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Abstract. The Tutte polynomial of a graph, also known as the partition
function of the q-state Potts model, is a 2-variable polynomial graph in-
variant of considerable importance in both combinatorics and statistical
physics. It contains several other polynomial invariants, such as the chro-
matic polynomial and flow polynomial as partial evaluations, and various
numerical invariants such as the number of spanning trees as complete
evaluations. However despite its ubiquity, there are no widely-available
effective computational tools able to compute the Tutte polynomial of a
general graph of reasonable size. In this paper we describe the implemen-
tation of a program that exploits isomorphisms in the computation tree
to extend the range of graphs for which it is feasible to compute their
Tutte polynomials. We also consider edge-selection heuristics which give
good performance in practice. We empirically demonstrate the utility of
our program on random graphs. More evidence of its usefulness arises
from our success in finding counterexamples to a conjecture of Welsh on
the location of the real flow roots of a graph.

1 Introduction

The Tutte polynomial of a graph is a 2-variable polynomial of significant im-
portance in mathematics, statistical physics and biology [25]. In a strong sense
it “contains” every graphical invariant that can be computed by deletion and
contraction. The Tutte polynomial can be evaluated at particular points (x, y)
to give numerical graphical invariants, including the number of spanning trees,
the number of forests, the number of connected spanning subgraphs, the dimen-
sion of the bicycle space and many more. The Tutte polynomial also specialises
to a variety of single-variable graphical polynomials of independent combinato-
rial interest, including the chromatic polynomial, the flow polynomial and the
reliability polynomial.

The Tutte polynomial plays an important role in the field of statistical physics
where it appears as the partition function of the q-state Potts model ZG(q, v)
(see [22, 28]). In fact, if G is a graph on n vertices then

T (G, x, y) = (x − 1)−1(y − 1)−nZG((x − 1)(y − 1), (y − 1))



and so the partition function of the q-state Potts model is simply the Tutte
polynomial expressed in different variables. There is a very substantial physics
literature involving the calculation of the partition function for specific families
of graphs, usually sequences of increasingly large subgraphs of various infinite
lattices and other graphs with some sort of repetitive structure (see e.g [27, 23]).

In knot theory, the Tutte polynomial appears as the Jones polynomial of
an alternating knot [5, 4]. Computing the Jones polynomial of a non-alternating
knot requires a signed Tutte polynomial [16, 13], which is more involved. This
has application in many areas, such as the analysis of knotted strands of DNA [4]

The Tutte polynomial also specialises to the chromatic polynomial, which
emerged from work on the four-colour theorem [1] and plays a special role in
combinatorics and statistical physics. In statistical physics, the chromatic poly-
nomial occurs as a special limiting case, namely the zero-temperature limit of
the anti-ferromagnetic Potts model, while in combinatorics its relationship to
graph colouring and historical status as perhaps the earliest graph polynomial
has given it a unique position. As a result, particularly in the combinatorics
literature, far more is known about the chromatic polynomial than about the
Tutte polynomial or any of its other univariate specialisations such as the flow
polynomial, and there are still fundamental unresolved questions in these areas.
Exploration of these questions is hampered by the lack of an effective general-
purpose computational tool that is able to deal with larger problem instances
than the naive implementations found in common software packages such as
Maple and Mathematica. Previous algorithms for computing Tutte polynomials
have either not scaled beyond small graphs [21, 20, 2]; or, have been restricted
to specialised cases [8, 17, 7, 26].

Earlier work of the first author [11, 10] describes such a tool for the chromatic
polynomial of a graph, where the task is considerably simpler as the chromatic
polynomial is univariate and all the graphs can be taken to be simple. Dealing
with a bivariate polynomial and manipulating graphs that may include loops
and multiple edges introduces a range of different issues that must be resolved.
In [21], an algorithm is described that will compute Tutte polynomials of graphs
with no more than 14 vertices that depends on generating all spanning trees of
a graph. The algorithm given in [19] for computing chromatic polynomials was
extended in [20] to compute Tutte polynomials of moderate sized graphs, but is
not effective much beyond 14 vertices. By comparison, our algorithm can process
graphs with 14 vertices in a matter of seconds (as shown in §6). In [2] an alternate
strategy that uses “roughly 2n+1n words of memory for an n-vertex graph” is
implemented. The authors comment that our algorithm is “the fastest current
program to compute Tutte polynomials”, although they identify certain graph
classes where their approach is more efficient. Memory considerations create
constraints on the practicality of the algorithm (see [3] App. D).

In this paper, we describe the implementation of an efficient algorithm for
computing Tutte, Flow and Chromatic polynomials. The algorithm is based
on the idea of caching intermediate graphs and their Tutte polynomials and
using graph isomorphism to avoid unnecessary recomputation of branches of the
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Fig. 1. Deletion and Contraction of an Edge

computation tree. We also employ several heuristics and report on experiments
comparing them. Our findings indicate that, of these, two stand out from the rest.
Furthermore, whilst one is the best choice on dense graphs, the other performs
better on sparse graphs. We present some experimental results of this algorithm
and discussion of the possible factors affecting its performance. In addition, as
an example of its practical use, we present counterexamples to a conjecture
of Welsh on the location of the roots of the flow polynomial of a graph, by
finding for the first time graphs with real flow roots larger than 4. Finally,
our implementation also supports efficient computation of chromatic and flow
polynomials, based on the same techniques presented in this paper, and can be
obtained from http://www.mcs.vuw.ac.nz/∼djp/tutte.

2 Preliminaries

Let G = (V, E) be an undirected multi-graph; that is, V is a set of vertices and
E is a multi-set of unordered pairs (v, w) with v, w ∈ V . An edge (v, v) is called
a loop. If an edge (u, v) occurs more than once in E it is called a multi-edge. The
underlying graph of G is obtained by removing any duplicate entries in E.

Two operations on graphs are essential to understand the definition of the
Tutte polynomial. The operations are: deleting an edge, denoted by G − e; and
contracting an edge, denoted by G/e. See Figure 1.

Definition 1. The Tutte polynomial of a graph G = (V, E) is a two-variable
polynomial defined as follows:

T (G, x, y) =























1 E(G) = ∅
xT (G/e, x, y) e ∈ E and e is a bridge
yT (G − e, x, y) e ∈ E and e is a loop
T (G − e, x, y) + T (G/e, x, y) e is neither a loop nor

a bridge

The definition of a Tutte polynomial outlines a simple recursive procedure
for computing it. However, we are free to apply its rules in whatever order
we wish [25], and to choose any edge to operate on at each stage. Figures 2
and 3 illustrate this recursive procedure applied to a simple graph to give the
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Fig. 2. Illustrating the application of Definition 1 to a small graph. Observe that
vertices are not drawn once they become isolated, as they play no further role. Also,
each graph is given a unique number to aid identification.

T (G1 = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}) = T (G2 = G1 − (4, 1)) + T (G9 = G1/(4, 1))
T (G2 = {(1, 2), (2, 3), (3, 4), (2, 4)}) = x · T (G3 = G2 − (1, 2))
T (G3 = {(2, 3), (3, 4), (2, 4)}) = T (G4 = G3 − (2, 4)) + T (G6 = G3/(2, 4))
T (G4 = {(1, 2), (2, 3), (3, 4)}) = x · T (G5 = G4 − (3, 4))
T (G5 = {(1, 2), (2, 3), (2, 4)}) = x · T (G5 − (2, 3) = ∅) = x · 1
T (G6 = {(2, 3), (3, 2)}) = T (G7 = G6 − (2, 3)) + T (G8 = G6/(2, 3))
T (G7 = {(2, 3)}) = x
T (G8 = {(2, 2)}) = y
T (G9 = {(4, 2), (2, 3), (3, 4), (2, 4)}) = T (G10 = G9 − (4, 2)) + T (G16 = G9/(4, 2))
T (G10 = {(2, 3), (3, 4), (2, 4)}) = T (G11 = G10 − (4, 2)) + T (G13 = G9/(4, 2))
T (G11 = {(2, 3), (3, 4)}) = x · T (G12 = G11 − (3, 4))
T (G12 = {(2, 3)}) = x · T (G12 − (2, 3) = ∅) = x · 1
T (G13 = {(2, 3), (3, 2)}) = T (G7 = G14 − (2, 3)) + T (G15 = G6/(2, 3))
T (G14 = {(2, 3)}) = x
T (G15 = {(2, 2)}) = y
T (G16 = {(2, 3), (3, 2), (2, 2)}) = T (G17 = G16 − (2, 3)) + T (G19 = G9/(2, 3))
T (G17 = {(3, 2), (2, 2)}) = x · T (G18 = G16 − (2, 3))
T (G18 = {(2, 2)}) = y
T (G19 = {(2, 2), (2, 2)}) = y · T (G20 = G19 − (2, 2))
T (G20 = {(2, 2))}) = y · T (G19 − (2, 2) = ∅) = y · 1

Fig. 3. Illustrating an algebraic proof of the computation illustrated in Figure 2. Ob-
serve that the graph numbers given (e.g. G1) align with those given in Figure 2.
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final polynomial. It should be clear from these figures that the structure of the
computation corresponds to a tree.

The order in which the rules of Definition 1 are applied significantly affects the
size of the computation tree. An “efficient” order can reduce work in a number
of ways. For example, there are two situations where an edge is associated with
a factor directly: if the edge is a loop, the factor is y; likewise, if the edge is a
bridge, the factor is x. Eliminating such edges as soon as possible and storing
the factor for later incorporation into the answer reduces work by lowering the
cost of operations (e.g. contracting, connectedness testing, etc.) on graphs in the
subtrees below. In Figure 2, for example, the loop present in G16 is not reduced
immediately and, instead, is propagated to the bottom of the computation tree;
removing it immediately reduces, amongst other things, the cost of duplicating
the graph when the branch forks further down.

Within a single computation tree, it often arises that a graph G occurs more
than once. Thus, recomputing T (G) from scratch each time is wasteful and
should be avoided when possible. For example, the triangle occurs twice in Figure
2, both as G3 and G10. Thus, we can simplify the tree by simply reusing the
result from T (G3) in place of T (G10). This optimisation has a significant effect
on the performance of our algorithm in practice (as shown in §6).

The choice of edge for a delete/contract operation can also greatly affect the
size of the computation tree. In particular, it affects the likelihood of reaching a
graph isomorphic to one already seen. For example, selecting (4, 2) when evalu-
ating T (G9) in Figure 3 yields the triangle (as shown); choosing any of the other
edges, however, does not. We have not yet explored the effects of different edge
selection heuristics, although this remains important future work.

Finally, an efficient algorithm for computing Tutte polynomials can be used
immediately to compute chromatic, flow and reliability polynomials. For ex-
ample, for the chromatic polynomial P (G, λ) and flow polynomial F (G, x) of a
graph with n vertices, e edges and c connected components are derived as follows
from the Tutte polynomial:

P (G, λ) = (−1)n−cλ · T (G, (1 − λ), 0)

F (G, x) = (−1)e−n+c · T (G, 0, (1 − x))

3 Roots of Flow Polynomials - Welsh’s Conjecture

Our primary motivation for developing an efficient algorithm was to extend
the range for which computational exploration of questions relating to Tutte
polynomials is feasible, as there are a number of long-standing open questions
for which our computational evidence is extremely limited.

Several of these problems relate to the location of the roots of the various
single-variable specialisations of the Tutte polynomial mentioned earlier. In par-
ticular, the roots of the chromatic polynomial, or chromatic roots have been
extensively studied while much less is known about the roots of the flow poly-
nomial. One fundamental question about which very little is known is whether
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there is an upper bound on the value of real flow roots. As there are graphs
(such as the Petersen graph) with no 4-flows, the strongest possible result would
be that there are no real flow roots larger than 4.

Conjecture 1 (Dominic Welsh) If G is a bridgeless graph with flow polyno-
mial FG, then FG(r) > 0 for all r ∈ (4,∞).

This conjecture is essentially a dual version of the famous Birkhoff-Lewis
conjecture that planar graphs have no chromatic roots in [4,∞) which has been
proved for r = 4 (the four-colour theorem) and for [5,∞).

In prior study of chromatic roots, cubic graphs of high girth have played an
important role as they seem to exhibit qualitatively extremal behaviour (this
is a deliberately imprecise statement) and for this reason, they are a natural
class to examine for other questions related to Tutte polynomials. In this vein
we computed the Tutte polynomials of cubic graphs of girth at least 7 on 24–32
vertices with the intention of testing a variety of conjectures against this data
set.

An immediate positive outcome of this experiment was the discovery of a
number of counterexamples to Welsh’s conjecture. A specific example is the
generalised Petersen graph P (16, 6) which is a 32-vertex cubic graph of girth 7
shown in Figure 4 with flow polynomial (t − 1)(t − 2)(t − 3)Q(t) where

Q(t) = t14 − 42 t13 + 833 t12 − 10358 t11 + 90393 t10 − 587074 t9

+ 2934917 t8 − 11515364 t7 + 35798907 t6 − 88275860 t5

+ 171273551 t4 − 256034548 t3 + 282089291 t2

− 207662412 t + 77876944.

This has real roots at two values t1 ≈ 4.0252205 and t2 ≈ 4.2331455 thereby
demonstrating that 4 is not the upper limit for flow roots.

There are a variety of other examples on 28 and 36 vertices, but the smaller
ones are more difficult to describe. The common features of the examples found
are that the flow polynomial is a polynomial of reasonably high odd degree that
has a negative derivative at t = 4 and is strongly positive at t = 5. The graphs on
30 and 34 vertices that were examined have flow polynomials of even degree with
positive derivative at t = 4 and values that just keep increasing as t increases.

Given that 4 is not an upper limit for flow roots, what would be an appropri-
ate replacement for Welsh’s conjecture? The nature of these examples suggests
that they will not give flow roots above 5, and yet there seems to be no strong
reason to choose any value strictly between 4 and 5. Therefore we propose the
following conjecture:

Conjecture 2 If G is a bridgeless graph with flow polynomial FG, then FG(r) >
0 for all r ∈ [5,∞).
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Fig. 4. The generalised Petersen graph P (16, 6)

The case r = 5 is simply Tutte’s 5-flow conjecture and so the truth of this
conjecture (and the Birkhoff-Lewis conjecture) would give an appealing parallel
between the flow roots of general graphs and chromatic roots of planar graphs.

Finally, we have sanity checked the Tutte polynomial computed for P (16, 6)
by evaluating it at several known points (see §5.3).

4 Algorithmic Observations

In this section, we begin by detailing several well-known theorems about the
Tutte polynomial and explain how these can be exploited to improve computa-
tional performance.

4.1 Known Reductions

There are numerous well-known properties of the Tutte polynomial definition
that can be exploited to prune the computation tree and, hence, improve per-
formance. The first of these exploits the fact that the Tutte polynomial is multi-
plicative over the blocks (i.e., maximal 2-connected components) of a graph and
that these biconnnected components can be determined in linear time.

Theorem 1. Let G = (V, E) be a graph with m blocks G1, G2, . . ., Gm. Then
T (G) =

∏m

i=1 T (Gi).

At present, our system uses a standard algorithm for identifying biconnected
components [24], extracting the non-trivial biconnected components (that is,
those with more than 2 vertices). The trivial biconnected components are edges
and multi-edges whose underlying graph is a forest, and these are processed in a
single step using the following lemma, which is immediate from the definitions.
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Lemma 1. Let G = (V, E) be a multi-graph whose underlying graph is a for-
est with s edges. Denote the multiplicity of each distinct edge in the graph by
d1, . . . , ds. Then,

T (G) =

s
∏

i=1

(x + y + y2 + . . . + ydi−1)

It is possible that further gains could be made by using a dynamic algorithm
for biconnected components (e.g. [29, 18]). Furthermore, our algorithm makes
no particular effort to select edges whose deletion helps to create separating
vertices; instead, it simply exploits them when, by chance, they occur. There is
a similar, though more complicated, algorithm for detecting separating pairs of
vertices and decomposing the graph into triconnected components [12, 9], though
we have not yet experimented with this.

An ear in a graph is a path v1 ∼ v2 ∼ · · · ∼ vn ∼ vn+1 where d(v1) > 2,
d(vn+1) > 2 and d(v2) = d(v3) = · · · = d(vn) = 2. A cycle is viewed as a
“special” ear where v1 = vn+1 and the restriction on the degree of this vertex
is lifted. If a graph contains a multi-edge or an ear, then all the edges involved
can be removed in a single operation. We denote an edge of multiplicity p by
ep and an ear with s edges by Es. Deletion of a multi-edge or ear is defined
naturally as meaning the deletion of all the edges. Contraction of a multi-edge
means to delete all the edges and identify the endvertices, while contraction of
an ear means to delete all the edges and identify v1 and vn+1.

Theorem 2. Suppose that G is a biconnected graph that is either equal to a
multi-edge ep of multiplicity p or properly contains a multi-edge ep. Then

T (G) =

{

(x + y + · · · + yp−1), G = ep;

(1 + y + · · · + yp−1)T (G/ep) + T (G − ep), otherwise.

Ears are dual to multiple edges and so we have the dual result:

Theorem 3. Suppose that G is a biconnected graph that is either equal to an
ear Es (which is necessarily a cycle of length s) or properly contains an ear Es.
Then

T (G) =

{

(y + x + · · · + xs−1), G = Es;

(1 + x + · · · + xs−1)T (G − Es) + T (G/Es), otherwise.

In matroid terminology, these results say that an entire parallel class or series
class can be processed at once.

These two results follow immediately from the rules for deletion/contraction
and Figure 5 visually outlines the proof of Theorem 3. The value of these two
theorems is that we can exploit them to further prune the computation tree; we
find that they offer significant performance improvements in practice.
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Fig. 5. Reduction of an ear. In the first delete/contract, we select an edge on the ear
for removal; on the left branch, this leaves two single-edge biconnected components
which immediately yield a factor of x2.

There are more complex structures that can in principle be processed in a
single step, such as when there is an ear in the underlying simple graph, but this
ear contains multi-edges in the graph itself.

Theorem 4. Let G = (V, E) be a multi-graph whose underlying graph is an
n-cycle. Denote the multiplicity of each distinct edge in the cycle by d1, . . . , dn.
Then,

T (G) =

n
∑

i=1





n
∏

j=i+1

(x + y1...dj−1)

i−1
∏

k=1

(y0...dk−1)



+(x+ydn+dn−1−1)

n−2
∏

i=1

(y0...di−1)

Proof. The proof is by induction. The first step is to use the Tutte recursion
to reduce G into two smaller graphs. For the delete graph, we apply Lemma 1.
For the contract graph we observe it is simply a (k − 1)-multicycle to which the
inductive hypothesis can be applied. Figure 6 outlines the proof for the special
case n = 6.
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5 Algorithm Overview

We now provide an overview of our algorithm to illustrate the main choices
we have made. We also discuss some of the more practical, but nonetheless
important issues which we faced when implementing our algorithm for computing
Tutte Polynomials.

As the algorithm operates, it essentially traverses the computation tree in a
depth-first fashion (although the whole tree is never held in memory at once).
That is, when a delete/contract operation is performed on G, it recursively eval-
uates T (G − e) until its polynomial is determined, before evaluating T (G/e).
Other traversal strategies are possible and could offer some benefit, although
we have yet to explore this. At each node in the computation tree, the algo-
rithm maintains and/or generates a variety of information on the graph being
processed — such as whether it is connected or biconnected — to help identify
opportunities for pruning the tree. In particular, the following approaches are
employed:

i) Reductions. Known properties of Tutte polynomials are used to immedi-
ately reduce either the whole graph, or a subgraph, to a polynomial. For
example, a tree with n edges can be immediately reduced to xn by Defini-
tion 1. Likewise, for a graph containing n loops, we can immediately elimi-
nate these and apply a factor of yn to the polynomial of the remainder. Such
optimisations simplify the computation tree and can speed up the various
operations performed on graphs in the subtree (of course, if the whole graph
is reduced there is no subtree!). In our system, trees, loops, cycles and mult-
edges, multi-cycles, and multi-ears can be reduced immediately.

ii) Biconnectedness. Following Theorem 1, we break graphs which are not
biconnected into their non-trivial biconnected components and the residual
forest. The polynomials for the biconnected components are then computed
independently, which is helpful as their computation trees may be signifi-
cantly smaller. At present, our system uses a standard algorithm for iden-
tifying biconnected components [24], extracting the non-trivial biconnected
components (that is, those with more than 2 vertices).

iii) Cache. Computed polynomials for graphs encountered during the compu-
tation are stored in a cache. Thus, if a graph isomorphic to one already
resolved is encountered, we simply recall its polynomial from the cache. This
optimisation typically has a significant effect, since the whole branch of the
computation tree below the isomorph is pruned. To determine graph iso-
morphism, we employ McKay’s nauty program [14]. The size of the cache
employed and the replacement strategy used when the cache fills require fur-
ther study as both can have significant effects.

iv) Edge Selection. As indicated already, the choice of edge for deletion and
contraction affects the likelihood of reaching a graph isomorphic to one al-
ready seen (see §2). Furthermore, it affects the chance of exposing structures
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(e.g. cycles and trees) which can be immediately reduced. We have found that
two edge-selection heuristics perform particularly well: vertex order and min-
imising single degree. In §5.2, we provide explore these and other heuristics
in more detail.

The coefficients computed for the Tutte polynomial of even a small graph
are large and can easily go beyond the size of a machines 32-bit or 64-bit word
size. To address this, we have implemented a simple library for arbitrary sized
integers.

5.1 Graph Isomorphism

To implement the cache for polynomials of graphs at nodes of the computation
tree, we employ a simple hash map. This is keyed upon a canonical labeling of
the graph obtained using nauty [14]. Since nauty accepts only simple graphs,
we transform multigraphs into simple graphs by inserting additional vertices as
necessary. We refer to such graphs as being “constructed”. To avoid a constructed
graph from clashing with a normal simple graph having the same number of
vertices and edges, we exploit the fact that nauty allows vertices to be coloured
and will reflect the colour class of a vertex in the canonical form. Thus, vertices
added to represent multi-edges are coloured differently from normal vertices. An
interesting issue here is that, at each node in the computation tree, we must
recompute the canonical labelling from scratch as the graph, by definition, is
different from its parent. While we have not explored this as yet, there is potential
for exploiting an incremental graph isomorphism algorithm which could more
efficiently determine the canonical labelling of a graph given that of its parent.

An important problem we face is what to do when the cache fills up, which
happens frequently for large graphs, even when large amounts (e.g. > 2GB)
of memory are available. To resolve this, we employ techniques from garbage
collection: items in the cache are displaced and, to avoid memory fragmentation,
those left are compacted into a contiguous block (this is similar to mark-and-
sweep garbage collection). To determine which graphs to displace, we employ a
simple policy based on counting the number of times a graph in the cache has
been “hit”. When the cache is full, graphs with a low hit count are displaced
before those with higher counts.

Another problem is how much of the cache to displace. Clearly, displacing
less means the cache will fill more frequently and, on average, contain more old
items. Of course, the more items there are in the cache, the greater the potential
for collisions when searching for an isomorph. In contrast, displacing more of the
cache each time means that many graphs which may turn out to be useful later
on will not survive. In our implementation, the default policy is to displace 30%
of the cache in one go when it becomes full.

5.2 Edge-Selection Heuristics

The order in which edges are selected during the computation can have a dra-
matic effect on the runtime. Here, we consider several edge-secltion heuristics
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and identify two which perform particularly well. In the following Section, we
also provide some experimental evidence of this.

Vertex Order Heuristic. The first heuristic we consider is the vertex order
heuristic, or Vorder for short. In this heuristic, the vertices of the graph are
given a fixed, predefined ordering. Then, as the computation proceeds, edges
are selected from the lowest vertex in the order until it becomes disconnected;
once this occurs, edges are selected from the next lowest vertex until it becomes
disconnected and so on. For contractions, the resulting vertex maintains the
lowest position in the order of those contracted. Furthermore, when selecting an
edge for some vertex v, we choose one whose other end-point is also the lowest
of any incident on v.

Figure 7 illustrates this process operating on a simple graph. In the figure,
the position of each vertex in the order is shown next to it. Thus, for the first
delete/contract, an edge from vertex 1, namely (1, 2), is selected since 1 is lowest
in the ordering and 2 is below the others adjacent to 1. On the deletion side,
that edge is simply removed and, thus, the next edge selected is also from 1 (this
time, it’s (1, 3); on the contract side, 1 and 2 are contracted, with the resulting
vertex coming at the position previously occupied by 1 in the order.

In considering Figure 7 there is an interesting observation to make: the iso-
morphic hits that occur are almost always immediately isomorphic (i.e. no per-
mutation of vertices is required). To see why this is significant, let us imagine
a larger graph which differs only in that some big structure is reachable from
vertex 5. Since this structure is not touched during the computation shown, we
know that the same isomorphic hits will apply. As we will see, this is not always
the case for other heuristics.

From the above line of reasoning, we conclude that Vorder promotes the
likelihood of an isomorphic match occurring, and that this explains why it per-
forms so well on dense graphs (as we will see in §6). Whilst studying this heuris-
tic, we have also made some other observations. Firstly, contracting two vertices
such that the resultant vertex assumes the highest position of either generally
does not perform as well. Secondly, using an ordering where vertices with higher
degree come lower in the ordering generally also gives better performance.

Degree Selection Heuristics. The second kind of heuristic we consider are
those which select edges based on their degree. The idea is to choose an edge
which either minimises or maximises the degree in some way, and we consider
here a family of related heuristics:

– Minimise Single Degree (Minsdeg): here the edge selected at each point
in the computation tree has an end-point with the minimal degree of any
vertex.

– Minimise Degree (Mindeg): here the edge selected at each point in the
computation has end-points whose degree sum is the least of any edge.
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Fig. 7. Illustrating the Vorder heuristic on a small graph. The position of each vertex
in the order is shown next to it. Thus, the heuristic works aggressively on the vertex
labelled 1, since this is lowest in the order.
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Fig. 8. Illustrating the Minsdeg heuristic on the small graph from Figure 7. This
heuristic selects edges whose end-point has the lowest degree of any vertex. The vertices
of each graph have been labelled to indicate how individual vertices progress through
the computation.

– Maximise Single Degree (Maxsdeg): here the edge selected at each
point in the computation has an end-point with the maximum degree of any
vertex.

– Maximise Degree (Maxdeg): here the edge selected at each point in the
computation has end-points whose degree sum is the most of any edge.

As we will see in §6, the Minsdeg heuristic is generally the best choice of
these and, on sparse graphs, it outperforms the Vorder heuristic from §5.2.
Figure 8 illustrates Minsdeg operating on the graph from Figure 7. Here, the
shape of the computation tree seems quite different from Figure 7. For example,
there are more terminations on single vertices with loops and, likewise, graphs
with higher degree multi-edges are encountered. Furthermore, whilst the num-
ber of isomorphic hits is actually slightly higher than for Figure 7, most of these
are not immediately isomorphic. This, we believe, indicates the heuristic will
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not promote isomorphic matching as well as Vorder. This is because, in larger
graphs, more structures will be present that prevent isomorphic hits from occur-
ring until much later in the computation. For example, in Figure 8 consider the
isomorphic hit that occurs between the third and fourth levels. In this case, we
have one graph with vertices {1, 2, 3} and another with vertices {1, 3, 4}. Thus, if
we imagine computing the polynomial of a larger graph which differs by having
some structure adjacent to vertex 4, then we can see that this isomorphic hit
would not occur. In practice, with Minsdeg, isomorphic hits typically occur at
levels which are further down the computation tree than with Vorder. Never-
theless, we find that Minsdeg does outperform Vorder on sparse graphs (see
§6), although the reason for this remains unclear. We believe, however, that it
may be because Minsdeg tends to promote the breaking up of cycles which
exposes large tree portions that can be automatically reduced.

5.3 Correctness

The output of any complex computer program should be treated with caution, if
not outright suspicion, and carefully examined for internal consistency and cross-
referenced against known values. Aside from manual testing on small graphs, we
employ a number of “sanity checks” to increase our confidence in its correctness.
The easiest check is to compute T (G; 2, 2), which should give 2|E(G)| [4], and
compare this with a direct computation of 2|E(G)|. Another check is to compute
T (G; 1, 1), which gives the number of spanning trees in the graph. Then, we can
check that these evaluations are constant for a given graph, regardless of what
parameters are chosen for a particular run of our algorithm (e.g. cache size,
which reductions are applied, edge selection strategy, vertex ordering, etc).

As an illustration, we have sanity-checked the generalised Petersen graph
P (16, 6) discussed in §3 as follows:

– T (2, 2) = 248 as required.
– T (1, 1) = 115184214544 is the number of spanning trees of P (16, 6) as de-

termined by the matrix-tree theorem.
– (−1) T (1 − x, 0) equals the chromatic polynomial of P (16, 6) which was

independently verified by two separate programs.
– T (−1,−1) = −2 equals the expected value (−2)d where d = 1 is the dimen-

sion of the bicycle space of P (16, 6) which can be computed by elementary
linear algebra.

– T (0,−3) = −480 is the number of 4-flows of P (16, 6) which is equal to the
number of edge-3-colourings of P (16, 6) which can easily be verified by a
direct search.

6 Experimental Results

In this section, we report on some experimental results obtained using our sys-
tem. In particular, we look at the effect of using the isomorph cache, and the
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edge-selection heuristics outlined in §5.2. The objective here is to give an indica-
tion of the effect that these features have on performance. We consider random
connected graphs, random 3-regular and random planar graphs. The machine
used for these experiments was an Intel Pentium IV 3GHz with 1GB of memory,
running NetBSD v4.99.9.

6.1 Experimental Procedure

To generate random connected graphs, we employed the tool genrang (supplied
with nauty) to construct random graphs with a given number of edges; from
these, we selected connected graphs until there were 100 for each value of |E| or
|V | (depending upon experiment). The genrang tool constructs a random graph
by generating a random edge, adding it to the graph (if not already present), and
then repeating this until enough edges have been added. We also used genrang

to generate random simple regular graphs — this essentially works by generating
a random regular multigraph and then throwing it out if it contains loops or mul-
tiple edges. Generating random planar graphs required a different approach since
the number of randomly generated graphs that are planar is extremely small.
Therefore, we employed a markov-chain approach; here, an edge was selected
at random and added to the graph, provided it was not already present and
the graph remained planar; otherwise, it was removed — again, provided that
the graph remained planar. This procedure was repeated for 3n2 steps (which,
according to [6], is well beyond the equilibrium point).

6.2 Experimental Results

Figure 9 presents the data from our experiments on random connected graphs.
Data is provided for timings with and without the cache enabled. From the fig-
ure, it is immediately obvious that the cache has a critical effect on the perfor-
mance of the algorithm. As expected, performance deteriorates as graph density
increases; however, the algorithm appears to perform surprisingly well on very
dense graphs. This stems from the increased regularity present in dense graphs
which gives rise to a greater number of isomorphic hits in the cache.

Figure 10 reports the data from our experiments on random planar and
3-regular. From the graphs, it is clear that computing the Tutte polynomial for
large graphs quickly becomes intractable. Nevertheless, using the isomorphism
cache extends the size of graphs which can be computed. This is of significant
value in practice, since it extends the range of graphs over which users of the
tool can, for example, test a conjecture they are considering.

Figure 11 presents the data from our experiments on random connected
graphs. Data is provided for each of the five heuristics, and observe that a log
scale is used on the y-axis. Also, a timeout of 5000s was used to deal with long
running computations, and this is explains why the data for Maxdeg flattens
out at the top. From the figure, it is immediately obvious that the Vorder
heuristic performs particularly well compared with the others. The reason for
this, we believe, is that it promotes the chance of reaching a graph which is
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isomorphic to one already seen. Note, very dense graphs tend to be easier to
solve, since their increased regularity leads to a greater number of isomorphic
hits in the cache.

Figure 12 reports the data from our experiments on random 3-regular and
4-regular graphs. Data is provided for each of the five heuristics, and observe
that a log scale is used on the y-axis. For the 3-regular graphs, we can see that
the Minsdeg heuristic gives a significant performance benefit over the others.
However, on the 4-regular graphs (which are denser) we see the gap between
Minsdeg and Vorder closes. Furthermore, it is fairly evident that computing
these graphs is considerably more expensive than for the 3-regular graphs.

7 Conclusion

Algorithms for computing Tutte polynomials have been, in general, rather sim-
plistic. We have demonstrated a number of techniques which can greatly reduce
the size of the computation tree. This, in turn, leads to an algorithm which can
tackle significantly larger graphs than previously possible. While this task may
seem futile (since the problem is #P-Hard), it is important to remember that,
in practice, the applications of this tool (e.g. for classifying DNA knots) have
finite requirements; thus, we are moving towards a system which can handle
sufficiently large graphs to be of use to practitioners.

A number of interesting questions remain for further research. Firstly, the
edge-selection heuristics we have explored seem rather simple; can we identify
other heuristics which lead to even better selection orders? Secondly, at each
node in the computation tree, we compute a canonical labelling of the corre-
sponding graph so it can be stored in the cache (this enables later identification
of isomorphs). But, should we do this at every node? For example, could we
maintain the canonical labelling incrementally? Thirdly, can we strengthen the
termination conditions? For example, computing the Chromatic polynomial of
a complete graph is very easy. Thus, for dense graphs, it makes more sense to
move towards complete graphs than empty graphs. Indeed, we have trialled this
for computing chromatic polynomials with considerable success. However, it’s
unclear how this can be applied to the general Tutte computation.

Nevertheless, even with this list of interesting unanswered questions, the
implementation described gives researchers an effective and efficient way to ex-
periment with Tutte polynomials both to answer questions and test conjectures
for a wide range of sizes of graphs [15]. The complete implementation of our al-
gorithm can be obtained from http://www.mcs.vuw.ac.nz/∼djp/tutte. This
also supports efficient computation of chromatic and flow polynomials, based on
the same techniques presented in this paper.
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