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We present and analyze numerical results for the turbulent evolution of a perfectly
inviscid, unforced, two-dimensional fluid. At large scales, we perform a high resolution
vortex-in-cell simulation, complemented at moderate to small scales by a high-resolution
CASL simulation. To analyze the results we combine a recent theory of vortex self-
similarity (Dritschel et al. 2008), applicable to the range of scales spanned by the vortex
population, with the theory of equipartition (Fox & Orszag 1973), applicable to the larger
scales at late times when the rate of evolution becomes very slow. Our new model predicts
an energy spectrum E(k, t) ∝ t1/3k1 at large scales, together with E(k, t) ∝ t−2/3k−5

over the vortex population, and finally E(k, t) ∝ t−1k−3 over an exponentially-widening
small-scale range dominated by incoherent filamentary debris. This filamentary range
moves to progressively higher wavenumbers, carrying with it nearly all of the enstrophy
(mean-square vorticity) but negligible energy.

Analogous results follow for a three-dimensional (rotating stratified) quasi-geostrophic
fluid. In this case, equipartition at late times gives rise to a spectrum E(k, t) ∝ t9/20k2

at large scales, while the emergence of a self-similar population of vortices gives rise to a
spectrum E(k, t) ∝ t−3/4k−6 at intermediate scales. As in two dimensions, the small-scale
spectrum has the form E(k, t) ∝ t−1k−3, and moves to ever higher wavenumbers while
spreading exponentially.

1. Introduction

One of the most fascinating aspects of fluid flows is turbulence. Turbulence is inher-
ently nonlinear, operating over a wide range of spatial and temporal scales (cf. Davidson,
2004 & refs.). This range grows with the Reynolds number, or the inverse of viscosity. Yet
turbulence is not a state of complete disorder, but rather a semi-organised state exhibit-
ing coherent structures (e.g. vortices) and self-similar scaling properties (e.g. power-law
spectra).

Turbulence is found in a great number of physical systems, ranging in scale from quan-
tum to astrophysical dimensions. There is little hope of a universal theory applicable to
all systems, but some idealised systems now appear to be within reach. Two such sys-
tems are the focus of the present paper: the two-dimensional (2D) Euler equations, and
the three-dimensional (3D) quasi-geostrophic (QG) equations, the latter governing the
motion of a rapidly rotating, stably-stratified geophysical fluid. The systems are in many
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ways analogous: both have a materially conserved quantity, vorticity or potential vor-
ticity, respectively. In the inviscid situation considered here, both systems evolve purely
by two-dimensional advection, which is layerwise in the case of 3D QG flow, with no
vertical motion. For both cases there is an inverse energy cascade to large scales and a
direct enstrophy cascade to small scales, and both are predicted to have a k−3 small-scale
energy spectrum over scales not directly affected by viscosity (Batchelor, 1969; Charney,
1971).

It has been recognized for some time that the k−3 decay of the energy spectrum,
found independently by Batchelor (1969) and Kraichnan (1967) in 2D turbulence, is not
sufficient to explain the observed steeper spectra (see for example McWilliams, 1984).
These theories are local in wave number space and do not take into account the non-
local effect of vortices in transporting energy and enstrophy. Since then, several scaling
theories have been proposed stressing the importance of vortices for the energy trans-
port in spectral space. Benzi et al. (1988) and Benzi et al. (1992) linked the statistics
of vortex populations to the energy spectrum. They numerically fitted an algebraically
decaying vortex population with number density n(A, t) ∼ A−ξ (where n(A, t)dA gives
the average number of vortices with areas between A and A + dA over a sample area
As in the plane) to deduce that the energy spectrum associated with the vortices decays
more steeply than predicted by the Batchelor scaling (Batchelor 1969). The temporal
scaling of the vortex number density was addressed in Carnevale et al. (1991) and Weiss
& McWilliams (1993). Carnevale et al. (1991) assumed that, in addition to energy, the
maximal vorticity during vortex interactions is conserved. Dimensional arguments then
lead to an algebraic decay in time of the vortex number density n(A, t). Their analy-
sis however assumes vortices of one particular size, and does not predict the value of
the scaling exponent. In Dritschel et al. (2008) we presented a model which unifies the
spatial and temporal scaling theories. We argued that a self-similar vortex population
naturally arises in two-dimensional turbulence, and that this population is characterised
by a vortex number density n(A, t) ∝ t−2/3A−1. We showed that this generates an energy
spectrum E(k, t) ∝ t−2/3k−5 over the range of scales containing the vortex population.
Moreover, this implies that the enstrophy in the vortex population decays like t−1/3

through partially destructive interactions, which produce incoherent filamentary debris
carrying nearly all of the enstrophy to small scales at late times. Meanwhile, and for con-
sistency, the mean radius of the largest vortices slowly grows like t1/6, sending energy to
progressively larger scales at a diminishing rate proportional to t−5/6. These predictions
were verified by an ensemble of ultra-high resolution numerical simulations, and are con-
sistent with previous numerical simulations (Benzi et al. 1992, Bracco et al. 2000, Clercx
et al. 1999, Weiss & McWilliams 1993). For details, the reader is referred to Dritschel et

al. (2008). In appendix A, we sketch an analogous model for 3D QG flow.

In the present paper, we consider scales larger than any vortex in an infinite domain
in order to examine the limit t → ∞ without the effects of domain boundaries or pe-
riodicity. We argue that as the flow evolution slows down at late times, the large-scale
evolution approaches equipartition (Kraichnan, 1967; Fox & Orszag 1973), with energy
becoming equally distributed among Fourier modes over an increasing range of scales.
This tendency is illustrated in §2 through a novel point-vortex experiment starting from
small-scale initial conditions. In §3, vortex self-similarity (Dritschel et al. 2008) and
large-scale equipartition are combined in a model of the long-time turbulent decay. Us-
ing conservation of energy and enstrophy, and assuming that the smallest scales stretch
exponentially fast (at a constant growth rate), this model predicts that the steep k−5

energy spectrum associated with the vortex population slowly spreads over the range
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Figure 1. Staggered array of point vortices (• = positive, ◦ = negative) in a single grid box used
as the initial conditions. The vortices are separated by ∆x/4 both horizontally and vertically,
where ∆x is the grid size.

m(t)<∼ k<∼ f(t), with f(t) ∼ t1/6 and m(t) ∼ t−1/6. Meanwhile, the shallower k−3 en-

ergy spectrum associated with incoherent filamentary debris is pushed out to ever higher
wavenumbers, k>∼ f(t) ∼ t1/6. Support for this model is provided in §4 via a large en-

semble of high resolution numerical simulations. The paper concludes in §5.

2. Large-scale dynamics

At scales much larger than any vortex, vortices appear point-like yet may collectively
exhibit large-scale motions, e.g. in the form of clusters of like-signed vortices. This self-

organisation was discussed early on in this context by Onsager (1949) and many oth-
ers since. Onsager used a thermodynamical analogy to predict clustering depending on
properties of the initial vortex distribution, like the proximity of like or opposite-signed
vortices. Onsager considered point vortices having finite circulations but infinitesimal
size, and it seems appropriate to revisit this model to understand the development of
large-scale order in turbulence. Specifically, we wish to understand the form of the en-
ergy spectrum developing from an inverse cascade of energy from an initial small-scale
reservoir containing disorganised or incoherent vortical motions.

To this end, we carried out a large simulation of 40962 ≈ 17 million vortices in a 2D
doubly-periodic domain. We used the vortex-in-cell (VIC) method (cf. Christiansen &
Zabusky, 1973) on a 10242 grid to speed up the calculation. In the VIC method, the
vorticity at a grid point is obtained by a weighted sum of the vortex circulations in the
surrounding 4 grid boxes, using the standard Fresnel weights associated with bi-linear
interpolation. The gridded vorticity field ω so obtained is then ‘inverted’ via FFTs to
obtain the streamfunction ψ = ∆−1ω and the velocity field u = ∇⊥ψ = (−ψy, ψx) on
the grid. Finally, u is interpolated (bi-linearly) to the positions of the 17 million vortices
and used to advect them forward within a 4th-order Runge-Kutta time-stepping scheme.

So far this is standard. The novelty, we believe, lies in our set up of the initial conditions.
To track the inverse energy cascade, we had to ensure that initially very little energy was
contained in scales larger than the grid size. This is virtually impossible to achieve from
a random distribution of vortices, even 17 million of them. Random placement invariably
leads to a k−1 energy spectrum (as discussed by Davidson, 2007), spoiling any hope
of observing an inverse cascade. Instead, in each of the 10242 grid boxes, we placed 16
vortices in a nearly regular array with 8 positive vortices (each with circulation Γ) and
8 negative vortices (each with circulation −Γ), staggered as shown in figure 1. For a
perfectly regular array in each grid box, the net vorticity at each grid point is identically
zero, so there is in fact no energy (or enstrophy) at and above the grid scale.

To get things going, each vortex is displaced in x and in y by a uniformly-distributed
random number lying between −0.001∆x and +0.001∆x where ∆x is the grid spacing.
This generates a weak k1 energy spectrum (see below) which is subsequently overwhelmed
by the inverse cascade.

The vortex circulation Γ is chosen so that the vorticity ω would be 4π for a regular



4 D. G. Dritschel, R. K. Scott, C. Macaskill, G. A. Gottwald and C. V. Tran

log10 k .

log10 E .

k1
.

0 1 2 3

−18

−17

−16

−15

−14

−13

−12
k1

.

log10 E .

log10 k .

k3
.

0 1 2 3

−10

−11

−12

−13

 −9

 −8

 −7

Figure 2. Energy spectra at t = 0 (left) and (right) at times t = 100 (thin solid line), 200
(long dashed line), 300 (bold solid line) and 400 (short dashed line).

array of positive vortices in the grid boxes surrounding a given grid point. This requires
16Γ = 4π(∆x)2. The vorticity-based time scale is then unity.

We now turn to the results of this simulation. By time t = 100, there is already
a huge growth of energy at large scales, and the energy continues to grow (as energy
cascades from sub-grid to super-grid scales) until about t = 500. Figure 2 shows the
energy spectra E(k, t) at t = 0 (left panel), and t = 100, 200, 300 and 400 (right). Note
there is a difference of 5 orders of magnitude in the energy ranges plotted in the two
plots. From t = 500 onwards, the energy evolves much more slowly, and fastest at the
largest scales (or lowest wavenumbers) — see figure 3 (left) for t = 500, 1000, 1500 and
2000, and (right) for t = 2000 individually. Figure 4 shows the temporal evolution of
the total energy and enstrophy. One sees clearly the initial rapid increase in energy and
enstrophy and the slower evolution to a plateau at later times.

The most striking feature exhibited by the energy spectra in figure 3 is their conver-
gence to some fixed form over an increasingly wide range of wavenumbers. In time, the
growth in energy becomes confined to progressively lower wavenumbers or larger scales,
as can be seen in the streamfunction field ψ, shown in figure 5 at t = 200, 500 and 2000.
The largest scale in ψ coincides with the transition from E ∼ k1 to k3.

A k3 range is expected, for sufficiently small k, based on the mathematical analysis of
Tran & Dritschel (2006a), who proved that E(k, t) ≤ Ck3t2, for some constant C propor-
tional to the square of the total energy, starting from E(k, 0) = 0 over this wavenumber
range. The k3 scaling behaviour at large scales can be related to the non-vanishing total
angular momentum of the vortices through the Loitsyansky integral (see Davidson 2007).
This growth in E(k, t) at small k is not incompatible with the widening k1 range seen
in figure 3 (and quantified below), and, for example, could be modelled by the spectral
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Figure 3. Energy spectra (left) at times t = 500 (thin solid line), 1000 (long dashed line),
1500 (bold solid line) and 2000 (short dashed line), and (right) at t = 2000 individually.
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Figure 4. Total energy E (multiplied by 105) and enstrophy Q in wavenumbers k ≤ 512
versus time t. Note that the initial growth in E and Q is approximately exponential.

form

E(k, t) ∼ a0k
3

k2 + b2
(2.1)

for a0 ≈ constant and b(t) a decreasing function of t (no faster than t−1 to be consistent
with E(k, t) ≤ Ck3t2 for k ≪ b). This spectral form however is too simple to describe
the nearly fixed form of the spectrum for k ≫ b.

That fixed form, we argue, is a consequence of equipartition, in which a linear combi-
nation of energy |û|2 and enstrophy k2|û|2 spreads itself uniformly among the Fourier
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Figure 5. Streamfunction ψ(x, t) at t = 200, 500 and 2000 (left to right). A linear greyscale is
used from the minimum (black) to maximum (white) values.

modes (Kraichnan, 1967). This gives rise to the equipartition spectrum

Eeq(k) =
c1k

k2 + p2
(2.2)

where the constants c1 and p are determined from the total energy E =
∫

Eeqdk and
enstrophy Q =

∫

k2Eeqdk, integrated over 0 ≤ k ≤ kmax, where kmax is the maximum
wavenumber used in the truncated inviscid dynamical model. Fox & Orszag (1973) illus-
trate how the spectral shape (controlled by p2) depends on the ratio Q/E, and discuss
the approach to equipartition from non-equilibrium initial conditions. They conducted
truncated spectral simulations of inviscid two-dimensional turbulence and confirmed that
E(k, t) → Eeq(k) at large times.

The present point vortex simulation appears to exhibit similar characteristics. It too
has truncated dynamics, in the sense that no enstrophy cascade can occur below a certain
scale (the individual point vortices are neither created nor destroyed). This appears to
be sufficient for the flow to approach equipartition. But the definitive test is how well the
spectra in figure 3 match the equipartition spectrum (2.2) for the known values of E and
Q. Clearly the equilibrium energy spectrum (2.2) does not explain the energy spectrum
at large scales where we observe a k3 range. However since this range is decreasing over
time and being invaded by the k1 spectrum, we may introduce another time-dependent
parameter b(t) and modify (2.2) at low k to have the form of (2.1), leading to the hybrid
spectrum

E(k, t) ∼ ck3

(k2 + b2)(k2 + p2)
. (2.3)

The amplitude c(t) and the two wavenumbers b(t) and p(t) can be determined by fit-
ting to E, Q and the integral S =

∫

k−2Edk which is the mean-square streamfunction.
The parameter b(t) measures the departure from the equilibrium spectrum (2.2) and for
b(t) → 0 we have E(k, t) → Eeq(k). Note that S is not conserved in the exact dynamics,
but k−2E peaks around the wavenumber b controlling the transition between large and
intermediate scales. Figure 6 shows how well (2.3) matches the actual energy spectra
over 0 ≤ k ≤ kmax = 512 at early, intermediate and late times in the point vortex sim-
ulation. The agreement is excellent across all wavenumbers, and uniformly in time for
t ≥ 300. Note that these results are not obtained by a least-squares curve fit, but merely
by equating

∫

k−2Edk,
∫

Edk and
∫

k2Edk for E in (2.3) to the known values of S, E
and Q in the point vortex simulation.

The parameters b, c and p are displayed in figure 7 as a function of time for t ≥ 300.
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Figure 6. Actual energy spectra at t = 300, 800 and 2100 (thin lines) compared to
hybrid-equipartition spectra (bold lines).
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Figure 7. Time evolution of the inverse large-scale wavenumber b (left), spectral amplitude c
(right) together with the peak wavenumber p (also right). The linear fit on the left was obtained
by a least-squares analysis over 300 ≤ t ≤ 1700.

Note that c(t) and p(t) rapidly tend to constant values, while the wavenumber b(t)
diminishes like t−1, consistent with the bound obtained by Tran & Dritschel (2006a).
For times t > 1700, the nearly linear increase in 1/b is arrested. At these times, the
simulation becomes increasingly affected by the finite box size, preventing further scale
growth. But we clearly can see the trend towards the equilibrium spectrum (2.2).

We now consider how equipartition relates to the physical properties of the vortex
distribution. Davidson (2007) has shown that a random distribution of vortex dipoles
gives rise to a k1 energy spectrum at scales larger than the dipoles. This suggests that
our simulation is dominated by dipoles at scales comparable to the energy-enstrophy
scale L (where the spectrum changes over from k−1 to k1 around k = p). Figure 8 shows
that this is indeed the case, each dipole being composed of many point vortices. Note
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Figure 8. Point-vortex trajectories over a single unit of time at (left) t = 800 and (right)
t = 2000. Only a thousandth (1/322) of the domain is shown. The energy-enstrophy scale L in
each case is shown beneath each plot. Note that the characteristic large scale 2π/b ∼ 100L.

that the scale of the dipoles does not grow appreciably over time, but remains of order
L. Moreover, the dipoles are space filling, and an examination of their time evolution
shows that they are short lived (with life times comparable to the enstrophy timescale
1/Q1/2).

As shown next, a random distribution of dipoles implies that the ensemble mean vortic-
ity 〈|ω|〉 over an area of size A should scale as A−3/4. The statistical proof is as follows.
In any sufficiently large area A, the expected number of dipoles is proportional to A.
Within A, the dipoles contribute nothing to the mean vorticity, but on the periphery of
A, some halves of dipoles will be in A and others will not. Hence, there will be a sur-
plus of positive or negative vortices. The mean number of randomly distributed surplus
vortices scales as the square-root of the number of dipoles on the periphery of A (since
the orientation of the dipoles is uniformly distributed). But the number of dipoles on
the periphery is proportional to the perimeter of A, which is itself proportional to A1/2.
Hence, the mean number of surplus vortices scales like A1/4. This divided by the area A
is proportional to the mean vorticity over A, and therefore 〈|ω|〉 ∝ A−3/4. Figure 9 shows
just how good this prediction is, over a very wide range of areas A extending from the
grid scale to the domain scale. Note that a random distribution of vortex monopoles, by
similar arguments, would give 〈|ω|〉 ∝ A−1/2. A reduction in slope toward −1/2 is just
visible in figure 9 at scales smaller than the energy-enstrophy scale L. As can be seen
from figure 8, these scales are below the scale of the dipoles and are characterised by
individual monopoles (the point vortices themselves).

3. Late time evolution at all scales

The main limitation of the point vortex model just described is that the individual
vortices cannot merge and exhibit an enstrophy cascade (p is constant in (2.2)). This
cascade transfers coherent enstrophy contained within the vortices to filaments, and
additionally results in a slow t1/6 growth of large-scale vortices (Dritschel et al. 2008).
The observed tendency toward equipartition exhibited by the point vortices, however, is
a direct result of their stationary population characteristics. Nevertheless, we argue that
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Figure 9. Ensemble mean vorticity 〈|ω|〉 versus the sampling area A in the point vortex sim-
ulation at times t = 200 (short-dashed line) and 600 (bold). We note that at time t = 2000
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shown for reference. Note that L2/Adom ≈ 10−5 at the latter two times.

evolving two-dimensional turbulence will form an equipartition spectrum at large scales,
precisely because the evolution is so slow and becomes ever slower in time. Eventually,
there is time for equipartition to become established at all but the very largest scales,
which must remain bounded by a steeper k3 spectrum (Tran & Dritschel, 2006a).

To analyze the numerical results at the large scales we propose here a simple spectral
form incorporating three basic elements:

(1) large-scale equipartition over a range k<∼ m(t),

(2) a self-similar vortex population over a range m(t)<∼ k<∼ f(t), and

(3) a filamentary cascade over a range f(t)<∼ k<∼ d(t).

A spectral form with these properties is

E(k, t) =
ck(1 + k2/f2)

(k2 +m2)3
. (3.1)

We stress that this spectrum is chosen simply to deduce the spectral transition wavenum-
bersm and f . It is not a mathematical model like the equipartion spectrum (2.2) proposed
by Fox & Orszag (1973). Here m(t) is a wavenumber associated with the maximum vor-
tex size (m can be defined by the coherent energy-enstrophy centroid, m ≈

√

Qcoh/Ecoh,
obtained by integrating the spectrum over the vortex wavenumbers m(t)<∼ k<∼ f(t)).

The wavenumber f(t) marks the transition scale from vortices to filaments, and d(t) is
the leading edge of the ‘enstrophy front’, assumed to be increasing exponentially (see
below). The final coefficient c(t) is proportional to the vortex density (Dritschel et al.

2008). Notice for simplicity we ignore the steep k3 range at k ≪ m; this range contributes
negligibly to both the energy and the enstrophy. Moreover, we do not incorporate the
k−1 range of the equipartition spectrum (2.2). This is because the transition from k1 to
k−1 in (2.2) occurs at the energy-enstrophy centroid p ≈

√

Q/E, which is much larger

than its coherent counterpart m ≈
√

Qcoh/Ecoh, since Qcoh ≪ Q at late times (while
Ecoh ≈ E).
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At sufficiently late times (i.e. many eddy turnaround times based on r.m.s. vorticity),
vortex self-similarity predicts c(t) ∼ t−2/3 and m(t) ∼ t−1/6 (Dritschel et al. 2008).
However, the ‘filament transition’ wavenumber f(t) is not predicted. Instead here we
determine f(t) from conservation of energy E and enstrophy Q, together with an as-
sumption on the growth of the ‘enstrophy front’ at k = d(t). We argue that the thinnest
filaments, at the scale Ld ∝ d−1, are essentially passive and thus likely thin exponen-
tially fast, i.e. d(t) ∼ eγt where γ is the mean strain rate associated with larger scales. It
is conceivable that γ scales with the r.m.s. vorticity contained within the larger scales,
but it seems more plausible that γ scales with the characteristic vorticity magnitude ωv

within the vortices, which efficiently capture and twist filamentary debris as they criss-
cross space. ωv varies little across the vortex population (Dritschel et al. 2008) and is
time invariant. The r.m.s. vorticity on the other hand decreases like t−1/6 due to the
decreasing area fraction covered by the vortices (Dritschel et al. 2008). Since there is
little practical difference, we choose the simpler assumption that γ is constant.

This assumption is well supported by simulation results for Navier-Stokes turbulence
(Dritschel et al. 2007), where it was shown that the palinstrophy P (or mean-square
vorticity gradient) reaches a maximum at a time t = tp ≈ c0 + c1 ln Re where Re is
the Reynolds number. Thereafter, P decreases by viscous dissipation. But the time tp
measures the time it takes the enstrophy front to reach the scale of viscous dissipation
ℓdiss. But Re ∝ ℓ−2

diss, and hence ℓdiss ∼ e−γtp for some constant γ. Identifying ℓdiss with
1/d in the inviscid context, and tp with t, we arrive again at d(t) ∼ eγt.

We now determine the scaling of the filament transition wavenumber f(t). Without loss
of generality, we are free to nondimensionalise length and time by taking E = Q = 1/2.
Using then (3.1), elementary integration yields

4

c

∫ d

0

E(k, t)dk =
2

c
=

1

m4
+

1

f2m2
+ O

(

1

f2d2

)

(3.2)

4

c

∫ d

0

k2E(k, t)dk =
2

c
=

1

m2
+

4 log(d/m) − 3

f2
+ O

(

1

d2

)

. (3.3)

At late times t ≫ 1, the wavenumbers become increasingly well separated, m ≪ f ≪ d,
and moreover log(d/m) ∼ t ≫ 1. Retaining therefore only the dominant terms, we have
c ≈ 2m4 from energy conservation (which is consistent with c ∼ t−2/3 and m ∼ t−1/6)
and

1

m4
≈ 1

m2
+

4 log(d/m)

f2
(3.4)

from enstrophy conservation, which implies

f ≈ 2m2

√

log(d/m)√
1 −m2

. (3.5)

At late times, m≪ 1. Now we use our assumption that the enstrophy front increases ex-
ponentially d(t) ∼ eγt to obtain the following scaling for the filament transition wavenum-
ber:

f ∼ t1/6 . (3.6)

A postiori, this justifies m≪ f ≪ d.
This simple model predicts energy growth E(k, t) ∝ t1/3k1 in the equipartition range

at large scales k ≪ t−1/6, energy decay E(k, t) ∝ t−2/3k−5 over the vortex population at
intermediate scales t−1/6 ≪ k ≪ t1/6, and also energy decay E(k, t) ∝ t−1k−3 over the
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Figure 10. Model energy E and enstrophy Ω spectra (left and right) for the non-dimensional
times t = 10, 100 and 1000 as labelled. Here, the total energy and enstrophy are both equal to
1/2. Only the range 10−3 ≤ k ≤ 103 is shown. Logarithmic scales are used.

filamentary range at small scales k ≫ t1/6. The k−3 spectrum is the same as that obtained
by Batchelor (1969), but in our model this spectrum applies only at high wavenumbers
where filaments dominate. Moreover, this spectral tail decays more slowly than predicted
by Batchelor. The t−1 decay is due to the exponential stretching of filaments assumed in
our model. The spectral tail contains negligible energy and nearly all of the enstrophy.

The spectral evolution for this idealised model is illustrated in Figure 10, using m =
t−1/6, d = et, along with (3.2) for c and (3.5) for f . The most striking feature of this
evolution is just how slow it is — there is only a small change from t = 10 to t = 1000.
Notice also that the enstrophy at a fixed wavenumber to the left of the peak increases

for a while before eventually decaying (after the peak sweeps past); nevertheless most of
the enstrophy quickly ends up in the rapidly expanding tail between k = f and k = d.

4. Comparison with numerical simulations

Support for this simple model is presented next. We carried out 20 high-resolution nu-
merical simulations using the CASL algorithm (Dritschel & Ambaum (1997)), an efficient
hybrid contour dynamics/spectral method capable of modelling a wide range of spatial
scales with minimal numerical dissipation (see Appendix B). We started each simulation
with the energy spectrum E(k, 0) = αk3 exp(−2k2/k2

0), with k0 = 32 and α chosen so
that E = 1/2. Then Q(0) = k2

0/2. Each simulation differed only in a random number
seed determining the phases of the Fourier coefficients.

The flow evolution was computed for 160 ‘eddy rotation periods’ Teddy ≡ 4π/ωrms(0),

where ωrms(0) =
√

2Q(0) = k0 is the initial r.m.s. vorticity (the peak vorticity is 4 to 5
times larger). Below, time t is in units of Teddy.

This ensemble of simulations was used previously in Dritschel et al. (2008) to cor-
roborate our self-similar evolution model of the vortex population. In particular, the



12 D. G. Dritschel, R. K. Scott, C. Macaskill, G. A. Gottwald and C. V. Tran

Figure 11. Vorticity ω(x, t) at t = 6 (left) and t = 24 (right) in one representative simulation.
A linear greyscale is used from the minimum (black) to maximum (white) values.

numerical results strongly support the development of a universal vortex number density
n(A, t) ∝ t−2/3A−1 (corresponding to the energy spectrum E(k, t) ∝ t−2/3k−5 over the
range of scales containing the vortex population), and a decay of vortex enstrophy and
vortex area fraction proportional to t−1/3 over the last 90% of the evolution.

Two snapshots of the vorticity field from one simulation are shown in Figure 11. Note
the prevalence of filamentary structures at early times and of vortices at later times. The
flow is dominated by vortices at all but the earliest times. Figure 12 shows the enstrophy
spectrum at early, intermediate and late times. Each spectrum is multiplied by t2/3 so
that, in theory, the intermediate ‘vortex wavenumber range’ remains steady. This appears
to work well. At low wavenumbers, we observe a k3 spectrum (which eventually saturates
when energy reaches the domain scale), while at small scales we see a slowly retreating
k−1 range. The apparently slow decay of the k−1 range of the enstrophy spectrum at large
wavenumbers when compared to Figure 10 is due to the t2/3 scaling we have applied.

We now quantify this spectral evolution, and compare it to the ideal evolution proposed
in §3. To this end, we computed the total ‘resolved’ energy, enstrophy and palinstrophy
(Er, Qr and Pr) over the wavenumbers 0 < k ≤ kr (with kr = 512 or 2048 to check

sensitivity). Here, the palinstrophy is given by
∫ kr

0
k4Edk, and is equal to the mean-

square vorticity gradient (divided by 2). Pr is not conserved in the inviscid limit, but
it is used here to help determine the spectral parameters c, m and f in the idealised
spectrum (3.1), for which

Er =
c

4m4
+

c

4f2m2
(4.1)

Qr =
c

4m2
+

c

f2

[

log(kr/m) − 3

4

]

(4.2)

Pr =
ck2

r

2f2
(4.3)

approximately (for kr ≫ f).
The spectral parameters were determined from each simulation from early times t = 10

to the final time t = 160. They were then ensemble averaged at each time. The resulting
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Figure 12. Ensemble-averaged scaled enstrophy spectra t2/3Ω(k, t) at t = 10 (bold solid line),
40 (thin solid line) and 160 (dashed line). The temporal scaling is intended to collapse the
spectra over the range of scales occupied by vortices, m<

∼ k<∼ f . Various slopes are indicated.
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Figure 13. Ensemble-averaged spectral parameters m(t) (bold), f(t) (thin) and c(t) (dashed)
for two truncation wavenumbers kr = 512 (left) and kr = 2048 (right). Note the logarithmic
scales. The units on the abscissa are arbitrary (the unscaled parameters are shown in Figure 14).
Reference slopes of ±1 are shown by the thick bold lines.

ensemble-averaged values of m(t), f(t) and c(t) are shown in Figure 13 (log scaled) using
the truncation wavenumbers kr = 512 on the left and kr = 2048 on the right. Figure 14
shows the corresponding unscaled results for kr = 2048, emphasising the slow evolution
of the wavenumbers m and f . The ‘vortex wavenumber’ m and the ‘vortex density’ c
are both insensitive to the choice of kr. Using a least-squares fit of the log-scaled data,
we obtain m ∼ t−0.1702, c ∼ t−0.6822 for kr = 512 and m ∼ t−0.1676, c ∼ t−0.6715 for
kr = 2048. These compare exceptionally well with the theoretical predictions m ∼ t−1/6

and c ∼ t−2/3 (Dritschel et al. (2008)).
The results for f are much less robust, with f ∼ t0.1188 for kr = 512 and f ∼ t0.2105

for kr = 2048. We argued for f ∼ t1/6 in §3 above. The discrepancy at early times occurs
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Figure 14. Ensemble-averaged spectral parameters m(t) (bold), f(t) (thin) and c(t) (dashed)
for kr = 2048. Here the scales are linear.
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Figure 15. Ensemble-averaged scaled enstrophy spectra t2/3Ω(k, t) at t = 40 (bold solid line)
compared with the ideal scaled spectrum using (3.1). Various slopes are indicated.

because the spectrum has not yet filled out to kr. Note from (4.3), f is determined
only by Pr; at late times, numerical inaccuracies make Pr uncertain, particularly as Pr is
dominated by the rapidly fluctuating high-k end of the spectrum. Despite the uncertainty,
the numerical data are not inconsistent with our model prediction.

Finally, a comparison of the numerical and ideal model enstrophy spectra at an in-
termediate time of t = 40 is presented in Figure 15. Again c, m and f are not fit but
determined from Er, Qr, and Pr. The ideal spectrum is more peaked but captures the
spectral transitions around k = m and k = f , and closely matches the k−1 tail. Impor-
tantly, the spectral parameters are not sensitive to the form of the ideal spectrum we
have chosen, as has been verified using the ‘stick’ spectrum Ω = cm−6k3 joined to ck−3

joined to cf−2k−1. We do not claim (3.1) is correct everywhere. What appears robust
is an energy spectrum containing k1, k−5 and k−3 ranges, with transition wavenum-
bers evolving according to the time-dependencies discussed. To determine the exact form
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of the spectrum will require further theoretical insight, such as an improvement of the
vortex self-similarity hypothesis near the maximum vortex size.

5. Concluding remarks

We have developed a new model for the late-time evolution of inviscid, unforced two-
dimensional turbulence, and its three-dimensional quasi-geostrophic counterpart (in Ap-
pendix A). The model builds upon vortex self-similarity over a slowly-expanding inter-
mediate range of scales (Dritschel et al. 2008). Here, we propose that the scales larger
than any vortex approach a state of equipartition (Kraichnan, 1967; Fox & Orszag 1973),
with energy spread uniformly among Fourier modes (except at ultra-large scales, where
the energy spectrum is bounded by a constant times t2k3, see Tran & Dritschel, 2006a).
Whereas ideal equipartition is a statistically-steady state, in our model we argue that the
energy spectrum at large scales slowly grows like E(k, t) ∝ t1/3k1, and slowly cascades
to ever larger scales, k<∼ m(t) ∝ t−1/6. In particular, the flux of energy to large scales

diminishes like t−5/6. The inverse cascade becomes ever slower.
At small scales, we propose that Batchelor’s k−3 spectrum is gradually replaced at its

upper end around k = f(t) ∝ t1/6 by the steeper spectrum E(k, t) ∝ t−2/3k−5 associated
with a self-similar population of vortices (Dritschel et al. 2008). The k−3 spectrum, we
argue, spreads to high k exponentially fast, implying that the spectrum decays like t−1

there. This decay is slower than predicted by Batchelor (1969) by simple scale analysis.
Furthermore, he did not recognise the possibility that a steeper spectrum would develop
and replace the k−3 spectrum at intermediate scales.

We have examined our model’s predictions using a large ensemble of high-resolution
simulations of two-dimensional turbulence. These simulations strongly support the t1/6

growth of the ‘vortex wavenumber’ m (inversely proportional to the size of the largest
vortex), and the t−2/3 decay of the ‘vortex density’ c. Less secure is our prediction that the
‘filament transition wavenumber’ f (where the energy spectrum shallows from k−5 to k−3)
grows like t1/6. This wavenumber is sensitive to numerical inaccuracies and to spectral
fluctuations at high k. Nevertheless, our results are not inconsistent with f(t) ∝ t1/6.
Yet higher resolution numerical simulations are required to verify this prediction. And,
further theoretical insight is needed to determine if there is a universal form of the energy
spectrum.

Appendix A. Inviscid 3D quasi-geostrophic turbulence

In this appendix, we describe an analogous inviscid turbulence model for the 3D quasi-
geostrophic (QG) equations. We cannot yet provide numerical support for this model due
to prohibitive computational costs.

The QG equations describe the ‘layerwise-2D’ motion of a rapidly-rotating and stably-
stratified fluid (cf. Gill 1982). In the ideal QG system considered here, the ‘potential
vorticity’ q is transported conservatively following a layerwise incompressible flow field
u = −∂ψ/∂y, v = ∂ψ/∂x, w = 0, in precisely the same manner as the vorticity ω in the
2D Euler equations. Moreover, the two systems have the same vorticity–streamfunction
relations, q = ∆ψ in 3D QG and ω = ∆ψ in 2D — only the dimension of Laplace’s
operator ∆ differs. In the QG equations, the vertical coordinate is stretched by the ratio
of the buoyancy N0 and Coriolis f0 frequencies, both taken to be constant here. Finally,
to complete the analogy, the total energy and enstrophy per unit volume, 〈|∇ψ|2〉/2 and
〈q2〉/2, have the same form as in 2D upon replacing q by ω.
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A.1. Vortex self-similarity

The derivation of a self-similar vortex population closely parallels that for the 2D case
presented in Dritschel et al. (2008). We begin by writing the enstrophy per unit volume
as

Q =

∫

∞

0

Ω(k) dk =

∫

∞

0

k2E(k) dk , (A 1)

where Ω(k) and E(k) are the enstrophy and energy spectra at wavenumber k. Now con-
sider a population of vortices with a vortex number density n(V ); the number of vortices
having volumes between V and V +dV is n(V )dV in an arbitrary domain size Vs. (Here,
we are considering ensemble averages over all domains of size Vs tiling infinite space.)
The part of Q associated with the vortices is

Qv =
1

2Vs

∫ Vs

0

q2vV n(V ) dV , (A 2)

where qv is the potential vorticity magnitude. We now assume that most of the energy
is contained within the vortices, and that qv does not vary significantly for vortices with
different volumes V . Identifying V ∼ k−3 so that dV ∼ k−4 dk, comparison of (A 1) and
(A 2) gives the energy spectrum

E(k) ∼ q2vV
−1
s n(V )k−9 . (A 3)

For a wide-ranging population of vortices, the lack of any intrinsic scale motivates taking
a powerlaw form for the vortex number density, n(V ) ∼ V −ξ. Using this in (A 3), it
implies E ∼ k−9+3ξ. Note that the classical k−3 Charney (1971) spectrum is recovered
for ξ = 2. We show next, however, that only n(V ) ∼ V −1 allows for a self-similar vortex
distribution. The energy spectrum then scales as

E(k) ∼ k−6 . (A 4)

To examine scale-invariance, we first define the (ensemble-mean) volume fraction of an
arbitrary volume Vs occupied by vortices

fv =
1

Vs

∫ Vmax

0

V n(V ) dV .

Here Vmax is the maximal vortex size in Vs. Each vortex with volume V occupies a zone

the volume of which is V/fv. The sum of all zones is equal to the total volume Vs.
Consider a subdomain V0 < Vmax which is populated by non-overlapping vortices with
volumes V ≤ V0. Arguably, these vortices typically populate a volume Vrem which is not
already occupied by zones of vortices with volume V > V0 since strong shear surrounding
these vortices would tear apart smaller vortices. This left-over volume is just

Vrem =
1

fv

∫ V0

0

V n(V ) dV .

Self-similarity means that the ratio V0/Vrem must be independent of the subdomain V0.
The only choice for n(V ) with this property is

n(V ) =
c

V
. (A 5)

Note that for such a density the number of vortices between µV0 and V0, µ≪ 1, is

Nv =

∫ V0

µV0

c

V
dV = c lnµ−1 , (A 6)
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which is independent of the subdomain V0, again illustrating the self-similarity associated
with the special form of the vortex number density (A 5).

We now turn to the evolution of the number density n(V, t) = c(t)/V . Let a(t) ∼ V
1/3
max

denote the maximum vortex radius. The energy scales as

E =
1

2
〈|∇ψ|2〉 ∼ 1

2Vs

∫ Vmax

0

(qvV
1/3)2V n(V ) dV ∼ ca5

where we have estimated |∇ψ| ∼ qvV
1/3, and have again assumed that qv does not vary

significantly with the vortex volume V . Conservation of energy then implies c ∼ a−5.
The scaling of the enstrophy and the volume fraction can then be obtained as

Qv(t) ∼ a−2 and fv(t) ∼ a−2 . (A 7)

The temporal behaviour of the maximal vortex radius a(t) is determined by the rate
of enstrophy transfer from vortices to filaments dQv/dt. This transfer occurs through
destructive vortex interactions, most probably involving three vortices, e.g. two vortices
brought together by a third, as in two-dimensional turbulence (Dritschel & Zabusky
(1996)). The simplest model of this is the interaction of a vortex dipole with a third,
isolated vortex. This interaction can be destructive and results in the transfer of enstrophy
from the vortex population to small-scale filaments. Self-similarity now implies that the
enstrophy at any scale, q2vV n(V )dV , decays at a rate which is independent of scale. We
therefore equate

dQv

dt
∼ −pcol

Qv

Tint

, (A 8)

where pcol is the collision probability of a dipole with smaller vortices and Tint is the
time for a dipole to travel a characteristic inter-vortex distance r(t). Since the collision
probability is proportional to the vortex number density we have pcol ∼ c ∼ a−5. Using
(A 6) the characteristic inter-vortex distance r(t) of vortices with sizes between µV0 and
V0 is given by

r ∼ (V0/Nv)1/3 ∼ (V0/c)
1/3 ∼ V

1/3

0 a5/3 . (A 9)

The typical time Tint, which measures the time a dipole of volume V0 and width propor-

tional to V
1/3

0 travels a distance r, can be estimated as

Tint =
r

Udip

, with Udip =
qvV0

V
2/3

0

∼ V
1/3

0 (A 10)

being a characteristic dipole velocity. Note this implies Tint ∼ a5/3, independent of V0 as
required by self-similarity. Substituting (A 9)–(A 10) into (A 8) we obtain a differential
equation for the size of the largest vortices

1

a3

da

dt
∼ 1

a26/3
which implies a(t) ∼ t3/20 . (A 11)

Together with (A 5) this uniquely determines the vortex number density

n(V, t) ∼ t−3/4

V
. (A 12)

Furthermore via (A 7) we can determine the temporal scaling behaviour of the enstrophy
Qv(t) and the volume fraction fv(t) as

Qv(t) ∼ t−3/10 and fv(t) ∼ t−3/10 . (A 13)

Notably, this is a slightly slower decay than found in two dimensions.
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A.2. Large-scale dynamics and equipartition

There is every reason to expect the 3D QG case to be similar to the 2D case, since
both systems have a materially-conserved quantity, two quadratic invariants (energy and
enstrophy), an inverse energy cascade, and a direct enstrophy cascade (Charney, 1971).
Following Kraichnan (1967), equipartition arises when a linear combination of (total)
energy |q̂|2/k2 and (potential) enstrophy |q̂|2 spreads itself uniformly among the Fourier
modes. Equipartition would then result in a spectrum of the form

Eeq(k) =
c1k

2

k2 + p2
(A 14)

with the extra factor of k due to integrating over spherical shells in wavenumber space,
instead of cylindrical shells in the 2D case, cf. (2.2). The parameters c1 and p are deter-
mined from the specific values of energy E and enstrophy Q, just as in the 2D case.

A.3. Late time spectral evolution at all scales

At times much larger than Q−1/2, we propose that the energy spectrum exhibits large-
scale equipartition over a range k<∼ m(t), a self-similar vortex population over a range

m(t)<∼ k<∼ f(t), and a filamentary cascade over a range f(t)<∼ k<∼ d(t). A spectrum with

these characteristics is

E(k, t) =
ck2(1 + k3/f3)

(k2 +m2)4
. (A 15)

(we do not claim this is the universal form, other forms give the same evolution of
the spectral parameters). Here m(t) ∼ a−1 is the the wavenumber associated with
the maximum vortex size (m is proportional to the coherent energy-enstrophy cen-
troid,

√

Qcoh/Ecoh, obtained by integrating the spectrum over the vortex wavenumbers
m(t)<∼ k<∼ f(t)). The wavenumber f(t) marks the transition scale from vortices to fil-

aments, and d(t) is the leading edge of the ‘enstrophy front’, assumed to be increasing
exponentially. The final coefficient c(t) is proportional to the vortex density. For simplic-
ity we ignore the steep k4 range expected for k ≪ m (Tran & Dritschel, 2006a); this
range contributes negligibly to both the energy and the enstrophy. Moreover, we do not
incorporate the k0 range of the equipartition spectrum (A 14), since the transition from
k2 to k0 in (A 14) occurs at the energy-enstrophy centroid

√

Q/E ≈ p, which is much

larger than its coherent counterpart
√

Qcoh/Ecoh.
Now vortex self-similarity predicts c(t) ∼ t−3/4 andm(t) ∼ t−3/20, but does not predict

the ‘filament transition’ wavenumber f(t). Instead f(t) is determined from conservation
of energy E and enstrophy Q, together with the assumption that the growth of the
‘enstrophy front’ at k = d(t) is exponential, i.e. d(t) ∼ eγt where γ is the mean strain
rate associated with larger scales. We assume γ scales with the characteristic potential
vorticity magnitude qv, and therefore that γ is constant.

Then, regardless of the transition between the steep intermediate-scale ‘vortex spec-
trum’ ck−6 and the shallow filamentary spectrum k−3 around k = f , continuity requires
E(k, t) ≈ cf−3k−3 in the spectral tail. Now to ensure that the enstrophy in the expanding
spectral tail remains finite (and bounded by Q), we must have

cf−3 log(d/f) ≈ Q (A 16)

at late times — when the tail contains essentially all the enstrophy. Now assuming d ∼ eγt

and using c(t) ∼ t−3/4 from vortex self-similarity, we obtain the following scaling for the
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filament transition wavenumber:

f ∼ t1/12 . (A 17)

This is a very slow expansion, much slower than found in 2D, cf. (3.6).
This simple model predicts energy growth E(k, t) ∝ t9/20k2 in the equipartition range

at large scales k ≪ t−3/20, energy decay E(k, t) ∝ t−3/4k−6 over the vortex population at
intermediate scales t−3/20 ≪ k ≪ t1/12, and also energy decay E(k, t) ∝ t−1k−3 over the
filamentary range at small scales k ≫ t1/12. At late times, essentially all of the energy is
contained in scales k < f , while all the enstrophy is contained in scales k > f .

Appendix B. CASL numerics

Few numerical methods are suited to study a perfectly inviscid fluid. One approach is to
use point vortices, as we did in §2 with the vortex-in-cell (VIC) method (cf. Christiansen
& Zabusky, 1973). This method is not accurate at scales below the grid (or cell) size, since
there vortex interactions are not properly accounted for. As such, its ability to follow the
inevitable development of fine-scale structure is very limited. Another approach is to use
the Contour-Advective Semi-Lagrangian (CASL) method (Dritschel & Ambaum, 1997),
which represents vorticity (or potential vorticity in the 3D QG context) as contours.
These contours correspond to jumps in (potential) vorticity, and are material curves
in the inviscid dynamics. By using a modest number of contours, one can accurately
represent the dynamics of a smoothly-varying vorticity field (cf. Dritschel, Polvani &
Mohebalhojeh, 1999 & refs.).

The CASL method, like the VIC method, makes use of an underlying grid, called the
‘inversion grid’ to compute the velocity field from the vorticity field. The latter is obtained
from the contours after a ‘contour-to-grid’ conversion, but first on a finer grid 4 times
finer (in both x and y) than the inversion grid. This finer grid vorticity is then repeatedly
1-2-1 averaged in each spatial direction to obtain the vorticity on the inversion grid. From
there, standard FFTs are used to compute the gridded velocity, as in the VIC method.
Likewise, the velocity at the points or ‘nodes’ representing each contour are found by
bi-linear interpolation of the gridded velocity field. These points are then moved forward
in time using a 4th-order Runge-Kutta time-stepping scheme.

Every few time steps (here 3), the contours are regularised by a process called ‘contour
surgery’ (Dritschel, 1988). Surgery topologically reconnects parts of the same contour or
parts of two contours sharing the same vorticity level if the distance between them is
less than a certain scale δ called the ‘surgical scale’. In the simulation reported, we have
chosen δ = ∆x/20, i.e. a twentieth of the inversion grid scale (∆x/20 ≤ δ ≤ ∆x/10 is
standard). The small scale of surgery permits one to retain vorticity structure well below
the grid scale, and because this subgrid vorticity contributes only weakly to the overall
velocity field, a significant portion of this structure is reliable (cf. Dritschel et al. 1999 &
references therein).

So far, this is standard. What is novel in this context is we have taken extra steps to
minimise the total dissipation contributed by surgery. In some test simulations using the
original CASL method, we noticed that the effect of surgery (after many applications
of it) is to reduce the slope of the large-scale end of the spectrum, i.e. it leads to an
unphysical energy growth at large scales. It might seem odd that removing structure at
a twentieth of the grid scale can do this, but the spectral support of a filament is in fact
k−1 at large scales, albeit with a very small amplitude. But heavy use of surgery, as in
turbulence, can build up this large-scale error.

The cure, we found, is to modify surgery so that it only dissipates in wavenumbers
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kx, ky > kmax, where kmax is the truncation wavenumber (i.e. half the number of grid
points used in x and in y). Here, we used a 512×512 grid, so kmax = 256. This modification
always reduces the dissipation due to surgery, since in the wavenumbers kx, ky > kmax

the dissipation is the same as before, while in the wavenumbers kx, ky ≤ kmax it is zero.
In order to remove the original surgical error in the wavenumbers kx, ky ≤ kmax, the

gridded vorticity fields immediately before and after surgery are compared. The difference
is the surgical error in these wavenumbers. This difference is then added to a residual
vorticity field ω′, which is evolved in spectral space using a standard pseudo-spectral
method (details of which may be found in Dritschel et al. 1999). At any time, the sum
of ω′ and the vorticity associated with the contours then gives the total vorticity ω.

The residual vorticity ω′ evolves according to

∂ω′

∂t
+ u · ∇ω′ = νe∆ω

′ , (B 1)

with ordinary molecular-like diffusion to prevent the build-up of the ω′ at high wavenum-
bers (in fact, this is the only dissipation in the entire method — see below). Numerically,
following common practice, the spectrally-transformed version of this equation is solved
using an integrating factor to exactly account for the diffusion term. Numerical stabil-
ity requires |u|max∆t/∆x < 1, and this is satisfied in the simulation reported by our
choice of time step, which is chosen for accurate contour advection: ∆t ≈ 0.1π/ωmax (see
Dritschel & Ambaum, 1997). The diffusion coefficient νe was chosen by trial and error to
be as small as possible without leading to an unphysical upturn of the energy spectrum
at high wavenumbers. We took νe = ωrms/k

2
max, where ωrms =

√
2Q at the beginning of

each simulation period.
The entire simulation was broken up into periods of equal length, here 2Teddy, where

Teddy ≡ 2π/ωrms(0) is defined to be the eddy turnaround time (based on the r.m.s.
vorticity at t = 0). After every period, various diagnostics were computed, such as spectra
and high-resolution images of the vorticity field, and the diffusion coefficient νe was
reset. Every three periods, the residual vorticity ω′ and the vorticity associated with the
contours were combined on an ultra-fine grid, 8 times finer in each dimension than the
inversion grid. Then, new contours were re-built from this gridded field (using a fast
contouring algorithm described in Dritschel & Ambaum, 2006) for use in the next three
simulation periods.

Since the gridded vorticity associated with these new contours does not exactly equal
the original gridded vorticity before contouring, the difference is used as the initial condi-
tions for ω′. This procedure ensures that there is no change in the total gridded vorticity
field as a result of recontouring. Nor is there any change associated with surgery during
a simulation. Dissipation occurs only through the diffusion of the residual vorticity in
(B 1).

The recontouring controls, like surgery, the build up of contour complexity. It further
controls any contour crossing errors arising from the re-distribution of nodes on contours
(Schaerf, 2006). (Node redistribution takes place after surgery, every 3 time steps.) Re-
contouring is expensive, however, and cannot be done frequently. But it is required only
after significant advection has taken place, i.e. the time it takes for a scale to cascade
from the domain scale to the surgical scale, which is always several times Teddy. At this
frequency, the cost of recontouring is only a few percent of the total simulation cost.

The set of simulations reported in this paper was carried out in a standard 2π × 2π
periodic domain, using a 512 × 512 inversion grid (kmax = 256). Many other simula-
tions were carried out, and the present set was chosen to ensure adequate resolution
of the large scales while accurately resolving intermediate to small scales. Initially, we
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prescribed a random-phased vorticity field with energy spectrum E = Ck3 exp[−2k2/k2
0],

with k0 = 32. The constant C was chosen so that the total energy E = 1/2 initially (it fol-
lows from the form of the spectrum that the total enstrophy Q = k2

0E). This gridded field
was then interpolated to a grid 8 times finer in each dimension to create the initial vor-
ticity contours. Then, the gridded field associated with the contours was found, and the
difference from the original vorticity field was used as the initial conditions for the resid-
ual field ω′. For example, in one simulation initially, |ω|max = 142.7 and |ω|rms = 31.40.
From this, the time step was chosen to be ∆t = 0.00225 ≈ 0.1π/ωmax ≈ 0.00573Teddy,
where Teddy = 0.3926. For contouring, the vorticity contour interval was chosen to be
∆ω = 5.709, yielding approximately 50 contour levels overall. Choosing a smaller contour
interval means that the residue ω′ is smaller, leading to less dissipation, but this comes
at a price of carrying (and memory storage of) a larger number of contours. The cur-
rent choice is a compromise between accuracy and cost. Finally, for contour resolution,
we used a typical large-scale length of Lc = 2π/k0 ≈ 0.1963 and a dimensionless node
separation of µ = 0.1118. The latter ensures that the surgical scale δ = ∆x/20 since
δ ≡ µ2Lc/4 (see Dritschel & Ambaum (1997) for details).
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