
Integrability, analyticity,
isochrony, equilibria,
small oscillations, and
Diophantine relations

F. Calogeroa;b;1
a Dipartimento di Fisica, Università di Roma "La Sapienza", Italy

b Istituto Nazionale di Fisica Nucleare, Sezione di Roma
1 francesco.calogero@roma1.infn.it, francesco.calogero@uniroma1.it

Summary

New Diophantine relations are obtained, in the guise of matrices having
integer eigenvalues, or equivalently of polynomials, de�ned via three-terms re-
cursion relations, having integer zeros. The basic idea to arrive at such relations
is not new, but the speci�c application reported in this paper is new, and it is
likely to open the way to several analogous �ndings.

1 Introduction

The general approach to arrive at the �ndings reported in this paper can be
described as follows (see for instance [1]). One starts from an integrable dynam-
ical system, namely a system of �rst-order nonlinear ODEs. One then modi�es
it so that� thanks to the analyticity properties in complex time of the solutions
of the original integrable system (i. e., its Painlevé property)� the modi�ed
system becomes entirely isochronous: its solutions, in its entire phase space,
are all periodic with the same �xed period in all degrees of freedom. (Indeed,
the modi�cation entails, essentially, that the time-evolution of the modi�ed
system corresponds to the evolution of the original system when the "time"
variable of the latter rotates uniformly on a circle in the complex plane: the
isochrony of the modi�ed system is therefore a consequence of the meromor-
phic character of the dependence of the original system is its complex "time"
variable.The possibility to perform such a modi�cation, transforming via this
technique� as described below� an autonomous dynamical system into a mod-
i�ed system which is also autonomous, requires that the original system satisfy
a grading property, which is often featured by integrable systems analogous to
that treated herein: see [1]). One then identi�es the equilibria of the isochro-
nous system (in some cases this can be done explicitly) and investigates, close
to these equilibria, its (in�nitesimally small) oscillations. Their frequencies are
given by the eigenvalues of the matrices characterizing the linearized system
near its equilibria (these matrices are of course given, in terms of the values of
the dynamical variables at equilibrium, by expressions easily obtainable from
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the equations of motion of the dynamical system). The fact that the system is
isochronous entails that, around each equilibrium, these frequencies must all be
integer multiples of a basic period. In this manner one arrives at Diophantine
relations, namely at the identi�cation of matrices whose eigenvalues are integer
numbers; equivalently, polynomials de�ned by three-term recursion relations are
identi�ed, yielding polynomials which factorize in terms of integer zeros. These
are the �nal �ndings produced by this approach.
This route to arrive at these �ndings is not new, and it might appear

contrived: indeed, its formulation via isochronous dynamical systems could
certainly be replaced by other, equivalent approaches of a more algebraico-
geometrical character. Its signi�cance seems to us rather transparent, and its
application has yielded interesting �ndings (for a review see Appendix C of
[1], entitled "Diophantine �ndings and conjectures"). The application of this
approach to the class of integrable systems treated herein is new, hence the cor-
responding �ndings are new. And it appears that analogous results could be
obtained by applying the same approach to other classes of integrable systems,
this being perhaps the most interesting aspect of the �ndings reported herein.

2 Results

It is well-known that the following nonlinear ODE, of order

N = 2M + 1 ; (1)

is integrable, and in particular that all its solutions � (�) possess the ("Painlevé")
property to be meromorphic functions of the independent variable � , considered
as a complex variable:

LM (�) � � 0 = 0 ; (2a)

where the integro-di¤erential operator L (�) acts as follows on functions ' (�):

L (�) � ' (�) = '00 (�)� 4� (�)' (�)� 2� 0 (�)
Z �

d� ' (�) : (2b)

The integration in this de�nition of the operator L (�) is meant to be performed
omitting the contribution from the lower end of the integration range, and� here
and throughout� appended primes denote di¤erentiations with respect to the
independent variable � . The notation LM (�) � indicates of course the iterated
application M times of the operator L (�) ; and hereafter M is a �xed positive
integer, and N the corresponding odd positive integer, see (1). In the following
we will freely use N and M (sometimes even in the same formula, to write it in
neater form), on the understanding that they are always related by (1).
The fact that the ODE (2a) is integrable� as well as the very fact that it

is indeed an ODE rather than an integro-di¤erential equation, as it might at
�rst sight appear to be, see (2b)� is of course well-known: this equation is just
the stationary version of the Mth PDE of the KdV class (with the "spatial"
independent variable denoted here as �), see for instance [2] [3]. More explicit
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expressions of this hierarchy of integrable ODEs are available (see for instance
[4], and references therein), but they are too complicated to be displayed here.
On the other hand obtaining the �rst few of these ODEs by iteration is a

straightforward exercise. For instance for M = 1 (2a), reads

� 000 (�) = 6� 0 (�) � (�) ; (3a)

and for M = 2 it reads

� 00000 (�) = 10� 000 (�) � (�) + 20� 00 (�) � 0 (�)� 30� 0 (�) �2 (�) : (3b)

Via the de�nition (entailing �1 (�) = � (�))�
d

d�

�n�1
� (�) = �n (�) ; (4)

with, here and hereafter (unless otherwise indicated), n = 1; 2; 3; :::; N , the single
third-order ODE (3a) is seen to be equivalent to the system of 3 �rst-order ODEs

� 01 = �2 ; � 02 = �3 ; � 03 = 6�2�1 ; (5a)

and the single �fth-order ODE (3b) is seen to be equivalent to the system of 5
�rst-order ODEs

� 0n = �n+1 ; n = 1; 2; 3; 4 ; � 05 = 10�4�1 + 20�3�2 � 30�2�21 : (5b)

Likewise, the single ODE, of order N; satis�ed by the dependent variable
� (�) ; reading

� 0N = fN
�
�N�1; �N�2; :::; �1

�
(6)

with the polynomial function fN
�
�N�1; �N�2; :::; �1

�
de�ned by identifying via

(4) this ODE with the Nth order ODE (2), is seen to be equivalent to the system
of N �rst order ODEs

� 0n = �n+1 ; n = 1; 2; :::; N � 1 ; � 0N = fN
�
�N�1; �N�2; :::; �1

�
: (7)

For instance this de�nition of fN
�
�N�1; �N�2; :::; �1

�
entails (see (3a) or (5a))

f3 (�2; �1) = 6�2�1 (8a)

and (see (3b) or (5b))

f5 (�4; �3; �2; �1) = 10�4�1 + 20�3�2 � 30�2�21 : (8b)

The integrable dynamical system (7)� with the N functions �n � �n (�) con-
sidered as N dependent variables� is our starting point. This choice represents
the main novelty of our treatment; the possibility of analogous developments,
using the same methodology, see below, but with di¤erent points of departure
(say, other hierarchies of integrable nonlinear PDEs), is obvious.
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The fact that this system of ODEs, (7), is integrable entails that it possesses
the Painlevé property: all its solutions �n (�) are meromorphic functions of the
complex variable � (see for instance [3], and in particular the relevant papers
by S. P. Novikov and others referred to there).
It is well-known� and in any case clear from its de�nition; see (4), (6)

and (7)� that the function fN
�
�N�1; �N�2; :::; �1

�
features the following scaling

property:

fN
�
�N�N�1; �

N�1�N�2; :::; �
2�1
�
= �N+2 fN

�
�N�1; �N�2; :::; �1

�
: (9)

It is therefore possible (see for instance [1]), via the following change of depen-
dent and independent variables,

zn (t) = exp [i (n+ 1) t] �n (�) ; � = i [1� exp (i t)] ; (10)

to transform the (autonomous and integrable) dynamical system (7) into the
following system,

_zn � i (n+ 1) zn = zn+1 ; n = 1; :::; N � 1 ; (11a)

_zN � i (N + 1) zN = fN (zN�1; zN�2; :::; z1) ; (11b)

which is of course as well autonomous and integrable, and is moreover isochro-
nous, so that all its solutions feature the periodicity property

zn (t+ 2�) = zn (t) : (12)

Here and below i is of course the imaginary unit, i2 = �1; and a superimposed
dot denotes di¤erentiation with respect to the independent variable t; so that
in particular _� (t) = exp (i t) (see (10), and note that it also entails � (0) = 0
hence zn (0) = �n (0); this simpli�es the relation among the initial data of the
two dynamical systems (7) and (11), but in fact plays no relevant role in the
following developments).
The fact that the system (11) is isochronous, see (12), is an obvious con-

sequence [1] of the change of variables (10) together with the meromorphic
character of all the solutions �n (�) of the integrable dynamical system (7).
Let now

zn (t) = �zn ; (13)

denote an equilibrium con�guration of the dynamical system (11), so that the
N numbers �zn satisfy the set of N algebraic equations

�i (n+ 1) �zn = �zn+1 ; n = 1; :::; N � 1 ; (14a)

�i (N + 1) �zN = fN (�zN�1; �zN�2; :::; �z1) : (14b)

It is then clearly convenient to set

�zn = n! (�i)n+1 y ; (15)
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which guarantees that the N � 1 equations (14a) are all automatically satis�ed,
while, to also satisfy the remaining equation (14b), the number y is then required
to satisfy the following polynomial equation of order M + 1 = (N + 1) =2:

(N + 1)! y = fN ((N � 1)! y; (N � 2)! y; :::; 3! y; 2 y; y) : (16)

Note that, to write this equation in a neater way, we took advantage of the
scaling property (9). (The fact that this is a polynomial equation of degree
M + 1 = (N + 1) =2 in the unknown y is a clear consequence of the de�nition
of the function fN (zN�1; zN�2; :::; z1) ; as given above: see in particular (8)).
Hence this polynomial equation has M = (N � 1) =2 solutions, in addition to
the trivial solution y = 0 (which clearly is always featured by this equation: see
in particular (8)).
For instance a simple calculation shows that for M = 1; N = 3 the nonvan-

ishing value of y is y = 2; while for M = 2; N = 5 the 2 nonvanishing values of
y are y = 2 and y = 6: The fact that these values of y are integer numbers was
not a priori expected; it remains to be checked whether this property persists
for larger values of N; and if so to understand why.
The next step is to linearize the isochronous system of ODEs (11) near its

equilibria (see (15) with (16)). Hence we set

zn (t) = �zn + " wn (t) ; (17)

in (11), and in the limit of in�nitesimal " we obtain, for the N dependent
variables wn (t), the linear system of ODEs

_wn � i (n+ 1) wn = wn+1 ; n = 1; :::; N � 1 ; (18a)

_wN � i (N + 1) wN =
N�1X
n=1

fN;n wn ; (18b)

where clearly

fN;n =
@ fN
@ zn

(�zN�1; �zN�2; :::; �z2; �z1) ; n = 1; :::; N � 1 ; (19a)

or equivalently, via (15),

fN;n =
@ fN
@ zn

�
(N � 1)! (�i)N y; (N � 2)! (�i)N�1 y; :::;�2iy;�y

�
;

n = 1; :::; N � 1 : (19b)

We also set, for notational convenience (see below),

fN;n = (i)
n
gN;n : (20)

So, for instance, for N = 3; from (8a) one easily gets

g3;1 = 12 y ; g3;2 = 6 y ; (21a)
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hence, corresponding to the root y = 2;

g3;1 = 24 ; g3;2 = 12 ; (21b)

and likewise, for N = 5; from (8b) one easily gets

g5;1 = 120 y (y � 2) ; g5;2 = 30 y (y � 4) ;
g5;3 = �40 y ; g5;4 = �10 y ; (22a)

hence, corresponding to the root y = 2;

g5;1 = 0 ; g5;2 = �120 ; g5;3 = �80 ; g5;4 = �20 ; (22b)

and corresponding to the root y = 6;

g5;1 = 2880 ; g5;2 = 360 ; g5;3 = �240 ; g5;4 = �60 : (22c)

The N basic solutions� with m = 1; :::; N� of the linear system of ODEs
(18) (with (19)) read of course

w(m) (t) = �w(m) exp (�i xn t) ; (23)

with w(m) (t) indicating the N -vector of components w(m)n (t) and the N num-
bers xn, respectively the N constant N -vectors �w(m), being the N eigenvalues,
respectively the N corresponding eigenvectors, of the N �N matrix A de�ned
componentwise as follows:

An;n = � (n+ 1) ; An;n+1 = i ; n = 1; :::; N � 1 ; (24a)

AN;n = (i)
n+1

gN;n ; n = 1; :::; N � 1 ; AN;N = � (N + 1) ; (24b)

with all other matrix elements vanishing. Equivalently, the N numbers xn are
the N roots of the following Nth degree monic polynomial in x:

PN (x) = det [x I �A] ; (25)

where of course I is the N �N unit matrix. It is convenient to reformulate this
equation as follows:

PN (x) = det [B (x)] ; (26)

with the N �N matrix B (x) de�ned componentwise as follows:

Bn;n (x) = x+ n+ 1 +
gN;n
gN;n+1

; n = 1; :::; N � 2 ;

BN�1;N�1 (x) = x+N + (�1)M gN;N�1
x+N + 1

;

BN;N (x) = x+N + 1; (27a)

Bn;n+1 (x) = 1 ; n = 1; :::; N � 1 ; (27b)
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Bn;n�1 (x) = (x+ n+ 1)
gN;n
gN;n+1

; n = 2; :::; N � 1 ; (27c)

with all other matrix elements vanishing. The equality of the two expressions
(25) with (24) and (26) with (27) of the polynomial PN (x) is guaranteed by the
fact that the matrix B (x) is obtained from the matrix x I � A by subtracting
from each column of this matrix (except, of course, from the last column) the
subsequent column multiplied by a coe¢ cient adjusted so as to yield a vanishing
value for the bottom term of the resulting column, an operation that does not
change the value of the determinant but has the merit of making the matrix
B (x) tridiagonal. And we also multiplied (for cosmetic reasons) the nm-th
matrix element by im�n, another operation that does not a¤ect the determinant
(it amounts to multiplying the matrix from the right by J =diag(in) and from
the left by J�1).
And since the last line of the N �N matrix B (x) has all elements vanishing

except for the last (diagonal) one reading BN;N (x) = x + N + 1, one sees
that another equivalent expression of the polynomial PN (x) is provided by the
following formula,

PN (x) = det [C (x)] ; (28)

where C (x) is now the following tridiagonal (N � 1)�(N � 1) matrix (obtained
from B (x) by multiplying its next-to-last line by BN;N (x) = x+N +1 and by
eliminating its last line and column):

Cn;n (x) = x+ n+ 1 +
gN;n
gN;n+1

; n = 1; :::; N � 2 ; (29a)

CN�1;N�1 (x) = (x+N) (x+N + 1) + (�1)M gN;N�1 ; (29b)

Cn;n+1 (x) = 1 ; n = 1; :::; N � 2 ; (29c)

Cn;n�1 (x) = (x+ n+ 1)
gN;n
gN;n+1

; n = 2; :::; N � 2 ; (29d)

CN�1;N�2 (x) = (x+N) (x+N + 1)
gN;N�2
gN;N�1

; (30)

again with all other matrix elements vanishing.
The structure of the tridiagonal (N � 1) � (N � 1) matrix C (x)� see in

particular (29b), the last element listed in (29c) and (30)� suggests setting

PN (x) =
h
(x+N) (x+N + 1) + (�)M gN;N�1

i
p
(N)
N�2 (x)

� (x+N) (x+N + 1)
gN;N�2
gN;N�1

p
(N)
N�3 (x) ; (31)

with the monic polynomials p(N)m (x) ; of degree m in x, de�ned as follows:

p(N)m (x) = det [c (m;x)] ; (32)
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where them�m tridiagonal matrix c (m;x) is de�ned componentwise as follows:

cn;n (m;x) = x+ n+ 1 +
gN;n
gN;n+1

; n = 1; :::;m ; (33a)

cn;n+1 (m;x) = 1 ; n = 1; :::;m� 1 ; (33b)

cn;n�1 (m;x) = (x+ n+ 1)
gN;n
gN;n+1

; n = 2; :::;m ; (33c)

with all other matrix elements vanishing: hence it coincides with the �rst (upper-
left) minor, of order m � m, of the matrix C (x). Here of course the positive
integer m is restricted to be less than N � 1;

m � N � 2 : (34)

This de�nition of the monic polynomials p(N)m (x) clearly entails that they
satisfy the three-term recursion relation

p(N)m (x) =

�
x+m+ 1 +

gN;m
gN;m+1

�
p
(N)
m�1 (x)

� (x+m+ 1) gN;m
gN;m+1

p
(N)
m�2 (x) ; (35)

indeed they are de�ned by this recursion relation together with the initial con-
ditions

p
(N)
�1 (x) = 0; p

(N)
0 (x) = 1 ; (36a)

entailing
p
(N)
1 (x) = x+ 2 +

gN;1
gN;2

; (36b)

p
(N)
2 (x) =

�
x+ 3 +

gN;2
gN;3

��
x+ 2 +

gN;1
gN;2

�
� (x+ 3) gN;2

gN;3
; (36c)

and so on up to m = N � 2:
Hence in particular, for N = 3 (via (21b))

p
(3)
1 (x) = x+ 4 ; (37a)

entailing, via (21b) and (31),

P3 (x) = (x� 1) (x+ 4) (x+ 6) ; (37b)

and for N = 5 and y = 2 (via (22b))

p
(5)
1 (x) = x+ 2 ; p

(5)
2 (x) = x2 +

13

2
x+ 9 = (x+ 2)(x+

9

2
) ;

p
(5)
3 (x) = x3 + 13x2 + 52x+ 60 = (x+ 2) (x+ 5) (x+ 6) ; (38a)

entailing, via (22b) and (31),
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P5 (x) = (x� 1) (x+ 2) (x+ 5) (x+ 6) (x+ 8) ; (38b)

while for N = 5 and y = 6 (via (22b))

p
(5)
1 (x) = x+ 10 ; p

(5)
2 (x) = x2 +

7

2
x� 9 ;

p
(5)
3 (x) = x3 + 13x2 + 40x� 12 = (x+ 6)

�
7x+ x2 � 2

�
; (39a)

entailing, via (22c) and (31),

P5 (x) = (x� 3) (x� 1) (x+ 6) (x+ 8) (x+ 10) : (40a)

The main result of this paper is the Diophantine observation that theN zeros
xn of the polynomial PN (x) ; see (25) or (26) or (28) or (31), must all be integers,
and all di¤erent among themselves, for all the de�nitions of the quantities gN;m
entailed by the above developments; let us re-emphasize that there will generally
be M + 1 = (N + 1) =2 di¤erent de�nitions of these quantities, corresponding
to the M + 1 = (N + 1) =2, generally di¤erent, roots of the polynomial (16)
(but the root y = 0 clearly yields trivially the results xn = n + 1; since the
corresponding matrix is triangular). This conclusion is implied by the fact that
all the solutions (23) must satisfy the isochrony property (12), and it is of course
veri�ed by the examples displayed above corresponding toM = 1, see ([?]), and
to M = 2, see ([?]) and ([?]).
The next task shall be to display these �ndings for larger values of M , and

especially for arbitrary M .
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