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Abstract

We study the deformations of the H equations, presented recently by Adler, Bobenko and Suris,

which are naturally defined on a black-white lattice. For each one of these equations, two differ-

ent three-leg forms are constructed, leading to two different discrete Toda type equations. Their

multidimensional consistency leads to Bäcklund transformations relating different members of this

class, as well as to Lax pairs. Their symmetry analysis is presented yielding infinite hierarchies of

generalized symmetries.

1 Introduction

Recently, Adler, Bobenko and Suris using a general setup studied affine linear quad-equations, which
are multidimensionally consistent, [2]. As an outcome, they extended the lists of the equations given in
[1] by presenting deformations of the H equations. These equations differ from the original H equations
in [1], since they possess the symmetries of the rhombus instead of the square, and are naturally defined
on a black–white lattice.

In this paper, we study some properties of the above equations. Specifically, we derive two different
three-leg forms for each one of the equations under consideration. The existence of two such forms is
justified by the dependence of the deformed equations on black and white points. As a consequence,
we construct two different discrete Toda equations from each equation in this class. Using the multidi-
mensional consistency of the deformed equations, we construct a Bäcklund transformation relating two
different members of this class. This transformation is also employed in the derivation of Lax pairs for
each one of these equations.

Another interesting aspect of the deformed H equations is the structure of their symmetries. Their
symmetry analysis is similar to the one presented in [8] and [11], and implies that, each one of the
deformed H equations admits a pair of generalized symmetries and a pair of extended symmetries, as
well. Using both of these pairs of symmetries, we derive infinite hierarchies of generalized symmetries.

The paper is organized as follows. In section 2, we introduce the notation as well as preliminaries on
the symmetries of lattice equations. The next section is devoted to the presentation of the deformations
of the H equations and their relation to Toda type systems. Their integrability aspects, i.e. Bäcklund
transformations and Lax pairs, are given in section 4, while their symmetry analysis is contained in the
following section. Various perspectives are contained in section 6.
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2 Notation and preliminaries on symmetries of discrete equa-

tions

In this section, we provide notation and termilology of symmetries of difference equations to be used in
what follows. A detailed presentation of symmetries of difference equations can be found in [5].

A partial difference equation is a functional relation among the values of a function u : Z×Z → C at
different points of the lattice, which may involve the independent variables n, m and the lattice spacings
α, β, as well, i.e. a relation of the form

E (un,m, un+1,m, un,m+1, . . . ;n,m;α, β) = 0 . (1)

In this relation, un,m is the value of the function u at the lattice point (n,m), i.e. un,m = u(n,m), and
this is the notation that we will adopt for the values of the function u from now on.

The analysis of these equations is facilitated by the two translation (or shift) operators acting on
functions on Z2, which are defined by

(

S
(k)
n u

)

n,m
= un+k,m ,

(

S
(k)
m u

)

n,m
= un,m+k , where k ∈ Z .

Let G be a connected one-parameter group of transformations acting on the domain of the dependent
variable un,m of the lattice equation (1), i.e.

G : un,m −→ ũn,m = Φ(n,m, un,m; ε) , ε ∈ R .

The prolongation of the group action of G on the shifted values of u is defined by

G(k) : (un+i,m+j) −→ (ũn+i,m+j = Φ(n+ i,m+ j, un+i,m+j ; ε)) . (2)

The transformation group G is a local Lie point symmetry of the lattice equation (1) if it transforms
any solution of (1) to another solution of the same equation. The infinitesimal criterion for G to be a
symmetry of equation (1) is

x(k) (E (un,m, un+1,m, un,m+1, . . . ;n,m;α, β)) = 0 , (3)

which should hold for every solution of equation (1). In the above relation, the vector field x =
R(n,m, un,m) ∂un,m

with its characteristic defined by

R(n,m, un,m) =
d

dε
Φ(n,m, un,m; ε)

∣

∣

∣

∣

ε=0

,

is the infinitesimal generator of the group action of G, and

x(k) =

k
∑

i=0

k−i
∑

j=0

(

S
(i)
n ◦ S

(j)
m R

)

(n,m, un,m) ∂un+i,m+j

is its k-th order forward prolongation.
By extending the geometric transformations to more general ones, which depend, not only on n,

m and un,m, but also on the shifted values of u, we arrive naturally at the notion of generalized
symmetry . In this case, the characteristic of the infinitesimal generator is a function of the form
R(n,m, un,m, un+1,m, un−1,m, un,m+1, . . .).

A further generalization of symmetries follows by considering transformations acting on u and the
lattice parameters, as well. We will refer to them as extended symmetries. Such symmetries can be used
effectively for the construction of similarity solutions, [9], and derivation of higher order generalized
symmetries, [11].
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3 Integrable discrete equations on a black-white lattice

In this section we first present some general characteristics of a class G of lattice equations possessing the
symmetries of the rhombus. Next, we study the equations presented in [2], which possess the rhombic
symmetry but are defined on a black–white lattice. Finally, we derive some of the properties of the
latter equations, as well as their relations to discrete Toda type systems.

un,m un+1,m
α

un,m+1 un+1,m+1α

β β

Figure 1: The quadrilateral

un,m un+1,m
h34

un,m+1 un+1,m+1h12

h24 h13

h23 h14

Figure 2: The polynomials

Let us first introduce the class G . It contains all the autonomous discrete equations, which involve
the values of a function u at the vertices of an elementary quadrilateral, as shown in Figure 1, i.e. they
have the form

Q(un,m, un+1,m, un,m+1, un+1,m+1;α, β) = 0. (4)

Furthermore, the function Q satisfies the following requirements. It is affine linear, depends explicitly
on the four indicated values of u, and possesses the symmetries of the rhombus:

Q(un,m, un+1,m, un,m+1, un+1,m+1;α, β) = τ Q(un,m, un,m+1, un+1,m, un+1,m+1;β, α)

= τ ′Q(un+1,m+1, un+1,m, un,m+1, un,m;β, α),

where τ = ±1 and τ ′ = ±1.
The affine linearity of Q implies that one can define six different polynomials in terms of the function

Q, [1, 2], as indicated in Figure 2. They are defined by the relations

hij = hj i := QQ,ij − Q,iQ,j , i 6= j , i, j = 1, . . . , 4,

where Q,i denotes the derivative of Q with respect to its i-th argument and Q,ij the second order
derivative Q with respect to its i-th and j-th argument.

Taking into account the rhombic symmetry of Q, one arrives at the following conclusions.

1. All the polynomials assigned to the edges are given in terms of a quadratic polynomial h. Specif-
ically, the hij ’s assigned to the horizontal edges read as

h34 = h(un,m, un+1,m;α, β) , h12 = h(un+1,m+1, un,m+1;α, β) ,

while the ones assigned to the vertical edges have the form

h24 = h(un,m, un,m+1;β, α) , h13 = h(un+1,m+1, un+1,m;β, α) .

2. The diagonal polynomials

h14 = G1(un+1,m, un,m+1;α, β) , h23 = G2(un,m, un+1,m+1;α, β) ,

are quadratic and symmetric in the first two of their arguments and symmetric in the parameters.
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Figure 3: Black-white lattice and the corresponding equations

Among the equations, which are affine linear and possess the symmetries of the rhombus, are the
deformations of the H equations presented recently by Adler, Bobenko and Suris in [2]. These equations
are defined on a black–white lattice (or chessboard lattice), as indicated in Figure 3, implying that,
differently colored quadrilaterals carry different equations.

Specifically, an equation of this class has the form Q[u] = 0, where either

Q[u] :=







Q(un,m, un+1,m, un,m+1, un+1,m+1;α, β), |n| + |m| = 2k

Q(un+1,m, un,m, un+1,m+1, un,m+1;α, β), |n| + |m| = 2k + 1
, (5i)

or

Q[u] :=







Q(un,m, un+1,m, un,m+1, un+1,m+1;α, β), |n| + |m| = 2k + 1

Q(un+1,m, un,m, un+1,m+1, un,m+1;α, β), |n| + |m| = 2k
. (5ii)

In the above relations, k is a non-negative integer and the function Q has one of the following forms1.

i) Deformation of equation H1

Q(u, x, y, z;α, β) = (u− z)(x− y) − (α − β) (1 − ǫxy) (6i)

ii) Deformation of equation H2

Q(u, x, y, z;α, β) = (u− z)(x− y) + (β − α)(u+ x+ y + z) − α2 + β2

− ǫ (β − α) (2x+ α+ β) (2y + α+ β) − ǫ (β − α)3 (6ii)

iii) Deformation of equation H3

Q(u, x, y, z;α, β) = α(ux+ yz) − β(uy + xz) + (α2 − β2)

(

δ − ǫxy

αβ

)

(6iii)

Combining relations (5) with (6), the deformations of the H equations can be written in the following
compact, but non-autonomous form, by using the functions

Xn,m =
1 + σ(−1)n+m

2
, Yn,m =

1 − σ(−1)n+m

2
, σ = ±1 . (7)

i. Equations H1σ
ǫ

(un,m − un+1,m+1) (un+1,m − un,m+1) − (α − β) +

ǫ(α− β)
{

Xn,m un+1,mun,m+1 + Yn,m un,mun+1,m+1

}

= 0 (8)

1Compared to the equations presented in [2], we have changed the sign of the parameter ǫ .
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ii. Equations H2σ
ǫ

(un,m − un+1,m+1)(un+1,m − un,m+1) +

(β − α)(un,m + un+1,m + un,m+1 + un+1,m+1) − α2 + β2 − ǫ (β − α)3 −
ǫ (β − α) {2Yn,mun,m + 2Xn,mun+1,m + α+ β} ×

{2Yn,mun+1,m+1 + 2Xn,mun,m+1 + α+ β} = 0 (9)

iii. Equations H3σ
ǫ

α(un,mun+1,m + un,m+1un+1,m+1) − β(un,mun,m+1 + un+1,mun+1,m+1)

+(α2 − β2)δ − ǫ(α2 − β2)

αβ

{

Xn,m un+1,mun,m+1 + Yn,m un,mun+1,m+1

}

= 0 (10)

The equations of the form (5i) correspond to the choice σ = +1, while the ones of the form (5ii)
correspond to σ = −1.

Remark 3.1
The analysis of the deformations of the H equations can be easily performed using their forms (5)
and treating them as members of the class G . However, we find it more convenient to use their non-
autonomous expressions (8)-(10) in order to present the corresponding results in a more compact form.
Thus, in the following, we will denote the left hand side of equations (8)-(10) by
E (un,m, un+1,m, un,m+1, un+1,m+1;n,m;α, β;σ). 2

Remark 3.2
Equations Hσ

ǫ corresponding to the two different choices of σ are counterparts, since they correspond to
alternative coloring of vertices, cf. Figure 4, i.e.

E (un,m, un+1,m, un,m+1, un+1,m+1;n,m;α, β;−σ) =

E (un+1,m, un,m, un+1,m+1, un,m+1;n,m;α, β;σ) .

In what follows, we will consistently use and refer to the coloring convention employed in Figure 4.
Specifically, if σ = 1 then (0, 0) will be a black point, and if σ = −1 then (0, 0) will be a white point.

0, 0

0, 1

1, 0

0, 0

0, 1

1, 0

σ = −1

σ = 1

B

Figure 4: The correspondence of the Hσ
ǫ equations and their multidimensional consistency

Additionally, equations Hσ
ǫ are related to each other through a Bäcklund transformation B, which

is given in the next section. Moreover, independently of the choice of σ, equations (8)-(10) reduce to
the corresponding H equations of [1], when the additional parameter ǫ is set equal to 0. Thus, in the
following, the former equations will also be referred to as the deformed equations. 2

Equations Hσ
ǫ are multidimensionally consistent and possess the tetrahedron property, [2]. These

two properties imply that, the polynomial h is factorized as

h(x, y;n,m;α, β;σ) = k(α, β) f(x, y;n,m;α;σ) , (11)
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where f is a biquadratic polynomial of x and y, and the function k is antisymmetric, i.e. k(β, α) =
− k(α, β). In the following, we will omit the dependence of f on n, m and σ, in order to simplify
our notation. The polynomials f , G1, G2 and k related to the deformed equations are given in the
Appendix, cf. also [2].

The tetrahedron property implies the existence of a three–leg form of all of the deformed equations,
for instance a relation of the form2

F (u0,0, u1,0, α)

F (u0,0, u0,1, β)
= W (u0,0, u1,1) or

F (u1,0, u0,0, α)

F (u1,0, u1,1, β)
= W (u1,0, u0,1) ,

where F and W correspond to the edges (“short” legs) and the diagonals (“long” legs) of an elementary
quadrilateral, respectively.

The three-leg form depends essentially on the “color” of the vertices of the “long” leg, cf. Figure 4.
Thus, we come up with two different three–leg forms for each one of the deformed equations, which are
given in the following list.

1. Equations H1σ
ǫ

White diagonal: additive three-leg form F (x1, x2, α) − F (x1, x3, β) = W (x1, x4)

F (x1, x2, α) = x1 + x2 , W (x1, x4) = (α− β)
1 − ǫ x1x4

x1 − x4

Black diagonal

F (y1, y2, α) =
1 −√

ǫy1
1 +

√
ǫy1

1 −√
ǫy2

1 +
√
ǫy2

, W (y1, y4) =
y4 − y1 +

√
ǫ(α− β)

y4 − y1 −
√
ǫ(α− β)

2. Equations H2σ
ǫ

White diagonal

F (x1, x2, α) = x1 + x2 + α− 2ǫ(x1 + α)2 , W (x1, x4) =
x1 − x4 + α− β

x1 − x4 − α+ β

Black diagonal

F (y1, y2, α) =
1 − 4 ǫ (y2 + α) −√

1 + 8ǫy1
1 − 4 ǫ (y2 + α) +

√
1 + 8ǫy1

,

W (y1, y4) =
y1 − y4 + (α− β)( 2ǫ(α− β) +

√
1 + 8ǫy1 )

y1 − y4 + (α− β)( 2ǫ(α− β) −√
1 + 8ǫy1 )

3. Equations H3σ
ǫ

White diagonal

F (x1, x2, α) = αx1x2 + δ α2 − ǫ x2
1 , W (x1, x4) =

α

β

αx4 − βx1

βx4 − αx1

Black diagonal

F (y1, y2, α) =
α( y1 +

√

y2
1 + 4ǫδ ) − 2ǫy2

α( y1 +
√

y2
1 + 4ǫδ ) + 2ǫy2

,

W (y1, y4) =
(α2 + β2)y1 − 2αβy4 + (α2 − β2)

√

y2
1 + 4ǫδ

(α2 + β2)y1 − 2αβy4 − (α2 − β2)
√

y2
1 + 4ǫδ

2We present its multiplicative formulation, because it turns out that, in almost all cases it is more convenient to write
the three-leg form in this fashion.
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In the above relations, variables xi are given by the expressions

x1 = Yn,mun,m + Xn,mun+1,m , x2 = Yn,mun+1,m + Xn,mun,m ,

x3 = Yn,mun,m+1 + Xn,mun+1,m+1 , x4 = Yn,mun+1,m+1 + Xn,m , un,m+1 , (12)

or similar expressions by interchanging mutually un,m with un+1,m+1, and un+1,m with un,m+1. Rela-
tions (12) and our conventions imply that, xi are naturally adapted to the white diagonals, i.e (x1, x4)
corresponds to a white diagonal independently of the choice for σ.

On the other hand, yi follow from the corresponding xi by interchanging Xn,m with Yn,m. They are
adapted to the black diagonals, since (y1, y4) corresponds to a black diagonal independently of σ.

The above three-leg forms allow us to derive two different discrete Toda type equations from each
one of the Hσ

ǫ equations. The resulting Toda systems can be written in a compact form as3

Hn,m(un,m, un+2,m, un+1,m+1) − Hn,m(un,m+2, un+2,m+2, un+1,m+1) = 0 , (13)

where

• for equations H1σ
ǫ

Hn,m(x, y, z) =
x− y

(x − z)(y − z) − ǫXn,m(α − β)2
, (14)

• for equations H2σ
ǫ

Hn,m(x, y, z) =

x− y

(x− z + an,m)(y − z + bn,m) − 8 ǫXn,m(α− β)2(z + α(1 − 2ǫα))
, (15)

with
an,m := (β − α)(1 − 2ǫXn,m(α+ β)) ,

bn,m := (α− β)(1 − 2ǫXn,m(3α− β)) ,

• and, for equations H3σ
ǫ

Hn,m(x, y, z) =
x− y

α β (αx − β z) (β y − α z) − δ ǫXn,m(α2 − β2)2
, (16)

respectively.
It is worth noting that, when Xn,m = 0, all of the above Toda systems are identical to the corre-

sponding Toda systems following from the original H equations of [1].

4 Bäcklund transformation and Lax pairs

The interpretation of the multidimensional consistency property as a Bäcklund transformation is well
known, and leads to a Lax pair for the equation under consideration, [3, 6]. In that sense, equations Hσ

ǫ

corresponding to the two different choices of σ are related to each other by a Bäcklund transformation,
in terms of which Lax pairs are constructed for both of them. This section is devoted to the presentation
of this transformation and its superposition principle, as well as of the Lax pairs.

Proposition 4.1 (Bäcklund transformation)
Let u be a solution of the deformed equation

E (un,m, un+1,m, un,m+1, un+1,m+1;n,m;α, β;σ) = 0 . (17)

3The resulting equation remains invariant under the interchange of un+2,m and un,m+2.
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Then, the function v determined by the system

B(u, v, λ) :=

{

E (un,m, un+1,m, vn,m, vn+1,m;n,m;α, λ;σ) = 0
E (un,m, un,m+1, vn,m, vn,m+1;n,m;β, λ;σ) = 0

, (18)

is a solution of the equation

E (vn,m, vn+1,m, vn,m+1, vn+1,m+1;n,m;α, β;−σ) = 0 . (19)

Conversely, if v is a solution of (19), then the function u defined via the inverse of transformation
(18), i.e.

B(v, u, λ) :=

{

E (vn,m, vn+1,m, un,m, un+1,m;n,m;α, λ;−σ) = 0
E (vn,m, vn,m+1, un,m, un,m+1;n,m;β, λ;−σ) = 0

, (20)

is a solution of equation (17).
Thus, B(u, v, λ) constitutes a Bäcklund transformation between the deformed equations (17), (19).

Proof
Follows from the proof of the corresponding proposition given in [10, 11]. 2

u0

v1

u12

v2

λ1

λ2

λ2

λ1

Figure 5: Bianchi diagram

u1

ū

v12

v21

u2

u0

v1

u12

v2

λ1

λ1

λ2

λ2

Figure 6: Double Bianchi diagram

Proposition 4.2 (Superposition principle (Bianchi commuting diagram))
Let u0 be a solution of the deformed equation

E (un,m, un+1,m, un,m+1, un+1,m+1;n,m;α, β;σ) = 0 , (21)

and v1, v2 be the solutions of its counterpart

E (vn,m, vn+1,m, vn,m+1, vn+1,m+1;n,m;α, β;−σ) = 0 , (22)

generated by u0 via the Bäcklund transformation B with parameters λ1 and λ2, respectively. Then,
there is a new solution u12 of equation (21), which is constructed according to the Bianchi commuting
diagram, Figure 5, and is given algebraically by

E
(

u0, v1, v2, u12;n,m;λ1, λ2;σ
)

= 0 . (23)

Proof
Follows from the proof of the corresponding proposition in [10, 11]. 2
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The algebraic formula (23) involves two solutions of the deformed equation (21) and two solutions of
its counterpart (22). One may obtain algebraic formulas relating five solutions of the deformed equation
(21) by applying twice the transformation B and using Proposition 4.2 in accordance with Figure 6.
This procedure can be straightforwardly materialized using the corresponding three-leg forms given in
the previous section leading to

Hn,m(u0, ui, u12) − Hn,m(uj , ū, u12) = 0 , i 6= j , i, j = 1, 2 ,

where the corresponding functions Hn,m are given in (14)-(16) with (α, β) −→ (λ1, λ2).
Using the fact that, a Bäcklund transformation may be regarded as the gauge transformation con-

verting the matrices of the Lax pair into upper triangular ones, [4], one may derive a Lax pair for the
equations under consideration, [10, 11]. The result is given in the next proposition, where we use the
notation E,i to denote the derivative of E with respect to its i-th argument.

Proposition 4.3 (Lax pair)
The deformed equation

E (un,m, un+1,m, un,m+1, un+1,m+1;n,m;α, β;σ) = 0

is the compatibility condition of the linear system

Ψn+1,m = Ln,m (un,m, un+1,m;α, λ;σ) Ψn,m

Ψn,m+1 = Ln,m (un,m, un,m+1;β, λ;σ) Ψn,m
, (24i)

where

Ln,m(x1, x2;α, λ;σ) :=
1

√

k(α, λ) f(x1, x2, α)

(

E,4 −E,34

E −E,3

)

(24ii)

and E = E (x1, x2, x3, x4;n,m;α, λ;σ) and its derivatives are evaluated at x3 = x4 = 0.

The matrix on the right hand side of definition (24ii) has the following explicit form for each one of
the deformed equations.

a) Equations H1σ
ǫ

(

−x2 −1
x1x2 − α+ λ x1

)

+ ǫ (α− λ)

(

Yn,mx1 0
0 −Xn,mx2

)

(25)

b) Equations H2σ
ǫ

(

−x2 − α+ λ −1
(x1 + λ)(x2 + λ) − α(x1 + x2) − α2 x1 + α− λ

)

+2 ǫ (α− λ)

(

Yn,m(x1 + α+ λ) 0
(α+ λ)(Yn,mx1 + Xn,mx2) + α2 + λ2 −Xn,m(x2 + α+ λ)

)

(26)

c) Equations H3σ
ǫ

(

−λx2 −α
αx1x2 + δ2(α2 − λ2) λx1

)

− ǫ(α2 − λ2)

αλ

(

Yn,mx1 0
0 −Xn,mx2

)

(27)

Remark 4.1
The explicit forms of two successive Lax matrices, e.g.

Ln,m(un,m, un+1,m;α, λ;σ) and Ln,m+1(un,m+1, un+1,m+1, α, λ;σ) ,

are related to each other as

Ln,m+1(un,m+1, un+1,m+1, α, λ;σ) = −
{

Ln,m(un+1,m+1, un,m+1;α, λ;−σ)
}

−1

.
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5 Symmetry analysis

This section contains the results on the symmetry analysis of the deformed equations, the derivation
of which follows from the corresponding ones presented in [8] and [11]. In particular, every deformed
equation admits a pair of three point generalized symmetries, as well as a pair of extended generalized,
the generators of which are determined completely by the polynomial f . Moreover, infinite hierarchies
of generalized symmetries are constructed, the members of which are determined inductively.

Proposition 5.1
Every deformed equation

E (un,m, un+1,m, un,m+1, un+1,m+1;n,m;α, β;σ) = 0

admits two local three-point generalized symmetries with generators the vector fields

vn = R[0]
n ∂un,m

:=

(

f(un,m, un+1,m;α)

un+1,m − un−1,m

− 1

2
f,un+1,m

(un,m, un+1,m;α)

)

∂un,m
, (28i)

and

vm = R[0]
m ∂un,m

:=

(

f(un,m, un,m+1;β)

un,m+1 − un,m−1
− 1

2
f,un,m+1

(un,m, un,m+1;β)

)

∂un,m
, (28ii)

respectively.
Moreover, the generator of any five point extended generalized symmetry of a deformed equation is

necessarily a vector field of the form

v = a(n;α, β)vn + b(m;α, β)vm +
1

2
ψ(n,m, un,m;α, β)∂un,m

+ ξ(n,m;α, β)∂α + ζ(n,m;α, β)∂β ,

where the functions a(n;α, β), b(m;α, β), ψ(n,m, un,m;α, β), ξ(n,m;α, β) and ζ(n,m;α, β) are deter-
mined through equation (3).

Applying the above analysis to each one of the deformed equations, one is led to the following results.

1. The only deformed equations admitting point symmetries are

(a) Equations H1σ
ǫ , admitting an extended point symmetry with generator the vector field x =

∂α + ∂β , and

(b) Equations H3σ
ǫ for δ = 0, which admit a local point symmetry with generator the vector field

x = un,m∂un,m
.

2. All the deformed equations admit the local three-point generalized symmetries generated by the
vector fields vn, vm and no other symmetry of this kind.

3. Only equations H1σ
ǫ admit additionally a local five-point generalized symmetry generated by the

vector field nvn +mvm.

4. All the deformed equations admit a pair of extended three-point generalized symmetries with
generators the vector fields

Vn = nvn − r(α) ∂α , Vm = mvm − r(β) ∂β ,

respectively, where r(x) = 1 for H1σ
ǫ and H2σ

ǫ , and r(x) = −x/2 for H3σ
ǫ .
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As in the case of the ABS equations, [11], the extended generalized symmetries Vn, Vm are master
symmetries for the symmetry generators vn, vm. That fact leads to the infinite hierarchies of generalized
symmetries

v
[k+1]
i = R

[k+1]
i ∂un,m

:=
[

Vi,v
[k]
i

]

, k = 0, 1, . . . , and i = n, m , (29i)

the first members of which are v
[0]
n = vn and v

[0]
m = vm, respectively.

The characteristic R
[k]
i involves the values of u at (2k+3) points in the i direction of the lattice and

is determined by applying successively the linear differential operator

R =
∞
∑

ℓ=−∞

ℓ
(

S
(ℓ)
n R[0]

n

)

∂un+ℓ,m
+

∞
∑

ℓ=−∞

ℓ
(

S
(ℓ)
m R[0]

m

)

∂un,m+ℓ
− r(α) ∂α − r(β) ∂β (29ii)

on R
[0]
i , i.e.

R
[k]
i = R

kR
[0]
i , k = 0, 1 . . . , and i = n, m . (29iii)

Remark 5.1
The operator R may be regarded as recursion operator for equations H2σ

ǫ and H3σ
ǫ , since it maps the

local generalized symmetries vn, vm to higher local generalized symmetries. 2

6 Conclusions and perspectives

We have presented the integrability aspects and the symmetry analysis of the deformations of the H
list. Bäcklund transformations and Lax pairs for all of the deformed equations were derived from their
multidimensional consistency. Black and white centered three-leg forms were constructed, leading to
deformations of discrete Toda type systems. Their symmetry analysis was presented, leading to infinite
hierarchies of generalized symmetries.

It would be interesting to study solutions of the deformed equations. In this direction, one could
employ their symmetries in order to derive similarity solutions, and continuous symmetric solutions
in the spirit of [9]. Regarding to the latter, such reductions will also provide a link of the deformed
equations to integrable systems of partial differential equations. Additionally, it would be interesting to
study finite dimensional mappings resulting from periodic reductions of the deformed equations.
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A The polynomials of the deformed equations

Polynomials G2 follow from polynomials G1 by substituting Yn,m with Xn,m.

• Equations H1σ
ǫ

k(α, β) = β − α , f(u, x;α) = 1 − ǫ
(

Yn,m u2 + Xn,m x2
)

G1(x, y) = (x− y)2 − ǫ(α− β)2Yn,m

• Equations H2σ
ǫ

k(α, β) = β − α , f(u, x;α) = 2
{

u+ x+ α− 2ǫ
[

Yn,m(u+ α)2 + Xn,m(x+ α)2
] }

G1(x, y) = (x− y)2 − (α− β)2
{

4 ǫYn,m (x+ y − ǫ(α− β)2) + 1
}

11



• Equations H3σ
ǫ

k(α, β) = α2 − β2 , f(u, x;α) = ux+ δα − ǫ

α

(

Yn,m u2 + Xn,m x2
)

G1(x, y) = (αx− βy)(βx− αy) − Yn,m

ǫ δ(α2 − β2)2

αβ
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