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1 Centred Schemes for Non-Conservative Hyperbolic Systems

We consider systems of hyperbolic partial differential equations of the form

∂Q

∂t
+ A(Q)

∂Q

∂x
= 0, (x, t) ∈ R × R

+
0 , Q ∈ Ω ⊆ R

N , (1)

in which Q = [q1, . . . qN ]T is the vector of unknowns and A = A(Q) is the
coefficient matrix. We suppose that the unknown function Q = Q(x, t) takes
its values inside an open convex set Ω included in R

N and that Q → A(Q) is
a smooth locally bounded map. We assume system (1) to be hyperbolic with
real eigenvalues λ1, λ2, . . . λN and with a full set of corresponding linearly in-
dependent right eigenvectors r1, r2, . . . , rN . The numerical methods developed
in this paper are of the centred type and will only require an estimate for
the maximum signal speed in absolute value in order to satisfy the Courant
stability condition for the time step. The vector of unknowns Q in (1) will
be always chosen to be the vector of physically conserved variables. So in the
case that A(Q) is the Jacobian matrix A(Q) = ∂F/∂Q of some flux function
F = F(Q), the non-conservative system (1) can be expressed in conservation
form

∂Q

∂t
+
∂F(Q)

∂x
= 0. (2)

In [29] a series of primitive centred (PRICE) numerical schemes for solv-
ing systems of hyperbolic partial differential equations written in the non-
conservative form (1) has been developed. The most promising of these schemes,
namely the PRICE-T scheme, will be the basis of the high-order centred
schemes proposed in this article.

1.1 The FORCE Scheme for Conservative Systems

Since the PRICE-T scheme [29] is the non-conservative analogue of the conser-
vative FORCE scheme [31,32], that is in turn a deterministic re-interpretation
of the staggered-grid version of the Random Choice Method (RCM) of Glimm
[15], we briefly recall here the definition of the FORCE scheme for conserva-
tion laws. The FORCE scheme for the conservative system (2) can be written
either in a two-step staggered grid version as

Q
n+ 1

2

i+ 1

2

=
1

2
(Qn

i + Qn
i+1) −

1

2

∆t

∆x

[
F(Qn

i+1) − F(Qn
i )
]
, (3)

Qn+1
i =

1

2

(
Q

n+ 1

2

i− 1

2

+ Q
n+ 1

2

i+ 1

2

)
− 1

2

∆t

∆x

[
F(Q

n+ 1

2

i+ 1

2

) − F(Q
n+ 1

2

i− 1

2

)
]
, (4)
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or in the more convenient conservative non-staggered one-step formulation
with two-point fluxes as

Qn+1
i = Qn

i − ∆t

∆x

[
FFORCE

i+ 1

2

− FFORCE
i− 1

2

]
. (5)

Here, the FORCE flux FFORCE
i+ 1

2

is the arithmetic average of the Lax-Friedrichs

and the Lax-Wendroff flux, i.e.

FFORCE
i+ 1

2

=
1

2

(
FLF

i+ 1

2

+ FLW
i+ 1

2

)
, (6)

with the Lax-Friedrichs flux

FLF
i+ 1

2

=
1

2

[
F(Qn

i+1) + F(Qn
i )
]
− 1

2

∆x

∆t

(
Qn

i+1 − Qn
i

)
(7)

and the Lax-Wendroff flux

FLW
i+ 1

2

= F

(
Q

n+ 1

2

i+ 1

2

)
, (8)

where Q
n+ 1

2

i+ 1

2

is given by (3). It is easy to prove via simple algebraic manipula-

tions that the two schemes (3) & (4) and (5)-(8) are identical. For the purpose
of this paper the Lax-Wendroff scheme as given in (8)-(3), is not convenient.
The main problem is its two-step nature and the resulting non-linearity of the
numerical flux function with respect to the arguments Qn

i , Qn
i+1, F(Qn

i ) and
F(Qn

i+1), which makes it cumbersome for further analytic manipulations, since
we do not want to make any further assumptions on F, other than hyperbol-
icity. We therefore propose the following variant of the conservative FORCE
flux:

FFORCE′

i+ 1

2

=
1

2

(
FLF

i+ 1

2

+ FLW ′

i+ 1

2

)
, (9)

where the modified Lax-Wendroff-type flux is now given by

FLW ′

i+ 1

2

=
1

2

[
F(Qn

i+1) + F(Qn
i )
]
− 1

2

∆t

∆x
Âi+ 1

2

[
F(Qn

i+1) − F(Qn
i )
]
. (10)

The matrix Âi+ 1

2

= Âi+ 1

2

(Qn
i ,Q

n
i+1) is a function of the left and the right

states and still has to be chosen appropriately. For linear systems with constant
coefficient matrix A, the fluxes given by (8) & (3) and (10) are identical. We
point out that the modified Lax-Wendroff-type flux (10) has to be introduced
for technical reasons, in order to be able to prove later on that the proposed
non-conservative centred schemes reduce exactly to the conservative centred
scheme (5) with the modified FORCE flux (9), if the matrix A(Q) is the
Jacobian of some flux function F(Q).
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1.2 The Original Two-Step PRICE-T Scheme

The PRICE-T scheme introduced in [29] for non-conservative systems of the
form (1) is the following two-step scheme:

Q
n+ 1

2

i+ 1

2

=
1

2
(Qn

i + Qn
i+1) −

1

2

∆t

∆x
Âi+ 1

2

(
Qn

i+1 −Qn
i

)
, (11)

Qn+1
i =

1

2

(
Q

n+ 1

2

i− 1

2

+ Q
n+ 1

2

i+ 1

2

)
− 1

2

∆t

∆x
Âi

(
Q

n+ 1

2

i+ 1

2

− Q
n+ 1

2

i− 1

2

)
, (12)

where the matrices are evaluated as follows:

Âi = A

(
1

2
[Q

n+ 1

2

i− 1

2

+ Q
n+ 1

2

i+ 1

2

]
)
, Âi+ 1

2

= A

(
1

2
[Qn

i + Qn
i+1]

)
. (13)

When applied to the linear scalar advection equation qt + λqx = 0, in [29] it
was found that the PRICE-T scheme is first-order accurate, monotone and
obeys the standard CFL stability condition

c = λ
∆t

∆x
≤ 1, (14)

where c is the CFL number. It was shown in [29] that for the shallow water
equations the scheme (11) & (12) provides a reasonable approximation of
weak shock waves, but in the presence of strong shocks the scheme is unable to
capture neither the exact position of the front nor the exact post-shock values.
In fact, the theorem of Hou and LeFloch [20] states that non-conservative
methods will converge to the wrong solution in the presence of shock waves.

It is therefore the declared objective of this contribution to create a modi-
fied PRICE-T scheme that automatically reduces to the modified conservative

FORCE scheme (5) & (9) in the case A(Q) is the Jacobian matrix of some flux
function F(Q), i.e. when A(Q) = ∂F/∂Q. The relevance of this result will be
noteworthy: it has been proven that in the conservative case that FORCE is
the optimal centred scheme resulting from a convex average of 8) and 7) in
the sense that it is the least dissipative of all three-point centred methods that
are monotone and have stability condition (14), see [32] for details. Also the
conservative FORCE scheme has been shown to be convergent for the case of
two particular non-linear hyperbolic systems [8].

Furthermore, we are also looking for a scheme that preserves some particular
equilibria of the governing PDE (well-balanced property) and that is easily
extendable to high order of accuracy in space and time.
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1.3 The PRICE-R Scheme

We note that the system (1) contains a non-conservative product which, in
general, does not make sense in the classical framework of the theory of dis-
tributions. With the theory developed by Dal Maso, LeFloch, and Murat [9],
a rigorous definition of weak solutions can be given using a family of paths
Ψ = Ψ(QL,QR, s) connecting two states QL and QR across a discontinuity
with (s ∈ [0, 1]). For all numerical test cases presented in this paper, we always
use the simple segment path, given by

Ψ(QL,QR, s) = QL + s (QR − QL) . (15)

Once a family of paths is chosen, it is possible to give a sense to the non-
conservative product at discontinuities as a Borel measure (see [9] for details).
Moreover, based on the theoretical advances in [9], generalizations of the Roe
method to systems of the form (1) have been introduced in [33,5,26]. Given
a family of paths Ψ, a matrix AΨ is called a Roe matrix if it satisfies the
following properties:

• for any QL,QR ∈ Ω , AΨ(QL,QR) has N real eigenvalues;
• AΨ(Q,Q) = A(Q), for any Q ∈ Ω;
• for any QL,QR ∈ Ω:

AΨ(QL,QR)(QR − QL) =
∫ 1

0
A(Ψ(s,QL,QR))

∂Ψ

∂s
ds. (16)

In the case when A(Q) is the Jacobian matrix of a flux F(Q), then (16) is
independent of the choice of the path and we have the classical Roe property:

AΨ(QL,QR)(QR − QL) = F(QR) − F(QL). (17)

With this insight, we now consider a modified version of the PRICE-T scheme,
called PRICE-R in the following, where we evaluate the matrices Ai and Ai+ 1

2

in equations (11) and (12) as

Âi = AΨ

(
Q

n+ 1

2

i− 1

2

,Q
n+ 1

2

i+ 1

2

)
, Âi+ 1

2

= AΨ

(
Qn

i ,Q
n
i+1

)
. (18)

Using algebraic manipulations and equation (17), it is easy to prove that the
scheme (11) & (12) with (18) reduces to the original conservative FORCE
scheme (3) & (4) and therefore to (5) with the original FORCE flux (6) with
(7) and (8), if A(Q) is the Jacobian matrix of a flux F(Q).

The choice of the matrices given by (18) has the advantage that the result-
ing PRICE-R method becomes exactly conservative if applied to conservation
laws. However, it has the obvious disadvantage that one needs to compute
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the Roe matrix, which may become very cumbersome or even impossible for
complicated hyperbolic systems. Since we are interested in a truly centred
approach that does not need any wave propagation information contained in
the underlying governing PDE, we therefore do not want to compute the Roe
matrix explicitly. An obvious alternative to the analytical computation of the
Roe-type matrix AΨ is to use definition (16) and the segment path (15), which
yields

AΨ(QL,QR)(QR − QL) =
(∫ 1

0
A(Ψ(s,QL,QR))ds

)
(QR − QL). (19)

Hence, we obtain the following definition of the Roe matrix AΨ in the case of
a segment path:

AΨ(QL,QR) =
∫ 1

0
A(Ψ(s,QL,QR))ds. (20)

It is now a key idea of this article to compute the Roe matrix AΨ directly

using the integral along the segment path Ψ, as given by the right hand
side of eqn. (20). The exact conservation properties of the PRICE-R schemes
described above are still valid in this case, if the integral is computed exactly.
For complicated nonlinear hyperbolic systems, the exact computation of the
integral may quickly become too cumbersome, so that we propose to resort to
classical high order accurate Gaussian quadrature rules to compute the right
hand side of eqn. (20) numerically. Given an M-point Gaussian quadrature
rule with weights ωj and positions sj distributed in the unit interval [0; 1], a
very accurate numerical approximation of the Roe matrix AΨ is given by the
following centered Roe-type matrix :

AM
Ψ

(QL,QR) =
M∑

j=1

ωjA(Ψ(sj,QL,QR)). (21)

Recall that anM-point Gaussian quadrature rule integrates polynomials up to
degree 2M − 1 exactly, which means that one Gaussian point is enough if the
system matrix A(Q) is a linear function in Q. In order to study the sensitivity
of the resulting PRICE-R scheme using the approximate Roe matrix (21) we
show the behavior of the method for the shallow water equations in presence
of a strong shock wave. The results are depicted in the top row Fig. 1. The
computations are carried out with different numbers of Gaussian points. It
appears as if with three or more Gaussian points the solution can not be dis-
tinguished any more from the solution obtained using the exact Roe matrix.
In the bottom row we show the behaviour of the scheme using three Gaussian
points and different numbers of cells. We highlight that in this way conserva-
tion is not maintained exactly any more but it can be preserved numerically up
to any desired order of accuracy by simply increasing the number of Gaussian
points. For even more sophisticated methods in computing the path integral

6



 0

 250

 500

 750

 1000

 0  200  400  600

D
ep

th
 h

 [m
]

x [m]

1 Gaussian point approx.
2 Gaussian point approx.
3 Gaussian point approx.

Analytical ROE matrix
exact

 0

 100

 200

 300

 400

 500

 600

 520  540  560  580  600

D
ep

th
 h

 [m
]

x [m]

1 Gaussian point approx.
2 Gaussian point approx.
3 Gaussian point approx.

Analytical ROE matrix
exact

 0

 250

 500

 750

 1000

 0  200  400  600

D
ep

th
 h

 [m
]

x [m]

3 Gaussian point approx. N=1000
3 Gaussian point approx. N=5000

3 Gaussian point approx. N=10000
3 Gaussian point approx. N=20000

exact

 0

 100

 200

 300

 400

 500

 600

 520  540  560  580  600

D
ep

th
 h

 [m
]

x [m]

3 Gaussian point approx. N=1000
3 Gaussian point approx. N=5000

3 Gaussian point approx. N=10000
3 Gaussian point approx. N=20000

exact

Fig. 1. Dam break problem generating a strong shock wave (initial conditions
hl = 1000 m, hr = 0.1 m, ul = 0 and ur = −3000 m/s). Solution is obtained at
time t = 2.5 s using the first-order PRICE-R scheme. Top row: comparison amongst
results obtained using 1 to 3 Gaussian points (symbols), analytical Roe matrix AΨ

and exact solution (line) and using 5000 cells. On the right a zoom around the shock
is shown. Bottom row: behaviour of the scheme using three Gaussian points and
different numbers of cells. On the right a zoom around the shock is shown.

numerically, one even could think of using adaptive and extrapolation strate-
gies, such as Romberg integration. However, for all the test cases presented in
this article, three Gaussian quadrature points have shown to be enough. We
also note that the dam-break test considered in fig. 1 is not physical at all but
is just used to show the quality and the robustness of the numerical method
since the right initial velocity of -3000 m/s and the left initial depth of 1000 m
are never reached in real situations. So for any applications of shallow water
equations the numerical approximation given by eq. (21) can be considered a
good choice. Finally the reader can easily verify that the original PRICE-T
scheme (11) and (12) with the matrices Âi and Âi+ 1

2

given by (13) can be rein-

terpreted as the PRICE-R scheme, where equation (21) is approximated with
just one single Gaussian point. This choice was shown in [29] to give already
reasonable shock-capturing properties in the case of weak shocks. Note that
the centered Roe-type matrix AM

Ψ could also be used in the class of centered
schemes developed in [7].

We finally would like to remark that even exactly path-conservative schemes
may fail to converge for non-conservative systems as reported recently in [6].
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1.4 Alternative Formulation of the PRICE-R Scheme

After some algebra, the two-step PRICE-T scheme given by (11) and (12) can
be rewritten as a one-step scheme, as follows

Qn+1
i = Qn

i − ∆t

∆x

[
A−

i+ 1

2

(Qn
i+1 −Qn

i ) + A+
i− 1

2

(Qn
i −Qn

i−1)
]
, (22)

where

Â−

i+ 1

2

=
1

4

[
Âi −

∆x

∆t
I + Âi+ 1

2

− ∆t

∆x
ÂiÂi+ 1

2

]
(23)

and

Â+
i− 1

2

=
1

4

[
Âi +

∆x

∆t
I + Âi− 1

2

+
∆t

∆x
ÂiÂi− 1

2

]
, (24)

with the identity matrix I and all matrices Â computed as in (18). We empha-
size the identical form of this scheme with the path-conservative Roe scheme
proposed in [26,5,4], the only difference being in the matrices A−

i+ 1

2

and A+
i− 1

2

.

In our case, these Roe-type matrices are centred, that is they do not use ex-
plicit wave properties information. Moreover, they are computed numerically,
whereas in [5,4] they are computed as

A±

i+ 1

2

= AΨ

(
Qn

i ,Q
n
i+1

)±
= RΨΛ±

Ψ
R−1

Ψ
. (25)

Here, the usual definitions apply, i.e. RΨ is the matrix of right eigenvectors
of the Roe matrix AΨ and ΛΨ is the diagonal matrix with the eigenvalues of
AΨ. The matrices Λ±

Ψ
are, as usual, either the positive or the negative part of

the diagonal matrix ΛΨ. For very complicated non-conservative systems one

could still construct an upwind method by using A±

i+ 1

2

= AM
Ψ

(
Qn

i ,Q
n
i+1

)±
and

computing the eigenstructure fully numerically, e.g. using the RG subroutine
of the EISPACK library. We emphasize that the use of AM

Ψ
instead of AΨ in

(25) still has the advantage that the Roe-averages do not have to be computed
analytically, which may be very difficult or even impossible for very general
nonlinear systems, however the necessary numerical computation of the full
eigenstructure is very costly.

So the basic idea of our new PRICE-C scheme presented in the following
section is to avoid the use of the analytical Roe matrix and the computation of
A±

i+ 1

2

, which requires the knowledge of wave propagation information (upwind

philosophy), and to use instead only the centered Roe-type matrix AM
Ψ

which
is computed numerically with a number of Gaussian points that is adequate
for the problem to be solved (centred philosophy).
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1.5 The PRICE-C Scheme

The main drawback of the scheme (22),(23),(24) is that the matrices A+
i− 1

2

and

A−

i+ 1

2

are three-point functions, i.e. each of them depends on the three states

Qn
i−1, Qn

i and Qn
i+1. This prevents a direct extension of the PRICE-R method

to multiple space dimensions and high order of accuracy using a polynomial
reconstruction of Q.

To circumvent this problem, we therefore propose to modify the matrices A+
i− 1

2

and A−

i+ 1

2

, substituting the matrix Âi in (23) with Âi+ 1

2

and the matrix Âi

in (24) with Âi− 1

2

, in order to make them only two-point functions of the two
adjacent states. After these modification, the final non-conservative version
of the FORCE method, called PRICE-C scheme in the following, reads as
follows:

Qn+1
i = Qn

i − ∆t

∆x

[
A−

i+ 1

2

(Qn
i+1 −Qn

i ) + A+
i− 1

2

(Qn
i −Qn

i−1)
]
, (26)

with

A−

i+ 1

2

=
1

4

[
2AM

Ψ

(
Qn

i ,Q
n
i+1

)
− ∆x

∆t
I − ∆t

∆x

(
AM

Ψ

(
Qn

i ,Q
n
i+1

))2
]

(27)

and

A+
i− 1

2

=
1

4

[
2AM

Ψ

(
Qn

i−1,Q
n
i

)
+

∆x

∆t
I +

∆t

∆x

(
AM

Ψ

(
Qn

i−1,Q
n
i

))2
]
. (28)

Now the matrices A−

i+ 1

2

and A+
i− 1

2

only depend on two adjacent states. With

the properties (20) and (17) it can be easily proven that if the PDE (1) is a
conservation law (2), then we have

A−

i+ 1

2

(
Qn

i+1 − Qn
i

)
= FFORCE′

i+ 1

2

− F(Qn
i ), (29)

A+
i− 1

2

(
Qn

i −Qn
i−1

)
= F(Qn

i ) − FFORCE′

i− 1

2

. (30)

Therefore, the PRICE-C scheme (26)-(28) reduces to the modified conservative
FORCE method (5), (9), (10) if A is the Jacobian of a flux F.

We note that, independently of the present work, a similar method has been
proposed in [7], however, with the important difference that in our case the
centered Roe-type matrices AM

Ψ
are computed via an entirely numerical pro-

cedure, using M-point Gaussian quadrature of appropriate order to evaluate
the path integral in (21), whereas in [7] the Roe matrices are computed using
analytical expressions for the Roe averages.
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We emphasize that our formulation has the important advantage that an ex-
plicit computation of the Roe averages is not necessary, following the original
philosophy of centred schemes that by definition do not need any additional
information on the PDE system. At the same time conservation can be practi-
cally maintained up to any desired precision using Gaussian quadrature rules
of appropriate order of accuracy. For complicated nonlinear PDE, as they
typically arise in industrial, civil and environmental engineering, closed an-
alytical expressions for the Roe averages may be impossible to obtain for a
given PDE system. An example for this will be shown later when we consider
shallow-water-type systems with moving bed using a complex closure relation.

2 High Order Extension

2.1 Nonlinear Reconstruction Technique

In this section we briefly discuss the proposed nonlinear weighted essentially
non-oscillatory (WENO) reconstruction procedure to reconstruct higher order
polynomial data within each spatial cell Ti = [xi− 1

2

; xi+ 1

2

] at time tn from the
given cell averages Qn

i . We emphasize already at this point that the recon-
struction procedure is nonlinear and depends strongly on the input data Qn

i .
Thus, the resulting numerical scheme, even when applied to a completely lin-
ear PDE, will be nonlinear and thus it will not be possible to give a closed
expression of the scheme.

The reconstruction procedure described here for the one-dimensional case fol-
lows directly from the guidelines given in [12] for general unstructured two-
and three-dimensional meshes. It reconstructs entire polynomials, as the orig-
inal ENO approach proposed by Harten et al. in [19]. However, we formally
write our method like a WENO scheme [21,23] with a particularly simple
choice for the linear weights. The most important difference of our approach
compared to classical WENO schemes is that standard WENO methods re-
construct point values at the Gaussian integration points instead of an entire
polynomial valid inside each element Ti.
Reconstruction is done for each element on a reconstruction stencil Ss

i , which
is given by the following union of the element Ti and its neighbors Tj,

Ss
i =

i+s+k⋃

j=i+s−k

Tj, (31)

where s is the stencil shift with respect to the central element Ti and k is
the spatial extension of the stencil to the left and the right. A central recon-
struction stencil is given by s = 0, an entirely left-sided stencil is given by
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s = −k and an entirely right-sided stencil is given by s = k. In our approach,
we always will use the three fixed reconstruction stencils S0

i , S−k
i and Sk

i .
Given the cell average data Qn

i in all elements Ti we are looking for a spatial
reconstruction polynomial obtained from Ss

i at time tn of the form

ws
i (x, t

n) =
N∑

l=0

Ψl(x)ŵ
(i,s)
l (tn) := Ψl(x)ŵ

(i,s)
l (tn), (32)

where we use the rescaled Legendre polynomials for the spatial reconstruc-
tion basis functions Ψl(x) such that the Ψl(x) form an orthogonal basis on
the element Ti. In the following, we will use standard tensor index notation,
implying summation over indices appearing twice. The number of polynomial
coefficients (degrees of freedom) is L = N +1, where N is the degree of the re-
construction polynomial. To compute the reconstruction polynomial wi(x, t

n)
valid for element Ti we require integral conservation for all elements Tj inside
the stencil Ss

i , i.e.

1

∆x

∫

Tj

ws
i (x, t

n)dx =
1

∆x

∫

Tj

Ψl(x)dx · ŵ(i,s)
l (tn) = Qn

j , ∀Tj ∈ Ss
i . (33)

Equation (33) yields a linear equation system of the form

Bjl · ŵ(i,s)
l (tn) = Qn

j (34)

for the unknown coefficients ŵ
(i,s)
l (tn) of the reconstruction polynomial on

stencil Ss
i . Since we choose k = N/2 for even N and k = (N +1)/2 for odd N ,

the number of elements in Ss
i may become larger than the number of degrees of

freedom L. In this case, we use a constrained least-squares technique according
to [12] to solve (34).

To obtain the final non-oscillatory reconstruction polynomials for each element
Ti at time tn, we finally construct a data-dependent nonlinear combination of
the polynomials w0

i (x, t
n), w−k

i (x, tn) and wk
i (x, t

n) obtained from the central,
left-sided and right-sided stencils as follows:

wi(x, t
n) = ŵi

l(t
n)Ψl(x), (35)

with
ŵi

l(t
n) = ω0 ŵ

(i,0)
l (tn) + ω−k ŵ

(i,−k)
l (tn) + ωk ŵ

(i,k)
l (tn). (36)

The nonlinear weights ωs are given by the relations

ωs =
ω̃s

ω̃0 + ω̃−k + ω̃k

, ω̃s =
λs

(σs + ǫ)r . (37)

In our particular formulation, the oscillation indicators σs are computed from

σs = Σlm ŵs
l (t

n)ŵs
m(tn), (38)

11



with

Σlm =
N∑

α=1

1∫

0

∆x2α−1 ∂
αΨl (x)

∂xα
· ∂

αΨm (x)

∂xα
dx. (39)

Here, Σlm is the oscillation indicator matrix for element Ti. If all computations
are done in a reference element, then this matrix does neither depend on the
problem nor on the mesh, see [12]. The parameters ǫ and r are constants for
which we typically choose ǫ = 10−14 and r = 8. For the linear weights λs we
choose λ−k = λk = 1 and a very large linear weight λ0 on the central stencil,
typically λ0 = 105. It has been shown previously [21,23] that the numerical
results are quite insensitive to the WENO parameters ǫ and r and also with
respect to the linear weight on the central stencil λ0, see [12].
The proposed reconstruction usually uses the accurate and linearly stable
central stencil reconstruction in those regions of Ω where the solution is smooth
because of the large linear weight λ0. However, due to the strongly nonlinear
dependence of the weights ωs on the oscillation indicators σs, in the presence
of discontinuities the smoother left- or right-sided stencils are preferred, as
for standard ENO and WENO methods. For the nonlinear scalar case, the
reconstruction operator described above can be directly applied to the cell
averages Qn

i of the conserved quantity Q. For nonlinear hyperbolic systems,
the reconstruction should be done in characteristic variables [19,13] in order
to avoid spurious oscillations that may appear when applying ENO or WENO
reconstruction operators component-wise to nonlinear hyperbolic systems.

2.2 High-Order Accurate One-Step Time Discretization

The result of the reconstruction procedure is a non-oscillatory spatial polyno-
mial wi(x, t

n) defined at time tn inside each spatial element Ti. However, we
still need to compute the temporal evolution of these polynomials inside each
space-time element [xi− 1

2

; xi+ 1

2

]× [tn; tn+1] in order to be able to construct our
final high order accurate one-step finite volume scheme. In order to obtain a
high order accurate one-step method we use the ADER approach of Titarev
and Toro [30]. The key idea therein is to solve high order Riemann problems
at the element boundaries, this is accomplished by a Taylor series expansion
in time, use of the Cauchy-Kowalewski procedure and solutions of classical
Riemann problems, the state variables and its spatial derivatives. In this pa-
per we adopt the following strategy: We expand the local solution Qi(x, t) of
the PDE in each cell in a space-time Taylor series with respect to the element
barycentre xi

Qi(x, t) =Q(xi, t
n) + (x− xi)

∂Q

∂x
+ (t− tn)

∂Q

∂t
+

1

2
(x− xi)

2∂
2Q

∂x2
+

(x− xi)(t− tn)
∂2Q

∂t∂x
+

1

2
(t− tn)2∂

2Q

∂t2
+ ... (40)
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where we then use the classical Cauchy-Kovalewski procedure in order to sub-
stitute time derivatives with space derivatives, using repeated differentiation
of the governing PDE system (1) with respect to space and time. In the fol-
lowing, we illustrate the Cauchy-Kovalewski procedure symbolically for third
order of accuracy. For an efficient implementation up to any order of accuracy
in space and time we refer the reader to [14] and [13]. For two more general and
fully numerical alternatives to the semi-analytical Cauchy-Kovalewski proce-
dure see [11] and [10], where local space-time finite element methods are used
in order to compute the polynomial Qi(x, t).

The first time derivative can be directly obtained from (1) as

∂Q

∂t
= −A(Q)

∂Q

∂x
. (41)

The mixed space time derivative is then obtained after a differentiation with
respect to space

∂2Q

∂t∂x
= − ∂

∂x
A(Q)

∂Q

∂x
−A(Q)

∂2Q

∂x2
, (42)

and the second time derivative of Q is

∂2Q

∂t2
= − ∂

∂t
A(Q)

∂Q

∂x
− A(Q)

∂2Q

∂t∂x
. (43)

The value of Qi(xi, t
n) and all purely spatial derivatives are obtained from the

WENO reconstruction polynomial wi(x, t
n).

2.3 The Fully Discrete High Order Accurate One-Step Scheme

Once the WENO reconstruction and the Cauchy-Kovalewski procedure have
been performed for each cell, PDE (1) can be integrated over a space-time
control volume [xi− 1

2

; xi+ 1

2

] × [tn; tn+1] (see [5] and [26] for datails) and our
final high-order accurate one-step scheme can be written as follows:

Qn+1
i = Qn

i − 1

∆x
AQx −

∆t

∆x

[
D−

i+ 1

2

+ D+
i− 1

2

]
, (44)

where

AQx =

tn+1∫

tn

x−

i+1
2∫

x+

i− 1
2

A(Qi(x, t))
∂

∂x
Qi(x, t)dxdt (45)

and

D±

i+ 1

2

=
1

∆t

tn+1∫

tn

A±

i+ 1

2

(
Q+

i+ 1

2

− Q−

i+ 1

2

)
dt, (46)

13



with

Q−

i+ 1

2

= Qi(xi+ 1

2

, t) and Q+
i+ 1

2

= Qi+1(xi+ 1

2

, t). (47)

All the integrals are approximated using Gaussian quadrature formulae of
suitable order of accuracy. Note that the term AQx, which integrates the
smooth part of the non-conservative product within each cell (excluding the
jumps at the boundaries), vanishes for a first order scheme where we have
∂
∂x

Qi(x, t) = 0. In the following we briefly summarize the entire high-order
one-step algorithm:

(1) Perform the WENO reconstruction described in section 2.1 in order to
obtain the reconstruction polynomials wi(x, t

n) for each cell.
(2) Compute the spatial derivatives of wi(x, t

n) and insert them into the
Cauchy-Kovalewski procedure in order to get all missing space-time deriva-
tives in the Taylor series (40). This step generates a space-time polyno-
mial Qi(x, t) for each cell Ti.

(3) Use the space-time polynomials Qi(x, t) together with Gaussian quadra-
ture to compute the integrals appearing in the fully discrete scheme (44)
and perform the update of the cell averages.

3 Numerical Results

The PRICE-C scheme presented in this paper is very general and is applicable
to any system of hyperbolic equations containing non-conservative products.
In this section we assess the performance of the proposed high order algorithm
using as model system the time-dependent non-linear shallow water equations
without and with sediment transport.

In the following, numerical results for different test cases are reported. The
computations are carried out using a third order WENO version of the pro-
posed PRICE-C scheme. The Courant number is set to CFL=0.9. The matrix
(20) has been evaluated using a three-point Gaussian quadrature rule with
the following points sj and weights ωj:

s1 =
1

2
, s2,3 =

1

2
±

√
15

10
, ω1 =

8

18
, ω2,3 =

5

18
. (48)

3.1 Shallow Water Equations

We consider the 1D system of shallow water equations with variable bottom
topography. The bottom friction is neglected. The system can be written as:
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∂H

∂t
+
∂q

∂x
=0,

∂q

∂t
+

∂

∂x

(
q2

H − b
+

1

2
gH2 − gHb

)
+ gH

∂b

∂x
=0, (49)

where H = h + b is the free surface elevation, h is the water depth, q = hu
is the discharge per unit width, b represents the bottom topography and g is
the acceleration due to gravity. In order to obtain a well balanced scheme, we
follow the idea developed in [5,16,17]. Adding the trivial equation ∂b/∂t = 0
in system (49), the problem can be written in the non-conservative form (1),
in which the forces due to the variable bottom topography are interpreted
as a non-conservative product. The vector Q and the matrix A assume the
following form

Q =




H

q

b



, A =




0 1 0

gh− u2 2u u2

0 0 0


 , (50)

where h = H − b and u = q/h.

We note here that the scheme (44) with matrices (27) and (28) when applied
to the shallow water equations produces an artificial motion of the bottom. In
fact when the bottom is variable, the component (3,3) of the identity matrix
I gives an undesirable diffusion that tends to flatten the bottom also if the
water is quiescent. So in the follow we use a modified identity matrix Im that
reads:

Im =




1 0 0

0 1 0

0 0 0



, (51)

where the undesirable diffusion of the bottom is eliminated.

3.1.1 Verification of the C-Property

Proof. It is well-known that numerical methods for the shallow water sys-
tem with variable bottom must satisfy the so-called C-property as introduced
by [2]. This means that the term due to the bottom elevation must balance
the term due to hydrostatic pressure under quiescent flow conditions over any
bottom profile, including discontinuous bottom. For quiescent flow, we have
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H = const., u = 0 and therefore

∆Q =




∆H

∆q

∆b




=




0

0

∆b



, AΨ =




0 1 0

gh 0 0

0 0 0


 , A2

Ψ =




gh 0 0

0 gh 0

0 0 0


 ,

(52)

with h =
1∫

0
h(s)ds =

1∫

0
(hL + s(hR − hL))ds. Using the well-balanced identity

matrix Im it follows trivially from eqns. (26)-(28) and (51) that

A±

i− 1

2

∆Q = 0 (53)

and therefore the first order scheme verifies the exact C-property. For the
higher order scheme (44) we point out that using reconstruction of the free
surface elevation H and the bottom topography b leads to a so-called well-
balanced reconstruction in the sense of [5], hence also the term AQx = 0.

Numerical verification. The aim of these simulations is now to verify
whether also our actual implementation of the proposed PRICE-C scheme in
computer code satisfies the exact C-property to machine precision. In order
to verify this property we perform two different numerical experiments as
proposed in [34]. We take

b(x) = 5e(−
2

5
(x−5)2) m (54)

for simulating a smooth bottom and

b(x) =





4 m if 4 m ≤ x ≤ 8 m,

0 otherwise.
(55)

for the discontinuous case. The initial data for both tests are:

H = h+ b = 10 m, q = 0. (56)

To test the ability of the scheme to maintain the initial condition, a simulation
is carried out until t = 0.5s, using a mesh of 200 cells in a 10 m long domain.
We use double precision arithmetics. The errors between numerical and exact
solution are given in Table 1, from which we can deduce that the C-property
is exactly satisfied up to machine precision.

3.1.2 A Small Perturbation of a Steady State Water

This test was first proposed by LeVeque [22] and aims to assess the capability
of the scheme to capture a small pulse propagating over a quiescent state. The

16



Table 1
Verification of the C-property: water depth and specific discharge norms

Testcase H q

L1 L∞ L1 L∞

Test 1 (smooth) 3.25e-15 1.12e-14 2.42e-15 4.56e-14
Test 2 (non-smooth) 4.34e-15 1.45e-14 7.54e-15 3.23e-14

bottom topography considered is described by:

b(x) =





0.25 cos(10π(x− 1.5)) + 1)) m if 1.4 m ≤ x ≤1.6 m,

0 otherwise.
(57)

and the initial conditions are:

q(x, 0) = 0 and H(x, 0) =





1 + ǫ if 1.1 m ≤ x ≤ 1.2 m,

1 otherwise,
(58)

with ǫ being a small perturbation of the free surface that we choose to be
ǫ = 0.2 m for the first test and ǫ = 0.001 m for the second one. This is
a very difficult problem and it is reported in the literature [22] that many
numerical schemes fail in computing correctly the propagation of such small
perturbations over variable bottom topography. Results for the free surface
and the velocity are given in Figs. 2 and Fig. 3. The solution obtained using
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3000 cells (third order)
400 cells (first order)

Fig. 2. Small perturbation of a steady state water: pulse (ǫ = 0.2 m) over initial
quiescent water. Results at time t =0.2 s of the third-order PRICE-C scheme with
400 cells (symbols) and with 3000 cells (line). Results of the first-order scheme with
400 cells are also shown for comparison.

the third order PRICE-C scheme with 400 cells is compared with a numerical
reference solution obtained on a very fine mesh with 3000 cells. The method
produces accurate non-oscillatory solutions that are in good agreement with
the reference solutions. It is worth noticing that in the case of the small pulse
( ǫ/h << 1), theoretically the initial disturbance should split into two waves,
propagating to the left and right at the characteristic speed

√
gh. This is

correctly reproduced in our numerical simulations.
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Fig. 3. Small perturbation of a steady state water: pulse (ǫ = 0.001 m) over initial
quiescent water. Results at time t =0.2 s of the third-order PRICE-C scheme with
400 cells (symbols) and with 3000 cells (line). Results of the first-order scheme with
400 cells are also shown for comparison.

3.1.3 Steady Flow Over a Smooth Hump

The aim of such simulations is to analyze the convergence in time towards
a steady flow over a smooth bump. To this end we have used three different
tests (a, b, c) with exact solution, proposed by the Working group on dam

break modeling [18], which are broadly used for testing numerical methods.
The bottom topography is the following:

b(x) =





0.2 − 0.05(x− 10)2 m if 8 m ≤ x ≤ 12 m,

0 otherwise .
(59)

while the domain has a length of L = 25 m, divided in 200 cells. Steady
solutions have been obtained by marching in time to steady state, starting
from an initial profile (horizontal free surface profile) that is far away from
the steady solution. The initial conditions are taken as

q(x, 0) = 0 and H(x, 0) = 0.5 m. (60)

Modifying the value of the upstream discharge q or the downstream water
surface level H results in different steady configurations and therefore we
select different boundary conditions, which are summarized in Table 2. In test

Table 2
Boundary conditions for the steady flow over a smooth hump

Test case q(x = 0, t) [m2/s] H(x = L, t) [m]

(a) 1.53 0.66

(b) 0.18 0.33

(c) 4.42 2.0

case (a) the solution is characterized by a transcritical flow without a shock,
for test (b) the solution is characterized by a transcritical flow with a shock,
while in test case (c) the solution is given by a completely subcritical flow.
The numerical and exact solutions for all test cases are depicted in Fig. 4
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at time t = 200 s. The agreement between numerical and exact solution for
the free surface elevation H is excellent. No spurious oscillations are produced
at the discontinuities and the position of the shock wave is also correct. The
small errors that appear in the discharge are also present in other high order
schemes documented in the literature, see e.g. [34].

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

x (m)

H
 (

m
)

numerical solution
analytical solution

0 5 10 15 20 25
1.4

1.45

1.5

1.55

1.6

x (m)

q 
(m

2 /s
)

numerical solution
analytical solution

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

x (m)

H
 (

m
)

numerical solution
analytical solution

0 5 10 15 20 25
0.16

0.18

0.2

0.22

0.24

x (m)

q 
(m

2 /s
)

numerical solution
analytical solution

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

x (m)

H
 (

m
)

numerical solution
analytical solution

0 5 10 15 20 25
4.4

4.41

4.42

4.43

4.44

x (m)

q 
(m

2 /s
)

numerical solution
analytical solution

Fig. 4. Steady flow over a smooth hump. Top row: test case (a). Middle row: test
case (b). Bottom row: test case (c). Results are shown at time t =200 s using the
third-order PRICE-C scheme (symbols) as well as the exact solution (line).

3.2 Sediment Transport

A system of equations that governs the transport of sediments in gravel bed
rivers is obtained coupling the shallow water equations (49) with an equation
that describes the bottom evolution, namely the Exner equation. It reads:

∂b

∂t
+
∂qs
∂x

= 0, (61)
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where b = b(x, t) is the movable bed elevation. qs is the bedload sediment
transport rate for unit width. Several numerical solutions have been proposed
in literature for this problem [3,4]. And for the quantification of qs different
relationships are available in literature. We have used a simple power law for
testing the method against exact solutions, namely:

qs =
A(u− uc)

m

(1 − λp)
, (62)

where u is the velocity of the water, uc is the critical velocity below which
the sediment transport vanishes, m is a positive exponent, while λp is the
porosity. Moreover other two empirical formulae available in literature have
been implemented. They are of the type:

qs =

√
(s− 1)gd3

s

(1 − λp)
Φ (θ) , (63)

with s being the relative density, and the local Shields stress is given by

θ =
Sfh

(s− 1)ds
, (64)

where ds is the mean sediment diameter. The friction term Sf is calculated
using the usual formula of Manning that reads:

Sf =
q2n2

f

h10/3
(65)

nf being the Manning coefficient of roughness. In this paper we make use of
the sediment discharge function Φ(θ) proposed by Parker [27], which reads

Φ = 0.00218 θ3/2G(ξ), ξ =
θ

θr
, θr = 0.0386, (66)

with

G =






5474(1 − 0.853/ξ)4.5 ξ ≥ 1.59,

exp [14.2(ξ − 1) − 9.28(ξ − 1)2] 1 ≤ ξ ≤ 1.59,

ξ14.2 ξ < 1.

(67)

and the one proposed by Meyer-Peter and Müller [25]:

Φ =





8(θ − 0.047)3/2, if θ > 0.047

0 otherwise
(68)

It is worth noticing that the empirical nature of the relationships aiming to
quantify the solid discharge qs leads to the availability of a great number of
different formulae. As a consequence, each particular choice for the closure
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relation for qs leads to a different system matrix A and therefore to a different
formulation of the analytical Roe matrix AΨ. This would result in unsur-
mountable problems for environmental engineers, whose scope is to try many
different available empirical formulations for reproducing field measurements
or laboratory experiments. The main advantage of the proposed PRICE-C
method with the fully numerical computation of the centered Roe-type ma-
trix AM

Ψ
via Gaussian quadrature along the path is that it completely avoids

the need for an explicit computation of the Roe averages, being at the same
time accurate up to the prescribed order for any choice of the solid transport
formula.

The system of governing equations describing the coupled evolution of the
fluid and the bed can be written in the form (1), see [28], with the vector Q

and matrix A being respectively:

Q =




H

q

b



, A =




∂qs

∂H
1 + ∂qs

∂q
∂qs

∂b

gh− u2 2u u2

∂qs

∂H
∂qs

∂q
∂qs

∂b



. (69)

In the following we show the results provided by the proposed PRICE-C
scheme for three different test cases.

3.2.1 Propagation of a Small Sediment Hump Near Critical Conditions

A test aiming to reproduce bed movement near critical conditions is carried
out. Under these conditions, the coupling between the shallow water equations
and the Exner equation within the time step is mandatory. In this range, in
fact, each of the wave propagation speeds can no longer be identified solely
with a surface wave or solely with a bed wave, and a full coupling of the
equations is necessary to correctly solve the propagation of bed disturbances.
The initial Froude number is taken as FrU = 0.979, where U indicates the
uniform unperturbed state. The initial bed topography is described by:

b(x, 0) = bmax e
−x2

m with − 15 m ≤ x ≤ 15 m, (70)

where bmax = 10−5 m is the amplitude of the initial bed perturbation. The
initial condition is obtained running the code with a fixed bed configuration.
The upstream discharge is fixed according to the Froude number, while down-
stream a fixed water depth equal to 1 m is imposed. The domain length L=25
m is divided in spatial steps of 0.05 m, leading to 500 cells. The numerical
results are compared with an exact solution, obtained by Lyn and Altinakar
[24] linearizing the governing system of equations using a small parameter ψU
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defined as follows:

ψU =
1

(1 − λp)hU

∂qs
∂u

. (71)

The adopted sediment transport formula is of the form (62) in which A =
3.4× 10−4 and m = 2.65, while uc is determined solving equation (71) setting
ψU = 2.5 × 10−3. In Fig. 5 the comparison between numerical and analytical
solution is given for t = 20 s for both the bottom and the water surface.
The quantities are plotted in dimensionless form, with the scaling parameters
being:

href =
bmax

(1 − Fr2
U)
, bref = bmax . (72)

We note two waves generated on the bottom: the scour wave propagating
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Fig. 5. Propagation of a small sediment hump near critical conditions. Results at
time t =20 s of the third-order PRICE-C scheme (symbols) and the exact solution
(line).

upstream and a depositional wave propagating downstream, while in corre-
spondence of the bottom disturbances two negative waves are generated in the
water depth h. The numerical solution obtained with the third-order PRICE-
C scheme is in excellent agreement with the analytical solution presented in
[24].

3.2.2 Propagation of a Sediment Bore

In this test case we apply different transport formulae comparing numerical
results with those obtained experimentally in [1]. The experiment consists in a
steep-sloped, rectangular channel of finite length. The bed profile is in quasi-
equilibrium and a constant sediment supply is fed upstream. At reference time
t = 0, this equilibrium situation is perturbed by the rapid raise of a submerged
weir at the downstream end of the flume, imposing a subcritical condition.
The water and sediment discharges at the upstream section are kept constant.
This hydraulic configuration gives rise to a hydraulic jump and a sediment
bore. The aggradational shock front caused by the presence of transcritical
flow represents a demanding test case in which numerical schemes may fail in
predicting both intensity and propagation velocity of the front itself. The flume
is 6.9 m long, 0.50 m wide and the slope is equal to 3.02% . The sediment
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and water discharge are respectively qs = 0.136 l/s and Q = 12 l/s. The
induced water level at the downstream end is H = 20.93 cm; uniform coarse
sand with a mean diameter of 1.65 mm and porosity of 0.42 are considered.
Finally, Manning coefficient is nf = 0.0165 m3s. Numerical treatment of the
friction term is made by using the approach of Gosse [16,17], which leads to
the following system of governing equations:

Q =




H

q

b

x




, A =




∂qs

∂H
1 + ∂qs

∂q
∂qs

∂b
0

gh− u2 2u u2 ghSf

∂qs

∂H
∂qs

∂q
∂qs

∂b
0

0 0 0 0




. (73)

Numerical simulations are conducted using the sediment transport formulae
(66), (68) and a formula of the type (62) calibrated with parameters A =
0.00024, m=3 and uc = 0.3 m/s. In Fig. 6 the position of the sediment bore
obtained with all three different sediment discharge formulae is plotted as a
function of time and is compared with the experimental data. Shock position
at time tn+1 is defined as the x coordinate of the barycentre of the first cell
(starting from the right boundary) that satisfies:

bn+1
i − bni > τ (74)

τ is a given tolerance fixed to 0.02 m in all the computations and for all the
different sediment formula. The celerity of the front is given by the inverse of
the slope of the above curves. As it is seen the propagation celerity depends
on the transport formula used. This means that thanks to its generality and
simplicity, the numerical tool that we propose can be very useful for practi-
tioners when they want to reproduce real data because they can test many
different transport formula without having to adapt the numerical method to
each specific closure relation for qs.

3.3 Numerical Convergence Study

In the previous sections we have shown that the proposed numerical method
well reproduces unsteady solutions and the results are essentially non oscil-
latory. Here we compute the order of accuracy of the scheme to verify that
the expected theoretical order is achieved. We solve the inviscid shallow water
equations coupled with a bottom evolution equation, that written with respect
to the variables h, q and b read:
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Fig. 6. Comparison of front position for the third-order PRICE-C scheme using
three different formulae for the quantification of the solid discharge.

Table 3
Convergence rates study for the sediment transport problem with source terms for
the third order PRICE-C method, (c0 = 0.01m, h0 = 5m, Tp = 10 s, Lw = 25m)

variable h variable q

N L1 O(L1) L∞ O(L∞) L1 O(L1) L∞ O(L∞)

20 5.54E-03 8.57E-03 1.39E-02 2.14E-02
40 1.71E-03 1.70 2.70E-03 1.67 4.27E-03 1.70 6.75E-03 1.67
80 2.45E-04 2.80 3.86E-04 2.81 6.13E-04 2.80 9.64E-04 2.81
160 3.05E-05 3.01 4.79E-05 3.01 7.62E-05 3.01 1.20E-04 3.01
320 3.62E-06 3.08 5.68E-06 3.08 9.04E-06 3.08 1.42E-05 3.08
640 4.01E-07 3.17 6.30E-07 3.17 1.00E-06 3.17 1.57E-06 3.17






∂th+ ∂xq = 0,

∂tq + ∂x

(
qu+ 1

2
gh2

)
= −gh∂xb,

∂tb+ ∂xqs = 0.

(75)

In order to validate the order of accuracy an exact solution is constructed by
prescribing three functions for h(x, t), q(x, t) and b(x, t) which satisfy exactly
(75). They read

h(x, t) = h0 + c0 sin(kx− ωt), q(x, t) =
ω

k
h0 + c0

ω

k
sin(k − ωt),

b(x, t) = −h(x, t), qs(x, t) = −q(x, t), k =
2π

Lw
, ω =

2π

Tp
. (76)

We underscore that the relation qs = −q is not-physically based, but it allows
us to find an exact solution of system (75). Table 3 shows the errors quan-
tified through the standard norms L1, L∞ and relative convergence rates for
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variables h and q at the time t = 100 s with c0 = 0.01m , h0 = 5m, Tp = 10 s,
Lw = 25m. We can see that the third of accuracy is achieved with each norm.

4 Conclusions

We have presented a first order monotone centred scheme, called PRICE-C,
which is based on the centred FORCE scheme for conservation laws [31], [32].
It can be seen as an extension of the PRICE-T method proposed in [29] using
the insights gained by the path-conservative methods developed recently in
[5] and [26]. We have extended this first-order method to third-order of accu-
racy in space and time via the ADER approach using a WENO reconstruction
technique. Extensive numerical experiments suggest that the scheme is very
general, though efficient and simple. It yields very satisfactory results com-
pared to exact and experimental reference solutions. A first attractive feature
of the presented method is the simplicity due to an approximate computation
of the Roe matrix via Gaussian quadrature rules of suitable order of accuracy.
In practice, we found that for shallow-water-type PDE systems, three Gaus-
sian points seem to be enough to ensure conservation. This avoids the need
of an analytical Roe matrix. A second important aspect concerns the future
extension of the method to multiple space dimensions: this can be achieved
since the matrices A±

i+ 1

2

of the PRICE-C method have been modified in such

a way as to become two-point functions of the two adjacent states, in contrast
to the original PRICE-T method or the PRICE-R scheme shown in this paper,
where these matrices were dependent on three states.

The high order centred schemes presented here are very general and can be
applied to any hyperbolic system in non-conservative form that may exhibit
at the same time smooth and discontinuous solutions. The advantage of the
presented centred scheme over upwind-based methods is its simplicity and effi-
ciency, and will be fully realized for hyperbolic systems in which the provision
of upwind information is very costly or is not available.
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