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Singular Finite-Gap Operators and Indefinite Metric. I.

Abstract. Many ”real” inverse spectral data for periodic finite-gap op-
erators (consisting of Riemann Surface with marked ”infinite point”, local
parameter and divisors of poles) lead to operators with real but singular co-
efficients. These operators cannot be considered as self-adjoint in the ordi-
nary (positive) Hilbert spaces of functions of x. In particular, it is true for
the special case of Lame’ operators with elliptic potential n(n + 1)℘(x) where
eigenfunctions were found in XIX Century by Hermit. However, such Baker-
Akhiezer (BA) functions present according to the ideas of works [1, 2], right
analog of the Discrete and Continuous Fourier Bases on Riemann Surfaces.
It turns out that these operators for the nonzero genus are symmetric in some
indefinite inner product, described in this work. The analog of Continuous
Fourier Transform is an isometry in this inner product. In the next work
with number II we will present exposition of the similar theory for Discrete
Fourier Series.

Introduction
Broad family of the so-called ”Baker-Akhiezer” (BA) functions on Rie-

mann surfaces were invented since 1974 when periodic finite gap solutions
were found for the famous KdV equation.

They were used for the solution of periodic problems for KdV, KP and
other systems of Soliton Theory like NLS, SG, for many Completely Inte-
grable Hamiltonian Systems. The Spectral Theory of ”finite-gap” periodic
1D and 2D Schrodinger Operators was developed since 1974 based on the
Analysis on Riemann Surfaces. It was found in 1987 that some BA func-
tions generate construction of analogs of the Laurent-Fourier decomposition
for functions and tensor fields on Riemann surfaces (the Krichever-Novikov
Bases and Algebras [1]). They were used for the multi-loop operator quan-
tization of Closed Bosonic Strings (i.e. for genus more than zero.) Another
ideas similar to some sort of Harmonic Analysis with spectral parameter on
Riemann Surfaces and useful here, were developed for other goals in the
works [5].

The present authors observed in the Appendix to the work [2] that these
constructions lead also to the analog of continuous Fourier Transform. The
present work is direct continuation of [2]. It was motivated by the following
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Problem: Consider one-dimensional Lame’ Operator L = −∂2
x + u(x)

whose potential u is equal to the n(n+1)-times Weierstrass elliptic function ℘
with poles on real line. Does it have any reasonable spectral theory on
the whole real line? We need to answer this question because our analog
of continuous Fourier Transform is based exactly on the singular Hermit
eigenfunctions of this operator in the simplest nontrivial elliptic case.

Let us remind here that 150 years ago Hermit found all family of formal
eigenfunction for this operator. In fact it consists of the ”Bloch-Floquet”
eigenfunctions in modern terminology. However they are singular on the line
and do not serve any spectral problem in Hilbert space. Hermit used only
those of them who belong to the discrete spectrum on the finite interval [0T ]
between the neighboring singularities, needed for the Lame’ problem. No
spectral interpretation of singular eigenfunctions for the spectral theory on
the whole line was known.

We found indefinite inner product associated with this problem. This is
our main result but the exposition is more general: We constructed indefinite
inner products associated with BA functions and non-selfadjoint ”algebraic”
periodic operators with Bloch-Floquet function meromorphic on Riemann
Surfaces of finite genus like in the finite-gap theory.

In our text we assume, that all finite-gap operators are periodic
in the real variable x ∈ R. It is very likely, that the main results of
this paper are valid for generic finite-gap quasiperiodic potentials, but this
extension may lead to additional analytical difficulties.

Remark 1 Singular Bloch-Floquet eigenfunctions are known also for k + 1-
particle Moser-Calogero operator with Weierstrass elliptic pairwise potential
if coupling constant is equal to n(n + 1). They form (in the center of mass
variables x) a k-dimensional complex algebraic variety. Hermit-type result
is not obtained here yet: no one function was constructed until now serving
the discrete spectrum in the bounded domain between the poles. Our case
corresponds to k = 1. We believe that for all k > 1 this algebraic family of
eigenfunctions also serves spectral problem in some indefinite inner product
in the space of functions in the whole space Rk similar to the case k = 1.
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Chapter 1. Canonical contours and Inner Product of BA func-
tions.

Let a nonsingular complex algebraic curve (Riemann surface) Γ be given
with selected point P = ∞ ∈ Γ, local coordinate z = k−1 near P such that
z(P ) = 0. We fix also ”divisor” D = γ1 + ...+γg on Γ and construct standard
BA function ΨD(x, z), z ∈ Γ, meromorphic in the variable z, with first order
poles in the points γj ∈ Γ and with asymptotics Ψ = exp{ikx}(1+O(k−1)+
...). We define a differential 1-form dµ with asymptotics dµ = dk + regular
near P and divisor of zeroes (dµ) = D + D∗:

D + D∗ ∼ K + 2P

Here the sign ∼ means the so-called ”linear equivalence” of divisors in Alge-
braic Geometry, K means the divisor of differential forms. So the divisor D∗

is completely determined by the divisor D. A ”dual” BA function (1-form)
Ψ∗

D(x, z) was invented long ago by Krichever. It was actively used in the
joint works [1] and has asymptotics Ψ∗

D(x, z) = exp{−ikx}(1 + O(k−1) + ...)
with divisor D∗. A Dual BA form is Ψ∗dµ. So we have

Ψ∗
D(x, z) = ΨD∗(−x, z)

as a scalar BA function. One should multiply it by the form dµ to get a dual
1-form.

Our functions ΨD(x, z), Ψ∗
D(x, z) are also meromorphic in x.

The Canonical Contours κc we define by the equation pI = c where dp
is meromorphic (second kind) differential form such that dp = dk + regular
near P = ∞, and

∮
γ
dp ∈ R is purely real for all closed paths γ ⊂ Γ avoiding

the point P . So the imaginary part of p is an one-valued function pI . We
choose local parameter z depending on Canonical Contour κc in such
a way that exp{ikx}, k ∈ κc, x ∈ R is bounded for z → 0 along this contour.
This requirement defines completely the local parameter z = k−1 modulo
terms of the order z3, so our BA function is associated with this specific
contour (value of pI = c). Canonical Contour is canonically oriented
by the one-valued real function pI on the oriented manifold Γ.

Remark 2 The finite-gap operator, constructed by the curve Γ is x-periodic
with the period T if and only if the function eiTp is single-valued in Γ, or
equivalently, if all periods of dp have the form:

∮

s

dp =
2π

T
ns, ns ∈ Z,
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where s in an arbitrary closed contour.

Remark 3 In the work [2] we especially considered the case where our di-
visor D is equal to D = gP = g∞ where g is genus of Γ. In this case we
proved important ”Multiplicative Property” of our ”Fourier” BA basis:

Ψg∞(x, z)Ψg∞(y, z) = LgΨg∞(x + y, z)

where L is a linear differential operator in x with coefficients independent
on z ∈ Γ, L = ∂g

x + ...– see[2]. This construction extends the construction
[1] of the discrete Fourier bases done in the late 1980s for the needs of the
Bosonic (closed) String Theory. The multiplicative properties of Fourier type
series and transform are important in the Nonlinear Problems like String
Theory. This specific case is not much different from others in the purely
linear Harmonic Analysis discussed in the present work. Poles of Ψ in the
variable x necessary appear in this case, so our inner products are indefinite–
see below.

Let us define a C-linear Inner Product of smooth functions on the
canonical contour κc ⊂ Γ depending on the choice of divisor D and generated
by the basis of functions ΨD(x, z) restricted to the canonical contour κc.

Statement. For the basic BA functions we have The Orthogonality
Relations on Riemann Surface, i.e. on the contour κc ⊂ Γ:

(ΨD(x, z), ΨD(y, z))κc =

∫

κc

ΨD(x, z)ΨD∗(−y, z)dµ(z) =

= 2πδ(x− y)

Proof. The form at the right-hand side is holomorphic in the variable z.
Therefore this integral does not depend on c. If x > y, this integral vanishes
as c → +∞. Equivalently, for x < y this integral vanishes as c → −∞,
therefore

(ΨD(x, z), ΨD(y, z))κc = 0 for x 6= y. (1)

If we modify the integrand outside a neighbourhood of the point P , the
resulting integral is the same up to a regular function of x, y. Let us expand
the functions ΨD(x, z), Ψ∗

D(x, z) near the point P :

ΨD(x, z) = eikx

[
1 +

φ(x)

k
+ O

(
1

k2

)]
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Ψ∗
D(x, z) = e−ikx

[
1 +

φ∗(x)

k
+ O

(
1

k2

)]

(ΨD(x, z), ΨD(y, z))κc =

∫ +∞

−∞
eik(x−y)

[
1 +

φ(x) + φ∗(y)

k

]
dx+regular function =

= 2πδ(x− y) + πi sgn(x− y)[φ(x) + φ∗(y)] + regular function.

For x = y the integrand has no essential singularities and only one first-order
pole at P with the residue φ(x) + φ∗(x). Therefore φ∗(x) = −φ(x), and

(ΨD(x, z), ΨD(y, z))κc = 2πδ(x− y) + regular function.

Comparing it with (1) we complete the proof.
Now we consider class of functions φ(z) on the contour κc, such that their

”Transform” is well defined. We interpret them simply as ”Components” of
function φ̃(x) in our BA basis ΨD∗(−x, z) using the integral:

φ̃(x) = (
√

2π)−1

∫

κc

φ(z)ΨD∗(−x, z)dµ

Statement. For the selected BA function with bounded restriction of
exp{ikx} to the contour κc near P = ∞, this integral is well-defined near ∞
if φ(k) = o(k−1+ε), ε > 0.

Proof. The Inverse Transform is given by the formula

φ(z) = (
√

2π)−1

∫
φ̃(x)ΨD(x, z)dx

It leads to the same inner product of transformed functions in the x-space
treated simply as ”Collections of Components” in the previous basis of BA
functions ΨD(x, z), where x is considered as an ”index” numerating the basic
vector: ∫

φ̃1(x)φ̃2(x)dx = (φ1, φ2)κc

For the same BA functions treated as basis in x-space, we obtain a formula

(ΨD(x, z), ΨD(x,w))x =

∫

x

ΨD(x, z)ΨD∗(−x,w)dµdx = 2πδ(z, w) (2)

= 0, z 6= w. Here both points z, w ∈ Γ belong to our selected contour κc. We
assume that these points are nonsingular on this contour. We assume that δ
is an one-form in the variable w.
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The case of critical contour corresponding to the critical values of the real
function pR should be considered separately. This formula is meaningful
locally only if our BA functions do not contain poles for x ∈ R. It
is meaningful globally if our picture is periodic in x ∈ R, so we have
no concentration of poles near x → ±∞. We postpone to the next work
extension of our results to the quasi-periodic algebraic case.

Let us discuss, for which classes of functions this transform is well-defined.
It depends on the divisor D and on the geometry of contour κc: Does our
BA function contain poles? Does divisor contain infinite point or
not? Is our contour critical?

We postpone the last question.
For the case of BA function with poles we invent following rule: All

integrals above taken along the line x ∈ R, should be taken avoiding
pole x0 in the upper half-plane x + iε, ε > 0. In order to prove that our
inner products written as integral along the x-axis, are well-defined, we prove
following Main Lemma:

Lemma 1 The expression ΨD(x, z)ΨD∗(−x,w) has residue equal to zero in
every pole x0 ∈ R as a meromorphic function of the complex variable x in
the small strip around the real line.

The proof follows immediately from Lemma 6 and formula (7) below. We
added Appendix 1 to make this proof fully rigorous.

So the integral defining inner product does not depend on the contour
surrounding pole.

Let our data consisting of algebraic curve Γ with selected point P = ∞
and local parameter k−1 near P , be real now. It means precisely that an
anti-holomorphic involution is defined

τ : Γ → Γ, τ 2 = 1

such that τ(P ) = P and τ ∗(k) = k̄.
Our differential dp is such that τ ∗(dp) = dp̄. We define pI such that

τ ∗(pI) = −pI , so the level κ0 = (pI = 0) is invariant under τ :

τ : κ0 → κ0

and differentials dk, dp are real on κ0.
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Let us point out that our contour κ0 contains all set of fix-points

Fixτ ⊂ κ0

where z ∈ Fixτ means τ(z) = z. Following simple geometric statement is
useful to clarify relationship between our constructions and some results of
the late 1980s (see[4]) about nonsingular real solution to the KPI system
with Lax operator i∂x + ∂2

y + u(x, y):

Lemma 2 For anti-holomorphic involution τ the fix-point set Fixτ coincides
with canonical contour κ0 if and only if Fixτ divides Γ into two parts Γ =
Γ+

⋃
Γ−.

Proof of this lemma easily follows from the obvious fact that κ0 certainly
divides Γ but its smaller part never does. We assume that P ∈ Fixτ .

We choose divisor D such that τ(D) = D∗ or

D + τ(D) ∼ K + 2P

where K is divisor of differential forms. So we have τ ∗(dµ) = dµ̄.
In this case we define a Hermitian (or sesqui-linear) possibly indef-

inite Inner Product on the contour κ0 by the formula

< ΨD(x, z), ΨD((y, z) >κ0= (ΨD(x, z), Ψ̄D(y, τ(z)))κ0 =

=

∫

κ0

ΨD(x, z)Ψ̄τD(y, τz)dµ(z)

where the integral above is taken with respect to the canonical orientation
of the contour κ0.

We take into account here that Ψ̄τD(y, τz) is meromorphic in the variable
z, has poles in τD and asymptotics exp{−iky}(1 + O(k−1 + ...) near P for
y, k ∈ R. So for the ”real” variables it coincides with our C-linear expression
above.

In the x-space we have following inner product:

< ΨD(x, z), ΨD(x,w) >x=

∫

x

[ΨD(x, z)Ψ̄τD(x̄, w)dµ]dx

Let us point out that

Φ̄τD(x̄, w) = ΨτD(−x,w)
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for the real values of the variables k, x. It is meromorphic in x. So the residue
in the x-pole is equal to zero for the product ΨD(x, z)Ψ̄τD(x̄, τ(z)) under the
sign of integral because it is the same as in the Lemma 1 above.

We are coming to the following

Lemma 3 1.The hermitian inner product above on the contour κ0 is posi-
tively defined if and only if κ0 = Fixτ , and the form dµ is positive on the
contour κ0. 2. The hermitian inner product in the x-space is well-defined
avoiding every pole of Ψ in the upper half-plane in x. It is positive if and
only if our BA function ΨD(x, z) does not have poles on the real line x.

The statement 1 makes sense because our form dµ is real on this contour.
We have τ(z) = z for z ∈ Fixτ , and upper part Γ+ of Γ induces natural
orientation of the contour κ0. It is interesting to compare this result with
[4]. The statement 2 is crucial for our work, so we present a full proof in the
Appendix 1 using what we call The Cauchy-Baker-Akhiezer Kernel. This
quantity is borrowed from the work [5], but some additional improvements
are needed here. Besides that, no full proof was presented in the work [5].

One can see following sources for the violation of positivity of
the inner product on the contour κ0:

1. κ0 6= Fixτ . We have here τ(z) 6= z for z outside of fix-point set. Such
inner product is always indefinite.

2. Fixτ = κ0 but the divisor D is chosen such that dµ has different signs
on some components (see chapter 2).

Only poles of Ψ on the real line x are responsible for the non-
positivity of the inner product in the x-space. This is central part
of our work.

We are going to consider this picture in more details for the important
hyperelliptic case in the next chapter.
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Chapter 2. The indefinite Inner Product for Hyperelliptic Rie-
mann Surfaces. Schrodinger Operators with singular potential.

Consider now the most important case of nonsingular Hyperelliptic Rie-
mann Surfaces Γ associated with second order periodic operators L: Let Γ
is presented in the form

w2 = (z − z0)× ...(z − z2g) = R(z)

where typical point (except branching points) is written as γ = (z,±). We
take branching point P with z = ∞ as our ”infinity” with local coordi-
nate k−1 = z−1/2 = u. Every generic divisor D = γ1 + ... + γg defines
a Baker-Akhiezer function ΨD(x, z) with standard analytic properties de-
scribed above. It satisfies to the equation

LΨ = (−∂2
x + U(x))Ψ(x, z) = zΨ(x, z)

Our requirement is that the potential U(x) is periodic U(x + T ) = U(x)
for real x. From the finite-gap theory we know that necessary and sufficient
condition to have real nonsingular potential U(x) (we call it a Canonical
Inverse Spectral Conditions) consists of two parts:

1.The Strong Reality Condition for Γ: all branching points zj are real
and distinct. Let z0 < z1 < ... < z2g.

2.The divisor D is Proper i.e. such that γk = (αk, +) or γk = (αk,−)
where z2k−1 ≤ αk ≤ z2k, k = 1, 2, ..., g (exactly one divisor point is located in
every a-cycle).

There are two commuting anti-holomorphic involutions τ± of the Riemann
Surface Γ where τ±(z, +) = (z̄,±). Let τ+ = σ, τ− = τ . Our contour κ0 is
equal to Fixτ . It coincides with union of spectral zones. The set Fixσ

coincides with union of spectral gaps:
The union of our a-cycles ak form finite part of the fix-point set for the

anti-involution σ(p) = p. Their projection on the z-line coincide with finite
”Gaps” [z2k−1, z2k], k = 1, 2, ..., g, in the Spectral Theory of operator L in the
Hilbert Space L2(R) of the square-integrable complex-valued functions on
the real line. So we have σ(D) = D and τD = D∗ where D + D∗ = K + 2P .

We know however that inverse spectral data lead to the real operators L
in other Non-Canonical Real Cases:

1.The Riemann Surface Γ is Real. It simply means that the set of branch-
ing points zj, j = 0.1, ..., z2k, is invariant under the anti-involution z → z̄.
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2.The Divisor of Poles D should be such that σ(D) = D but not neces-
sarily like in the Canonical Case.

If these conditions are satisfied, then the potential U(x) is real. However,
this potential is singular . Otherwise, it would be self-adjoint in the positive
Hilbert Space which is impossible. So it is singular in all non-canonical
real cases. We call our data Real Semi-Canonical if Riemann Surface
satisfies to the Strong Reality Condition but the divisor D is nor Proper.
In particular,our contour κ0 coincides with fixpoint set Fixτ . The potential
U(x) has poles in that case.

Orientation of κ0 in the Real Semi-Canonical case is defined by dp > 0.
For such spectral curves

dp = (z − p1)× ...(z − pg)dz/
√

(z − z0)× ...(z − z2g), (3)

where all pk are real and pk ∈ (z2k−1, z2k).
Another possibility is that not all branching points are real: there are

complex adjoint pairs between them. In this case we have Fixτ essentially
smaller than the contour κ0. So our operator L is singular.

According to the previous chapter, such operators are symmetric in the
Indefinite Inner Product given by the formulas presented there.

Using previous results, we are coming to the following
Theorem: 1.Let Riemann Surface and divisor D are real and finite. In

the case Fixτ = κ0, the form

dµ = (z − γ1)× ...(z − γg)dz/
√

R(z)

is real, nonzero and has a well-defined sign in every component. The set Fixτ

is the spectrum of operator L. 2.Define an Indefinite Hilbert Space as a direct
sum of spaces of functions in the components of Fixτ , which is the standard
one for the functions on every component but taken with sign provided by
the form dµ and orientation of the contour κ0. Our linear operator L =
−∂2

x + U(x) is symmetric, and corresponding ”Fourier Transform” defined
in the previous paragraph, is isometric in this indefinite inner product. 3.In
the case if one (or more) divisor points are infinite γg = ∞, the form dµ is
holomorphic.

Remark 4 From (3) it follows that the sign of dµ on real ovals of τ with
respect to the orientation of κ0 coincides with the sign of dp/dµ, or, equiva-
lently, with the sign of the ratio:

(z − p1) . . . (z − pg)/(z − α1) . . . (z − αg).
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Remark 5 We do not describe the exact completion of this space. So our
result is incomplete in terms of Modern Functional Analysis.

Remark 6 If r point of divisor D are equal to ∞ (i.e. D = r∞+ (α1,±) +
... + (αg−r,±)), we have

dµ = (z − α1)× ...(z − αg−r)dz/
√

R(z)

The special case r = g all divisor is concentrated in the point ∞. This
case was especially considered as a right analog of Fourier Transform: It has
Remarkable Multiplicative Properties.

Proof. Our Theorem immediately follows from the results of Chapter 1
and Appendix 1.

Example. Consider the case of real elliptic curve Γ with genus g = 1
and real branching points z0, z1, z2,∞. We assume that our divisor D = γ
coincides with P = ∞. The Baker-Akhiezer Function Ψ here was found
by Hermit, and singular operator L is the Lame’Operator; it has the form
U(x) = 2℘(x). Our Hilbert Space is a direct sum of 2 spaces

H = H0

⊕
H∞

Here H0 consists of functions on the compact circle c1 ⊂ Γ located over the
spectral zone [z0, z1] (the finite zone of spectrum). The second subspace H∞
consists of functions on R ⊂ Γ located over the zone of spectrum [z2,∞]
and homeomorphic to R = S1\∞. They have specific asymptotic at infinity
indicated above in the chapter 1.

Statement: Our inner product is positive at H∞ and negative
at H0. Proof. We have in this case dµ = dz/

√
z − z0)(z − z1)(z − z2), and

orientation of the contour κ0 = c1

⋃
c∞ is such that dµc1 < 0, dµ|c∞ > 0.

This statement is proved.
For comparison good to consider the ”selfadjoint” case such that γ′ =

(α′,±) where α′ ∈ [z1, z2] is located in the finite gap. In this case we have

dµ′ = (z − α′)dz/
√

(z − z0)(z − z1)(z − z2)

So we have dµ′ = (z−α′)dµ. Taking into account that the function pI is the
same in both cases, we see that the factor (z − α′) has opposite signs in the
gaps c1 and c∞. Therefore in this case the Inner Product is positive (as we
knew before).
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The Standard Fourier Transform we have for the case of genus zero: The
Riemann Surface Γ has 2 branching points z0 = 0, z1 = ∞. The spectral
zone in Γ has one component c∞ only located over [0,∞]. It is isomorphic
to R = S1\∞. The measure dµ coincides with standard measure. So our
Hilbert Space is exactly H = H∞ = L2(R), and inner product is positive.
For genus more than zero we can have positive inner product only for smooth
potentials where divisor points are located in the finite gaps (one gap–one
point).

In all cases where our divisor contains infinite point or any point located
in the infinite gap, we have indefinite inner product. We can always move
this point by some time shift to infinity.

In all cases where our divisor contains two (or more) points located in the
same finite gap, we have indefinite inner product.

We can easily describe the sign corresponding to the cycle cj ⊂ Γ located
over the zone [z2j−1, z2j], i.e. how it enters the Indefinite Hilbert Space:

Take divisor points γs = (αs,±), where αs ∈ [z2qs−1, z2qs ], s = 1, ..., r, and
γr+k = ∞ for all k > r. As we know, it simply coincides with sign of the
expression dp/dµ where:

dµ = (z − α1)× ...(z − αr)dz/
√

(z − z0)× ...(z − z2g)

on the cycle ck, taking into account the orientation of the contour κ0 provided
by the function pI as it was explained in the Chapter 1. For example, for
r = 0 (the case of Fourier Transfom with important Multiplicative
Properties extending the Hermit-Lame’ potentials n(n + 1)℘(x) =
U(x)), the signs corresponding to ck, are alternating. Here we have

dµ = dz/
√

R(z)
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Appendix 1. The Cauchy-Baker-Akhiezer Kernel
Following [5], let us define the Cauchy-Baker-Akhiezer Kernel ω(x, z, w),

x ∈ C, z ∈ Γ\P , w ∈ Γ\P by the following analytic properties:

1. For a fixed x the kernel ω(x, z, w) is a meromorphic function in z and
a meromorphic 1-form in w.

2. For fixed x,w the kernel ω(x, z, w) has exactly g + 1 simple poles in z
at the points γ1, . . . , γg, w.

3. For fixed x, z the kernel ω(x, z, w) has simple zeroes in w at the points
γ1, . . . , γg, and a simple pole with residue 1 at the point z. In local
coordinates we have

ω(x, z, w) =
dw

w − z
+ regular terms as w → z. (4)

4. For fixed x, w the kernel ω(x, z, w) has an essential singularity in the
variable z at the point P = ∞:

ω(x, z, w) = eik(z)x

(
O

(
1

k(z)

))
. (5)

5. For fixed x, z the kernel ω(x, z, w) has an essential singularity in the
variable w at the point P = ∞:

ω(x, z, w) = e−ik(w)x

(
O

(
1

k(w)

))
dk(w). (6)

For generic spectral data the kernel ω(x, z, w) exists and is unique, by the
Riemann-Roch Theorem. The proof is analogous to the proof of existence
and uniquiness for the Baker-Akhiezer function. Following the idea of the
work [5], we prove one of the most important properties of this Kernel:

Fundamental Lemma.Following Formula is Valid:

∂xω(x, z, w) = −iΨ(x, z)Ψ∗(x,w)dµ(w). (7)

Proof. For a fixed w the right-hand side of (7) has the following analytic
properties:
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1. ∂xω(x, z, w) is meromorphic in the variable z on Γ\P and has exactly
g simple poles at the points γ1,. . . ,γg.

2. ∂xω(x, z, w) = O(1)eik(z)x as z → P .

Therefore for a fixed w the expression ∂xω(x, z, w) is proportional to Ψ(x, z).
Similarly for a fixed z the expression ∂xω(x, z, w) is proportional to Ψ∗(x,w)dµ(w).
Therefore ∂xω(x, z, w) = cΨ(x, z)Ψ∗(x,w)dµ(w). Assuming z and w are both
close to P , we obtain c = −i. Our Fundamental Lemma is proved.

Remark 7 Let x = 0. Then the kernel ω(0, z, w) coincides with the standard
meromorphic analog of Cauchy kernel on the closed Riemann surfaces (see
[7], [8]).

Remark 8 It is natural to define Cauchy-Baker-Akhiezer kernel ω(~t, z, w)
depending on all KP times ~t = (t1, t2, t3 . . .), x = t1, y = t2, t = t3 (see [5]).
Essential singularities for the kernel ω(~t, z, w) have the following form:

ω(~t, z, w) = e
i
∞∑

j=1
tjkj(z)

(
O

(
1

k(z)

))
, z → P, (8)

ω(~t, z, w) = e
−i

∞∑
j=1

tjkj(w)
(

O

(
1

k(w)

))
dk(w), w → P. (9)

Here we assume that only finite number of variables tn are different from 0.

To stress the dependence of ω(~t, z, w) on the divisor D = γ1 + . . . + γg,
we shall write ωD(~t, z, w) if necessary.

Lemma 4 Denote by D(~t) the divisor of zeros for the function ΨD(~t, z).
Then for any ~t′ we have following transformation law:

ωD(~t, z, w) =
ΨD(~t′, z)

ΨD(~t′, w)
ωD(~t′)(~t− ~t′, z, w) (10)

The next special case plays leading role in our investigation because it is
the most natural source for the singular operators:
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Lemma 5 Assume, that exactly one point of the divisor D lies at the infinite
points P = ∞: D = γ1 + γ2 + . . . + γg−1 + P . Then for generic γ1,. . . ,γg−1

one can write an especially simple formula for the kernel ω(~t, z, w):

ω(~t, z, w) =

θ[
∑
j

~Ujtj + ~A(z)− ~A(w)− ~A(γ1)− . . .− ~A(γg−1)− ~K)]

θ[
∑
j

~Ujtj − ~A(γ1)− . . .− ~A(γg−1)− ~K]
×

× C · dµ(w)

θ[ ~A(z)− ~A(w)− ~A(γ1)− . . .− ~A(γg−1)− ~K]
· exp

[
i
∑

j

tj

∫ z

w

Ωj

]
(11)

Here Ωj are meromorphic differentials with an unique pole at the point P ,

Ωj = d(kj) + regular tems

and zero a-periods, Uj denotes the normalized vector of b-periods for Ωj:

Uk
j =

1

2π

∮

bk

Ωj,

~A(γ) denotes the Abel transform with the starting point P , ~K is the vector of
Riemann constants, dµ is the holomorphic differential with the zeroes γ1,. . . ,
γg−1. Let ν be a local coordinate near P such, that dµ = dν(1 + o(1)). Then
the normalization constant C is defined by:

C = ∂ν

∣∣∣
ν=0

θ[− ~A(v)− ~A(γ1)− . . .− ~A(γg−1)− ~K]. (12)

Using standard arguments, one can easily check, that the expression (11) is
single-valued in Γ, and for generic ~t it has the proper poles in z and w. Let
z → w. Then

ω(~t, z, w) ∼ C · dµ(w)

θ[ ~A(z)− ~A(w)− ~A(γ1)− . . .− ~A(γg−1)− ~K]
(13)

For z different from γ1, . . . , γg, γ∗1 , . . . , γ∗g denominator of (13) has a first-
order zero at w = z. If z = γj, j = 1, . . . , g, then the denominator vanishes
identically. If z = γ∗j , j = 1, . . . , g, then denominator has a second-order
pole. Therefore the zeroes of the numerator coincides with the zeroes of the
denominator’s differential, and the residue of (13) at w = z is regular in
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Γ. Therefore this residue is constant. Normalization (12) means, that the
residue is equal to 1 at z = ∞. It completes the proof.

It follows from (11) that the Cauchy-Baker-Akhizer Kernel ω(~t, z, w) is
meromorphic in all tj. Combining (11) with (10) we obtain following:

Lemma 6 For any divisor D such, that ΨD(x, z) is defined for generic x,
the kernel ωD(x, z, w) is meromorphic in x.

Remark 9 Assume, that operators, associated with the curve Γ are strictly
periodic in x with period T . Then following formula is true:

ω(x + T, z, w) = ω(x, z, w) · ei[p(z)−p(w)]x. (14)

Let us derive the orthogonality relation for BA functions treated as basis
in the space of functions in x-space (2). Their inner products already were
discussed in the work [6]. We have

∫ nT

−nT

Ψ(x, z)Ψ∗(x, w)dµdx = iω(x, z, w)

∣∣∣∣
nT

−nT

=

= iω(0, z, w)
[
ei[p(z)−p(w)]nT − e−i[p(z)−p(w)]nT

]
=

= [p(w)− p(z)]ω(0, z, w)

∫ nT

−nT

ei[p(z)−p(w)]xdx.

Therefore

lim
n→∞

∫ nT

−nT

Ψ(x, z)Ψ∗(x,w)dµdx = 2π[p(w)− p(z)]ω(0, z, w)δ(p(z)− p(w)),

and

lim
n→∞

∫ nT

−nT

Ψ(x, z)Ψ∗(x, w)dµdx = 0 for z 6= w, z, w ∈ κc.

Let w → z. Substituting (4) and taking into account, that the orientation
on the canonical contour κc is defined by dp, we obtain our final result:

Following Orthogonality Relations for BA functions as a basis
in the x-space, are true:

(

∫ ∞

−∞
Ψ(x, z)Ψ∗(x,w)dx)dµ =

= 2π(p(w)− p(z))

[
dp(w)

p(w)− p(z)
+ regular terms

]
δ(p(z)− p(w)) = 2πδ(z, w)
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Appendix 2. The Hyperelliptic Case. The Periodic Boundary Condi-
tions.

The Cauchy-Baker-Akhiezer Kernel.
In the hyperelliptic case there exists a simple explicit formula for the

Cauchy-Baker-Akhiezer kernel:

ω(x, z, w) = i
Ψ(x, z)Ψ∗

x(x,w)−Ψx(x, z)Ψ∗(x,w)

w − z
dµ(w)

It is easy to check, that all analytic properties are fulfilled. Moreover,

∂xω(x, z, w) = [Ψ(x, z)Ψ∗
xx(x,w)−Ψxx(x, z)Ψ∗(x,w)]

i

w − z
dµ =

= [(−z − U(x))Ψ(x, z)Ψ∗(x,w)− (−w − U(w))Ψ(x, z)Ψ∗(x,w)]
i

w − z
dµ =

= −iΨ(x, z)Ψ∗(x,w)dµ.

The periodic boundary conditions.
We assume that our finite-gap operators are periodic with the period T .

In addition to the spectral problem in the whole line one can concider the
periodic boundary problem with an fixed unitary multiplier:

Ψ(x + T, z) = κΨ(x, z), |κ| = 1. (15)

For regular potentials this problem is self-adjoint and has only discrete spec-
trum. Let us enumerate the points zj in Γ, j = 1, 2, . . . ,∞ such, that

eiTp(zj) = κ.

All these points lie in the canonical contour κ0. Each finite oval contains
only finite number of points zj.

Lemma 7 The scalar product for the basic eigenfunctions is given by:

∫ T

0

Ψ(x, zj)Ψ
∗(x, zk)dx = δjk

dp(zj)

dµ(zj)
. (16)

As above we deform the integration contour in the x-plane to avoid singular-
ities.
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Proof. For j 6= k

∫ T

0

Ψ(x, zj)Ψ
∗(x, zk)dx =

iω(x, zj, zk)

dµ(zk)

∣∣∣∣
T

0

=
iω(0, zj, zk)

dµ(zk)

[
eiT [p(zj)−p(zk)] − 1

]
= 0.

Let k = j.

∫ T

0

Ψ(x, zj)Ψ
∗(x, zj)dx = lim

w→zj

iω(x, zj, w)

dµ(w)

∣∣∣∣
T

0

=

= lim
w→zj

[
idp(w)

dµ(w)[p(w)− p(zj)]
+ regular terms

] [
eiT [p(zj)−p(w)] − 1

]
=

dp(zj)

dµ(zj)
.

Assume now, that the spectral data Γ, D satisfy the reality constraints.
Taking into account that for real spectral curves Ψ∗(x, z) = Ψ̄(x, τz) we
obtain following:

Theorem. Let us define the scalar product by

(Ψ(x, zj), Ψ(x, zk))x =

∫ T

0

Ψ(x, zj)Ψ̄(x̄, zk).dx (17)

For singular potentials this scalar product is not positive defined. The dimen-
sion of negative subspace is finite and coincides with the number of points zj

such, that dp(zj)/dµ(zj) < 0. Therefore we have a Pontryagin-Sobolev
space of functions where our singular finite-gap operator is symmetric.
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