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Abstract. We show that well-chosen Lagrangians for a class of two-dimensional
integrable lattice equations obey a closure relation when embedded in a higher
dimensional lattice. On the basis of this property we formulate a Lagrangian
description for such systems in terms of Lagrangian multiforms. We discuss the
connection of this formalism with the notion of multidimensional consistency, and
the role of the lattice from the point of view of the relevant variational principle.

1. Introduction

In recent years there has been a growing interest in the integrability of discrete systems

defined on two- or multidimensional lattices. In part the study of such systems may be

motivated by the search for accurate approximations to continuous systems. However,

the modern point of view is that such lattice systems are important in their own right

from a theoretical perspective, and, in fact, are thought to be richer and more generic

than their continuous counterparts. Discrete systems have also been proposed in physics

to model the fundamental interactions on the scale of the Planck constant where space

and time themselves can be thought of as being discrete [20, 39].

The earliest examples of integrable lattice systems go back to the mid 1970s and

early 1980s, when the research was focused on discretizing known continuous soliton

systems [1, 2, 14, 15, 10, 28, 38]. In recent years, the insight has developed that

the key aspect of integrability resides in the property of multidimensional consistency

[32, 5]. This property entails that an equation can be embedded in a consistent way in

a multidimensional lattice, i.e. by imposing a copy of the equation (with appropriate

lattice parameters) in each pair of directions, such that there is no inconsistency or

multivaluedness occurring in the evaluation of the dependent variables on each lattice

site. Using this property a classification of two-dimensional scalar integrable lattice

systems was given, in the affine linear case, by Adler, Bobenko and Suris [3, 4] (resulting

in what is hereafter referred to as the ABS list). In addition to the known examples

of lattice systems of KdV type, cf. [14, 15, 28, 38], this provides us with some new

examples of integrable scalar lattice equations.

Conventionally the Hamiltonian has been the central object in (continuous)

integrable systems [12]. Of course, it is often possible to pass between Lagrangian
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and Hamiltonian theories via Legendre transforms, although this is in many (non-

Newtonian) cases not a trivial matter. Nevertheless, most integrable partial differential

equations seem to admit a Lagrangian description; in fact, a universal Lagrangian

structure for integrable systems admitting a Lax pair was formulated by Zakharov

and Mikhailov [43]. In the discrete case one can argue that the Lagrangian is the

more fundamental object‡, and in fact Lagrangian structures have been established for

several discrete integrable systems such as Lagrangian mappings [41, 42, 26]. These

Lagrangian descriptions are based on a discrete calculus of variations as developed

earlier by Cadzow[7], Logan[23] and Maeda[24] outside the scope of integrable systems.

Furthermore, Lagrangians were also constructed for integrable two-dimensional lattice

equations, cf. [8, 29, 3]. Discrete Lagrangian systems on arbitrary graphs were proposed

in [34], and a discrete variational complex was set up in [16].

The usual point of view is that the Lagrangian is a scalar object (or equivalently

a volume form), which through the Euler-Lagrange equations provides us with one

single equation (i.e. one per component of the dependent variable). In contrast, we

take the point of view that in the case of an integrable system, where due to the

multidimensional consistency several equations can be imposed simultaneously on one

and the same dependent variable, the Lagrangian should actually be an extended object

capable of producing a multitude of consistent equations from a variational principle.

Thus we propose in this paper an action in which the key ingredient is a Lagrangian

2-form (in the case of integrable discrete equations in two independent variables) or,

more generally, a multiform (in the case of a larger number of independent variables).

Although the notion of a Lagrangian multiform is not new, and goes back to Cartan and

Lepage [9, 21], cf. also [17] for a review, even in those theories the role of the Lagrangian

is that of a volume form producing the equations of motion in a conventional way.

In the original ABS paper [3], action functionals were given for the whole list

of lattice equations in their classification. In the present paper we reformulate the

Lagrangian structures of these lattice systems, identifying a specific form of the

Lagrangians, and we show by explicit computation that for each case considered, a

closure-type relation holds when we embed these systems into a higher dimensional

lattice. This closure relation effectively indicates that the discrete Lagrangian is a

closed 2-form on the multidimensional lattice, and we consider this as a manifestation

of multidimensional consistency on the Lagrangian level. We argue that since this

relation implies surface independence of the relevant action, the variational principle

that describes multidimensionally consistent systems requires variations with respect

not only to the field variables, but also to the geometry of the lattice on which the

integrable discrete equation is defined. By presenting an explicit continuous example

of a multidimensionally consistent system, namely the generating PDE associated with

the lattice KdV equation [30], we draw in the penultimate section some analogies with

the continuous case.

‡ Drawing the parallel with quantum mechanics, we adhere to Dirac’s opinion [11].
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2. Multidimensional Consistency of Lattices and 3-point Lagrangians

In this paper, following [3], we consider lattice systems of the following form: there

are two independent (discrete) variables n1, n2 corresponding to two lattice directions,

two lattice parameters α1, α2 (which can be thought of as measures for the grid size)

associated with the n1, n2 directions respectively, and a scalar dependent variable

u(n1, n2). The parameters α1, α2 may take on continuous values, whilst n1, n2 are

discrete coordinates of the lattice, but may in principle take on continuous values as

long as elementary shifts in these variables amount to increments by one unit. For

ease of notation, let u = u(n1, n2), u1 = u(n1 + 1, n2) and u2 = u(n1, n2 + 1), as

indicated in Figure 1. Backwards shifts in u are denoted by u−1 = u(n1 − 1, n2) and

u−2 = u(n1, n2 − 1). In [3] the classification problem of quadrilateral lattice equations

α1

α2

u−1 u u1 u1,1

u2 u1,2

u2,2

n1

n2

Figure 1. 2-d lattice

of the following form was considered

Q(u, u1, u2, u1,2;α1, α2) = 0 (2.1)

where Q is affine linear and subject to the symmetry of the square (D4 symmetry). The

main classification criterion is that of multidimensional consistency, by which we mean

the following.

It is known [33, 3] that these equations can be consistently embedded in a

3-dimensional lattice, imposing the same form of the equation (with appropriate

parameters) in all 2-dimensional sublattices. This has appeared in many places

in the recent literature, but for the sake of self-containedness we present it again

here. Imposing in addition to the equation Q(u, u1, u2, u1,2;α1, α2) = 0 the equations

Q(u, u2, u3, u2,3;α2, α3) = 0 and Q(u, u3, u1, u1,3;α3, α1) = 0 on the other faces of the

elementary cube of Figure 2, and given the initial values u, u1, u2, u3, there are in

principle three ways in which to compute the value of u1,2,3. If these three values

coincide, the equation is called consistent-around-the-cube, and is considered to be

multi-dimensionally consistent. As was pointed out in [31] this phenomenon is analogous

to the existence of integrable hierarchies in nonlinear evolution equations of soliton type.
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Figure 2. Elementary cube

The result of the classification study of [3] was a list of 9 equations, up to Möbius

transformations, labelled H1-H3, Q1-Q4 and A1-A2. Some of these were already well-

known, e.g. the discrete KdV equation [14], but the classification also produced some

new equations. Furthermore, it was shown in [3] that all these equations admit an action

principle, which is based on the so-called 3-leg form of the quadrilateral equation. In

some cases, namely lattice equations “of KdV type” a Lagrangian description had been

previously established, [8, 29]. From the actions given in [3], one can infer 4-point

Lagrangians, however, for our purpose it is more useful to identify 3-point Lagrangians.

In terms of these the action will take the form

S =
∑

n1,n2∈Z

L(u, u1, u2;α1, α2), (2.2)

and in this specific form Lagrangians of all ABS equations can be established.

The discrete Euler-Lagrange equations arising from the variational principle that

δS = 0, under local variations δu(n1, n2) of the dependent variable, are given by

∂

∂u

(
L(u, u1, u2;α1, α2) + L(u−1, u, u−1,2;α1, α2) + L(u−2, u1,−2, u;α1, α2)

)
= 0 (2.3)

Below we list specific examples of ABS lattice equations together with their 3-point

Lagrangians. Although similar formulae can be established for the remaining cases

in the ABS list, we will restrict ourselves here to these particular examples for the

remainder of the paper. It should be noted that the discrete Euler-Lagrange equations

(2.3) do not give the quadrilateral lattice equations themselves, but rather a discrete

derivative of the original equation which is defined on 7 points of the lattice (lattice

equations on 7-point stencils have attracted a considerable amount of interest in recent

years, cf. e.g. [27]). The Euler-Lagrange equation actually results in a compound of

two copies of the 3-leg form of the original equation: one reflected in the n1-direction

and one reflected in the n2-direction§.

§ We note that in the generic case, the D4 symmetry is not always manifest on the level of the 3-leg
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2.1. H1

This is the discrete potential Korteweg de Vries equation, one of the most fundamental

examples in discrete integrable systems. The Lagrangian was first given in [8].

The original equation is

(u− u1,2)(u1 − u2)− α1 + α2 = 0; (2.4a)

written in 3-leg form this is

(u+ u1)− (u+ u2) =
α1 − α2

u− u1,2

(2.4b)

and it possesses the Lagrangian

L = (u1 − u2)u− (α1 − α2) ln(u1 − u2) (2.4c)

which through the Euler-Lagrange equation (2.3) leads to the 7-point equation

u1 − u−2 −
α1 − α2

u− u1,−2

+ u−1 − u2 −
α1 − α2

u− u−1,2

= 0 (2.4d)

which contains two copies of the 3-leg form (2.4b). We get a similar 7-point equation,

consisting of two copies of the original 4-point equation, from all of the Lagrangians

given below.

2.2. H2

The original equation is

(u− u1,2)(u1 − u2)− (α1 − α2)(u+ u1 + u2 + u1,2)− α2
1 + α2

2 = 0; (2.5a)

written in 3-leg form this is

u+ u1 + α1

u+ u2 + α2

=
u− u1,2 + α1 − α2

u− u1,2 − α1 + α2

(2.5b)

and it possesses the Lagrangian

L = (u+ u1 + α1) ln(u+ u1 + α1)− (u+ u2 + α2) ln(u+ u2 + α2)

− (u1 − u2 + α1 − α2) ln(u1 − u2 + α1 − α2)

+ (u1 − u2 − α1 + α2) ln(u1 − u2 − α1 + α2). (2.5c)

form, e.g. in the case of Q4 where the 3-leg form lives on the level of the uniformizing variables of the
relevant elliptic curve. It is through the connection with the affine linear form of the equations that
the symmetry under reversal of the shifts becomes apparent.
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2.3. H3

This is also known as the discrete modified (potential) KdV equation.

The original equation is

α1(uu1 + u2u1,2)− α2(uu2 + u1u1,2) + δ(α2
1 − α2

2) = 0; (2.6a)

written in 3-leg form this is

e2x+2x1 + δe2a1

e2x+2x2 + δe2a2
=

sinh(x− x1,2 − a1 + a2)

sinh(x− x1,2 + a1 − a2)
(2.6b)

where u = e2x and α1 = e2a1 , and it possesses the Lagrangian

L = − Li2(
uu1

−α1δ
) + Li2(

uu2

−α2δ
) + Li2(

α2u1

α1u2

)− Li2(
α1u1

α2u2

)

+ ln

(
α2

1

α2
2

)
ln(u) + ln(α2

2) ln

(
u1

u2

)
(2.6c)

where Li2(z) is the dilogarithm function given in (A.1) of appendix A, where some useful

identities for the dilogarithm function are presented.

2.4. Q1|δ=0

The original equation is

α1(u− u2)(u1 − u1,2)− β(u− u1)(u2 − u1,2) = 0; (2.7a)

written in 3-leg form this is

α1

u− u1

− α2

u− u2

=
α1 − α2

u− u1,2

(2.7b)

and it possesses the Lagrangian

L = α1 ln(u− u1)− α2 ln(u− u2)− (α1 − α2) ln(u1 − u2). (2.7c)

2.5. Q1|δ 6=0

The original equation is

α1(u− u2)(u1 − u1,2)− β(u− u1)(u2 − u1,2) + δ2α1α2(α1 − α2) = 0; (2.8a)

written in 3-leg form this is(
u− u1 + α1δ

u− u1 − α1δ

)(
u− u2 − α2δ

u− u2 + α2δ

)
=

(
u− u1,2 + α1δ − α2δ

u− u1,2 − α1δ + α2δ

)
(2.8b)

and it possesses the Lagrangian

L = (u− u1 + α1δ) ln(u− u1 + α1δ)− (u− u1 − α1δ) ln(u− u1 − α1δ)

− (u− u2 + α2δ) ln(u− u2 + α2δ) + (u− u2 − α2δ) ln(u− u2 − α2δ)

− (u1 − u2 + α1δ − α2δ) ln(u1 − u2 + α1δ − α2δ)

+ (u1 − u2 − α1δ + α2δ) ln(u1 − u2 − α1δ + α2δ). (2.8c)
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2.6. Q3|δ=0

Written in a slightly different form, this equation is known as the Homotopy equation,

and appears in the literature in [28]. The original equation is

(α2
2−α2

1)(uu1,2 +u1u2)+α2(α
2
1−1)(uu1 +u2u1,2)−α1(α

2
2−1)(uu2 +u1u1,2) = 0; (2.9a)

written in 3-leg form this is(
sinh(x− x1 + a1)

sinh(x− x1 − a1)

)(
sinh(x− x2 − a2)

sinh(x− x2 + a2)

)
=

(
sinh(x− x1,2 + a1 − a2)

sinh(x− x1,2 − a1 + a2)

)
(2.9b)

where u = e2x and α1 = e2a1 , and it possesses the Lagrangian

L = − Li2

(
α1u

u1

)
+ Li2

(
u

α1u1

)
+ Li2

(
α2u

u2

)
− Li2

(
u

α2u2

)
+ Li2

(
α1u1

α2u2

)
− Li2

(
α2u1

α1u2

)
+ ln(α2

1) ln

(
α2u1

α1u2

)
. (2.9c)

2.7. A1

The original equation is

α1(u+ u2)(u1 + u1,2)− α2(u− u1)(u2 − u1,2)− δ2α1α2(α1 − α2) = 0; (2.10a)

written in 3-leg form this is(
u+ u1 + α1δ

u+ u1 − α1δ

)(
u+ u2 − α2δ

u+ u2 + α2δ

)
=

(
u− u1,2 + α1δ − α2δ

u− u1,2 − α1δ + α2δ

)
(2.10b)

and it possesses the Lagrangian

L = (u+ u1 + α1δ) ln(u+ u1 + α1δ)− (u+ u1 − α1δ) ln(u+ u1 − α1δ)

− (u+ u2 + α2δ) ln(u+ u2 + α2δ) + (u+ u2 − α2δ) ln(u+ u2 − α2δ)

− (u2 − u1 + α1δ − α2δ) ln(u2 − u1 + α1δ − α2δ)

+ (u2 − u1 − α1δ + α2δ) ln(u2 − u1 − α1δ + α2δ). (2.10c)

2.8. A2

The original equation is

(α2
2−α2

1)(uu1u2u1,2+1)+α2(α
2
1−1)(uu2−u1u1,2)−α1(α

2
2−1)(uu1+u2u1,2) = 0; (2.11a)

written in 3-leg form this is(
sinh(x+ x1 + a1)

sinh(x+ x1 − a1)

)(
sinh(x+ x2 − a2)

sinh(x+ x2 + a2)

)
=

(
sinh(x− x1,2 + a1 − a2)

sinh(x− x1,2 − a1 + a2)

)
(2.11b)
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where u = e2x and α1 = e2a1 , and it possesses the Lagrangian

L = − Li2(α1uu1) + Li2

(
uu1

α1

)
+ Li2(α2uu2)− Li2

(
uu2

α2

)
+ Li2

(
α1u2

α2u1

)
− Li2

(
α2u2

α1u1

)
+ ln(α2

1) ln

(
α2u2

α1u1

)
. (2.11c)

For the Lagrangians of the cases given in the list 2.1-2.8, we will next establish an

important new property.

3. Closure relation and Lagrangian 2-forms

The main observation of this paper is that all the lattice systems, together with their

3-point Lagrangians, as given in the previous section, possess a remarkable property

which we refer to as the closure relation, when we embed both the equation and the

Lagrangian in a 3-dimensional lattice. In order to formulate this property we introduce

the notation of the difference operator ∆i which acts on functions f of u = u(n1, n2, n3)

by the formula ∆if(u) = f(ui) − f(u), and on a function g of u and its shifts by the

formula ∆ig(u, uj, uk) = g(ui, ui,j, ui,k) − g(u, uj, uk), in which, as before, the suffix i

denotes a shift in the direction associated with the variable ni. The following statement

holds true.

Proposition:

All the 3-point Lagrangians given in the list 2.1-2.8 when embedded in a three-

dimensional lattice, as explained in section 2, satisfy the following relation on solutions

of the quadrilateral lattice system:

∆1L(u, u2, u3;α2, α3) + ∆2L(u, u3, u1;α3, α1) + ∆3L(u, u1, u2;α1, α2) = 0 (3.1)

This can be established by explicit computation, and has been verified in all cases

in the list 2.1-2.8. Below we will demonstrate this computation for the case of H1.

Furthermore, in appendix B we will present the computation in the case of H3, which is

somewhat more involved and relies on a number of identities for the dilogarithm function

Li2, see e.g. [22, 18], the relevant ones of which have been reproduced in appendix A.

For the Lagrangians of the remaining equations in the ABS list the computations are

more implicit and we delegate those to a future publication.

Example: H1 To illustrate the proposition in the simplest case, we perform the

following computation. By definition of the Lagrangians we have

∆1L(u, u2, u3;α2, α3) + ∆2L(u, u3, u1;α3, α1) + ∆3L(u, u1, u2;α1, α2)

= (u1,2 − u1,3)u1 − (α2 − α3) ln(u1,2 − u1,3)− (u2 − u3)u

+ (α2 − α3) ln(u2 − u3) + (u2,3 − u1,2)u2 − (α3 − α1) ln(u2,3 − u1,2)

− (u3 − u1)u+ (α3 − α1) ln(u3 − u1) + (u1,3 − u2,3)u3

− (α1 − α2) ln(u1,3 − u2,3)− (u1 − u2)u+ (α1 − α2) ln(u1 − u2). (3.2)
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Noting that the differences between the double-shifted terms has the form

u1,2 − u1,3 = − (α2 − α3)u1 + (α3 − α1)u2 + (α1 − α2)u3

(u1 − u2)(u2 − u3)(u3 − u1)
(u2 − u3)

= A1,2,3(u2 − u3) (3.3)

where A1,2,3 is invariant under permutations of the indices, the expression (3.2) reduces

to

A1,2,3(u2 − u3)u1 − (α2 − α3) ln
(
A1,2,3(u2 − u3)

)
− (u2 − u3)u+ (α2 − α3) ln(u2 − u3)

+A1,2,3(u3 − u1)u2 − (α3 − α1) ln
(
A1,2,3(u3 − u1)

)
− (u3 − u1)u+ (α3 − α1) ln(u3 − u1)

+A1,2,3(u1 − u2)u3 − (α1 − α2) ln
(
A1,2,3(u1 − u2)

)
− (u1 − u2)u+ (α1 − α2) ln(u1 − u2)

= 0 (3.4)

where we have tried to organize the succession of terms to make it manifest which

groupings of terms cancel out against each other.

In a similar way the cases of H2, Q1 and A1 can be verified, whereas the cases of

H3, Q3|δ=0 and A2 all involve the dilogarithm function Li2 and can be verified along

similar lines as the computation in appendix B.

In order to discuss the implications of the statement above, we need to introduce

some further notation. Let ei denote the unit vector in the lattice direction labelled by

i and let any point in the multidimensional lattice be specified by the vector n whose

components are the coordinates n1, n2, . . . of the lattice‖, then elementary shifts in the

lattice can be generated by the action n → n + ei. Specifying an elementary oriented

plaquette in this lattice requires the following data: the position n of one of its vertices

in the lattice and the lattice directions given by the base vectors ei, ej. One way to

characterize the oriented plaquette is by the ordered triplet σij(n) = (n,n+ei,n+ej).

Since the 3-point Lagrangians depend on two directions in the lattice, and when

embedded in a multidimensional lattice at each point can be associated with an oriented

plaquette σij(n), we can think of these Lagrangians as defining a discrete 2-form Lij(n)

whose evaluation on that plaquette is given by the Lagrangian function as follows

Lij(n) = L(u(n), u(n + ei), u(n + ej);αi, αj). (3.5)

Here it is understood that (3.5) is the contribution to the action functional associated

with the given plaquette σij(n) as described above. Choosing now a surface σ in the

multidimensional lattice consisting of a connected configuration of elementary plaquettes

σij(n), such as illustrated in Figure 3 (which could be an infinite surface or a compact

surface, with or without boundary) we can define an action on that surface simply by

‖ If we select a lattice of finite dimensionality we could write the coordinates on the lattice as
n = (n1, n2, . . . ), where the lattice directions are labelled according to the natural numbers. However in
principle one could also have an infinite dimensional lattice and even a lattice labelled by an uncountable
set.
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Figure 3. Example of a surface with boundary

summing up the contributions Lij from each of the plaquettes on the surface, taking

into account the directions associated with each face, i.e. we perform the sum:

S = S[u(n);σ] =
∑
σ

L =
∑

σij(n)∈σ

Lij(n). (3.6)

The sum in (3.6) is unambiguous for two reasons: first, because all the Lagrangians

considered in 2.1-2.8 have the property of antisymmetry up to a constant with respect

to transformations i↔ j, i.e. Lij(n) = −Lji(n) + constant; second, we choose the base

point n in such a way that Lij(n), defined on σij(n), involves u(n) along with its shifts

only in the positive i and j directions. We choose throughout this paper not to use the

abstract notation of difference forms, cf. e.g. [25], because we want to demonstrate on

the basis of the examples given that all statements can be established through concrete

computations.

It is obvious from (3.6) that the geometry of the surface σ forms an integral part

of the action functional. The closure relation (3.1) implies the invariance of the action

under local deformations of the surface σ while fixing its boundary. This we can easily

see by considering an elementary variation of a locally flat surface at a single plaquette

illustrated by Figure 4. If S is the value of the action functional for the undeformed

Figure 4. Local deformation of a discrete surface σ to a surface σ′

surface in Figure 4 the value for the deformed surface in Figure 4 can be computed as

follows

S ′ = S − L(u, ui, uj;αi, αj) + L(uk, ui,k, uj,k;αi, αj) + L(ui, ui,j, ui,k;αj, αk)

+ L(uj, uj,k, ui,j;αk, αi)− L(u, uj, uk;αj, αk)− L(u, uk, ui;αk, αi) (3.7)

taking into account the orientation of the deformation σ → σ′, defined as a transition

between two collections of oriented plaquettes as indicated by the figure. From this

argument it follows that the independence of the action under such a deformation is
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locally equivalent to the closure relation (3.1). We consider this invariance an essential

aspect of the relevant variational principle underlying multidimensionally consistent

lattice systems.

The aim of a Lagrangian multiform description over the usual scalar Lagrangian one

is that it should provide us with not just one variational equation, but in principle an

arbitrary number of compatible equations. At this stage it is not entirely clear what is

the optimal formulation for such a principle, in view of the fact that the closure relations

we have established for specific examples rely on the quadrilateral lattice equations

themselves, but we will make an attempt in this direction by posing the following.

Discrete variational principle for integrable lattice systems: The functions u(n) solving

an integrable multidimensional lattice system on each discrete quadrilateral surface σ

are those for which the action S[u(n);σ] of (3.6) is invariant under local deformations

of the lattice, as described above, and for which the action attains an extremum under

infinitesimal local deformations of the dependent variable u(n).

The mechanism that we have in mind is as follows. Starting with an action functional

S[u(n);σ] as in (3.6) we impose surface independence of this action. This allows us

to deform the surface σ as we choose, whilst keeping the boundary in place if there

is a boundary. Thus, we can always render it into a locally flat surface away from

the boundary, where we can choose any pair of local coordinates ni, nj. In that part

of the surface we can then apply the usual variational principle with respect to the

field variables u(n), leading in the usual manner to the Euler-Lagrange equations in

those lattice directions. If these equations subsequently imply the validity of the closure

relation for the Lagrangian in terms of which the action is defined, this then ensures that

those equations are consistent with invariance of the action under deformation of the

surface which in turn allowed the derivation of those equations in the first place. This

principle goes farther than just providing a variational derivation of equations of the

motion from a given Lagrangian, in that in some sense it also imposes conditions on the

class of admissible Lagrangians to which this principle applies. What is not clear at this

stage is to what extent admissible Lagrangians can be constructed by application of this

principle and we do not yet have a general proof that this procedure will automatically

lead to multidimensionally consistent lattice equations.

4. Discussion and comparison with the continuous case

The discrete variational principle formulated in the previous section brings in the

geometry as a variable of the action functional. This contrasts starkly with the usual

variational principle, where the Euler-Lagrange equations provide information rather

on the parametrization of the underlying geometry than on the geometry itself. For

instance, in the elementary case of a mechanical system with one degree of freedom the
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action

S[q(t)] =

∫ T

0

L(q, q̇, t)dt (4.1)

contains hardly any geometry at all, but the relevant Lagrange equation tells us how

the one-dimensional motion is parametrized in a specific way according to the equations

of motion. When we have more than one degree of freedom there is obviously room

for nontrivial phase space geometry, but again the variational equations tell us more

about how the geometry is parametrized rather than bringing in the geometry as a

variational variable. Even in classical string theory [13], the geometry of the string

trajectories (which sweep out a surface in configuration space) plays a role at the level

of the dependent variables of the string action rather than of the independent variables

which parametrize the surface. In contrast, our proposal involves the geometry of the

space of independent variables which is somewhat reminiscent of the de Donder-Weyl

formalism [17], although in that approach the connection to integrability is not evident.

As far as we are aware, all Lagrangian descriptions of (continuous) integrable systems

so far involve conventional scalar Lagrangians, even where an attempt is made to give

a multi-Lagrangian description of integrable hierarchies, cf. [35, 36, 6].

At the continuous level, rather than systems of partial difference equations we

would be looking for systems of partial differential equations. An interesting example

of a linear system of PDEs which are mutually compatible is given by the following

nonautonomous set of equations.

∂pi
∂pj

(p2
i − p2

j)∂pi
∂pj
w = 4(nj∂pi

− ni∂pj
)

1

p2
i − p2

j

(njp
2
i∂pi
− nip2

j∂pj
)w (4.2)

where i, j run over some index set I. Each of these, for fixed labels i, j, arise as Euler-

Lagrange equations from the Lagrange density

Lij =
1

njni

(
1

2
(p2
i − p2

j)w
2
pipj

+ (n2
jw

2
pi
− n2

iw
2
pj

) +
p2
i + p2

j

p2
i − p2

j

(njwpi
− niwpj

)2

)
(4.3)

where notably the independent variables pi, pj are on an equal footing. Here w =

w(pi, pj) is the dependent scalar variable and the ni, nj are a pair of parameters of the

equation, where we associate the parameter ni with the variable pi, and the parameter nj
with the variable pj. It conspires that the system of PDEs (4.2), when the labels i, j are

assumed to run over some index set of cardinality larger than 2, is multidimensionally

consistent in a similar way as the lattice equations considered in section 2. Furthermore,

the Lagrangian (4.3) obeys a closure relation of the following form

∂pi
Ljk + ∂pj

Lki + ∂pk
Lij = 0 (4.4)

provided one or the other of the following two relations hold

wpipjpk
= −4

(
njnkp

2
iwpi

(p2
k − p2

i )(p
2
i − p2

j)
+

nknip
2
jwpj

(p2
i − p2

j)(p
2
j − p2

k)
+

ninjp
2
kwpk

(p2
j − p2

k)(p
2
k − p2

i )

)
(4.5a)
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or
(p2
i − p2

j)wpipj

ninj
+

(p2
j − p2

k)wpjpk

njnk
+

(p2
k − p2

i )wpkpi

nkni
= 0. (4.5b)

We can infer from the closure relation that the action on the solutions of the system

S[w;σ] =

∫
σ

∑
i,j∈I

Lijdpi ∧ dpj (4.6)

is independent of the surface σ, relying on Stokes’ theorem, and similar to the discrete

case described in section 3 by locally rectifying the surface, i.e. deforming it locally to

a plane in terms of selected independent variables pi, pj, we can derive from the Euler-

Lagrange equations in those variables the system of PDEs. It seems somewhat artificial

in this example to invoke the additional equations (4.5a) and (4.5b), the need for which

is mainly due to the fact that we are dealing with higher order PDEs in terms of the

derivatives. We note, however, that the PDEs (4.2), (4.5a) and (4.5b) all hold true on

a large class of solutions given by the Fourier-type integral of the form

w =

∫
C

dk c(k)
∏
i∈I

(
pi + k

pi − k

)ni

(4.7)

over some suitably chosen curve C in the complex plane and suitably chosen coefficient

function c(k), where I denotes the index set as above. This example is inspired by the

canonical form of the plane wave factors, i.e. discrete exponential functions, appearing in

the solutions of the lattice equations [28, 38], which explains the use of the notation pi as

independent variables for historic reasons. The situation described here is the obvious

continuous analogue of the situation described in section 3 of the relation between

the closure relation and multidimensional consistency, apart from the fact that we are

dealing here with a set of linear equations rather than nonlinear ones.

The full nonlinear case analogous to (4.2) appeared first in [30], and it represents

the full KdV hierarchy as a so-called generating PDE given as follows

Utititjtj = Utititj

(
1

ti − tj
+
Utitj
Uti

+
Utjtj
Utj

)
+ Utitjtj

(
1

tj − ti
+
Utitj
Utj

+
Utiti
Uti

)
+ Utiti

(
n2
i

(ti − tj)2

U2
tj

U2
ti

−
U2
titj

U2
ti

− 1

ti − tj
Utitj
Uti

)
− Utitj

UtitiUtjtj
UtiUtj

+ Utjtj

(
n2
j

(ti − tj)2

U2
ti

U2
tj

−
U2
titj

U2
tj

− 1

tj − ti
Utitj
Utj

)
+

n2
i

2(ti − tj)3

Utj
Uti

(Uti + Utj + 2(tj − ti)Utitj ) (4.8)

+
n2
j

2(tj − ti)3

Uti
Utj

(Utj + Uti + 2(ti − tj)Utitj ) +
1

2(ti − tj)
U2
titj

(
1

Uti
− 1

Utj

)
,

which constitutes a generalization of the Ernst-Weyl equation of general relativity as was

shown in [40]. The variables ti are closely related to the pi of the previous linear example,
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namely by ti = p2
i . It was argued in [30] that (4.8) constitutes a multidimensionally

consistent system in the same way as the linear equation. The Lagrangian for equation

(4.8) is

Lij =
1

2
(ti − tj)

U2
titj

UtiUtj
+

1

2(ti − tj)

(
n2
j

Uti
Utj

+ n2
i

Utj
Uti

)
. (4.9)

This satisfies the closure relation (4.4) provided that one of two relations hold,

Utitjtk =
1

2UtiUtjUtk

(
UtiUtjtkUtjUtkti + UtjUtktiUtkUtitj + UtkUtitjUtiUtjtk

)
+

n2
i

2(tk − ti)(ti − tj)U2
ti

+
n2
j

2(ti − tj)(tj − tk)U2
tj

+
n2
k

2(tj − tk)(tk − ti)U2
tk

(4.10a)

or¶
(ti − tj)UtkUtitj + (tj − tk)UtiUtjtk + (tk − ti)UtjUtkti = 0. (4.10b)

Once again the additional equations (4.10a) and (4.10b) are invoked solely because we

are dealing with higher order PDEs in terms of the derivatives, which makes it difficult

to verify by direct computation. Nevertheless all three equations (4.8), (4.10a) and

(4.10b) hold on a large class of solutions of soliton type and hence they should certainly

be compatible between themselves.

5. Conclusions

3-point Lagrangians can be identified for all cases in the ABS list, but in this paper

we have restricted ourselves to those cases for which we have established a closure

relation. On the basis of this we have formulated a new variational principle in terms of

Lagrangian multiforms, which we believe captures the multidimensional consistency of

the underlying integrable systems. Obviously we would want to verify that the closure

property holds for the remaining cases in the ABS list as well. The cases of Q2 and

Q3 have a more implicit structure which makes it more difficult to verify the closure

relation directly. Furthermore the case of the top equation Q4 requires the development

of new functional identities for the elliptic analogue of the dilogarithm function. We

intend to deal with those cases in a separate publication.

An interesting question is whether it is possible to classify integrable discrete

and continuous systems on the level of the Lagrangians using the closure property.

Furthermore, we envisage that the formalism proposed in this paper would form

a paradigm of variational calculus applied to integrable systems, perhaps also in

connection with associated physical models. In fact, another interesting question is

¶ Equations (4.10a) and (4.10b) are manifestations of the fact that 1+1-dimensional equations of KdV
type can be embedded as dimensional reductions of 2+1-dimensional equations of KP type [37], which
holds true both for the continuous as well as the discrete case. In fact, the continuous nonautonomous
equation (4.10b) is remarkably similar to the fully discrete Hirota-Miwa equation and we believe that
it plays the role of a generating PDE for the KP hierarchy. It would be interesting to see how this
equation fits in with the results of [19].
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what is the quantum analogue of this formalism, e.g. in the context of a path integral

framework.
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Appendix A. Dilogarithm functions

The dilogarithm function is defined by

Li2(z) = −
∫ z

0

ln(1− z)

z
dz. (A.1)

Many functional relations involving dilogarithms are given in the book by Lewin[22], and

in the review paper of Kirillov[18], which also covers some of the quantum analogues.

The pivotal functional relation is the five-term identity

Li2

(
x

1− y
y

1− x

)
= Li2

(
x

1− y

)
+ Li2

(
y

1− x

)
− Li2(x)− Li2(y)

− ln(1− x) ln(1− y), x, y < 1. (A.2)

For the computations needed for this paper it is more convenient to write (A.2) in the

form

Li2(s) + Li2(t)− Li2(st) = Li2

(
s− st
1− st

)
+ Li2

(
t− st
1− st

)
− ln

(
1− s
1− st

)
ln

(
1− t
1− st

)
, s, t > 1. (A.3)

An additional two identities needed are the following, both valid for all real x.

Li2(x) + Li2

(
1

x

)
= −1

2

(
ln(−x)

)2 − π2

6
, (A.4)

Li2(x) + Li2

(
x

x− 1

)
= −1

2

(
ln(1− x)

)2
. (A.5)

Equation (A.4) holds regardless of whether the arguments are positive or negative.

Equations (A.2) and (A.5) require additional imaginary terms depending on the sign of

the arguments; these however cancel out in the course of the closure relation calculations.
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Appendix B. Proof of the H3 closure relation

Here we give an outline of the computation needed to show the closure relations (3.1)

hold for H3. We make use of the dilogarithm identities stated in appendix A. The

Lagrangian for H3 is

Lα1α2 ≡ L(u, u1, u2;α1, α2)

= − Li2

(
uu1

−α1

)
+ Li2

(
uu2

−α2

)
+ Li2

(
α2u1

α1u2

)
− Li2

(
α1u1

α2u2

)
+ ln

(
α2

1

α2
2

)
ln(u) + ln(α2

2) ln

(
u1

u2

)
. (B.1)

We make a change of variables, similar to those that appear in the 3 leg form of H3.

This will make the computations simpler and easier to follow. With the abbreviations

A =
uu1

−α1

, B =
uu2

−α2

, C =
uu3

−α3

(B.2)

the Lagrangian becomes

Lα1α2 = − Li2(A) + Li2(B) + Li2

(
A

B

)
− Li2

(
α2

1A

α2
2B

)
+ ln

(
α2

1

α2
2

)
ln(u) + ln(α2

2) ln

(
u1

u2

)
(B.3)

whilst the equations of motion, written in the variables A,B,C, are as follows:

α2
1

α2
2

1− A
1−B

=
1−B1

1− A2

(B.4a)

α2
2

α2
3

1−B
1− C

=
1− C2

1−B3

(B.4b)

α2
3

α2
1

1− C
1− A

=
1− A3

1− C1

. (B.4c)

Together with the definitions of A,B,C, these give expressions for A2, B1,etc explicitly

in terms of A,B,C. To write these in a simple way, define the function HA,B ≡
H(A,B;α1, α2) to be

HA,B =
α2

2(1−B)− α2
1(1− A)

A−B
(B.5)

leading to the following

A3 =
C

α2
1

HC,A, B1 =
A

α2
2

HA,B, C2 =
B

α2
3

HB,C ,

A2 =
B

α2
1

HA,B, B3 =
C

α2
2

HB,C , C1 =
A

α2
3

HC,A. (B.6)

Defining the quantity Γ as below

Γ ≡ ∆3Lα1α2 + ∆1Lα2α3 + ∆2Lα3α1 (B.7)

we may now write both the Lagrangians and their shifted versions in terms of A,B and

C, which leads to
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Γ = Li2

(
B

α2
1

HA,B

)
+ Li2

(
α2

1A

α2
2B

)
− Li2

(
A

α2
2

HA,B

)

+ Li2

(
C

α2
2

HB,C

)
+ Li2

(
α2

2B

α2
3C

)
− Li2

(
B

α2
3

HB,C

)

+ Li2

(
A

α2
3

HC,A

)
+ Li2

(
α2

3C

α2
1A

)
− Li2

(
C

α2
1

HC,A

)

+ Li2

(
α2

1HB,C

α2
3HA,B

)
+ Li2

(
α2

3HA,B

α2
2HC,A

)
+ Li2

(
α2

2HC,A

α2
1HB,C

)

− Li2

(
HB,C

HA,B

)
− Li2

(
HA,B

HC,A

)
− Li2

(
HC,A

HB,C

)

− Li2

(
A

B

)
− Li2

(
B

C

)
− Li2

(
C

A

)

+ ln

(
α2

3

α2
1

)
ln(HA,B) + ln

(
α2

1

α2
2

)
ln(HB,C) + ln

(
α2

2

α2
3

)
ln(HC,A)

− ln

(
α2

3

α2
1

)
ln(A)− ln

(
α2

1

α2
2

)
ln(B)− ln

(
α2

2

α2
3

)
ln(C)

− ln(α2
1) ln(α2

2)− ln(α2
2) ln(α2

3)− ln(α2
3) ln(α2

1)

+ (ln(α2
1))2 + (ln(α2

2))2 + (ln(α2
3))2

where we have we rearranged the terms in a way that suggests which dilogarithm

identities to use and where. Applying the dilogarithm identity (A.4) to the terms

in the dashed-line boxes, the argument of the dilogarithm functions can be inverted.

This enables us to use identity (A.3) on the terms grouped in the solid-line boxes, using

the definition of HA,B to simplify the outcome. We will gather all the logarithm terms

together at the end.

Γ = + Li2

(
(A−B)HA,B

α2
1(A− 1)

)
+ Li2

(
A(B − 1)

B(A− 1)

)
+ Li2

(
(B − C)HB,C

α2
2(B − 1)

)
+ Li2

(
B(C − 1)

C(B − 1)

)
+ Li2

(
(C − A)HC,A

α2
3(C − 1)

)
+ Li2

(
C(A− 1)

A(C − 1)

)

+ Li2

(
α2

1(A− 1)(B − C)HB,C

α2
3(C − 1)(B − A)HA,B

)
+ Li2

(
(C − A)(B − 1)

(B − A)(C − 1)

)
− Li2

(
(B − C)HB,C

(B − A)HA,B

)
− Li2

(
C − A
B − A

)
− Li2

(
A(B − C)

B(A− C)

)
− Li2

(
A−B
A− C

)

�

�
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+ ln

(
α2

2(B − 1)

α2
1(A− 1)

)
ln

(
A−B
B(A− 1)

)
+ ln

(
α2

3(C − 1)

α2
2(B − 1)

)
ln

(
B − C
C(B − 1)

)
+ ln

(
α2

1(A− 1)

α2
3(C − 1)

)
ln

(
C − A
A(C − 1)

)
+ ln

(
α2

2(B − 1)(C − A)HC,A

α2
3(C − 1)(B − A)HA,B

)
ln

(
(A− 1)(B − C)

(C − 1)(B − A)

)
− ln

(
(C − A)HC,A

(B − A)HA,B

)
ln

(
B − C
B − A

)
− ln

(
C(A−B)

B(A− C)

)
ln

(
B − C
A− C

)
− 1

2

(
ln

(
−α

2
1HB,C

α2
2HC,A

))2

+
1

2

(
ln

(
−HB,C

HC,A

))2

+
1

2

(
ln

(
−A
C

))2

+
π2

6
+ ln

(
α2

3

α2
1

)
ln(HA,B) + ln

(
α2

1

α2
2

)
ln(HB,C) + ln

(
α2

2

α2
3

)
ln(HC,A)

− ln

(
α2

3

α2
1

)
ln(A)− ln

(
α2

1

α2
2

)
ln(B)− ln

(
α2

2

α2
3

)
ln(C)

− ln(α2
1) ln(α2

2)− ln(α2
2) ln(α2

3)− ln(α2
3) ln(α2

1)

+ (ln(α2
1))2 + (ln(α2

2))2 + (ln(α2
3))2. (B.8)

Again, using identity (A.4) on the terms in the dashed-line boxes, and subsequently

identity (A.3) on the terms grouped in the solid-line boxes, we obtain

Γ = Li2

(
(C −B)HB,C

α2
3(C − 1)

)
+ Li2

(
(A− C)HC,A

α2
1(A− 1)

)
+ Li2

(
(B − C)HB,C

α2
2(B − 1)

)
+ Li2

(
(C − A)HC,A

α2
3(C − 1)

)
+ ln

(
α2

2(B − 1)

α2
1(A− 1)

)
ln

(
A−B
B(A− 1)

)
+ ln

(
α2

3(C − 1)

α2
2(B − 1)

)
ln

(
B − C
C(B − 1)

)
+ ln

(
α2

1(A− 1)

α2
3(C − 1)

)
ln

(
C − A
A(C − 1)

)
+ ln

(
α2

2(B − 1)(C − A)HC,A

α2
3(C − 1)(B − A)HA,B

)
ln

(
(A− 1)(B − C)

(C − 1)(B − A)

)
− ln

(
(C − A)HC,A

(B − A)HA,B

)
ln

(
B − C
B − A

)
− ln

(
C(A−B)

B(A− C)

)
ln

(
B − C
A− C

)
+ ln

(
C(A−B)

B(A− C)

)
ln

(
(A− 1)(B − C)

(B − 1)(A− C)

)
+ ln

(
α2

3(C − 1)

α2
1(A− 1)

)
ln

(
(C − A)HC,A

(B − A)HA,B

)
− 1

2

(
ln

(
−α

2
1HB,C

α2
2HC,A

))2

+
1

2

(
ln

(
−HB,C

HC,A

))2

+
1

2

(
ln

(
−A
C

))2

− 1

2

(
ln

(
−A(C − 1)

C(A− 1)

))2

− 1

2

(
ln

(
−(B − A)(C − 1)

(C − A)(B − 1)

))2

+
1

2

(
ln

(
−A− C
A−B

))2

+ ln

(
α2

3

α2
1

)
ln(HA,B) + ln

(
α2

1

α2
2

)
ln(HB,C) + ln

(
α2

2

α2
3

)
ln(HC,A)
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− ln

(
α2

3

α2
1

)
ln(A)− ln

(
α2

1

α2
2

)
ln(B)− ln

(
α2

2

α2
3

)
ln(C)

− ln(α2
1) ln(α2

2)− ln(α2
2) ln(α2

3)− ln(α2
3) ln(α2

1)

+ (ln(α2
1))2 + (ln(α2

2))2 + (ln(α2
3))2. (B.9)

Using identity (A.5) on the first term of line 1 and the second term of line 2 of (B.9)

leaves the dilogarithm terms which subsequently cancel out. What then remains are

only the logarithm terms, which also cancel out, leaving Γ = 0. This concludes the

proof of the closure relation.
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