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single general family of schemes classical finite volume and discontinuous Galerkin
methods. We show applications of our high order centered method to the two- and
three-dimensional Baer-Nunziato equations of compressible multiphase flows [3].
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1 Introduction

Compressible multi-phase flows, such as liquid-vapor and solid-gas flows are
encountered in numerous natural processes, such as sediment transport, me-
teorological flows, underwater volcano explosions or astrophysical flows. They
also play a major role in many industrial applications arising in petrol, auto-
motive, aerospace and chemical industry, in nuclear reactors or in paper and
food manufacturing. Due to their wide applicability, these flows have attracted
a lot of attention and have been the subject of intense research efforts over
the years. However, the physical and mathematical modeling of compress-
ible multi-phase flows is very challenging due to the complex nature of the
interactions between the two phases and up to now no universally accepted
multi–phase model is available. Many of the existing multi-phase models can
not be expressed in the usual conservative form of a balance law

∂

∂t
W + ∇ · F (W ) = S(W ), (1)

with W the vector of conserved variables, F (W ) = (f(W ), g(W ), h(W )) the
flux tensor and S(W ) an algebraic source term that can model other phys-
ical effects such as reaction or friction. Instead, there are important non-
conservative terms that model the interaction between the phases that re-
quire a more general and non-conservative formulation of the governing PDE
system. Hence, the models are more conveniently rewritten in the following
general quasi-linear form

∂

∂t
W + A(W ) · ∇W = S(W ), (2)

where W and S(W ) have the same meaning as in (2) and where A(W ) =
(A(W ), B(W ), C(W )) is the so-called system matrix. We use block-matrix
syntax to obtain a compact and simple notation of the matrices A(W ), B(W )
and C(W ) in the x, y and z directions, respectively. The discretization of a
non-conservative system of the form (2) requires special care in the design of a
numerical scheme. In particular, when A is the Jacobian of a flux F , then (2)
reduces to a classical balance law (1) and we therefore we want the numerical
scheme to reduce to a fully conservative method in this case.

Since the classical Rankine-Hugoniot relations of a conservation law (1) for an
isolated discontinuity moving in direction �n at speed σ,

σ (WR − WL) =
(
F (WR) − F (WL)

)
· �n, (3)

are not applicable to a non-conservative system of the form (2), one has to
introduce a more general definition of Rankine-Hugoniot relations that are
also valid for (2). This has been achieved within the recent theory of Dal
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Maso, LeFloch and Murat [25], called DLM theory in the following, which
led to significant progress, both, on the theoretical side as well as concerning
numerical algorithm development for non-conservative hyperbolic systems like
(2). The DLM theory defines the weak solutions of (2) introducing a path Ψ =
Ψ(WL, WR, s) that connects the left and right state WL and WR, respectively,
in phase-space across a discontinuity. As a consequence, the weak solution of
the non-conservative system (2) then also depends on the choice of the path Ψ.
With the unit tensor I the resulting generalized Rankine-Hugoniot conditions
for an isolated discontinuity traveling in direction �n with speed σ read

0 =

1∫
s=0

(
A(Ψ(WL, WR, s)) · �n − σI

) ∂Ψ

∂s
ds. (4)

From (4) it is obvious that for conservative systems, the DLM theory re-
produces the classical Rankine-Hugoniot conditions across discontinuities (3),
independent of the choice of Ψ.

Very recently, the DLM theory has also been used as the basis of new nu-
merical methods for non-conservative PDE, the so-called path-conservative
schemes of Parés [28] and Castro et al. [10]. The generalized Roe schemes
introduced by Toumi in [37] constitute a particular case of path-conservative
methods. This framework has been used in several papers to design high order
numerical methods in one and two space dimensions, both in the the finite
volume framework, see e.g. [10], [21], [26], [9], [12], [8], [7] and in the discon-
tinuous Galerkin finite element framework, see [29]. The extension to better
than second order accurate ADER schemes on triangular meshes in has been
achieved in [16] for the two-dimensional case. However, to our knowledge, up
to now there exists no better than second order accurate path-conservative
scheme on unstructured tetrahedral meshes in three space dimensions.

The development of such schemes is the aim of the present article, using a
fully centered approach that does not need any additional information on the
governing PDE (2) except for some evaluations of A(W ). In all the above-
mentioned previous publications only upwind methods have been used to dis-
cretize the jump terms across the element boundaries. Castro and Parés use
Roe-type schemes, whereas Rhebergen et al. use a non-conservative version of
the HLLC method. All of these schemes need at least to some extent some
information about the structure of the solution of the Riemann problem at
the element interface. The most information is needed for the Roe-type Rie-
mann solvers, less information is needed for HLLC. In this article, however, we
propose a genuinely centered scheme, which only needs information about the
time step, the geometry and simple evaluations of the system matrix A(W ).

The structure of the present article is as follows: In section 2 we present our
high order accurate centered scheme on unstructured meshes based on the
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general PNPM reconstruction operator and the one-step time-discretization
introduced in [15].
The system of governing equations under consideration in the present article,
namely the multi-dimensional Baer-Nunziato model of compressible multi-
phase flow [3], is described in section 3, where we also prove numerically the
pressure non-disturbing condition (Abgrall condition) for a material interface
at constant pressure and uniform velocity, see [31]. In order to show the high
order of accuracy of our centered methods in space and time we invent a
new unsteady and genuinely multi-dimensional test case with exact analytical
solution for this model. To our knowledge, such a solution has not been pre-
sented anywhere else in literature before. Finally, in section 5, we present the
first computations of better than second order of accuracy on unstructured
triangular and tetrahedral meshes ever done for the Baer-Nunziato equations.

2 Numerical Method

2.1 The PNPM Reconstruction Operator on Unstructured Meshes

Following the philosophy of Kolgan [24] and van Leer [38], higher order accu-
rate Godunov-type finite volume schemes can be obtained using a reconstruc-
tion operator on the cell averages to obtain a piecewise linear data represen-
tation, which is then used for the flux computation. The idea of reconstruc-
tion was extended to even higher order of accuracy and general unstructured
meshes in the pioneering work of Barth and Frederickson [5], who introduced
the k-exact least-squares recovery operator. A completely different approach
to obtain high order of accuracy in space was introduced for multi-dimensional
nonlinear hyperbolic systems by the Runge-Kutta discontinuous Galerkin fi-
nite element approach of Cockburn and Shu [13], where the full polynomial (i.e.
all its expansion coefficients) is evolved in time rather than only cell averages,
like in the FV framework. This avoids the often cumbersome reconstruction
step and yields a numerical method with spectral-like resolution properties.
Recently, Dumbser et al. [15] proposed to generalize the k-exact least-squares
reconstruction operator of Barth and Frederickson also to the DG finite ele-
ment framework, obtaining a unified family of numerical schemes, called PNPM

methods, that contain high order FV and DG schemes only as special cases.
There, the index N stands for the original polynomial degree that is used for
representing the data in each cell and the index M ≥ N represents the degree
of the reconstruction polynomial that is used for flux and source computa-
tion. N = 0 reproduces the standard finite volume scheme and the special
case M = N yields the usual DG finite element method. The PNPM recon-
struction operator is a direct extension of the algorithms proposed in [18,19] for
finite volume schemes. For details, we refer the reader to the above mentioned
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publications and give only a short review in this section. The computational
domain Ω is discretized by conforming elements Ti, indexed by a single mono-
index i ranging from 1 to the total number of elements NE. The elements are
chosen to be triangles in 2D and tetrahedrons in 3D. The union of all elements
is the triangulation or tetrahedrization of the domain, respectively,

TΩ =
NE⋃
i=1

Ti. (5)

At the current time tn the numerical solution uh of (2) for the state vector
W is stored in each cell under the form of piecewise polynomials of degree N
from the space Vh, spanned by the basis functions Φl = Φl(�x), i.e. at t = tn

we have for each element

uh(�x, tn) =
∑

l

Φl(�x)ûn
l . (6)

From uh one then reconstructs piecewise polynomials wh of degree M ≥ N
from the space Wh, spanned by the basis functions Ψl = Ψl(�x). Following [15]
the Ψl form an orthogonal basis and are identical with the Φl up to polynomial
degree N . When reconstructing wh for element Ti, we use the reconstruction
stencil

Si =
ne⋃

k=1

Tj(k) (7)

containing ne elements. k is a local index that counts the elements in the stencil
and j = j(k) is the mapping from the local index k to the global indexation
of the elements in TΩ. For simplicity we now will only write j instead of j(k).

The final numerical scheme proposed in this article relies essentially on the
following three scalar products:

〈f, g〉Ti
=

tn+1∫
tn

∫
Ti

(f(�x, t) · g(�x, t)) dV dt, (8)

[f, g]tTi
=
∫
Ti

(f(�x, t) · g(�x, t)) dV, (9)

{f, g}∂Ti
=

tn+1∫
tn

∫
∂Ti

(f(�x, t) · g(�x, t)) dS dt. (10)

The first one denotes the scalar product of two functions f and g over the
space-time element Ti× [tn; tn+1]. The second one is the classical spatial scalar
product at time t over the spatial element Ti, and the third one is a scalar
product over the space-time boundary element ∂Ti × [tn; tn+1]. Throughout
the paper the operators 〈f, g〉 and [f, g]t, written without the index Ti, denote
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scalar products on the space-time reference element TE × [0; 1] and on the spa-
tial reference element TE at time t, respectively. The spatial reference element
TE is defined as the unit simplex with vertices (0, 0), (1, 0), (0, 1) in two space
dimensions and vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) in three space
dimensions, respectively.

The piecewise reconstruction polynomial wh of degree M is obtained from
the piecewise polynomials uh of degree N via a classical L2-projection for all
elements Tj in the stencil Si as follows:

[Φk, wh]
tn

Tj
= [Φk, uh]

tn

Tj
, ∀Tj ∈ Si. (11)

As in the work of Barth and Frederickson [5] the number of elements in the
stencil must be chosen larger than the required number of degrees of freedom of
wh. Eqn. (11) thus leads to an overdetermined linear algebraic equation system
for the expansion coefficients of wh. It can be easily solved using a constrained
least squares technique. The constraint is that Eqn. (11) is exactly satisfied
for Ti. The integrals in (11) are computed using standard multidimensional
Gaussian quadrature formulae of appropriate order [33]. For test problems
with discontinuities, monotonicity is obtained for the finite volume version
of the schemes (P0PM) using the WENO algorithm proposed in [18,19], but
any of the other unstructured ENO/WENO algorithms available in literature
[1,23,40] can be used as well.

2.2 The Local Space-Time Galerkin Predictor

The MUSCL scheme of van Leer [38] contains as a key ingredient the evolution
stage of the reconstruction polynomial to the half time level. This makes the
scheme second order accurate in time and linearly stable, in contrast to the
first order in time second order in space scheme of Kolgan [24]. A better
than second order accurate time evolution was first achieved by Harten et al.
[22] in their original paper on ENO schemes using the semi-analytical Cauchy-
Kovalewski procedure that requires successive differentiations of the governing
PDE with respect to time and space. The main disadvantage with respect to
the second order time-evolution proposed by van Leer was that the Cauchy-
Kovalewski procedure needs explicit differentiation, whereas the van Leer time
stepping only needs flux evaluations. The same procedure was also used in the
ADER methods published in e.g. [34,20]. A new time-evolution procedure,
based on a local weak formulation in space-time that uses only pure flux
evaluations and no explicit differentiations, was recently proposed in [17] and
[15] for conservative hyperbolic systems and in [16] for the non-conservative
case. In this paper we only briefly give the extension of the method to the
non-conservative case in three space dimensions:
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We first introduce a space-time reference element TE × [0; 1] with �ξ = (ξ, η, ζ),
in which ∇ξ will denote the nabla operator with respect to reference coordi-
nates. Starting then from PDE (2) in its strong form and transforming it into

reference coordinates (�ξ, τ), we have:

∂

∂τ
W + A∗ · ∇ξW = S∗. (12)

The modified system matrices and the modified source term in the reference
system are then given by

A∗ := Δt A(W )JT , S∗ := ΔtS(W ), J =
∂�ξ

∂�x
. (13)

After multiplying Eqn. (12) by a space-time test function θk = θk(ξ, η, ζ, τ)
from the space of piecewise space-time polynomials of degree M and integrat-
ing over the space-time control volume TE × [0; 1] one obtains〈

θk,
∂

∂τ
Wh

〉
+
〈
θk, A

∗ · ∇ξWh

〉
= 〈θk, S

∗〉 . (14)

We make the ansatz

Wh = Wh(ξ, η, ζ, τ) =
∑

l

θl(ξ, η, ζ, τ)Ŵl := θlŴl, (15)

A∗ · ∇ξWh := θl
̂A∗∇ξWl, S∗ := θl Ŝ∗

l . (16)

for the numerical solution Wh, the non-conservative products A∗ · ∇ξWh and
the source term S∗. In the whole paper we use the Einstein summation con-
vention over two identical indices. For θk a nodal space-time basis is used, see
[15], which is computationally cheaper than L2-projection based on Gaussian
quadrature. This means that source and non-conservative product are evalu-
ated point-wise at each node, see [16]. We then insert (15) and (16) into (14)
and obtain the following final fixed-point iteration scheme in order to evolve
the reconstruction polynomials wh in time within the predictor step of our
one-step scheme:〈

θk,
∂

∂τ
θl

〉
Ŵl

i+1
= 〈θk, θl〉

(
Ŝ∗

l

i − ̂A∗∇ξWl

i
)

. (17)

The initial condition wh at relative time τ = 0 (physical time t = tn) is
included in the usual way as for standard continuous Galerkin finite element
methods. For details, also on the initial guess, see [15], where the coefficient
vector Ŵl is appropriately split into degrees of freedom at time τ = 0 and the
others, so that wh can be directly imposed for all nodes at τ = 0. For the case
of stiff source terms, we refer the reader to [16] and [17].
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2.3 Fully Discrete Centered PNPM Schemes for Nonconservative Systems

The fully discrete one-step form of the proposed path-conservative centered
PNPM schemes is obtained using the FORCE methodology presented in [35]
and [36] for conservation laws in one and multiple space dimensions, respec-
tively. Applying the operator 〈Φk, ·〉Ti

to PDE (2) yields

〈
Φk,

∂

∂t
W

〉
Ti

+
〈
Φk, A(W ) · ∇W

〉
Ti

= 〈Φk, S(W )〉Ti
. (18)

The first term in Eqn. (18) is approximated using instead of W the polynomials
uh from the space Vh and then integration by parts is performed in time. In
all the other terms of Eqn. (18) the vector W is approximated by the solution
Wh of the local space-time Galerkin predictor of section 2.2. The jumps in Wh

at the element boundaries are resolved by a path-conservative method that
defines a weak derivative in the sense of a Borel measure. Hence, we obtain
the following family of fully discrete one-step ADER PNPM scheme for PDE
(2), where the jump term D−(W−

h ,W+
h , �n) still remains to be defined:

[
Φk, u

n+1
h

]tn+1

Ti

− [Φk, u
n
h]t

n

Ti
+
〈
Φk, A(Wh) · ∇Wh

〉
Ti\∂Ti

+
{
Φk,D−(W−

h ,W+
h , �n)

}
∂Ti

= 〈Φk, S(Wh)〉Ti
, (19)

Here, W−
h denotes the boundary extrapolated data from within element Ti and

W+
h denotes the boundary extrapolated data from the neighbor, respectively.

D− is now a function so that:

• For every W , �n

D−(W, W,�n) = 0. (20)

• For every W−
h , W+

h , �n:

D−(W−
h ,W+

h , �n) + D−(W+
h ,W−

h ,−�n) =

1∫
0

(
A(Ψ(W−

h ,W+
h , s)) · �n

) ∂Ψ

∂s
ds.

(21)

Throughout this paper, we define the path Ψ by the family of segments

Ψ = Ψ(W−
h ,W+

h , s) = W−
h + s(W+

h −W−
h ). (22)

With this choice, the generalized Roe property for defining a Roe-type matrix
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in the non-conservative case (see [10],[28])

(
Ã

Ψ
(W−

h ,W+
h ) · �n

) (
W+

h −W−
h

)
=

1∫
0

(
A(Ψ(W−

h ,W+
h , s)) · �n

) ∂Ψ

∂s
ds, (23)

simplifies to

(
Ã

Ψ
(W−

h ,W+
h ) · �n

)
=

1∫
0

(
A(Ψ(W−

h ,W+
h , s)) · �n

)
ds. (24)

We would like to remark that in the conservative case, the generalized Roe
property (23) reduces to the classical Roe property,(

Ã
Ψ

(W−
h ,W+

h ) · �n
) (

W+
h −W−

h

)
=
(
F (W+

h ) − F (W−
h )
)
· �n, (25)

independent of the path Ψ.

The explicit computation of the path integral appearing in (24) can become
very complicated or even impossible for general non-linear non-conservative
systems. In [6] we therefore proposed an entirely numerical way of computing
the path integral on the right hand side of (24) directly via Gaussian quadra-
ture rules of suitably high order of accuracy. This purely numerical procedure
does not require the explicit computation of the Roe averages, which becomes
already quite difficult for the Euler equations of compressible gas dynamics,
see [30]. Therefore, using a Gaussian quadrature rule with G points on the
unit interval I = [0; 1], weights ωi and positions μi, respectively (see [33]), we
compute an approximate Roe matrix in normal direction as follows:

ÃG
Ψ :=

G∑
i=1

ωi

(
A(Ψ(W−

h ,W+
h , μi)) · �n

)
≈
(
Ã

Ψ
(W−

h ,W+
h ) · �n

)
. (26)

The method given by Eqn. (26) is a simple and general purely numerical way
of defining an approximate Roe matrix for any given hyperbolic system, inde-
pendent of its complexity, without having to compute the Roe averages explic-
itly. This also holds in particular for conservative systems. Since our method
directly starts from the definition of the generalized Roe matrix (23), the
problems of existence and uniqueness of the Roe averages [37] does not arise.
We emphasize that the numerical integration required in (26) can be done
up to arbitrary accuracy, using e.g. Romberg extrapolation or other adaptive
techniques. However we note in practical computations that normally the use
of three Gaussian points in (26) is sufficient. The reader is encouraged to try
more sophisticated adaptive integration techniques if necessary. Note that also
Toumi [37] defined the Roe matrix by (23), but he used analytical integration
along the path integral instead of the numerical quadrature used in Eqn. (26).
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For the original Roe method, however, one needs to compute the absolute value
of the matrix ÃG

Ψ, which requires the computation of all its eigenvectors and
eigenvalues. Although this can be also done fully numerically using standard
linear algebra packages, as it has been done e.g. in [10,16], in the present paper
we considerably reduce computational effort by resorting to a purely centered
approach that needs the approximate Roe matrix ÃG

Ψ from (26), but that does
not need its eigenstructure. The natural multi-dimensional extension of the
non-conservative FORCE schemes developed in the one-dimensional case in
[12,6] now follows in the same way as the extension of the conservative one-
dimensional FORCE method of Toro and Billet [35] to multiple space dimen-
sions presented in [36]. We consequently define the jump term D−(W−

h ,W+
h , �n)

as follows:

D−(W−
h ,W+

h , �n) =
1

2

(
ÃG

Ψ − βLW
j

(
ÃG

Ψ

)2
− βLF

j I
) (

W+
h −W−

h

)
, (27)

where I is the identity matrix and the two constants βLW and βLF contain only
information on the geometry and the time step Δt, as derived in detail in [36]:

βLF
j =

2

ΔtSj

V −
j V +

j

V −
j + V +

j

, βLW
j =

1

2

ΔtSj

V −
j + V +

j

. (28)

Here, V ±
j denote the sub-volumes defined at each edge/face j, where V −

j is
the sub-volume inside the considered element and V +

j is the corresponding
sub-volume in the neighbor adjacent to edge j, see Fig. 1 for the 2D case. The
subvolumes are constructed connecting the vertices of an edge/face with the
barycenter of the element. Obviously, we have

∑
Vj = |Ti|. With Sj = |∂Tj |

we denote the length/area of edge/face number j.

We recall that according to [15] the conservative equivalent of the PNPM

scheme (19) in order to solve conservation laws of the form (1) is given by

V −
1V −

2

V −
3

V +
1V +

2

V +
3

Ti

Fig. 1. Notation for the definition of V ±
j on unstructured triangular meshes.
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[
Φk, u

n+1
h

]tn+1

Ti

− [Φk, u
n
h]t

n

Ti
−
〈
∇Φk · F (Wh)

〉
Ti\∂Ti

+
{
Φk,Gi+ 1

2

}
∂Ti

= 〈Φk, S(Wh)〉Ti
,

(29)

with the numerical flux Gi+ 1
2

= Gi+ 1
2
(W−

h ,W+
h , �n).

Since we want our path-conservative centered method to be conservative when
(2) is a conservation law (1), i.e. when A is the Jacobian of a flux F , we rewrite
the scheme (19) under this assumption. The following identities hold in the
conservative case:

〈
Φk, A(Wh) · ∇Wh

〉
Ti\∂Ti

=
〈
Φk,∇ · F (Wh)

〉
Ti\∂Ti

(30)

and

〈
Φk,∇ · F (Wh)

〉
Ti\∂Ti

=
{
Φk, F (W−

h ) · �n
}

∂Ti

−
〈
∇Φk · F (Wh)

〉
Ti\∂Ti

. (31)

Following [28], we define the numerical flux as

Gi+ 1
2

= G(W−
h ,W+

h , �n) := F (W−
h ) · �n + D−(W−

h ,W+
h , �n), (32)

where simple algebraic manipulations reveal that Gi+ 1
2

satisfies the usual con-

sistency requirements. Inserting Eqns. (32), (30) and (31) into Eqn. (19) yields
directly the conservative PNPM scheme (29). Hence, the path-conservative
PNPM method (19) reduces to the conservative PNPM scheme (29) in the case
where the non-conservative PDE (2) is a system of conservation laws (1).
Furthermore, in this case the centered scheme (19) with the FORCE jump
term (27) reduces to the conservative scheme (29), with the following flux
function, see [36]:

Gi+ 1
2

=
1

2

(
GLW′

i+ 1
2

+ GLF′
i+ 1

2

)
, (33)

with a generalized Lax-Wendroff-type flux

GLW′
i+ 1

2
=

V +
j F (W+

h ) + V −
j F (W−

h )

V −
j + V +

j

·�n− 1

2
βLW

j ÃG
Ψ

(
F (W+

h ) − F (W−
h )
)
·�n, (34)

and a generalized Lax-Friedrichs-type flux

GLF′
i+ 1

2
=

V −
j F (W+

h ) + V +
j F (W−

h )

V −
j + V +

j

· �n − 1

2
βLF

j I
(
W+

h −W−
h

)
. (35)
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3 The Baer-Nunziato Model for Compressible Multi-Phase Flow

The Baer-Nunziato model for compressible two-phase flow is given by the
following system of equations, see [3,27]:

∂
∂t

(φ1ρ1) + ∇ · (φ1ρ1u1) = 0,

∂
∂t

(φ1ρ1u1) + ∇ · (φ1ρ1u1 ⊗ u1) + ∇φ1p1 = pI∇φ1 + λ (u2 − u1) ,

∂
∂t

(φ1ρ1E1) + ∇ · ((φ1ρ1E1 + φ1p1)u1) = −pI∂tφ1 + λuI · (u2 − u1) ,

∂
∂t

(φ2ρ2) + ∇ · (φ2ρ2u2) = 0,

∂
∂t

(φ2ρ2u2) + ∇ · (φ2ρ2u2 ⊗ u2) + ∇φ2p2 = pI∇φ2 − λ (u2 − u1) ,

∂
∂t

(φ2ρ2E2) + ∇ · ((φ2ρ2E2 + φ2p2)u2) = pI∂tφ1 − λuI · (u2 − u1) ,

∂
∂t

φ1 + uI∇φ1 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(36)

The system is closed by the so-called stiffened equation of state (EOS) for
each phase:

ek =
pk + γkπk

ρk(γk − 1)
(37)

Here, φk denotes the volume fraction of phase k, ρk is the density, uk is the
velocity vector, Ek = ek + 1

2
uk

2 and ek are the phase specific total and internal
energies, respectively, and λ is a parameter characterizing the friction between
both phases. In the literature, phase 1 is also called the solid phase and phase
2 the gas phase. We will therefore use the subscripts 1 and s as well as 2 and
g as synonyms in the following. For the interface velocity and pressure uI and
pI we choose uI = u1 and pI = p2 respectively, according to [3,27], although
other choices are possible, see e.g. the paper by Saurel and Abgrall [31]. The
state vector W is

W = (φ1ρ1, φ1ρ1u1, φ1ρ1E1, φ2ρ2, φ2ρ2u2, φ2ρ2E2, φ1) . (38)

We can cast system (36) in the general non-conservative form (2) by defining
the system matrix A(W ) = (A(W ), B(W ), C(W )), where A(W ), B(W ) and
C(W ) are the Jacobian matrices of the fluxes f , g and h given in (36) plus the
contribution of the non-conservative products, the so-called nozzling terms.
The system matrix A(W ) and the source term vector S(W ) can be readily
computed from (36), so we do not need to show them here explicitly, to save
space.

Verification of the Abgrall Condition. A very important condition that
has to be satisfied by a numerical method for system (36) is the so-called

12



pressure non-disturbing condition or the Abgrall condition [31], which states
that a mixture of two phases that moves with uniform velocity and pressure
should exactly preserve the constant pressure. At this place we show the results
of a very simple numerical experiment carried out with the first order version
of the scheme in 2D to demonstrate that our jump term D− automatically
satisfies this property, although we are not able to demonstrate it analytically.
The numerical test is performed on the domain Ω = [−1; 1] × [−1; 1] with
four periodic boundary conditions. Ω is discretized using 22476 triangles of
characteristic mesh size h = 0.01. Phase 1 - the solid phase - is modeled using
the stiffened EOS with parameters γ1 = 3 and π1 = 2, whereas the gas phase
is modeled as usual by an ideal diatomic gas with γ2 = 1.4 and π2 = 0.
Initially, the pressures and densities for both phases are p1,2 = 1, ρ1 = 10 and
ρ2 = 1 everywhere and the uniform velocity field for both phases is given by
u1,2 = v1,2 = 1. Within a circle of radius R = 0.25, centered in the origin, we
then set the solid phase volume fraction to φs = φ1 = 1 − 10−14 and outside
this circle we set it equal to φs = φ1 = 10−14. We then evolve the system for
780 time steps until t = 2, which corresponds to one entire advection period
of the solid-gas interphase. The results obtained for the solid volume fraction
φs are depicted in Fig. 2 (left, middle) and a one-dimensional cut along the
x-axis through both pressure profiles at t = 2.0 is shown in Fig. 2 (right). The
pressure non-disturbing condition is almost satisfied up to machine accuracy.
Note that p is computed from the conserved variables W a posteriori, hence
additional round-off errors are introduced. The L∞ error for the solid pressure
ps = p1 in this test case was 2.842E-012 and for the gas pressure pg = p2 the
L∞ error was 2.887E-015.
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Fig. 2. Numerical verification of the Abgrall condition. Left: initial distribution of φs.
Middle: distribution of φs after t = 2 using the first order version of our centered
schemes (P0P0). Right: cut along the x-axis showing the solid and gas pressure
profiles after t = 2. No unphysical spurious pressure oscillations are visible.

4 Numerical Convergence Studies

In this section we perform a numerical convergence test for the two-dimensional
compressible Baer-Nunziato equations presented in section 3. The process fol-
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lowed is analogous to the one described in [23] and [4], where convergence is
assessed via the analytical solution of an isentropic vortex. The exact solution
of this unsteady test case is obtained in two steps. First, one finds an exact
stationary and rotationally symmetric solution of the governing PDE system
that approaches a constant state as r → ∞, in order to be compatible with
periodic boundary conditions. Second, to make the test case unsteady, one
uses the principle of Galilean invariance inherent in all governing equations
based on Newtonian mechanics and superimposes a uniform velocity field to
the solution found in step one. After one advection period through a periodic
rectangular computational domain, the exact solution is then given by the
initial condition.

To assess the accuracy of our method for the 2D Baer-Nunziato model, we
first write the model equations using cylindrical coordinates (r − φ) as

∂
∂t

(φ1ρ1) + 1
r

[
∂
∂r

(rφ1ρ1u
r
1) + ∂

∂φ

(
φ1ρ1u

φ
1

)]
= 0 ,

∂
∂t

(φ1ρ1u1) + νr

[
∂
∂r

(
φ1ρ1 (ur

1)
2
)

+ 1
r

∂
∂φ

(
φ1ρ1u

r
1u

φ
1

)
+ 1

r
φ1ρ1

(
(ur

1)
2 −

(
uφ

1

)2
)]

+νφ

[
∂
∂r

(
φ1ρ1u

φ
1u

r
1

)
+ 1

r
∂
∂φ

(
φ1ρ1

(
uφ

1

)2
)

+ 2
r
ur

1u
φ
1

]
+νr ∂

∂r
(φ1p1) + νφ 1

r
∂
∂φ

(φ1p1) = pI

[
νr ∂

∂r
φ1 + νφ 1

r
∂
∂φ

φ1

]
+ λ (u2 − u1) ,

∂
∂t

(φ1ρ1E1) + 1
r

[
∂
∂r

(rφ1ρ1E1u
r
1) + ∂

∂φ

(
φ1ρ1E1u

φ
1

)]
+ 1

r

[
∂
∂r

(rφ1p1u
r
1) + ∂

∂φ

(
φ1p1u

φ
1

)]
= pI

∂
∂t

φ1 + λuI (u2 − u1)

∂
∂t

(φ2ρ2) + 1
r

[
∂
∂r

(rφ2ρ2u
r
2) + ∂

∂φ

(
φ2ρ2u

φ
2

)]
= 0 ,

∂
∂t

(φ2ρ2u2) + νr

[
∂
∂r

(
φ2ρ2 (ur

2)
2
)

+ 1
r

∂
∂φ

(
φ2ρ2u

r
2u

φ
2

)
+ 1

r
φ2ρ2

(
(ur

2)
2 −

(
uφ

2

)2
)]

+νφ

[
∂
∂r

(
φ2ρ2u

φ
2u

r
2

)
+ 1

r
∂
∂φ

(
φ2ρ2

(
uφ

2

)2
)

+ 2
r
ur

2u
φ
2

]
+νr ∂

∂r
(φ2p2) + νφ 1

r
∂
∂φ

(φ2p2) = pI

[
νr ∂

∂r
φ2 + νφ 1

r
∂
∂φ

φ2

]
− λ (u2 − u1) ,

∂
∂t

(φ2ρ2E2) + 1
r

[
∂
∂r

(rφ2ρ2E2u
r
2) + ∂

∂φ

(
φ2ρ2E2u

φ
2

)]
+ 1

r

[
∂
∂r

(rφ2p2u
r
2) + ∂

∂φ

(
φ2p2u

φ
2

)]
= −pI

∂
∂t

φ1 − λuI (u2 − u1)

∂
∂t

φ1 + uI

(
νr ∂

∂r
φ1 + νφ 1

r
∂
∂φ

φ1

)
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(39)
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where uφ
k are the velocities in angular direction and ur

k are the velocities in
radial direction. Furthermore, νr is the normal unity vector in radial direction
while νφ is the normal unity vector in angular direction. In order to obtain
an analytical solution, we impose rotational symmetry ( ∂

∂φ
= 0) and neglect

the effect of friction (λ = 0). We thus obtain the simplified system

∂

∂r
(φ1p1) = p2

∂

∂r
φ1 +

1

r

(
uφ

1

)2
φ1ρ1 ,

∂

∂r
(φ2p2) = p2

∂

∂r
φ2 +

1

r

(
uφ

2

)2
φ2ρ2 .

(40)
System (40) is an nonlinear system of ODE in the two variables φ1 and p2

since φ2 = 1−φ1 is known. In order to obtain a simple analytical solution, we
prescribe φ2 and p2 and solve (40) for the two angular velocities uφ

1 and uφ
2 .

For our particular test case, we choose for the pressures

pk = pk0

(
1 − 1

4
e

(
1 − r2/s2

k

))
, (k = 1, 2) , (41)

and for the volume fraction of the solid phase φ1 we impose

φ1 =
1

3
+

1

2
√

2π
e−r2/2. (42)

We then can finally solve (40) using (41) and (42) to compute the angular
velocities of each phase as

uφ
1 =

1

2s1D

√
rD

[
p10

(
4
√

2πF1 + 6H1 − 12Gs2
1 + 3H1s2

1

)
+ 3p20s2

1 (4G − H2)
]
,

uφ
2 =

r
√

2

2ρ2s2

√
ρ2p20F2 ,

(43)
with

Hk = e
−2r2 + r2s2

k − 2s2
k

2s2
k , Fk = e

−(r − sk)(r + sk)

s2
k , (k = 1, 2),

and

G = e−r2/2, D = ρ1

(
2
√

2π + 3G
)
.

Once the rotationally symmetric stationary solution of the compressible Baer-
Nunziato equations has been obtained, we can easily construct an unsteady
solution using the principle of Galilean invariance of Newtonian mechanics
by simply adding a constant uniform velocity field to both phases with ve-
locity components ū and v̄. Using this analytical solution, we calculate the
convergence rates of the numerical approach, using the following particular
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data

ρ1 = 1, ρ2 = 2, p10 = 1, p20 =
3

2
, s1 =

3

2
, s2 =

7

5
, ū = v̄ = 2.

(44)
We solve the initial value problem on a square domain Ω = [−5; 5] × [−5; 5]
using unstructured triangular meshes with four periodic boundary conditions.
The exact solution of the problem is given by the initial condition after T = 5.
The results obtained with all kinds of PNPM schemes are shown for the second
conserved variable (x-momentum of the solid phase) at time t = T in Table 1.
We observe that all high order schemes reach their designed order of accuracy.

5 Applications

The test cases shown in this section have been selected to validate our high
order centered approach on unstructured triangular and tetrahedral meshes
in two and three space dimensions. To ensure a non-oscillatory behavior, the
WENO reconstruction technique proposed in [18] and [19] has been employed.
The Courant number is set in all 2D computations to 0.5 and in the 3D
computations it is set to 0.4. The time step is computed based on the incircle
and insphere diameters as characteristic length scales, respectively.

5.1 Shock Tube Problems in Multiple Space Dimensions

To validate our multi-dimensional numerical schemes for the compressible
Baer-Nunziato equations we solve a set of originally 1D shock tube problems
on unstructured meshes in 2D and 3D. For these shock tube problems, exact
reference solutions are available in the literature [2,32,14]. To our knowledge,
the first exact Riemann solver for the compressible Baer-Nunziato equations
was published by Andrianov and Warnecke [2]. However, it was not a direct
solver, but given two states in the star region, it computed backwards the cor-
responding initial conditions as well as the full wave structure. The purpose
of this solver was to construct specific exact solutions to validate numerical
methods. The first direct solver has been published by Schwendeman et al. in
[32], who also constructed a Godunov method based on this Riemann solver.
The non-conservative products have been incorporated using a thin layer anal-
ysis for the solid contact, from which subsequently the corresponding jump
conditions have been derived. The most recent exact Riemann solver for the
compressible Baer-Nunziato equations has been published by Deledicque and
Papalexandris [14], who use a different approach than the one proposed in [32]
to compute the exact solution of the Riemann problem. From the above men-
tioned articles we have chosen a set of six different Riemann problems, whose
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initial conditions together with the literature reference are all summarized in
Table 2. Some of the test cases use the stiffened EOS, some of them only use
a mixture of two ideal gases.

Since we want to validate our numerical method in multiple space dimensions,
we solve all six shock tube problems on an unstructured triangular mesh in two
space dimensions and Riemann problems RP1 and RP2 are even solved on an
unstructured tetrahedral mesh in three space dimensions. The computational
domain in 2D is Ω2D = [−0.5; 0.5] × [− 5

300
; 5

300
] and in 3D we use Ω3D =

[−0.5; 0.5] × [− 5
300

; 5
300

]2. The characteristic mesh spacing is in all cases h =
1/300, corresponding to an equivalent one-dimensional resolution of 300 cells,
which has also been used in [2] and [14]. The initial discontinuity is located at
x = 0 and the final times are given in Table 2. For all test cases we use a third
order WENO P0P2 scheme with reconstruction in characteristic variables. In
x-direction we use transmissive boundaries and in all other directions periodic
boundary conditions are imposed. We emphasize that in particular for the
compressible Baer-Nunziato equations the use of reconstruction in conserved
variables leads to a significant amount of spurious oscillations.

2D Results The results for the 2D computations are shown in Figs. 3 - 8.
We show a sketch of the triangular mesh on the top left of each figure and a
cut through the numerical solution on 300 equidistant points along the x-axis
in the remaining sub-figures. For RP4, only the quantities shown are available
as exact solution, see [32]. In general we can note a reasonable agreement
between our numerical results and the exact reference solutions, which have
been obtained from the articles [2,32,14] using a digitizer software.

3D Results The Riemann problems RP1 and RP2 have also been com-
puted on an unstructured tetrahedral mesh in three space dimensions using
a characteristic mesh spacing of h = 1/300. A cut through the mesh and the
computational results are depicted together with the exact solution in Figs.
9 and 10. We note an excellent agreement with the exact solution and would
underline that the results presented in this paper are, to our knowledge, the
first computational results ever presented for the compressible Baer-Nunziato
equations using higher than second order path-conservative WENO schemes
on unstructured tetrahedral meshes in three space dimensions.
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Table 2
Initial states left (L) and right (R) for the Riemann problems solved in 2D and 3D
with the Baer-Nunziato model. Values for γi, πi and the final time te are also given.

ρs us ps ρg ug pg φs te
RP1 [14]: γs = 1.4, πs = 0, γg = 1.4, πg = 0

L 1.0 0.0 1.0 0.5 0.0 1.0 0.4 0.10
R 2.0 0.0 2.0 1.5 0.0 2.0 0.8

RP2 [14]: γs = 3.0, πs = 100, γg = 1.4, πg = 0
L 800.0 0.0 500.0 1.5 0.0 2.0 0.4 0.10
R 1000.0 0.0 600.0 1.0 0.0 1.0 0.3

RP3 [14]: γs = 1.4, πs = 0, γg = 1.4, πg = 0
L 1.0 0.9 2.5 1.0 0.0 1.0 0.9 0.10
R 1.0 0.0 1.0 1.2 1.0 2.0 0.2

RP4 [32]: γs = 3.0, πs = 3400, γg = 1.35, πg = 0
L 1900.0 0.0 10.0 2.0 0.0 3.0 0.2 0.15
R 1950.0 0.0 1000.0 1.0 0.0 1.0 0.9

RP5 [32]: γs = 1.4, πs = 0, γg = 1.4, πg = 0
L 1.0 0.0 1.0 0.2 0.0 0.3 0.8 0.20
R 1.0 0.0 1.0 1.0 0.0 1.0 0.3

RP6 [2]: γs = 1.4, πs = 0, γg = 1.4, πg = 0
L 0.2068 1.4166 0.0416 0.5806 1.5833 1.375 0.1 0.10
R 2.2263 0.9366 6.0 0.4890 -0.70138 0.986 0.2
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Fig. 3. Results for the 2D Riemann problem RP1 of the Baer-Nunziato model.
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Fig. 4. Results for the 2D Riemann problem RP2 of the Baer-Nunziato model.
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Fig. 5. Results for the 2D Riemann problem RP3 of the Baer-Nunziato model.
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Fig. 6. Results for the 2D Riemann problem RP4 of the Baer-Nunziato model.
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Fig. 7. Results for the 2D Riemann problem RP5 of the Baer-Nunziato model.
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Fig. 8. Results for the 2D Riemann problem RP6 of the Baer-Nunziato model.
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Fig. 9. Results for the 3D Riemann problem RP1 of the Baer-Nunziato model.
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Fig. 10. Results for the 3D Riemann problem RP2 of the Baer-Nunziato model.
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5.2 Explosion Problems in Multiple Space Dimensions

In this section we solve the compressible Baer-Nunziato equations in multiple
space dimensions on a circular or spherical computational domain with radius
R = 0.8. The initial condition is in all cases given by

W (�x, t = 0) =

{
Wi, if |�x| < 0.4,
Wo, otherwise.

(45)

Computations are performed until T = 0.18. One can compute a very reliable
reference solution for the two- and three-dimensional case solving the following
equivalent (non-conservative) one-dimensional PDE in radial direction with
geometric reaction source terms, where the parameter d is the number of
space dimensions minus one and Δu = (ur

2 − ur
1):

∂
∂t

(φ1ρ1) + ∂
∂r

(φ1ρ1u
r
1) = −d

r
(φ1ρ1u

r
1) ,

∂
∂t

(φ1ρ1u
r
1) + ∂

∂r

(
φ1ρ1 (ur

1)
2 + φ1p1

)
− p2

∂
∂r

φ1 = −d
r

(
φ1ρ1 (ur

1)
2
)

+ λΔu,
∂
∂t

(φ1ρ1 E1) + ∂
∂r

[(φ1ρ1E1 + φ1p1)ur
1] − p2u1

∂
∂r

φ1 = −d
r
[(φ1ρ1E1 + φ1p1) ur

1] + ur
1λΔu,

∂
∂t

(φ2ρ2) + ∂
∂r

(φ2ρ2u
r
2) = −d

r
(φ2ρ2u

r
2) ,

∂
∂t

(φ2ρ2u
r
2) + ∂

∂r

(
φ2ρ2 (ur

2)
2 + φ2p2

)
+ p2

∂
∂r

φ1 = −d
r

(
φ2ρ2 (ur

2)
2
)
− λΔu,

∂
∂t

(φ2ρ2 E2) + ∂
∂r

[(φ2ρ2E2 + φ2p2)ur
2] + p2u1

∂
∂r

φ1 = −d
r
[(φ2ρ2E2 + φ2p2) ur

2] − ur
1λΔu,

∂
∂t

φ1 + ur
1

∂
∂r

φ1 = 0.
(46)

2D Computations. For our 2D computations we take a third order P0P2

WENO scheme with the multi-dimensional FORCE method as presented in
this paper. An unstructured triangular mesh with a characteristic mesh spac-
ing of h = 1/500 is used, leading to a mesh with 1,148,626 triangles.

For the first explosion problem (EP1) we choose the inner state Wi as the right
state of RP5 and the outer state Wo as the left state of RP5 (see Table 2).
The reference solution has been obtained solving the reduced one-dimensional
system (46) with algebraic source terms that account for the radially symmet-
ric geometry in 2D. The reference solution is computed using a second order
TVD method together with a non-conservative Rusanov scheme on 105 cells.
The numerical results are depicted in Fig. 11. We note that there are visible
errors in the post-shock values present for the solid phase. This underlines the
difficulty even of path-conservative schemes to converge to the correct weak
solution of the non-conservative system (2) defined by the family of paths Ψ.
A detailed discussion of these problems can be found in [11]. However, the
problems induced by the non-conservative system depend on the test case.

Therefore, we now solve a second explosion problem (EP2), whose initial con-
dition is given by RP2 (see Table 2), where the left state of RP2 is chosen
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to be the inner state Wi and the right state of RP2 is the outer state Wo.
We solve the problem once without friction and once setting the friction pa-
rameter to λ = 10. The computational results together with the 1D reference
solution are depicted in Fig. 12. For this test case, in contrast to the previous
one, we note an excellent agreement between the reference solution and our
2D computation.

3D Computations. For the three-dimensional case, we solve again EP2,
but this time on a computational domain in 3D that is composed by a half-
sphere with radius R = 0.8 in the half-space x > 0. A characteristic mesh
spacing of h = 1/130 is used, which already leads to a huge mesh contain-
ing 9,446,328 tetrahedrons. A segment of the mesh is depicted in Fig. 13. We
use again a third order P0P2 WENO scheme. For more information about the
implementation of the unstructured three-dimensional WENO method and
its parallel performance see [18] and [19] for details. The computation has
been performed on 510 CPUs of the HLRB2 supercomputer of the Leibniz
supercomputing centre in München, Germany, and took about 12h wall-clock
time. To our knowledge, this is the largest computation ever done with a
path-conservative scheme of order greater than two on unstructured tetra-
hedral meshes in three-space dimensions. Also for the 3D case the reference
solution has been computed solving the reduced 1D system with geometric
reaction source terms (46). A comparison between our 3D computation and
the reference solution is shown in Fig. 14. We observe an excellent agreement.
All features of the solution are reasonably well resolved and our third order
WENO method remains essentially non-oscillatory for this test case.

5.3 A Double Mach Reflection Problem for Compressible Two-Phase Flow

In this section we compute the double Mach reflection problem originally pro-
posed by Woodward and Colella [39] for the compressible Euler equations. It
consists of a discontinuity initially located at x = 0 moving with velocity σ =
10 to the right and hitting a 30◦ wedge. Using a segment path and imposing the
right state, we obtain the left state behind the discontinuity from the general-
ized Ranking Hugoniot conditions (4). With γs = 3.0, πs = 2.0, γg = 1.4 and
πg = 0.0, we obtain the following initial condition for the conserved variables in
2D: WL = (.4587156, 2.087156, 0, 11.31078, 4.285714, 35.35714, 0, 301.875, 0.25)
and WR = (0.25, 0, 0, 0.875, 0.75, 0, 0, 1.3392857, 0.25). The state at rest (WR)
corresponds to ρg = ρs = 1 and pg = 1/γg and ps = 1. We solve the problem on
a computational domain that is depicted in Fig. 15. We impose transmissive
boundary conditions in x-direction and solid walls are imposed on the upper
and lower boundaries. The characteristic mesh spacing is set to h = 1/400,
which leads to a mesh consisting of 3,284,840 triangles. A third order WENO
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Fig. 11. Results for the first 2D explosion problem EP1. A cut along the x-axis is
shown together with the 1D radial reference solution computed on 105 cells. Note
the error in the solid phase. See [11] for a detailed discussion.

P0P2 scheme is used. The results obtained at t = 0.2 are shown in Fig. 15.
We note that the initial discontinuity moves with the correct speed σ = 10,
since it moves from its initial position x = 0 to its correct final position x = 2.
For the gas phase (undisturbed sound speed cg = 1) we find the typical flow
structures present in the double Mach reflection problem at a Mach number
of Mg = 10, see [39,34,23,19]. For the solid phase, the sound speed is larger
(cs = 3) and as a consequence the Mach number Ms = 10

3
is lower. Hence,

we only see the flow phenomena of classical Mach reflection. Since the solid
volume fraction φs does not jump across non-linear waves, φs is a constant
in space and time and therefore both phases completely decouple. In order to
observe richer flow features, we modify the test case slightly in the next sec-
tion, where we include a bubble in the initial condition that contains a larger
solid volume fraction.

5.4 The Double Mach Reflection Problem with Shock-Bubble Interaction

The initial condition for the incident shock wave is exactly the same as in the
previous section. The only difference in this section is that we now include
a bubble with larger solid volume fraction in the state at rest. The bubble
is located at �x = (1.0, 1.5) and has a radius of R = 0.5. Within the bubble,
the solid density is ρs = 2 and the solid volume fraction is φs = 0.75. The
pressures in the bubble are pg = 1/γg and ps = 1 and the gas density is ρg = 1,
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Fig. 12. Results for the second 2D explosion problem EP2. A cut along the x-axis
is shown together with the 1D radial reference solution computed on 105 cells. Left
column: no inter-phase friction. Right column: inter-phase friction with λ = 10.
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Fig. 13. Unstructured tetrahedral mesh for the 3D explosion problem. Only the
segment with x > 0, y > 0 and z > 0 is shown. The contour colours represent ρg at
t = 0.18.
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Fig. 14. Results for the 3D explosion problem. A cut along the x-axis is shown
together with the 1D radial reference solution.

32



Fig. 15. Results for the two-phase double Mach reflection problem at t = 0.2. Top:
solid density contours. Bottom: gas density contours.

as in the unperturbed state at rest (right state). We solve the problem on the
same mesh with the same method until t = 0.2. The interaction of the incident
shock wave with the bubble produces very complicated flow features and wave
patterns that can be seen in Fig. 16. Immediately after the incident shock wave
has hit the bubble, there is a reflected shock wave traveling to the left, that is
then further reflected by the upper wall. The bubble is compressed, accelerated
and moves to the right. The resulting solid contact and shear waves start to
roll up. Of course we do not have any reference solution for this final test case,
but the aim of this test is mainly to show the robustness of our high order
method. It is able to handle simultaneously the strong discontinuities (shock
Mach number Mg = 10) as well as the solid contact, the shear layers and the
pressure waves.
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Fig. 16. Results for the two-phase double Mach reflection problem at t = 0.2, con-
taining an initially circular bubble. Top: gas density contours. Middle: solid volume
fraction and initial bubble geometry (dashed line). Bottom: solid pressure contours.34



6 Conclusions

In this article we have presented a new class of arbitrary high order accurate
centered one-step schemes for the solution of non-linear hyperbolic systems
with non-conservative products and (stiff) source terms. The presented meth-
ods have been derived combining the recently developed PNPM approach [15],
which unifies finite volume and discontinuous Galerkin schemes in a more
general framework, with the recently developed path-conservative schemes of
Parés [28] and Castro et al. [10]. In contrast to the Roe-type PNPM meth-
ods proposed in [16], which require the knowledge of the full eigenstructure
of the system, the multi-dimensional FORCE schemes proposed in this article
only need some elementary information about the geometry and the time-step
and require just simple evaluations of the system matrix A, without knowing
its eigenstructure. The extension of the FORCE method to non-conservative
systems in multiple space-dimensions follows the guidelines given for the one-
dimensional case in [12,6] and using the extension to general meshes proposed
in [36]. The suggested centered schemes have been implemented in two and
three space dimensions on unstructured triangular and tetrahedral meshes.
Monotonicity has been assured using the WENO reconstruction presented in
[18] and [19].

We have shown numerical convergence studies and some large-size test cases
of the proposed schemes for the 2D and 3D Baer-Nunziato equations of com-
pressible multi-phase flows. To our knowledge, problems of the size reported in
this article have never been solved before using path-conservative schemes on
unstructured triangular and tetrahedral meshes with schemes of order greater
than two.

Due to the proposed centered framework on unstructured meshes, the schemes
may have the potential to discretize very complicated non-conservative hyper-
bolic systems in arbitrarily complex geometries. These features may become of
vital importance for example for the computation of chemically reacting com-
pressible multi-phase flows in geometrically complex combustion chambers.
In future work, we would like to simulate interactions between compressible
liquids and gases including also viscous effects as well as surface tension.
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