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Abstract. This paper studies sparse density estimation via `1 penalization (SPADES). We
focus on estimation in high-dimensional mixture models and nonparametric adaptive den-
sity estimation. We show, respectively, that SPADES can recover, with high probability,
the unknown components of a mixture of probability densities and that it yields minimax
adaptive density estimates. These results are based on a general sparsity oracle inequality
that the SPADES estimates satisfy.
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1. Introduction

Let X1, . . . , Xn be independent random variables with common unknown density f in

Rd. Let {f1, . . . , fM} be a finite set of functions with fj ∈ L2(Rd), j = 1, . . . ,M, called a

dictionary. We consider estimators of f that belong to the linear span of {f1, . . . , fM}. We

will be particularly interested in the case where M � n. Denote by fλ the linear combinations

fλ(x) =
M∑

j=1

λjfj(x), λ = (λ1, . . . , λM ) ∈ RM .

Let us mention some examples where such estimates are of importance.
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• Estimation in sparse mixture models. Assume that the density f can be represented

as a finite mixture f = fλ∗ where fj are known probability densities and λ∗ is a vector

of mixture probabilities. The number M can be very large, much larger than the

sample size n, but we believe that the representation is sparse, i.e., that very few

coordinates of λ∗ are non-zero, with indices corresponding to a set I∗ ⊆ {1, . . . ,M}.
Our goal is to estimate the weight vector λ∗ by a vector λ̂ that adapts to this unknown

sparsity and to identify I∗, with high probability.

• Adaptive nonparametric density estimation. Assume that the density f is a smooth

function, and {f1, . . . , fM} are the first M functions from a basis in L2(Rd). If the

basis is orthonormal, a natural idea is to estimate f by an orthogonal series estimator

which has the form fλ̃ with λ̃ having the coordinates λ̃j = n−1
∑n

i=1 fj(Xi). However,

it is well known that such estimators are very sensitive to the choice of M , and a

data-driven selection of M or thresholding is needed to achieve adaptivity (cf., e.g.,

[30, 21, 6]); moreover these methods have been applied with M ≤ n. We would like

to cover more general problems where the system {fj} is not necessarily orthonormal,

even not necessarily a basis, M is not necessarily smaller than n, but an estimate of

the form fbλ still achieves, adaptively, the optimal rates of convergence.

• Aggregation of density estimators. Assume now that f1, . . . , fM are some preliminary

estimators of f constructed from a training sample independent of (X1, . . . , Xn), and

we would like to aggregate f1, . . . , fM . This means that we would like to construct

a new estimator, the aggregate, which is approximately as good as the best among

f1, . . . , fM or approximately as good as the best linear or convex combination of

f1, . . . , fM . General notions of aggregation and optimal rates are introduced in [27,

33]. Aggregation of density estimators is discussed in [31, 29, 28] and more recently

in [5] where one can find further references. The aggregates that we have in mind

here are of the form fbλ with suitably chosen weights λ̂ = λ̂(X1, . . . , Xn) ∈ RM .

In this paper, we suggest a data-driven choice of λ̂ that can be used in all the examples

mentioned above and also more generally. We define λ̂ as a minimizer of an `1-penalized

criterion, that we call SPADES (SPArse Density EStimation). This method was introduced

in [11]. The idea of `1 penalized estimation is widely used in the statistical literature, mainly

in linear regression where it is usually referred to as the Lasso criterion [32, 12, 15, 18, 26].

For Gaussian sequence models or for regression with orthogonal design matrix the Lasso
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is equivalent to soft thresholding [14, 24]. Model selection consistency of the Lasso type

linear regression estimators is treated in many papers including [26, 40, 39, 41, 25]. Recently,

`1 penalized methods have been extended to nonparametric regression with general fixed or

random design [8, 9, 10, 4], as well as to some classification and other more general prediction

type models [22, 23, 35, 7].

In this paper we show that `1 penalized techniques can also be successfully used in density

estimation. In Section 2 we give the construction of the SPADES estimates and we show

that they satisfy general oracle inequalities in Section 3. In the remainder of the paper we

discuss the implications of these results for two particular problems, identification of mixture

components and adaptive nonparametric density estimation. For the application of SPADES

in aggregation problems we refer to [11].

Section 4 is devoted to mixture models. A vast amount of literature exists on estimation

in mixture models, especially when the number of components is known; see e.g. [36] for

examples involving the EM algorithm. The literature on determining the number of mixture

components is still developing, and we will focus on this aspect here. Recent works on the

selection of the number of components (mixture complexity) are [20, 2]. A consistent selection

procedure specialized to Gaussian mixtures is suggested in [20]. The method of [20] relies on

comparing a nonparametric kernel density estimator with the best parametric fit of various

given mixture complexities. Nonparametric estimators based on the combinatorial density

method (see [13]) are studied in [2, 3]. These can be applied to estimating consistently the

number of mixture components, when the components have known functional form. Both

[20, 2] can become computationally infeasible when M , the number of candidate components,

is large. The method proposed here bridges this gap and guarantees correct identification of

the mixture components with probability close to 1.

In Section 4 we begin by giving conditions under which the mixture weights can be esti-

mated accurately, with probability close to 1. This is an intermediate result that allows us

to obtain the main result of Section 4, correct identification of the mixture components. We

show that in identifiable mixture models, if the mixture weights are above the noise level,

then the components of the mixture can be recovered with probability larger than 1− ε, for

any given small ε. Our results are non-asymptotic, they hold for any M and n. Since the

emphasis here is on correct component selection, rather than optimal density estimation, the

tuning sequence that accompanies the `1 penalty needs to be slightly larger than the one
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used for good prediction. The same phenomenon has been noted for `1 penalized estimation

in regression and generalized regression model, see, e.g., [7].

Section 5 uses the oracle inequalities of Section 3 to show that SPADES estimates adap-

tively achieve optimal rates of convergence (up to a logarithmic factor) simultaneously on

a large scale of functional classes, such as Hölder, Sobolev or Besov classes, as well as on

the classes of sparse densities, i.e., densities having only a finite, but unknown, number of

non-zero wavelet coefficients.

2. Definition of SPADES

Consider the L2(Rd) norm

‖g‖ =
(∫

Rd

g2(x) dx
)1/2

associated with the inner product

< g, h >=
∫

Rd

g(x)h(x) dx

for g, h ∈ L2(Rd). Note that if the density f belongs to L2(Rd) and X has the same distri-

bution as Xi, we have, for any g ∈ L2,

< g, f >= Eg(X),

where the expectation is taken under f . Moreover

‖f − g‖2 = ‖f‖2 + ‖g‖2 − 2 < g, f >= ‖f‖2 + ‖g‖2 − 2Eg(X).(2.1)

In view of identity (2.1), minimizing ‖fλ − f‖2 in λ is the same as minimizing

γ(λ) = −2Efλ(X) + ‖fλ‖2.

The function γ(λ) depends on f but can be approximated by its empirical counterpart

γ̂(λ) = − 2
n

n∑
i=1

fλ(Xi) + ‖fλ‖2.

This motivates the use of γ̂ = γ̂(λ) as the empirical criterion, see, for instance, [6, 30, 37].

We define the penalty

pen(λ) = 2
M∑

j=1

ωj |λj |(2.2)
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with weights ωj to be specified later, and we propose the following data-driven choice of λ:

λ̂ = arg min
λ∈RM

{γ̂(λ) + pen(λ)}(2.3)

= arg min
λ∈RM

− 2
n

n∑
i=1

fλ(Xi) + ‖fλ‖2 + 2
M∑

j=1

ωj |λj |

 .

Our estimator of density f that we will further call the SPADES estimator is defined by

f♠(x) = fbλ(x), ∀x ∈ Rd.

It is easy to see that, for an orthonormal system {fj}, the SPADES estimator coincides with

the soft thresholding estimator whose components are of the form λ̂j = (1 − ωj/|λ̃j |)+λ̃j

where λ̃j = n−1
∑n

i=1 fj(Xi) and x+ = max(0, x). We see that in this case ωj is the threshold

for the jth component of a preliminary estimator λ̃ = (λ̃1, . . . , λ̃M ).

The SPADES estimate can be easily computed by convex programming even if M � n.

It retains the desirable theoretical properties of other density estimators, the computation

of which may become problematic for M � n. We refer to [13] for a thorough overview

on combinatorial methods in density estimation, to [34] for density estimation using support

vector machines and to [6] for density estimates using penalties proportional to the dimension.

3. Oracle inequalities for SPADES

3.1. Preliminaries. For any λ ∈ RM , let

J(λ) = {j ∈ {1, . . . ,M} : λj 6= 0}

be the set of indices corresponding to non-zero components of λ and

M(λ) = |J(λ)| =
M∑

j=1

I{λj 6= 0}

its cardinality. Here I{·} denotes the indicator function. Furthermore, set

σ2
j = Var(fj(X1)), Lj = ‖fj‖∞

for 1 ≤ j ≤ M , where Var(ζ) denotes the variance of random variable ζ and ‖ · ‖∞ is the

L∞(Rd) norm.

We will prove sparsity oracle inequalities for the estimator λ̂ = λ̂(ω1, . . . , ωM ), provided

the weights ωj are chosen large enough. We first consider a simple choice:

ωj = 4Ljr(δ/2)(3.1)
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where 0 < δ < 1 is a user-specified parameter and

r(δ) = r(M,n, δ) =

√
log(M/δ)

n
.(3.2)

The oracle inequalities that we prove below hold with a probability of at least 1− δ and are

non-asymptotic: they are valid for all integers M and n. The first of these inequalities is

established under a coherence condition on the “correlations”

ρM (i, j) =
< fi, fj >

‖fi‖‖fj‖
, i, j = 1, . . . ,M.

For λ ∈ RM , we define a local coherence number (called maximal local coherence) by

ρ(λ) = max
i∈J(λ)

max
j 6=i

|ρM (i, j)|,

and we also define

F (λ) = max
j∈J(λ)

ωj

r(δ/2)‖fj‖
and

G = max
1≤j≤M

r(δ/2)‖fj‖
ωj

.

3.2. Main results.

Theorem 1. Assume that Lj < ∞ for 1 ≤ j ≤ M . Then with probability at least 1 − δ for

all λ ∈ RM that satisfy

16GF (λ)ρ(λ)M(λ) ≤ 1(3.3)

and all α > 1 and we have the following oracle inequality:

‖f♠ − f‖2 +
α

2(α− 1)

M∑
j=1

ωj |λ̂j − λj | ≤
α+ 1
α− 1

‖fλ − f‖2 +
8α2

α− 1
{F (λ)G}2r2(δ/2)M(λ).

Note that only a condition on the local coherence (3.3) is required to obtain the result

of Theorem 1. However, even this condition can be too strong, because the bound on “cor-

relations” should be uniform over j ∈ J(λ), i 6= j, cf. the definition of ρ(λ). For example,

this excludes the cases where the “correlations” can be relatively large for a small number

of pairs (i, j) and almost zero for otherwise. To account for this situation, we suggest below

another version of Theorem 1. Instead of maximal local coherence, we introduce cumulative

local coherence defined by

ρ∗(λ) =
∑

i∈J(λ)

∑
j>i

|ρM (i, j)|.
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Theorem 2. Assume that Lj < ∞ for 1 ≤ j ≤ M . Then with probability at least 1 − δ for

all λ ∈ RM that satisfy

16F (λ)Gρ∗(λ)
√
M(λ) ≤ 1(3.4)

and all α > 1 we have the following oracle inequality:

‖f♠ − f‖2 +
α

2(α− 1)

M∑
j=1

ωj |λ̂j − λj | ≤
α+ 1
α− 1

‖fλ − f‖2 +
8α2

α− 1
{F (λ)G}2r2(δ/2)M(λ).

Theorem 2 is useful when we deal with sparse Gram matrices ΨM = (< fi, fj >)1≤i,j≤M

that have only a small number N of non-zero off-diagonal entries. This number will be called

a sparsity index of matrix ΨM , and is defined as

N = |{(i, j) : i, j ∈ {1, . . . ,M}, i > j and ψM (i, j) 6= 0}|,

where ψM (i, j) is the (i, j)th entry of ΨM and |A| denotes the cardinality of a set A. Clearly,

N < M(M + 1)/2. We therefore obtain the following immediate corollary of Theorem 2.

Corollary 1. Let ΨM be a Gram matrix with sparsity index N . Then the assertion of

Theorem 2 holds if we replace there (3.4) by the condition

16F (λ)N
√
M(λ) ≤ 1.(3.5)

We finally give an oracle inequality, which is valid under the assumption that the Gram

matrix ΨM is positive definite. It is simpler to use than the above results when the dictionary

is orthonormal or forms a frame. Note that the coherence assumptions considered above do

not necessarily imply the positive definiteness of ΨM . Vice versa, the positive definiteness of

ΨM does not imply these assumptions.

Theorem 3. Assume that Lj <∞ for 1 ≤ j ≤M and that the Gram matrix ΨM is positive

definite with minimal eigenvalue larger than or equal to κM > 0. Then, with probability at

least 1− δ, for all α > 1 and all λ ∈ RM we have

‖f♠ − f‖2 +
α

α− 1

M∑
j=1

ωj |λ̂j − λj | ≤ α+ 1
α− 1

‖fλ − f‖2 +
(

8α2

α− 1

)
G(λ)
nκM

,(3.6)

where

G(λ) ,
∑

j∈J(λ)

ω2
j =

16 log(2M/δ)
n

∑
j∈J(λ)

L2
j .
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We can consider some other choices for ωj without affecting the previous results. For

instance,

ωj = 2
√

2σjr(δ/2) +
8
3
Ljr

2(δ/2)(3.7)

or

ωj = 2
√

2Tjr(δ/2) +
8
3
Ljr

2(δ/2)(3.8)

with

T 2
j =

2
n

n∑
i=1

f2
j (Xi) + 2L2

jr
2(δ/2).

yield the same conclusions. These modifications of (3.1) prove useful, for example, for sit-

uations where fj are wavelet basis functions, cf. Section 5. The choice (3.8) of ωj has an

advantage of being completely data-driven.

Theorem 4. Theorems 1–3 and Corollary 1 hold with the choices (3.7) or (3.8) for the

weights ωj without changing the assertions. They also remain valid if we replace these ωj by

any ω′j such that ω′j > ωj.

If ωj is chosen as in (3.8), our bounds on the risk of SPADES estimator involve the random

variables (1/n)
∑n

i=1 f
2
j (Xi). These can be replaced in the bounds by deterministic values

using the following lemma.

Lemma 1. Assume that Lj <∞ for j = 1, . . . ,M . Then

P

(
1
n

n∑
i=1

f2
j (Xi) ≤ 2Ef2

j (X1) +
4
3
L2

jr
2(δ/2), ∀j = 1, . . . ,M

)
≥ 1− δ/2.(3.9)

From Theorem 4 and Lemma 1 we find that, for the choice of ωj as in (3.8), the oracle

inequalities of Theorems 1–3 and Corollary 1 remain valid with probability at least 1− 3δ/2

if we replace the ωj in these inequalities by the expressions 2
√

2T̃jr(δ/2) + (8/3)Ljr
2(δ/2)

where T̃j =
(
2Ef2

j (X1) + (4/3)L2
jr

2(δ/2)
)1/2

.

3.3. Proofs. We first prove the following preliminary lemma. Define the random variables

Vj =
1
n

n∑
i=1

{fj(Xi)− Efj(Xi)}

and the event

A =
M⋂

j=1

{2|Vj | ≤ ωj} .(3.10)
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Lemma 2. Assume that Lj < ∞ for j = 1, . . . ,M . Then for all λ ∈ RM we have that, on

the event A,

‖f♠ − f‖2 +
M∑

j=1

ωj |λ̂j − λj | ≤ ‖fλ − f‖2 + 4
∑

j∈J(λ)

ωj |λ̂j − λj |.(3.11)

Proof. By the definition of λ̂,

− 2
n

n∑
i=1

fbλ(Xi) + ‖fbλ‖2 + 2
M∑

j=1

ωj |λ̂j | ≤ − 2
n

n∑
i=1

fλ(Xi) + ‖fλ‖2 + 2
M∑

j=1

ωj |λj |

for all λ ∈ RM . We rewrite this inequality as

‖f♠ − f‖2 ≤ ‖fλ − f‖2 − 2 < f, f♠ − fλ > +
2
n

n∑
i=1

(f♠ − fλ)(Xi) + 2
M∑

j=1

ωj |λj | − 2
M∑

j=1

ωj |λ̂j |

= ‖fλ − f‖2 + 2
M∑

j=1

(
1
n

n∑
i=1

fj(Xi)− Efj(Xi)

)
(λ̂j − λj)

+2
M∑

j=1

ωj |λj | − 2
M∑

j=1

ωj |λ̂j |.

Then, on the event A,

‖f♠ − f‖2 ≤ ‖fλ − f‖2 +
M∑

j=1

ωj |λ̂j − λj |+ 2
M∑

j=1

ωj |λj | − 2
M∑

j=1

ωj |λ̂j |.

Add
∑

j ωj |λ̂j − λj | to both sides of the inequality to obtain

‖f♠ − f‖2 +
M∑

j=1

ωj |λ̂j − λj |

≤ ‖fλ − f‖2 + 2
M∑

j=1

ωj |λ̂j − λj |+ 2
M∑

j=1

ωj |λj | − 2
M∑

j=1

ωj |λ̂j |

≤ ‖fλ − f‖2 + 2
∑

j∈J(λ)

ωj |λ̂j − λj |+ 2
M∑

j=1

ωj |λj | − 2
∑

j∈J(λ)

ωj |λ̂j |

≤ ‖fλ − f‖2 + 4
∑

j∈J(λ)

ωj |λ̂j − λj |

where we used that λj = 0 for j 6∈ J(λ) and the triangle inequality. �
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For the choice (3.1) for ωj , we find by Hoeffding’s inequality for sums of independent

random variables ζij = fj(Xi)− Efj(Xi) with |ζij | ≤ 2Lj that

P(A) ≤
M∑

j=1

P{2|Vj | > ωj} ≤ 2
M∑

j=1

exp

(
−

2nω2
j /4

8L2
j

)
= δ.

Proof of Theorem 1. In view of Lemma 2, we need to bound
∑

j∈J(λ) ωj |λ̂j − λj |. Set

uj = λ̂j − λj , U(λ) =
∑

j∈J(λ) |uj |‖fj‖, U =
∑M

j=1 |uj |‖fj‖.

Then, by the definition of F (λ) and the Cauchy-Schwarz inequality∑
j∈J(λ)

ωj |λ̂j − λj | ≤ rF (λ)U(λ).

Since ∑∑
i,j 6∈J(λ)

< fi, fj > uiuj ≥ 0,

we obtain∑
j∈J(λ)

u2
j‖fj‖2 = ‖f♠ − fλ‖2 −

∑∑
i,j 6∈J(λ)

uiuj < fi, fj >(3.12)

−2
∑

i6∈J(λ)

∑
j∈J(λ)

uiuj < fi, fj > −
∑∑

i,j∈J(λ), i 6=j

uiuj < fi, fj >

≤ ‖f♠ − fλ‖2 + 2ρ(λ)
∑

i6∈J(λ)

|ui|‖fi‖
∑

j∈J(λ)

|uj |‖fj‖

+ρ(λ)
∑∑
i,j∈J(λ)

|ui||uj |‖fi‖‖fj‖

= ‖f♠ − fλ‖2 + 2ρ(λ)U(λ)U − ρ(λ)U2(λ).

The left-hand side can be bounded by
∑

j∈J(λ) u
2
j‖fj‖2 ≥ U2(λ)/M(λ) using the Cauchy-

Schwarz inequality, and we obtain that

U2(λ) ≤ ‖f♠ − fλ‖2M(λ) + 2ρ(λ)M(λ)U(λ)U,

which immediately implies

U(λ) ≤ 2ρ(λ)M(λ)U +
√
M(λ)‖f♠ − fλ‖.(3.13)
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Hence, by Lemma 2, we have with probability at least 1− δ,

‖f♠ − f‖2 +
M∑

j=1

ωj |λ̂j − λj |

≤ ‖fλ − f‖2 + 4
∑

j∈J(λ)

ωj |λ̂j − λj |

≤ ‖fλ − f‖2 + 4rF (λ)U(λ)

≤ ‖fλ − f‖2 + 4rF (λ)
{

2ρ(λ)M(λ)U +
√
M(λ)‖f♠ − fλ‖

}
≤ ‖fλ − f‖2 + 8F (λ)ρ(λ)M(λ)G

M∑
j=1

ωj |λ̂j − λj |+ 4rF (λ)
√
M(λ)‖f♠ − fλ‖,

where r = r(δ/2). For all λ ∈ RM that satisfy relation (3.3), we find that with probability

exceeding 1− δ,

‖f♠ − f‖2 +
1
2

M∑
j=1

ωj |λ̂j − λj | ≤ ‖fλ − f‖2 + 4rF (λ)G
√
M(λ)‖f♠ − fλ‖

≤ ‖fλ − f‖2 + 2
{

2rGF (λ)
√
M(λ)

}
‖f♠ − f‖

+2
{

2rGF (λ)
√
M(λ)

}
‖fλ − f‖.

After applying the inequality 2xy ≤ x2/α + αy2 (x, y ∈ R, α > 0) for each of the last two

summands, we easily find the claim. �

Proof of Theorem 2. The proof is similar to that of Theorem 1. With

U∗(λ) =
√ ∑

j∈J(λ)

u2
j‖fj‖2

we obtain now the following analogue of (3.12):

U2
∗ (λ) ≤ ‖f♠ − fλ‖2 + 2ρ∗(λ) max

i∈J(λ),j>i
|ui|‖fi‖|uj |‖fj‖

≤ ‖f♠ − fλ‖2 + 2ρ∗(λ)U∗(λ)
M∑

j=1

|uj |‖fj‖

= ‖f♠ − fλ‖2 + 2ρ∗(λ)U∗(λ)U.

Hence, as in the proof of Theorem 1, we have

U∗(λ) ≤ 2ρ∗(λ)U + ‖f♠ − fλ‖,
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and using the inequality U∗(λ) ≥ U(λ)/
√
M(λ) we find

U(λ) ≤ 2ρ∗(λ)
√
M(λ)U +

√
M(λ)‖f♠ − fλ‖.(3.14)

Note that (3.14) differs from (3.13) only in the fact that the factor 2ρ(λ)M(λ) on the right

hand side is now replaced by 2ρ∗(λ)
√
M(λ). Up to this modification, the rest of the proof is

identical to that of Theorem 1. �

Proof of Theorem 3. By the assumption on ΨM we have

‖fλ‖2 =
∑∑
1≤i,j≤M

λiλj

∫
Rd

fi(x)fj(x) dx ≥ κM

∑
j∈J(λ)

λ2
j .

By the Cauchy-Schwarz inequality, we find

4
∑

j∈J(λ)

ωj |λ̂j − λj | ≤ 4
√ ∑

j∈J(λ)

ω2
j

√ ∑
j∈J(λ)

|λ̂j − λj |2

≤ 4

(∑
j∈J(λ) ω

2
j

nκM

)1/2

‖f♠ − fλ‖.

Combination with Lemma 2 yields that, with probability at least 1− δ,

‖f♠ − f‖2 +
M∑

j=1

ωj |λ̂j − λj | ≤ ‖fλ − f‖2 + 4

(∑
j∈J(λ) ω

2
j

nκM

)1/2

‖f♠ − fλ‖(3.15)

≤ ‖fλ − f‖2 + b
(
‖f♠ − f‖+ ‖fλ − f‖

)
where b = 4

√∑
j∈J(λ) ω

2
j /
√
nκM . Applying the inequality 2xy ≤ x2/α+ αy2 (x, y ∈ R, α >

0) for each of the last two summands in (3.15) we get the result. �

Proof of Theorem 4. Write ω̄j = 2
√

2σjr(δ/2) + (8/3)Ljr
2(δ/2) for the choice of ωj in (3.7).

Using Bernstein’s exponential inequality for sums of independent random variables ζij =

fj(Xi)− Efj(Xi) with |ζij | ≤ 2Lj , we obtain that

P(Ac) = P

 M⋃
j=1

{2|Vj | > ω̄j}

 ≤
M∑

j=1

P{2|Vj | > ω̄j}(3.16)

≤
M∑

j=1

exp

(
−

nω̄2
j /4

2Var(fj(X1)) + 2Ljω̄j/3

)
≤ M exp(−nr2(δ/2)) = δ/2.
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Let now ωj be defined by (3.8). Then, using (3.16), we can write

P(Ac) = P

 M⋃
j=1

{2|Vj | > ωj}

(3.17)

≤
M∑

j=1

P{2|Vj | > ω̄j}+
M∑

j=1

P{ω̄j > ωj}

≤ δ/2 +
M∑

j=1

P{ω̄j > ωj}.

Define

tj = 2
Ef4

j (X1)
Ef2

j (X1)
log(2M/δ)

n

and note that

2
n

n∑
i=1

f2
j (Xi) + tj ≤ T 2

j .

Then

P{ω̄j > ωj} = P
{
Var(fj(X1)) > T 2

j

}
≤ P{Ef2

j (X1) >
2
n

n∑
i=1

f2
j (Xi) + tj}

≤ exp

(
−
n{Ef2

j (X1) + tj}2

8Ef4
j (X1)

)
using Proposition 2.6 in [38]

≤ exp

(
−
ntjEf2

j (X1)
2Ef4

j (X1)

)
since (x+ y)2 ≥ 4xy

which is less than δ/(2M). Plugging this in (3.17) concludes the proof. �
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Proof of Lemma 1. Using Bernstein’s exponential inequality for sums of independent random

variables f2
j (Xi)− Ef2

j (Xi) and the fact that Ef4
j (X1) ≤ L2

jEf2
j (X1) we find

P

(
1
n

n∑
i=1

f2
j (Xi) ≥ 2Ef2

j (X1) +
4
3
L2

jr
2(δ/2)

)

= P

(
1
n

n∑
i=1

f2
j (Xi)− Ef2

j (X1) ≥ Ef2
j (X1) +

4
3
L2

jr
2(δ/2)

)

≤ exp

(
−

n(Ef2
j (X1) + 4

3L
2
jr

2(δ/2))2

2Ef4
j (X1) + 4

3L
2
j{Ef2

j (X1) + 4
3L

2
jr

2(δ/2)}

)

≤ exp(−nr2(δ/2)) =
δ

2M
,

which implies the lemma. �

4. Sparse estimation in mixture models

In this section we assume that the true density f can be represented as a finite mixture

f(x) =
∑
j∈I∗

λ∗jfj(x),

where I∗ ⊆ {1, . . . ,M} is unknown, fj are known probability densities and λ∗j 6= 0 for all

j ∈ I∗. The focus of this section is on model selection, i.e., on the correct identification of

the set I∗. We set λ∗ = (λ∗1, . . . , λ
∗
M ) where λ∗j = 0, j 6∈ I∗.

For clarity of exposition we consider a simplified version of the general set-up introduced

above. We compute the estimates of λ∗ via (2.3), with weights defined by (cf. (3.1)):

ωj = 4Lr, for all j,

where r > 0 is a constant that we specify below, and for clarity of exposition we replaced

all Lj = ‖fj‖∞ by an upper bound L on max1≤j≤M Lj . We assume that all fj have been

standardized to have ‖fj‖ = 1. Note that under these assumptions condition (3.3) takes the

form

(4.1) ρ(λ) ≤ 1
16M(λ)

.

We state (4.1) for the true vector λ∗ in the following form.

Condition (A).

ρ∗ ≤ 1
16k∗

where k∗ = |I∗| = M(λ∗) and ρ∗ = ρ(λ∗).
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The results of Section 3 are valid for any r larger or equal to r(δ/2) = {log(2M/δ)/n}1/2.

They give bounds on the predictive performance of SPADES. As noted in, e.g., [7], for `1-

penalized model selection in regression, the tuning sequence ωj required for correct selection

is typically larger than the one that yields good prediction. We show below that the same

is true for selecting the components of a mixture of densities. Specifically, in this section we

will take the value

(4.2) r = r(M,n, δ/(2M)) =

√
log(2M2/δ)

n
.

We will use the following corollary of Theorem 1, obtained for α =
√

2.

Corollary 2. Assume that Condition (A) holds. Then with probability at least 1− δ/M we

have
M∑

j=1

|λ̂j − λj | ≤
4
√

2
L

k∗
√

log(2M2/δ)
n

.(4.3)

Inequality (4.3) guarantees that the estimate λ̂ is close to the true λ∗ in `1 norm, if the

number of mixture components k∗ is substantially smaller than
√
n. We regard this as an

intermediate step for the next result that deals with the identification of I∗.

4.1. Correct identification of the mixture components. We now show that I∗ can

be identified with probability close to 1 by our procedure. Let Î = J(λ̂) be the set of

indices of the non-zero components of λ̂ given by (2.3). In what follows we investigate when

P (Î = I∗) ≥ 1− ε for a given 0 < ε < 1. Our results are non-asymptotic, they hold for any

fixed M and n.

We need two conditions to ensure that correct recovery of I∗ is possible. The first one is

the identifiability of the model, as quantified by Condition (A) above. The second condition

requires that the weights of the mixture are above the noise level, quantified by r. We state

it as follows.

Condition (B).

min
j∈I∗

|λ∗j | > 4(
√

2 + 1)rL

where L = max
(
1/
√

3, max1≤j≤M Lj

)
and r is given in (4.2).

Theorem 5. Let 0 < δ < 1/2 be a given number. Assume that Conditions (A) and (B) hold.

Then P(Î = I∗) ≥ 1− 2δ(1 + 1/M).
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Proof. We begin by noticing that

P(Î 6= I∗) ≤ P(I∗ 6⊆ Î) + P(Î 6⊆ I∗),

and we control each of the probabilities on the right hand side separately.

Control of P(I∗ 6⊆ Î). By the definitions of the sets Î and I∗ we have

P(I∗ 6⊆ Î) ≤ P(λ̂k = 0 for some k ∈ I∗)

≤ k∗ max
k∈I∗

P(λ̂k = 0).

We control the last probability by using the characterization (5.9) of λ̂ given in Lemma 3 of

the Appendix. We also recall that Efk(X1) =
∑

j∈I∗ λ
∗
j 〈fk, fj〉 =

∑M
j=1 λ

∗
j 〈fk, fj〉, since we

assumed that the density of X1 is the mixture f∗ =
∑

j∈I∗ λ
∗
jfj . We therefore obtain, for

k ∈ I∗,

P
(
λ̂k = 0

)
= P

∣∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)−
M∑

j=1

λ̂j〈fj , fk〉

∣∣∣∣∣∣ ≤ 4rL; λ̂k = 0


= P

∣∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)− Efk(X1)−
M∑

j=1

(λ̂j − λ∗j )〈fj , fk〉

∣∣∣∣∣∣ ≤ 4rL; λ̂k = 0


≤ P

∣∣∣∣∣∣λ∗k‖fk‖2 +
1
n

n∑
i=1

fk(Xi)− Efk(X1)−
∑
j 6=k

(λ̂j − λ∗j )〈fj , fk〉

∣∣∣∣∣∣ ≤ 4rL


≤ P

(∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)− Efk(X1)

∣∣∣∣∣ ≥ |λ∗k|‖fk‖2

2
− 2rL

)
(4.4)

+ P

∣∣∣∣∣∣
∑
j 6=k

(λ̂j − λ∗j )〈fj , fk〉

∣∣∣∣∣∣ ≥ |λ∗k|‖fk‖2

2
− 2rL

 .(4.5)

To bound (4.4) we use Hoeffding’s inequality, as in the course of Lemma 2. We first recall

that ‖fk‖ = 1 for all k and that, by Condition (B), mink∈I∗ |λ∗k| ≥ 4(
√

2 + 1)Lr, with

r = r(δ/(2M)) = {log(2M2/δ)/n}1/2. Therefore

P

(∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)− Efk(X1)

∣∣∣∣∣ ≥ |λ∗k|
2

− 2rL

)
(4.6)

≤ P

(∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)− Efk(X1)

∣∣∣∣∣ ≥ 2
√

2rL

)
≤ δ

M2
.
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To bound (4.5) notice that, by Conditions (A) and (B),

P

∣∣∣∣∣∣
∑
j 6=k

(λ̂j − λ∗j )〈fj , fk〉

∣∣∣∣∣∣ ≥ |λ∗k|
2

− 2rL


≤ P

 M∑
j=1

|λ̂j − λ∗j | ≥ 32
√

2rLk∗


≤ P

 M∑
j=1

|λ̂j − λ∗j | ≥
4
√

2rk∗

L

 ≤ δ

M
,

where the penultimate inequality holds since, by definition, L2 ≥ 1/3 and the last inequality

holds by Corollary 4.

Combining the above results we obtain

P(I∗ 6⊆ Î) ≤ k∗
δ

M2
+ k∗

δ

M
≤ δ

M
+ δ.

Control of P(Î 6⊆ I∗). Let

(4.7) h(µ) = − 2
n

n∑
i=1

∑
j∈I∗

µjfj(Xi) + ‖
∑
j∈I∗

µjfj‖2 + 8rL
∑
j∈I∗

|µj |.

Let

µ̃ = arg min
µ∈Rk∗

h(µ).(4.8)

Consider the random event

(4.9) B =
⋂

k/∈I∗


∣∣∣∣∣∣− 1
n

n∑
i=1

fk(Xi) +
∑
j∈I∗

µ̃j〈fj , fk〉

∣∣∣∣∣∣ ≤ 4Lr

 .

Let µ̄ ∈ RM be the vector that has the components of µ̃ given by (4.8) in positions corre-

sponding to the index set I∗ and zero components elsewhere. By the first part of Lemma 3

in the Appendix we have that µ̄ ∈ RM is a solution of (2.3) on the event B. Recall that λ̂ is

a also solution of (2.3). By the definition of the set Î we have that λ̂k 6= 0 for k ∈ Î. By con-

struction, µ̃k 6= 0 for some subset S ⊆ I∗. By the second part of Lemma 3 in the Appendix,

any two solutions have non-zero elements in the same positions. Therefore Î = S ⊆ I∗ on B.
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Thus,

P(Î 6⊆ I∗) ≤ P(Bc)(4.10)

≤
∑
k/∈I∗

P


∣∣∣∣∣∣− 1
n

n∑
i=1

fk(Xi) +
∑
j∈I∗

µ̃j〈fj , fk〉

∣∣∣∣∣∣ ≥ 4rL


≤
∑
k/∈I∗

P

(∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)− Efk(X1)

∣∣∣∣∣ ≥ 2
√

2rL

)

+
∑
k/∈I∗

P

∑
j∈I∗

|µ̃j − λ∗j |
∣∣〈fj , fk〉

∣∣ ≥ (4− 2
√

2)rL

 .

Reasoning as in (4.6) above we find∑
k/∈I∗

P

(∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)− Efk(X1)

∣∣∣∣∣ ≥ 2
√

2rL

)
≤ δ

M
.

To bound the last sum in (4.10) we first notice that Theorem 1 (if we replace there r(δ/2)

by the larger value r(δ/(2M)), cf. Theorem 4) applies to µ̃ given by (4.8). In particular

P

∑
j∈I∗

|µ̃j − λ∗j | ≥
4
√

2
L

k∗r

 ≤ δ

M
.

Therefore, by Condition (A), we have

∑
k/∈I∗

P

∑
j∈I∗

|µ̃j − λ∗j |
∣∣〈fj , fk〉

∣∣ ≥ (4− 2
√

2)rL


≤
∑
k/∈I∗

P

∑
j∈I∗

|µ̃j − λ∗j | ≥ 32(4− 2
√

2)k∗rL


≤
∑
k/∈I∗

P

∑
j∈I∗

|µ̃j − λ∗j | ≥
4
√

2
L

k∗r

 ≤ δ,

which holds since L2 ≥ 1/3. Collecting all the bounds above we obtain

P (Î 6= I∗) ≤ 2δ +
2δ
M
,

which concludes the proof. �

4.2. Example: Identifying true components in mixtures of Gaussian densities.

Consider an ensemble of M Gaussian densities fj ’s in Rd with means µj and covariance

matrices τjId, where Id is the unit d × d matrix. In what follows we show that Condition
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(A) holds if the means of the Gaussian densities are well separated and we make this precise

below. Therefore, in this case, Theorem 5 guarantees that if the weights of the mixture are

above the threshold given in Condition B, we can recover the true mixture components with

high probability via our procedure.

Recall that Condition (A) requires

ρ∗ = max
i∈I∗,j 6=i

< fi, fj >

‖f1‖‖f2‖
≤ 1

16k∗
.

The densities are

fj(x) =
1√
2πτj

exp

(
−‖x− µj‖2

2τ2
j

)
,

where ‖ · ‖2 denotes the Euclidean norm. Let τmax = max1≤j≤M τj and D2
min = mink 6=j ‖µk −

µj‖2
2. Via simple algebra we obtain

ρ∗ ≤ exp
(
−D2

min

4τ2
max

)
.

Therefore, Condition (A) holds if

D2
min ≥ 4τ2

max log(16k∗).

Using this and Theorem 5 we see that SPADES can identifies the true components in a

mixture of Gaussian densities if the square Euclidean distance between any two means is

large enough as compared to the largest variance of the components in the mixture.

Note that Condition (B) on the size of the mixture weights involves the constant L, which

in this example can be taken as

L = max
( 1√

3
, max

1≤j≤M
‖fj‖∞

)
= max

( 1√
3
,

1
(
√

2πτmin)d

)
,

where τmin = min1≤j≤M τj .

5. SPADES for adaptive nonparametric density estimation

We assume in this section that the density f is defined on a bounded interval of R that

we take without loss of generality to be the interval [0, 1]. Consider a countable system of

functions {ψlk, l ≥ −1, k ∈ V (l)} in L2, where the set of indices V (l) satisfies |V (−1)| ≤ C,

2l ≤ |V (l)| ≤ C2l, l ≥ 0, for some constant C, and where the functions psilk satisfy

(5.1) ‖ψlk‖ ≤ C1, ‖ψlk‖∞ ≤ C12l/2,
∥∥∥ ∑

k∈V (l)

ψ2
lk

∥∥∥
∞
≤ C12l,
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for all l ≥ −1 and for some C1 <∞. Examples of such systems {ψlk} are given, for instance,

by compactly supported wavelet bases, see, e.g., [19]. In this case ψlk(x) = 2l/2ψ(2lx − k)

for some compactly supported function ψ. We assume that {ψlk} is a frame, i.e., there exist

positive constants c1 and c2 depending only on {ψlk} such that, for any two sequences of

coefficients βlk, β′lk,

(5.2) c1

∞∑
l=−1

∑
k∈V (l)

(βlk − β′lk)
2 ≤

∥∥∥ ∞∑
l=−1

∑
k∈V (l)

(βlk − β′lk)ψlk

∥∥∥2
≤ c2

∞∑
l=−1

∑
k∈V (l)

(βlk − β′lk)
2.

If {ψlk} is an orthonormal wavelet basis, this condition is satisfied with c1 = c2 = 1.

Now, choose {f1, . . . , fM} = {ψlk, −1 ≤ l ≤ lmax, k ∈ V (l)} where lmax is such that

2lmax � n/(log n). Then alsoM � n/(log n). The coefficients λj are now indexed by j = (l, k),

and we set by definition λ(l,k) = 0 for (l, k) 6∈ {−1 ≤ l ≤ lmax, k ∈ V (l)}. Assume that there

exist coefficients β∗lk such that

f =
∞∑

l=−1

∑
k∈V (l)

β∗lkψlk

where the series converges in L2. Then Theorem 3 easily implies the following result.

Theorem 6. Let f1, . . . , fM be as defined above with M � n/(log n), and let ωj be given by

(3.8) for δ = n−2. Then for all n ≥ 1, λ ∈ RM we have with probability at least 1− n−2,

‖f♠ − f‖2 ≤ K

 ∞∑
l=−1

∑
k∈V (l)

(λ(l,k) − β∗lk)
2(5.3)

+
∑

(l,k)∈J(λ)

[ 1
n

n∑
i=1

ψ2
lk(Xi)

log n
n

+ 2l
( log n

n

)2]
where K is a constant independent of f .

This is a general oracle inequality that allows one to show that the estimator f♠ attains

minimax rates of convergence, up to a logarithmic factor simultaneously on various functional

classes. We will explain this in detail for the case where f belongs to a class of functions F
satisfying the following assumption for some s > 0.

Condition (C). For any f ∈ F and any l′ ≥ 0 there exists a sequence of coefficients λ =

{λ(l,k),−1 ≤ l ≤ l′, k ∈ V (l)} such that

(5.4)
∞∑

l=−1

∑
k∈V (l)

(λ(l,k) − β∗lk)
2 ≤ C22−2l′s
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for a constant C2 independent of f .

It is well known that Condition (C) holds for various functional classes F , such as Hölder,

Sobolev, Besov classes, if {ψlk} is an appropriately chosen wavelet basis, see, e.g., [19] and the

references cited therein. In this case s is the smoothness parameter of the class. Moreover,

the basis {ψlk} can be chosen so that Condition (C) is satisfied with C2 independent of s for

all s ≤ smax, where smax is a given positive number. This allows for adaptation in s.

Under Condition (C) we obtain from (5.3) that, with probability at least 1− n−2,

‖f♠ − f‖2 ≤ min
l′≤lmax

K

C22−2l′s +
∑

(l,k):l≤l′

[ 1
n

n∑
i=1

ψ2
lk(Xi)

log n
n

+ 2l
( log n

n

)2](5.5)

From (5.5) and the last inequality in (5.1) we find for some constant K ′, with probability at

least 1− n−2,

‖f♠ − f‖2 ≤ min
l′≤lmax

K ′
(

2−2l′s + 2l′
( log n

n

)
+ 22l′

( log n
n

)2
)

(5.6)

= O

(( log n
n

)−2s/(2s+1)
)

where the last expression is obtained by choosing l′ such that 2l′ � (n/ log n)1/(2s+1). It

follows from (5.6) that f♠ converges with the optimal rate (up to a logarithmic factor)

simultaneously on all the functional classes satisfying Condition (C). Note that the definition

of the functional class is not used in the construction of the estimator f♠, so this estimator

is optimal adaptive in the rate of convergence (up to a logarithmic factor) on this scale of

functional classes for s ≤ smax. Results of such type, and even more pointed (without extra

logarithmic factors in the rate and sometimes with exact asymptotic minimax constants) are

known for various other adaptive density estimators, see,for instance, [16, 6, 19, 21, 28, 29]

and the references cited therein. These papers consider classes of densities that are uniformly

bounded by a fixed constant, see the recent discussion in [5]. This prohibits, for example,

free scale transformations of densities within a class. Inequality (5.6) does not have this

drawback. It allows to get the rates of convergence for classes of unbounded densities f as

well.

Another example is given by the classes of sparse densities defined as follows:

L0(m) =
{
f : [0, 1] → R : f is a probability density and

∣∣∣{j : < f, fj >6= 0}
∣∣∣ ≤ m

}
where m ≤M is an unknown integer. If f1, . . . , fM is a wavelet system as defined above and

J∗ = {j = (l, k) : < f, fj >6= 0}, then under the conditions of Theorem 6 for any f ∈ L0(m)
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we have, with probability at least 1− n−2,

‖f♠ − f‖2 ≤ K

 ∑
(l,k)∈J∗

[ 1
n

n∑
i=1

ψ2
lk(Xi)

log n
n

+ 2l
( log n

n

)2] .(5.7)

From (5.7), using Lemma 1 and the first two inequalities in (5.1) we obtain the following

result.

Corollary 3. Let the assumptions of Theorem 6 hold. Then, for every L <∞ and n ≥ 1,

(5.8) sup
f∈L0(m)∩{f : ‖f‖∞≤L}

P
{
‖f♠ − f‖2 ≥ b

(
m log n
n

)}
≤ (3/2)n−2, ∀ m ≤M,

where b > 0 is a constant depending only on L.

Corollary 3 can be viewed as an analogue for density estimation of the adaptive minimax

results for L0 classes obtained in the Gaussian sequence model [1, 17] and in the random

design regression model [10].

Appendix

Lemma 3. (I) Let µ̃ be given by (4.8). Then µ̄ = (µ̃, 0) ∈ RM is a minimizer in λ ∈ RM of

g(λ) = − 2
n

n∑
i=1

fλ(Xi) + ‖fλ‖2 + 8Lr
M∑

k=1

|λk|.

on the random event B defined in (4.9).

(II) Any two minimizers of g(λ) have non-zero components in the same positions.

Proof. (I). Since g is convex, by standard results in convex analysis, λ̄ ∈ RM is a minimizer

of g if and only if 0 ∈ Dλ̄ where Dλ is the subdifferential of g(λ):

Dλ = {w ∈ RM : wk = − 2
n

n∑
i=1

fk(Xi) + 2
M∑

j=1

λj〈fj , fk〉+ 8rvk, vk ∈ Vk(λk), 1 ≤ k ≤M}

where

Vk(λk) =

 {L} if λk > 0,
{−L} if λk < 0,

[−L,L] if λk = 0.
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Therefore, λ̄ minimizes g(·) if and only if, for all 1 ≤ k ≤M ,

1
n

n∑
i=1

fk(Xi)−
M∑

j=1

λ̄j〈fj , fk〉 = 4Lr sign(λ̄k), if λ̄k 6= 0,(5.9) ∣∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)−
M∑

j=1

λ̄j〈fj , fk〉

∣∣∣∣∣∣ ≤ 4Lr, if λ̄k = 0.(5.10)

We now show that µ̄ = (µ̃, 0) ∈ RM with µ̃ given in (4.8) satisfies (5.9)–(5.10) on the event

B and therefore is a minimizer of g(λ) on this event. Indeed, since µ̃ is a minimizer of the

convex function h(µ) given in (4.7), the same convex analysis argument as above implies that

1
n

n∑
i=1

fk(Xi)−
∑
j∈I∗

µ̃j〈fj , fk〉 = 4Lr sign(µ̃k), if µ̃k 6= 0, k ∈ I∗,∣∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)−
∑
j∈I∗

µ̃j〈fj , fk〉

∣∣∣∣∣∣ ≤ 4Lr, if µ̃k = 0, k ∈ I∗.

Note that on the event B we also have∣∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)−
∑
j∈I∗

µ̃j〈fj , fk〉

∣∣∣∣∣∣ ≤ 4Lr, if k /∈ I∗ (for which µ̄k = 0, by construction).

Here µ̄k denotes the kth coordinate of µ̄. The above three displays and the fact that µ̄k =

µ̃k, k ∈ I∗, show that µ̄ satisfies conditions (5.9)–(5.10) and is therefore a minimizer of g(λ)

on the event B.

(II). We now prove the second assertion of the lemma. In view of (5.9) the index set S of the

non-zero components of any minimizer λ̄ of g(λ) satisfies

S =

k ∈ {1, . . . ,M} :

∣∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)−
M∑

j=1

λ̄j〈fj , fk〉

∣∣∣∣∣∣ = 4rL

 .

Therefore, if for any two minimizers λ̄(1) and λ̄(2) of g(λ) we have

(5.11)
M∑

j=1

(λ̄(1)
j − λ̄

(2)
j )〈fj , fk〉 = 0, for all k,

then S is the same for all minimizers of g(λ).

Thus, it remains to show (5.11). We use simple properties of convex functions. First, we

recall that the set of minima of a convex function is convex. Then, if λ̄(1) and λ̄(2) are two

distinct points of minima, so is ρλ̄(1) + (1 − ρ)λ̄(2), for any 0 < ρ < 1. Re-write this convex

combination as λ̄(2) +ρη, where η = λ̄(1)− λ̄(2). Recall that the minimum value of any convex
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function is unique. Therefore, for any 0 < ρ < 1, the value of g(λ) at λ = λ̄2 + ρη is equal to

some constant C:

F (ρ) , − 2
n

n∑
i=1

M∑
j=1

(
λ̄

(2)
j + ρηj

)
fj(Xi) +

∫  M∑
j=1

(λ̄(2)
j + ρηj)fj(x)

2

dx

+ 8rL
M∑

j=1

|λ̄(2)
j + ρηj | = C.

By taking the derivative with respect to ρ of F (ρ) we obtain that, for all 0 < ρ < 1,

F ′(ρ) = − 2
n

n∑
i=1

M∑
j=1

ηjfj(Xi) + 8rL
M∑

j=1

ηjsign(λ̄(2)
j + ρηj)

+ 2
∫  M∑

j=1

(λ̄(2)
j + ρηj)fj(x)

 M∑
j=1

ηjfj(x)

 dx = 0.

By continuity of ρ 7→ λ̄
(2)
j +ρηj , there exists an open interval in (0, 1) on which ρ 7→ sign(λ̄(2)

j +

ρηj) is constant for all j. Therefore, on that interval,

F ′(ρ) = 2ρ
∫  M∑

j=1

ηjfj(x)

2

dx+ C ′

where C ′ does not depend on ρ. This is compatible with F ′(ρ) = 0, ∀ 0 < ρ < 1, (cf. (5.12))

only if
M∑

j=1

ηjfj(x) = 0, for all x,

and therefore
M∑

j=1

ηj〈fj , fk〉 = 0, for all k ∈ {1, . . . ,M},

which is the desired result. This completes the proof of the lemma. �
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