣∣∣∣∂L(β̄)
∂βj

∣∣∣∣ = λ

}
.

Therefore, if (4.25) holds, S is the same for all solutions. �

Proposition 4.2. Let L correspond to either the least squares or the logistic criteria. Let β̄(1) and β̄(2) be
two minima of (4.24). Then:

(1) X (β̄(1) − β̄(2)) = 0, for either estimate.

(2) All solutions of (4.24), for either estimate, have non-zero components in the same positions.

Proof. The proof uses simple properties of convex functions. First, we recall that the set of minima of a convex
function is convex. Therefore, if β̄(1) and β̄(2) are two distinct points of minima, so is ρβ̄(1) + (1− ρ)β̄(2), for
any 0 < ρ < 1. Re-write this convex combination as β̄2 + ρη, where η = β̄(1) − β̄(2). Then, recall that the
minimum value of any convex function is unique. For clarity, we argue separately for the two estimates.

`1 penalized least squares. By the above arguments we have that

F (ρ) =:
1
n

n∑
i=1

{
Yi − (β̄(2) + ρη)′Xi

}2

+ λ

M∑
j=1

|β̄(2)
j + ρηj | = c, (4.26)

where c is some positive constant, for any 0 < ρ < 1. By taking the derivative with respect to ρ of F (ρ)
above we obtain

− 2
n

n∑
i=1

Yi(
M∑
j=1

ηjXij) +
2
n

n∑
i=1

(
M∑
j=1

ηjXij)(
M∑
j=1

βjXij) +
2ρ
n

n∑
i=1

(
M∑
j=1

ηjXij)2 + λ

M∑
j=1

ηjsign(β̄(2)
j + ρηj) = 0
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Since the function a+ bρ is continuous in ρ then, on a small neighborhood U of ρ the sign of β̄(2)
j + ρηj , for

each j, will be constant. Therefore, on U , the first two and the last term of the display of above are constant
with respect to ρ. Denoting the sum of these terms by C we have

2ρ
n

n∑
i=1

(
M∑
j=1

ηjXij)2 + C = 0, for any ρ ∈ U .

By taking again the derivative with respect to ρ we obtain that Xη = 0, which is the result stated in the
first part of this Lemma.

`1 penalized logistic regression. We argue as above that the value of the function G below evaluated at a
point of minimum is constant, and we evaluate it at a convex combination of two minima, as before. Thus

G(ρ) =:
1
n

n∑
i=1

{
−Yi(β̄(2) + ρη)′Xi + log(1 + exp (β̄(2) + ρη)′Xi)

}
+ λ

M∑
j=1

|β̄(2)
j + ρηj | = c, (4.27)

for some positive constant c > 0. Reasoning as above, we can take the derivative of the above function twice,
with respect to ρ. Then, on a small neighborhood ρ ∈ V we have

1
n

∑n

i=1

 M∑
j=1

ηjXij

2

exp
∑M
j=1(βj + ρηj)Xij

1 + exp
∑M
j=1(βj + ρηj)Xij

= 0, for any ρ ∈ V,

which implies that
∑M
j=1 ηjXij = 0 for all i, which in turn implies that Xη = 0, as claimed in part (1) of

this proposition.

The second part of the proposition follows trivially from the first part and by Lemma 4.1. It is enough to
show that X (β̄(1) − β̄(2)) = 0 implies

∂L(β̄(1))
∂βj

=
∂L(β̄(2))
∂βj

, for all j.

For the `1 penalized least squares estimator we have

∂L(β)
∂βj

=
2
n

n∑
i=1

[Yi −
M∑
k=1

βkXik]Xij =
2
n

n∑
i=1

YiXij −
2
n

n∑
i=1

M∑
k=1

βkXikXij ,

and the last term is constant across solutions if X ′(β̄(1)− β̄(2)) = 0, for any two solutions, and this is implied
by part (1).

For the `1 penalized logistic regression estimate we have

∂L(β)
∂βk

=
1
n

n∑
i=1

Xik

exp
∑M
j=1 βjXij

1 + exp
∑M
j=1 βjXij

− 1
n

n∑
i=1

YiXik.

This will be constant across solutions if
∑M
j=1 βjXij , for all i, is the same for all solutions, which is again

implied by the result in part (1). This concludes the proof of this proposition. �.

4.2. Properties of the `1 + `2 penalized least squares and logistic regression solutions

We discuss below a number of properties of the solution of the `1 + `2 penalized optimization problem.
We begin by giving this result in terms of general likelihood functions and we obtain the results for our
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two examples as consequences. As in the previous sub-section, we let L(β) = L(X ,Y;β) be any function
depending on the data and a parameter β ∈ RM . Let

β̄ = arg min
β

L(β) + λ

M∑
j=1

|βj |+ c

M∑
j=1

β2
j =: arg min

β
s(β), (4.28)

for some given tuning parameters λ, c > 0. We note that this solution is different than the one introduced in
the previous subsection, but for brevity we use the same notation.

Lemma 4.3. If L is differentiable in β then a solution of (4.28) satisfies∣∣∣∣∂L(β̄)
∂βj

+ 2cβ̄j

∣∣∣∣ = λ, ifβ̄j 6= 0, (4.29)∣∣∣∣∂L(β̄)
∂βj

+ 2γβ̄j

∣∣∣∣ =
∣∣∣∣∂L(β̄)
∂βj

∣∣∣∣ ≤ λ, ifβ̄j = 0.

Moreover, the solution of (4.28) is unique for both the square and the logistic losses, respectively.

Proof. Appealing to the elementary properties of convex functions introduced in Lemma 4.1 and applying
them now to the function s above we trivially obtain the first part of this Lemma.

For the moreover part, let β̄(1) and β̄(2) be two solutions of (4.28). We show below that β̄(1) = β̄(2) for the
two losses under study. Since s is a convex function of β, for either loss, any convex combination of solutions
is a solution, and s(β) is constant across solutions. Consider as before the convex combination β̄2 + ρη,
where η = β̄(1)− β̄(2). Recall that the minimum value of any convex function is unique. Then, for the `1 + `2
penalized least square estimator we obtain:

F1(ρ) =:
1
n

n∑
i=1

{
Yi − (β̄(2) + ρη)′Xi

}2

+ λ

M∑
j=1

|β̄(2)
j + ρηj |+ γ

M∑
j=1

(β̄(2)
j + ρηj)2 = c, (4.30)

where c is some positive constant, for any 0 < ρ < 1. Reasoning now exactly as in Proposition 4.2 above and
taking the derivative with respect to ρ twice, we obtain

2
n

n∑
i=1

M∑
j=1

ηjXij)2 + 2γ
M∑
j=1

η2
j = 0,

which immediately implies ηj = 0 for allj, that is β̄(1) = β̄(2).

The same conclusion can be obtained for the logistic regression estimator, where we now differentiate twice
with respect to ρ the function G1(ρ) = G(ρ) + γ

∑M
j=1(β̄(2)

j + ρηj)2, with G(ρ) defined in display (4.27) of
Proposition 4.2. This yields

1
n

∑n

i=1

 M∑
j=1

ηjXij

2

exp
∑M
j=1(βj + ρηj)Xij

1 + exp
∑M
j=1(βj + ρηj)Xij

+ 2γ
M∑
j=1

η2
j = 0.

Reasoning as above we again obtain β̄(1) = β̄(2). This completes the proof of this Lemma. �.
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