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Abstract. Recently Hirota and Kimura presented a new discretization of the
Euler top with several remarkable properties. In particular this discretization
shares with the original continuous system the feature that it is an algebraically
completely integrable bi-Hamiltonian system in three dimensions. The Hirota-
Kimura discretization scheme turns out to be equivalent to an approach to
numerical integration of quadratic vector fields that was introduced by Kahan,
who applied it to the two-dimensional Lotka-Volterra system.

The Euler top is naturally written in terms of the so(3) Lie-Poisson alge-
bra. Here we consider algebraically integrable systems that are associated with
pairs of Lie-Poisson algebras in three dimensions, as presented by Gümral and
Nutku, and construct birational maps that discretize them according to the
scheme of Kahan and Hirota-Kimura. We show that the maps thus obtained
are also bi-Hamiltonian, with pairs of compatible Poisson brackets that are
one-parameter deformations of the original Lie-Poisson algebras, and hence
they are completely integrable. For comparison, we also present analogous
discretizations for three bi-Hamiltonian systems that have a transcendental in-
variant, and finally we analyze all of the maps obtained from the viewpoint of
Halburd’s Diophantine integrability criterion.

1. Introduction. The problem of numerical integration, namely that of approxi-
mating the flow of a smooth vector field by an iterative scheme given in terms of a
difference equation or a map, is one of the central problems of numerical analysis.
If the underlying differential equation is Hamiltonian, or volume-preserving, or has
some other important geometrical feature (such as being invariant under the action
of a Lie group of symmetries), then as far as possible one would like to select a dis-
cretization scheme which preserves this feature, and this has led to the development
of geometrical integration methods [4]. For the special case of completely integrable

2000 Mathematics Subject Classification. Primary: 37K10; Secondary:14E05.
Key words and phrases. Integrable discretizations, Lie-Poisson algebras, Diophantine

integrability.

1

http://dx.doi.org/10.3934/jgm.2009.1.xx


2 ANDREW N. W. HONE AND MATTEO PETRERA

systems, ideally one would like to obtain discretizations which are themselves com-
pletely integrable. The area of integrable discretization has been developed quite
extensively, especially from the Hamiltonian viewpoint, and a comprehensive review
of the field can be found in the monograph [40]. In this paper we are concerned
with a novel approach to discretization, which was used by Hirota and Kimura to
obtain new integrable discrete analogues of the Euler and Lagrange tops [15, 22].

The discretization method studied in this paper seems to be introduced in the
geometric integration literature by W. Kahan in the unpublished notes [20]. It is
applicable to any system of ordinary differential equations for x : R → Rn with a
quadratic vector field

ẋ = Q(x) + Bx + c,

where each component of Q : Rn → Rn is a quadratic form, while B ∈ Matn×n(R)
and c ∈ Rn. Kahan’s discretization reads as

x̃ − x

2ǫ
= Q(x, x̃) +

1

2
B(x + x̃) + c, (1)

where

Q(x, x̃) =
1

2
[Q(x + x̃) − Q(x) − Q(x̃)] ,

is the symmetric bilinear form corresponding to the quadratic form Q. Here and
below we use the following notational convention which will allow us to omit a lot of
indices: for a sequence x : Z → R we write x for xk and x̃ for xk+1. Eq. (1) is linear
with respect to x̃ and therefore defines a rational map x̃ = f(x, ǫ). Clearly, this
map approximates the time-(2ǫ)-shift along the solutions of the original differential
system, so that xk ≈ x(2kǫ). (We have chosen a slightly unusual notation 2ǫ for
the time step, in order to avoid appearance of powers of 2 in numerous formulae; a
more standard choice would lead to changing ǫ 7→ ǫ/2 everywhere.) Since Eq. (1)
remains invariant under the interchange x ↔ x̃ with the simultaneous sign inversion
ǫ 7→ −ǫ, one has the reversibility property f−1(x, ǫ) = f(x,−ǫ). In particular, the
map f is birational.

Kahan applied this discretization scheme to the famous Lotka-Volterra system
and showed that in this case it possesses a very remarkable non-spiralling property.
Some further applications of this discretization have been explored in [21, 37].

The next, even more intriguing, appearance of this discretization was in the two
papers by R. Hirota and K. Kimura who (being apparently unaware of the work
by Kahan) applied it to two famous integrable systems of classical mechanics, the
Euler top and the Lagrange top [15, 22]. Surprisingly, the Kahan-Hirota-Kimura
discretization scheme produced integrable maps in both the Euler and the Lagrange
cases of rigid body motion. Even more surprisingly, the mechanism which assures
integrability in these two cases seems to be rather different from the majority of
examples known in the area of integrable discretizations, and, more generally, inte-
grable maps, cf. [40]. We shall use the term “Hirota-Kimura type discretization”
for Kahan’s discretization in the context of integrable systems.

In the recent paper [33] the Hirota-Kimura integrability mechanism has been
further investigated and its application to the integrable (six-dimensional) Clebsch
system has been considered. The integrability of the Hirota-Kimura type discretiza-
tion of the Clebsch system has been established, in the sense of: i) existence, for
every initial point, of a four-dimensional pencil of quadrics containing the orbit of
this point; ii) existence of four functionally independent integrals of motion. Note
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that for the purposes of paper [33], integrability of a dynamical system is synony-
mous with the existence of a sufficient number of functionally independent conserved
quantities, or integrals of motion, that is, functions constant along the orbits. Other
aspects of the notion of integrability, such as Hamiltonian properties or explicit so-
lutions, still require further investigation. However, it is known that algebraically
completely integrable cases of geodesic flow on SO(4) are related to the intersection
of four quadrics in P6 [2]. The Hirota-Kimura method of discretization has been
recently applied to the classical three-dimensional nonholonomic Suslov problem in
[7].

The above examples of Hirota-Kimura type discretizations suggested the follow-
ing

Conjecture 1 ([33]). For any algebraically completely integrable system with a qua-
dratic vector field, its Hirota-Kimura type discretization is algebraically completely
integrable.

Since algebraically completely integrable systems generically correspond to linear
flows on abelian varieties [41], this statement should be related to addition theorems
for multi-dimensional theta-functions.

The aim of this paper is both to study how this novel method of discretization
applies to a set of algebraically integrable systems in three dimensions, and to see
how these results compare with the analogous discretizations of some quadratic vec-
tor fields with transcendental invariants. The former set of systems considered are
algebraically integrable in the sense that they have a sufficient number of algebraic
integrals in involution; however, there are various other (more stringent) notions
of algebraic complete integrability. Through this study we are able both to verify
the above conjecture for a new set of examples, and to gain further understanding
of how the integrability of the discretization depends on the algebraic nature (or
otherwise) of the integrals of motion in the original continuous system. Kahan’s
discrete Lotka-Volterra system illustrates the subtlety of this dependence, as we
now describe.

Kahan used his approach to discretize the Lotka-Volterra system
{

ẋ = x(1 − y),
ẏ = y(x − 1),

which preserves the Poisson bracket {x, y} = xy, or equivalently, the symplectic
form 1/(xy) dx ∧ dy. This is an integrable system with one degree of freedom,
ẋ = {x, H}, ẏ = {y, H} with Hamiltonian

H = log xy − (x + y).

Kahan’s discretization for this system reads [20]





x̃ − x

ǫ
= x̃ + x − x̃y − xỹ,

ỹ − y

ǫ
= −ỹ − y + x̃y + xỹ.

(2)

This discretization preserves the same symplectic structure as the original system of
ordinary differential equations, for which it provides a numerically stable integration
scheme which appears to retain the qualitative features of the continuous orbits
(which are closed curves H = constant in the positive quadrant x > 0, y > 0) [38].
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In fact, as noted in [32], Kahan’s discrete Lotka-Volterra system is algebraically
integrable for ǫ = ±1. To be precise, when ǫ = 1, it reduces to the second order
recurrence xn+1xn−1 = xn(2 − xn) for the x coordinate, which belongs to the class
of antisymmetric QRT maps studied in [44]. This recurrence is linearizable (the
iterates satisfy a linear recurrence of sixth order [19]), and the map has the integral

Ĥ =
x2

y2
+

y2

x2
+ 4

(
1

x
− 1

y

)2

(1 − x − y),

which (for fixed Ĥ) defines a quartic curve of genus zero; this is also an integral for
ǫ = −1 (which can be seen immediately from the reversibility property of Kahan’s
discretization scheme). However, for other non-zero values of ǫ, Kahan’s discrete
Lotka-Volterra system should not be algebraically integrable; we present some nu-
merical evidence for this in section 7 below. Indeed, since the integral H for the
original system is transcendental, from continuity arguments one would expect that
(at least for small enough ǫ) any integral of the the discretization should be tran-
scendental as well. Further numerical studies, as mentioned in [33], indicate that
this discrete system may well be non-integrable, with characteristics of chaos only
evident by zooming in deeply on regions of the phase plane.

The outline of the paper is as follows. In the next section, we briefly review the
Euler top together with the discrete Euler top found by Hirota and Kimura. In
section 3 we describe six quadratic bi-Hamiltonian flows in three dimensions, which
were presented in [11] (extending results in [3]), and are associated with pairs of real
three-dimensional Lie algebras. Moreover, each of these systems, which we denote
by Ei for i = 1, . . . , 6, is algebraically integrable; the system E6 is equivalent to a
special case of the Euler top. The fourth section is devoted to applying the Hirota-
Kimura discretization scheme to these six systems, to obtain discrete systems (or
maps) in three dimensions which we denote by dEi, and in section 5 we present
the explicit solutions of these maps for i = 1, . . . , 5 (the case i = 6 being already
included in the work of Hirota and Kimura [15]). Section 6 is concerned with
applying the same discretization method to three other bi-Hamiltonian systems
from [11] which have transcendental integrals. In section 7 we present the results
of applying Halburd’s Diophantine integrability test to each of the maps obtained,
and prove that all but one of them are Diophantine integrable in the sense of [12].
The final section is devoted to some conclusions.

2. Euler top and its Hirota-Kimura type discretization. The so(3) Euler top
is a well-known three-dimensional bi-Hamiltonian system belonging to the realm of
classical mechanics [35]. The differential equations of motion of the Euler top read





ẋ = α1yz,
ẏ = α2zx,
ż = α3xy,

(3)

with αi being real parameters of the system. We recall that this system can be
explicitly integrated in terms of elliptic functions, and admits two functionally inde-
pendent integrals of motion. Indeed, a quadratic function H(x) = γ1x

2+γ2y
2+γ3z

2

is an integral for Eqs. (3), if γ1α1 + γ2α2 + γ2α2 = 0. In particular, the following
three functions are integrals of motion:

H1 = α3y
2 − α2z

2, H2 = α1z
2 − α3x

2, H3 = α2x
2 − α1y

2.
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Clearly, only two of them are functionally independent because of α1H1 + α2H2 +
α3H3 = 0.

The Hirota-Kimura discretization of the Euler top introduced in [15] reads as





x̃ − x = ǫα1(ỹz + yz̃),

ỹ − y = ǫα2(z̃x + zx̃),

z̃ − z = ǫα3(x̃y + xỹ).

(4)

Thus, the map f : x 7→ x̃ obtained by solving (4) for x̃, is given by:

x̃ = f(x, ǫ) = A−1(x, ǫ)x, A(x, ǫ) =




1 −ǫα1z −ǫα1y

−ǫα2z 1 −ǫα2x
−ǫα3y −ǫα3x 1



 . (5)

Apart from the Lax representation which is still unknown, the discretization (5)
exhibits all the usual features of an integrable map: an invariant volume form, a
bi-Hamiltonian structure (that is, two compatible invariant Poisson structures), two
functionally independent conserved quantities in involution, and solutions in terms
of elliptic functions. For further details about the properties of this discretization
we refer to [15] and [31].

3. Some bi-Hamiltonian flows related to real three-dimensional Lie al-

gebras. Hamiltonian systems in three dimensions provide the simplest non-trivial
examples of degenerate Poisson structures, where the rank of the Poisson tensor
is less than the dimension of the phase space. In three dimensions, a non-trivial
Poisson tensor P has rank two at generic points of the phase space, which means
that (at least locally) there exists a Casimir function K and another function φ
such that

{xj , xk} = εjkℓ φ
∂K

∂xℓ
(6)

in local coordinates x1, x2, x3; cf. Theorem 5 in [9]. This can be expressed in
invariant form, by using the standard volume three-form Ω = dx1 ∧ dx2 ∧ dx3

in R3 to associate P with the one-form J = Py Ω = φdK. An important thing
to observe from the form of the Poisson bracket (6) is that in three dimensions
the Poisson tensor can be multiplied by an arbitrary function while preserving the
Jacobi identity.

Given an Hamiltonian system

ẋ = {x, H}
defined in terms of the bracket (6) with an Hamiltonian function H (functionally
independent of K), it is clear that the equations of motion have two independent
integrals, namely H and K. Moreover, by fixing the value of the Casimir function
(which may not be defined everywhere), we can regard this locally as a system with
one degree of freedom which is integrable on each of the two-dimensional symplectic
leaves K = constant. However, for complete integrability the global existence of H
and K is required.

Gümral and Nutku made a detailed study of the geometry of three-dimensional
Poisson structures, and considered the conditions for the existence of globally in-
tegrable bi-Hamiltonian structures [11]. For a given three-dimensional system to
be bi-Hamiltonian it is necessary and sufficient that the Jacobian at an arbitrary
point be a Poisson tensor and that there exist two globally defined and (almost
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everywhere) functionally independent integrals of motion. Associated with two
independent integrals K and H , there are two compatible Poisson tensors, such
that K is the Casimir for one Poisson structure while H is the Casimir for the
other. In other words, if the dimension is three then two compatible Poisson ten-
sors are completely determined by the constants of motion, and according to a
relevant Theorem by Magri [25], provided certain technical conditions are satisfied,
bi-Hamiltonian systems are completely integrable in the sense of Liouville-Arnold.
Furthermore, in this setting there is an invariant volume form Ω (not necessarily
canonical) which is preserved by the bi-Hamiltonian flow. An important example
of such flows corresponds to Nambu mechanics [29], given by

ẋ = ∇H ×∇K,

which in these coordinates gives a divergenceless vector field (div ẋ = 0); this means
that the canonical measure is preserved by the flow. In particular, the Euler top is
an example of Nambu mechanics in three dimensions; for other examples of Nambu
mechanics in optics and elsewhere, see [17].

In [11] the authors present a list of non-trivial bi-Hamiltonian flows that are
associated with pairs of real three-dimensional Lie algebras and their Casimir in-
variants (as described in [30]); this list extends results in [3]. To be more precise,
they consider pairs of real Lie-Poisson algebras defined by pairs of linear Poisson
structures P, Q, and write down vector fields ẋ = V satisfying

V = −P dK = −1

c
Q dH,

where K is the Casimir for Q, while H is the Casimir for P (and minus signs are
included in order to be consistent with the conventions of Gümral and Nutku).
In [11] twelve such systems are presented, extending a list in [3], and each flow
preserves a corresponding measure given in coordinates (x1, x2, x3) = (x, y, z) by

Ω = c dx ∧ dy ∧ dz,

related to the standard volume form by the conformal factor (or multiplier) c.1

To begin with, we shall be concerned with only six out of the twelve systems in
Gümral and Nutku’s list, namely the ones which have non-transcendental integrals
of motion. They read

E1 : ẋ = −x2, ẏ = −xy, ż = 2y2 + xz ; (7)

E2 : ẋ = −x2, ẏ = xy, ż = −2y2 + xz ; (8)

E3 : ẋ = −xz, ẏ = −yz, ż = x2 + y2 ; (9)

E4 : ẋ = −xz, ẏ = yz, ż = x2 − y2 ; (10)

E5 : ẋ = xy, ẏ = −x2, ż = y(2x − z) ; (11)

E6 : ẋ = y(2z − x), ẏ = x2 − z2, ż = y(z − 2x) . (12)

These six systems are examples of algebraically completely integrable systems, in
the sense that in each case the integrals are algebraic (in fact, rational) functions of

1In fact, on page 5704 of [11] the authors state that the given systems are all “with multiplier
unity”, and denoting the multiplier by M they say “these equations have M = 1 [...] they are
Nambu mechanics representatives”, but as should be clear from Table 1 this is not the case:
two of the systems given there have a non-constant multiplier. For systems with non-constant
multiplier, it is remarked in [11] that they may be only locally (but not globally) equivalent to
Nambu mechanics, by a suitable change of coordinates.



THREE-DIMENSIONAL DISCRETE SYSTEMS OF HIROTA-KIMURA TYPE 7

the coordinates x, y, z for which the Poisson structures P, Q are linear. (We consider
two other examples where there is one transcendental invariant in section 6.)

The corresponding linear Poisson structures and integrals of motion are given in
Table 1. For instance, the flow E1, given in Eq. (7), admits the bi-Hamiltonian
structure given by the compatible pair (P (1), c−1

1 Q(1)), where

P (1) : P
(1)
12 = {x, y} = 0, P

(1)
23 = {y, z} = y, P

(1)
31 = {z, x} = −x,

Q(1) : Q
(1)
12 = {x, y} = x, Q

(1)
23 = {y, z} = z, Q

(1)
31 = {z, x} = 2y,

with conformal factor c1 = 1/x2. The quantities H1 = y/x and K1 = zx + y2,
preserved by the flow, are respectively the Casimir functions of P (1) and Q(1). This
is equivalent to say that the following Lenard-Magri chain [25] is satisfied:

P (1)dH1 = 0,

P (1)dK1 =
1

c1
Q(1)dH1 = −(−x2,−xy, 2y2 + xz)T ,

Q(1)dK1 = 0,

where dH1 and dK1 denote the differentials of the functions H1 and K1 respectively.
The same scheme holds for the flows Ei with 2 ≤ i ≤ 6.

In Table 1 there are actually just five independent Lie-Poisson structures, namely
P (1) = P (3), P (2) = P (4), P (5), P (6) = Q(1) = Q(2) = Q(5), Q(3) = Q(4) = Q(6),
corresponding respectively to the Casimir functions H1 = H3 (for the Lie algebra
A3,3), H2 = H4 (for e(1, 1)), H5 (for e(2)), H6 = K1 = K2 = K5 (for sl(2, R)),
K3 = K4 = K6 (for so(3)); see [30] for more details about the associated real
three-dimensional Lie algebras. Observe that the flows E4 and E6 each correspond
to a particular case of the equations of motion (3) of the so(3) Euler top. More
precisely, for E4 one has to make the change of variables (x, y, z) 7→ (x− y, x + y, z)
and fix the parameters so that (α1, α2, α3) = (−1,−1, 1), while for E6 one takes
(x, y, z) 7→ (x − z, x + z, y) and the parameters are (α1, α2, α3) = (1,−3, 1).

Table 1. Lie-Poisson structures, invariants and conformal factors

i P
(i)
12 P

(i)
23 P

(i)
31 Q

(i)
12 Q

(i)
23 Q

(i)
31 Hi Ki ci

1 0 y −x x z 2y
y

x
zx + y2 1

x2

2 0 −y −x x z 2y xy zx + y2 1

3 0 y −x z x y
y

x
1
2 (x2 + y2 + z2)

1

x2

4 0 −y −x z x y xy 1
2 (x2 + y2 + z2) 1

5 0 x y x z 2y 1
2 (x2 + y2) zx + y2 −1

6 x z 2y z x y zx + y2 1
2 (x2 + y2 + z2) −1
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4. Hirota-Kimura type discretization of the flows Ei. The goal of this section
is to show that Hirota-Kimura type discretizations of the bi-Hamiltonian flows Ei,
1 ≤ i ≤ 6, provide completely integrable discrete-time systems. The following result
holds.

Theorem 4.1. The Hirota-Kimura type discretizations of the bilinear flows Ei,
1 ≤ i ≤ 6, given in Eqs. (7-12), read

dEi : x̃ = A−1
i (x; ǫ)x = Ai(x̃;−ǫ)x, (13)

where the matrices Ai(x; ǫ) are given in Table 2. The quantities Hi(ǫ), Ki(ǫ), given
in Table 2, are integrals of motion for the maps (13). Moreover the maps (13)
preserve the volume form

Ωi =
ci

HiKi
dx ∧ dy ∧ dz, 1 ≤ i ≤ 6. (14)

Table 2. Matrices Ai(x; ǫ) and discrete integrals of motion

i Ai(x; ǫ) Hi(ǫ) Ki(ǫ)

1




1 + 2ǫx 0 0
ǫy 1 + ǫx 0
−ǫz −4ǫy 1 − ǫx


 H1

K1

1 − ǫ2x2

2




1 + 2ǫx 0 0
−ǫy 1 − ǫx 0
−ǫz 4ǫy 1 − ǫx



 H2

1 − ǫ2x2

K2

1 − ǫ2x2

3




1 + ǫz 0 ǫx
0 1 + ǫz ǫy

−2ǫx −2ǫy 1


 H3

K3

1 + ǫ2(x2 + y2)

4




1 + ǫz 0 ǫx

0 1 − ǫz −ǫy
−2ǫx 2ǫy 1



 H4

1 + ǫ2(x2 + y2)

K4

1 + ǫ2(x2 + y2)

5




1 − ǫy −ǫx 0
2ǫx 1 0
−2ǫy −ǫ(2x − z) 1 + ǫy


 H5

1 + ǫ2x2

K5

1 + ǫ2x2

6




1 + ǫy ǫ(x − 2z) −2ǫy
−2ǫx 1 2ǫz
2ǫy ǫ(2x − z) 1 − ǫy



 H6

1 − 3ǫ2xz

K6

1 − 3ǫ2xz

Note that for small ǫ the birational maps (13) approximate the time shift along
the trajectories of the corresponding continuous equations of motion (7-12). The
same invariant volume form (14), which is independent of ǫ, is preserved by both
the continuous and the discrete systems.
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Proof of Theorem 4.1. We shall prove Theorem 4.1 for just one case, namely i = 5.
The remaining cases can be proved by similar straightforward computations.

The Hirota-Kimura discretization of the flow E5, given by Eq. (11), reads explic-
itly as 




x̃ − x = ǫ(xỹ + x̃y),

ỹ − y = −2ǫxx̃,

z̃ − z = ǫ(2xỹ + 2x̃y − yz̃ − ỹz),

(15)

that is

x̃ = A−1
5 (x; ǫ)x = A5(x̃;−ǫ)x,

with

A5(x; ǫ) =




1 − ǫy −ǫx 0
2ǫx 1 0
−2ǫy −ǫ(2x − z) 1 + ǫy


 .

The fact that the quantities

H5(ǫ) =
1

2

x2 + y2

1 + ǫ2x2
, K5(ǫ) =

zx + y2

1 + ǫ2x2
,

are integrals of motion of the map (15) is proved by the following computation.

Equation H̃5(ǫ) = H5(ǫ) means that

(x̃ − x)(x̃ + x) + (ỹ − y)(ỹ + y) = −ǫ2(xỹ − x̃y)(xỹ + x̃y),

that is, using Eq. (15),

1

2
(xỹ + x̃y)(x̃ + x) − xx̃(ỹ + y) = −1

2
(xỹ − x̃y)(x̃ − x),

which is an algebraic identity. A similar computation shows that equation K̃5(ǫ) =
K5(ǫ) is identically satisfied.

We now prove that the map (15) preserves the volume form

Ω5 = − 2

(xz + y2)(x2 + y2)
dx ∧ dy ∧ dz,

which is equivalent to saying that

det
∂x̃

∂x
=

(x̃z̃ + ỹ2)(x̃2 + ỹ2)

(xz + y2)(x2 + y2)
.

First of all we note that differentiating Eq. (15) with respect to x, y, z one obtains
the columns of the matrix equation

A5(x; ǫ)
∂x̃

∂x
= A5(x̃;−ǫ).

Computing determinants lead to

det
∂x̃

∂x
=

detA5(x̃;−ǫ)

detA5(x; ǫ)
=

(1 − ǫỹ)
(
1 + ǫỹ + 2ǫ2x̃2

)

(1 + ǫy) (1 − ǫy + 2ǫ2x2)
.

Now, by using the map (15), a straightforward computation shows that the relation

(x̃z̃ + ỹ2)(x̃2 + ỹ2)

(xz + y2)(x2 + y2)
=

(1 − ǫỹ)
(
1 + ǫỹ + 2ǫ2x̃2

)

(1 + ǫy) (1 − ǫy + 2ǫ2x2)

holds identically.
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In the construction of an invariant Poisson structure for the maps (13) we shall
make use of results from [5] (Proposition 15 and Corollary 16 there), which we
restate here. Suppose that f : M → M is a smooth mapping of an n-dimensional
manifold M , with an invariant volume form Ω (that is, f∗Ω = Ω). Define ω to be the
dual n-vector field to Ω such that ωy Ω = 1, where as usual the symbol y denotes the
contraction between multivector fields and forms. It follows that if I1, . . . , In−2 are
integrals of f with dI1∧· · ·∧ In−2 6= 0, then the bivector field σ = ωy dI1 · · ·y dIn−2

is an invariant Poisson structure for f . If J1, . . . , Jn−2 is another set of independent
integrals and τ = ωy dJ1 · · ·y dJn−2 is the corresponding Poisson structure, then σ
and τ are compatible, i.e. for any constants a, b, the bivector field aσ + bτ is again
a Poisson structure.

In particular for n = 3, if a three-form Ω, given by Eq. (14) in our case, is
invariant under a map f defined by (13), we can define the dual trivector field

ω = φ(x, y, z)
∂

∂x
∧ ∂

∂y
∧ ∂

∂z
,

so that for any integral I of f the bivector field

σ = ωydI = φ(x, y, z)

(
∂I

∂z

∂

∂x
∧ ∂

∂y
+

∂I

∂x

∂

∂y
∧ ∂

∂z
+

∂I

∂y

∂

∂z
∧ ∂

∂x

)

is an invariant Poisson structure for f , as well as any linear combination of such
bivector fields. Explicitly, the Poisson brackets of coordinate functions are given by

{x, y} = φ(x, y, z)
∂I

∂z
,

{y, z} = φ(x, y, z)
∂I

∂x
,

{z, x} = φ(x, y, z)
∂I

∂y
.

Note that the inverse volume density φ(x, y, z) can be multiplied by an arbitrary
integral of f without violating the Poisson property.

For the maps (13), the invariant Poisson structures P (i), c−1
i Q(i) can be computed

according to the following formulae:

P
(i)
jk (ǫ) = − 1

ci

HiKi

Hi(ǫ)Ki(ǫ)
εjkℓ

∂Hi(ǫ)

∂xℓ
, (16)

and
1

ci
Q

(i)
jk (ǫ) =

1

ci

HiKi

Hi(ǫ)Ki(ǫ)
εjkℓ

∂Ki(ǫ)

∂xℓ
, (17)

with 1 ≤ i ≤ 6, the summation convention is assumed for the index l, and above
we have used (x1, x2, x3) to denote (x, y, z). (The reader should note that these
indices 1, 2, 3 for the coordinates in R3 should not be confused with the index n
used to denote iterates of maps in subsequent sections.) This corresponds to taking
φ = HiKi/ci above, and then rescaling by the inverse of the product of the integrals,
1/Hi(ǫ)Ki(ǫ), in each case. Thus the following statement holds.

Theorem 4.2. The maps (13) admit the compatible pair of invariant Poisson struc-
tures (P (i)(ǫ), c−1

i Q(i)(ǫ)), where P (i)(ǫ) and Q(i)(ǫ) are given respectively in Tables
3 and 4. The conformal factors ci are the same as in the continuous case, given in
Table 1.
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Table 3. First deformed Poisson structure

i P
(i)
12 (ǫ) P

(i)
23 (ǫ) P

(i)
31 (ǫ)

1 0 y
(
1 − ǫ2x2

)
−x

(
1 − ǫ2x2

)

2 0 −y
(
1 + ǫ2x2

)
−x

(
1 − ǫ2x2

)

3 0 y
[
1 + ǫ2(x2 + y2)

]
−x

[
1 + ǫ2(x2 + y2)

]

4 0 −y
[
1 − ǫ2(x2 − y2)

]
−x

[
1 + ǫ2(x2 − y2)

]

5 0 x
(
1 − ǫ2y2

)
y

(
1 + ǫ2x2

)

6 x
(
1 + 3ǫ2y2

)
z

(
1 + 3ǫ2y2

)
2y

(
1 − 3ǫ2xz

)

Table 4. Second deformed Poisson structure

i Q
(i)
12 (ǫ) Q

(i)
23 (ǫ) Q

(i)
31 (ǫ)

1 x
z + ǫ2x(zx + 2y2)

1 − ǫ2x2
2y

2 x
(
1 − ǫ2x2

)
z + ǫ2x(zx + 2y2) 2y

(
1 − ǫ2x2

)

3 z
x

(
1 − ǫ2z

)

1 + ǫ2(x2 + y2)

y
(
1 − ǫ2z

)

1 + ǫ2(x2 + y2)

4 z
[
1 + ǫ2(x2 + y2)

]
x

(
1 − ǫ2z2

)
y

(
1 − ǫ2z2

)

5 x
(
1 + ǫ2x2

)
z − ǫ2x(xz + 2y2) 2y

(
1 + ǫ2x2

)

6 z + 3
2ǫ2x(x2 + y2 − z2) x + 3

2ǫ2z(z2 + y2 − x2) y
(
1 − 3ǫ2xz

)

Note that Eqs. (16-17) provide one-parameter deformations of the Lie-Poisson
tensors P (i), Q(i) given in Table 1. This is equivalent to saying that Tables 3 and
4 provide deformations of the real three-dimensional Lie algebras A3,3, sl(2, R),
so(3), e(1, 1), e(2). Finally we note that the integrable discrete-time system dE6

is just a particular case of the Hirota-Kimura discretization of the so(3) Euler top
[15], whose bi-Hamiltonian structure has been presented recently in [31].

5. Explicit solutions to the integrable systems dEi, 1 ≤ i ≤ 5. As shown in
[15, 22], and recently in [31], the integrable discrete-time systems obtained through
the Hirota-Kimura type discretization seem to admit a straightforward construction
of their explicit solutions, at least for the case of three-dimensional maps. Here
we provide the explicit solutions for the discrete-time integrable systems dEi with
1 ≤ i ≤ 5. The cases i = 4, 6 are each special cases of the so(3) Euler top, whose



12 ANDREW N. W. HONE AND MATTEO PETRERA

solutions, both continuous and discrete, are investigated in [15, 31], so here we
present the solution only for i = 4, since i = 6 is similar. For comparison, in Table
5 we give the explicit solutions for the continuous-time flows Ei with 1 ≤ i ≤ 5.
The parameters α, β, γ, θ, λ, µ, k appearing in the table can easily be expressed in
terms of the initial conditions and/or the integrals of motion. To be precise, we
have H1 = H2 = β, K1 = K2 = γ, H3 = tan θ, K3 = λ2/2, H4 = λ2(1 − k2)/4,
K4 = λ2(1 + k2)/4, H5 = λ2/2, K5 = λ(µ + λ).

Table 5. Solutions to continuous systems Ei, 1 ≤ i ≤ 5

i x (t) y (t) z (t)

1
1

t + α

β

t + α
γ (t + α) − β2

t + α

2
1

t + α
β (t + α) (t + α)

[
γ − β2 (t + α)

2
]

3
λ cos θ

cosh[λ(t + α)]

λ sin θ

cosh[λ(t + α)]
λ tanh[λ(t + α)]

4
λ

2
dn [λ(t + α)]

+ kλ

2
cn [λ(t + α)]

λ
2 dn [λ(t + α)]
−kλ

2 cn [λ(t + α)]
kλ sn [λ(t + α)]

5 λ sech [λ(t + α)] −λ tanh[λ(t + α)]
µ cosh[λ(t + α)]
+λ sech [λ(t + α)]

We now construct the explicit solutions to the discrete-time systems dEi with
1 ≤ i ≤ 5, thus providing the discrete counterpart of Table 5. Let us recall that
we consider each of x, y, z as functions on ǫZ. To simplify the notation we set
x = xn, y = yn, z = zn, so that x̃ = xn+1, ỹ = yn+1, z̃ = zn+1. For the sake of
brevity, henceforth the discrete integrals of motion Hi(ǫ) and Ki(ǫ) in Table 2 will

be denoted respectively by Ĥi and K̂i, 1 ≤ i ≤ 6.
The following statement holds.

Theorem 5.1. The explicit solutions to the integrable maps dEi, 1 ≤ i ≤ 5, given
by Eq. (13), read:

• i = 1:

xn =
1

2ǫ(n + τ)
, (18)

yn =
β

2ǫ(n + τ)
, (19)

zn = 2γǫ (n + τ) − β2ǫ−1 + γǫ

2 (n + τ)
, (20)

with Ĥ1 = β, K̂1 = γ;
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• i = 2:

xn =
1

2ǫ(n + τ)
, (21)

yn = 2βǫ

[
(n + τ) − 1

4(n + τ)

]
, (22)

zn = ǫ

[
2(n + τ) − 1

2(n + τ)

] [
γ − β2ǫ2(4(n + τ)2 − 1)

]
, (23)

with Ĥ2 = β, K̂2 = γ;
• i = 3:

xn =
cos θ sinh δ

ǫ cosh(2δn + κ)
, (24)

yn =
sin θ sinh δ

ǫ cosh(2δn + κ)
, (25)

zn = ǫ−1 tanh δ tanh(2δn + κ), (26)

with

Ĥ3 = tan θ, K̂3 =
tanh2 δ

2ǫ2
;

• i = 4:

xn =
sn δ

2ǫ

[
dn(2nδ + κ)

cn δ
+

k cn(2nδ + κ)

dn δ

]
, (27)

yn =
sn δ

2ǫ

[
dn(2nδ + κ)

cn δ
− k cn(2nδ + κ)

dn δ

]
, (28)

zn = ǫ−1 k sn δ sn(2nδ + κ), (29)

where sn, cn, dn are the Jacobian elliptic functions with modulus k [43], and

Ĥ4 =
(1 − k2) sn2δ

2ǫ2[2 − (1 + k2)sn2δ]
, K̂4 =

1

ǫ2

(
1

2
− cn2δ dn2δ

cn2δ + dn2δ

)
; (30)

• i = 5:

xn =
sinh δ

ǫ cosh(2δn + κ)
, (31)

yn = −ǫ−1 tanh δ tanh(2δn + κ), (32)

zn = µ cosh(2δn + κ) + (ǫ−1 + µ sinh δ) sinh δ sech (2δn + κ), (33)

with

Ĥ5 =
1

2ǫ2
tanh2 δ, K̂5 = ǫ−1µ sinh δ + ǫ−2 tanh2 δ.

Proof of Theorem 5.1. Let us illustrate the procedure to find the solutions (18-33)
for just one of the five discrete systems dEi, 1 ≤ i ≤ 5. We shall consider i = 3.
The remaining cases can be verified by elementary direct computations, apart from
dE4, which we reserve for the Appendix.

The system dE3 reads:




xn+1 − xn = −ǫ(xn+1zn + xnzn+1),

yn+1 − yn = −ǫ(yn+1zn + ynzn+1),

zn+1 − zn = 2ǫ(xn+1xn + ynyn+1).

(34)
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It has two integrals of motion,

Ĥ3 =
yn

xn
=

yn+1

xn+1
,

K̂3 =
1

2

[
x2

n + y2
n + z2

n

1 + ǫ2(x2
n + y2

n)

]
=

1

2

[
x2

n+1 + y2
n+1 + z2

n+1

1 + ǫ2(x2
n+1 + y2

n+1)

]
,

in involution with respect to the pair (P (3)(ǫ), c−1
3 Q(3)(ǫ)), as given in Tables 3 and

4.
The solution to the continuous-time flow E3, as in Table 5, suggests the following

ansatz for the solution of the map (34):

xn =
ν cos θ

coshTn
, yn =

ν sin θ

coshTn
, zn = λ tanhTn, (35)

with constant parameters λ, ν, θ. By substituting the ansatz (35) into the formulae

for the integrals, we see that Ĥ3 = tan θ, while

K̂3 =
λ2 + (ν2 − λ2)sech2Tn

2(1 + ǫ2ν2sech2Tn)

is constant (for all Tn) if and only if ν2 = λ2/(1−ǫ2λ2). Upon setting λ = ǫ−1 tanh δ,
in terms of another parameter δ (with δ/ǫ = O(1) in the continuum limit ǫ → 0)

this gives ν2 = ǫ−2 sinh2 δ and K̂3 = sinh2 δ/(2ǫ2). Substituting the ansatz into
the third equation of the map (34), and using the addition formulae for hyperbolic
functions, one can see that this equation implies that

sinh(Tn+1 − Tn) =
2 sinh2 δ

tanh δ
= sinh 2δ,

hence Tn+1−Tn = 2δ. This implies that Tn = 2δn+κ for some constant κ, and then
it is straightforward to verify that the first two equations of (34) are also satisfied
identically.

6. Discretization of three-dimensional bi-Hamiltonian flows with one tran-

scendental invariant. There have been several studies of integrable Hamiltonian
systems which have transcendental invariants [8, 13]. Among the six bi-Hamiltonian
flows with transcendental invariants listed in [11] we select the following ones:

E7 : ẋ = −x2, ẏ = −ξxy, ż = 2ξy2 + xz ; (36)

E8 : ẋ = −x2, ẏ = −x(x + y), ż = 2y(x + y) + xz ; (37)

E9 : ẋ = −xz, ẏ = −ξyz, ż = x2 + ξy2 . (38)

In [30] the real parameter ξ is restricted to the range |ξ| ∈ (0, 1), but here we need
not impose this requirement. Observe that the equations of motion (36) reduce to
the flow E1 if ξ = 1 and the flow E2 if ξ = −1. Also, the equations (38) reduce to
E3 if ξ = 1, and to E4 if ξ = −1.

The Lenard-Magri chains for the flows (36-38) are given by

P (i)dHi = 0, P (i)dKi =
1

ci
Q(i)dHi Q(i)dKi = 0,

for i = 7, 8, 9 respectively, with Q(7) = Q(8) = P (6), Q(9) = Q(6) (related to sl(2, R)
and to so(3) respectively, see Table 1),

P (7) : P
(7)
12 = {x, y} = 0, P

(7)
23 = {y, z} = ξy, P

(7)
31 = {z, x} = −x,

P (8) : P
(8)
12 = {x, y} = 0, P

(8)
23 = {y, z} = x + y, P

(8)
31 = {z, x} = −x,
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and P (9) = P (7), with

H7 = yx−ξ, K7 = H6 = zx + y2, c7 = x−(ξ+1),

H8 = xe−y/x, K8 = H6 = zx + y2, c8 =
e−y/x

x
,

H9 = yx−ξ, K9 = K6 =
1

2
(x2 + y2 + z2), c9 = x−(ξ+1).

Thus the transcendental invariants in each case are given by H7, H8 and H9 respec-
tively. (Strictly speaking, H7 = H9 is only transcendental when ξ 6∈ Q, otherwise
it is algebraic.) Moreover, note that the Lie algebra related to P (7) is actually a
one-parameter family of Lie algebras, parametrized by ξ; see [30] for more details.
It can also be regarded as a four-dimensional Lie algebra, by taking ŷ = log y as a
new coordinate and regarding ξ as a central element.

We now construct the Hirota-Kimura type discretizations of the flows E7, E8 and
E9; these are denoted using the notation introduced in section 5.

6.1. Explicit solutions to dE7. The explicit solution to the equations of motion
(36) is given by:

x(t) =
1

t + α
, y(t) = β(t + α)−ξ, z(t) = (t + α)

[
γ − β2(t + α)−2ξ

]
, (39)

with H7 = β and K7 = γ. Following the approach described in section 5, the
discrete-time version of the flow E7 reads:





xn+1 − xn = −2ǫxnxn+1,

yn+1 − yn = −ǫξ(yn+1xn + ynxn+1),

zn+1 − zn = ǫ(xn+1zn + xnzn+1) + 4ǫξynyn+1.

(40)

The decoupled equation for xn can be rewritten as a total difference,

1

xn+1
− 1

xn
= 2ǫ,

from which it follows by summation that

xn =
1

2ǫ(n + τ)
, τ =

1

2ǫx0
; (41)

this is the discrete version of the first equation in (39), to which it tends in the
continuum limit

ǫ → 0, 2ǫn → t, 2ǫτ → α.

By substituting xn given by Eq. (41) into the second equation of (40) we get a
difference equation for the variable yn, whose solution reads

yn =
τβ

2ǫ(n + τ)

Γ (n + 1 + τ − ξ/2) Γ (τ + ξ/2)

Γ (n + τ + ξ/2)Γ (τ + 1 − ξ/2)
, (42)

where Γ(z) is the complete gamma function. We can now solve Eq. (42) for the
constant β (up to scale) to write it as a function of xn and yn, which gives an
explicit transcendental integral:

Ĥ7 =
yn

xn

Γ
(
ξ/2 + (2ǫxn)−1

)

Γ (1 − ξ/2 + (2ǫxn)−1)
.
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Now inserting xn and yn, given respectively by Eqs. (41-42) into the third
equation of (40) we find a difference equation for zn. Its solution is

zn =
τγ[4(n + τ)2 − 1]

2ǫ(4τ2 − 1)(n + τ)
+

2τ2β2ξ[4(n + τ)2 − 1]Γ2 (τ + ξ/2)

ǫΓ2 (τ + 1 − ξ/2) (n + τ)
Wn, (43)

where

Wn =

n−1∑

j=0

[2(j + 1 + τ) − ξ]Γ2 (j + 1 + τ − ξ/2)

[2(j + τ) + 3][2(j + τ) + ξ][4(j + τ)2 − 1]Γ2 (j + τ + ξ/2)
.

In principle, Eq. (43) can implicitly be solved for τγ/(4τ2 − 1) (after first replacing
j + τ by (2ǫxj)

−1 and substituting for β from (42) everywhere to remove explicit

dependence on the parameter τ), to give another transcendental invariant K̂7, in
which case the bi-Hamiltonian structure can be reconstructed by the same formulae
as above in cases 1–6; this means that the system dE7 is completely integrable. To
be more precise, a direct calculation shows that this system has a second invariant
of the form

K̂7 = (znxn + y2
n)(1 − ǫ2x2

n)−1 + ǫ2(ξ − 1)2y2
nF (x−1

n )/x2
n,

where F is a solution of the functional equation
(
X + (2 − ξ)ǫ

)2

F (X + 2ǫ)− (X + ǫξ)2F (X) =
4ǫ(ξ + 1)

(X − ǫ)2(X + 3ǫ)
.

Using the formula for Ĥ7 above we can reconstruct one invariant Poisson bracket
for this map explicitly, as

{x, y} = 0,

{y, z} = y(1 − ǫ2x2)

[
Ψ(1 − ξ/2 + (2ǫx)−1) − Ψ(ξ/2 + (2ǫx)−1)

2ǫx
− 1

]
,

{z, x} = x(1 − ǫ2x2),

where Ψ is the digamma function. This bracket has Ĥ7 as a Casimir, and for ξ = ±1
(up to scaling) it reduces to the brackets P (1)(ǫ) and P (2)(ǫ) respectively.

It is straightforward to verify that the explicit form of the solution for xn, yn, zn

given by Eqs. (41-43) can be used to recover the previous formulae for the discrete
systems dE1 and dE2 given in Eqs. (18-20) and (21-23) by setting ξ = ±1 in the
respective cases.

6.2. Explicit solutions to dE8. The explicit solution to the equations of motion
(37) is given by

x(t) =
1

t + α
, y(t) =

β − ln(t + α)

t + α
, z(t) = γ(t + α) − [β − ln(t + α)]2

t + α
,

with H8 = e−β and K8 = γ. The discrete-time version of the flow E8 reads:




xn+1 − xn = −2ǫxnxn+1,

yn+1 − yn = −ǫ(yn+1xn + ynxn+1) − 2ǫxnxn+1,

zn+1 − zn = ǫ(xn+1zn + xnzn+1) + 2ǫ(yn+1xn + ynxn+1) + 4ǫynyn+1.

(44)

The first equation for xn is identical to that in the previous case, and has the solution
xn = (n + τ)−1/(2ǫ) as before. By substituting xn into the second equation of (44)
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we get a difference equation for the variable yn, whose solution reads

yn =
τβ − Un

2ǫ(n + τ)
, (45)

where

Un = Ψ (n + τ + 1/2)− Ψ (τ + 1/2) ,

with Ψ(z) denoting the digamma function as before. This leads to the transcenden-
tal invariant

Ĥ8 =
yn

xn
+ Ψ

(
1/2 + (2ǫxn)−1

)
.

Upon inserting xn as in (41) and yn given by Eq. (45) into the third equation of
(44) we find a difference equation for zn, whose solution is given by

zn =
τ

[
4n(n + 2τ)(β2τ + β + γ) + 4τ2γ − γ

]

2ǫ (4τ2 − 1) (n + τ)
− 2

[
4(n + τ)2 − 1

]

2ǫ(n + τ)
Vn , (46)

where

Vn =

n−1∑

j=0

1 + 2βτ + Uj [2(j + τ)(1 + 2βτ) − 1 + 2βτ ] − U2
j [2(j + τ) + 1]

[2(j + τ) + 3][2(j + τ) + 1][4(j + τ)2 − 1]
.

Similarly to the situation for dE7, the system dE8 has another transcendental integral
K̂8 which is given implicitly by solving Eq. (46) for τγ/(4τ2 − 1). The existence of
such a second integral implies that dE8 is also bi-Hamiltonian and hence completely
integrable.

6.3. The system dE9. For all values of the parameter ξ, the equations of motion
(38) can be reduced to a quadrature, namely

t + const = ±
∫ x(t) ds

s
√

2H − s2 − K2s2ξ
.

Given x(t) determined by this quadrature, y and z are then given by

y(t) = Kx(t)ξ, z(t) = ±
√

2H − x(t)2 − K2x(t)2ξ .

The constants H and K are respectively the values of H9 and K9 along an orbit.
For certain values of ξ the quadrature can be performed explicitly; for instance,
when ξ = 1 it becomes an elementary integral, and the problem reduces to the
solution of E3, while for when ξ = −1 it becomes an elliptic integral, corresponding
to the solution of E4, as given in Table 5. The case ξ = 1/2 is also an elementary
one, while ξ = −1/2 and ξ = 2 also give elliptic integrals (of the first and third
kind, respectively). More generally, for all rational values of ξ this quadrature is an
hyperelliptic integral.

However, it is straightforward to check that the cases ξ = ±1, which were solved
already, are the only ones for which the system has the Painlevé property (i.e.
all solutions are meromorphic functions of t in these cases only). In general the
solutions have movable algebraic branch points in the complex t plane when ξ ∈ Q,
and movable logarithmic branch points when ξ 6∈ Q.

The qualitative nature of the solutions is fairly insensitive to the parameter ξ. In
fact, for ξ > 0 the trajectories interpolate between the two fixed points (x, y, z) =

(0, 0,±
√

2H), at the north/south poles of the sphere x2 + y2 + z2 = 2H , while for
ξ < 0 there are closed periodic orbits. These two types of behaviour are exemplified
by each of the explicitly solvable cases ξ = ±1.
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The Kahan-Hirota-Kimura discretization of this flow is given by




xn+1 − xn = −ǫ(xnzn+1 + xn+1zn),

yn+1 − yn = −ǫξ(yn+1zn + ynzn+1),

zn+1 − zn = ǫ(2xn+1xn + 2ξyn+1yn).

We have not attempted to solve this discrete system in the case ξ 6= ±1. In fact, nu-
merical results for the latter case (as described in the next section) provide evidence
for the non-integrability of the system for generic values of ξ.

7. Diophantine integrability test. Over the past fifteen years or so there has
been a gradual development of methods for testing integrability of maps or difference
equations, using such concepts as singularity confinement [10], algebraic entropy
[14], Nevanlinna theory [1] and orbit counting over finite fields [36]. In certain
limited cases it has been proved that these tests provide necessary conditions for
integrability of a map, in a suitable sense, most usually in the setting of algebraic
integrability (see [23], for instance), but in general it is an open problem to determine
when these tests are effective.

Most recently Halburd proposed an extremely simple criterion for integrability
which applies to rational maps defined over Q (or more generally over a number
field), which he named the Diophantine integrability test [12]. For a map whose n-th
iterate has components xn ∈ Q, written as a fraction xn = pn/qn in lowest terms,
the height of xn is defined to be H(xn) = max(|pn|, |qn|); this is the archimedean
height of xn, and the logarithmic height is h(xn) = log H(xn). For a map in
dimension N , with N components, the height Hn of the n-th point on an orbit is
defined to be the maximum of the heights of all the components, with hn = log Hn

being the logarithmic height. Halburd defined a map to be Diophantine integrable if
the logarithmic height hn of the iterates of all orbits has at most polynomial growth
in n. If we define the Diophantine entropy along an orbit O to be

E(O) := lim
n→∞

1

n
log hn,

then a Diophantine integrable map is one for which E(O) = 0 for all orbits.
Diophantine entropy is somewhat similar to algebraic entropy [14], which mea-

sures the height growth of rational functions generated by rational maps. In the
latter setting the height of each iterate is just the maximum of the degrees of the
polynomials in the numerator and denominator, considered as a rational function
in the initial data. However, a huge disadvantage of using algebraic entropy is that
one must usually try to guess a recursive relation to generate the degrees of these
polynomials. The great advantage of Halburd’s test is that it is extremely quick
and straightforward to implemement numerically with a computer, and if the map
is Diophantine integrable then a plot of log hn against log n should look asymptoti-
cally like a straight line (see Figure 1), otherwise it will have an exponential shape
(see Figure 7). The main drawback of using the test is that at present it has the
status of a distinct definition of integrability, and it is not clear how it is related to
other such definitions, like complete integrability in the Liouville-Arnold sense.

Despite these drawbacks, it is worth remarking that, at least for maps in two or
three dimensions, Diophantine integrability is a necessary condition for algebraic
integrability. For example, a two-dimensional map which is algebraically integrable
has a conserved quantity whose level sets are algebraic curves. Assuming that
each of these curves is irreducible, and that not all orbits of the map are periodic,
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Figure 1. Plot of log h(xn) versus log n for the first 200 iterates
of the integrable map dE3 for ǫ = 1/2 with initial conditions x0 =
3/7, y0 = 11/13, z0 = 23/47.

it was observed by Veselov [42] that they must all have genus zero or one; this
follows from a theorem of Hurwitz which says that curves of genus two or more
have automorphism groups of finite order [28]. (This argument also extends to the
case when the level curves are reducible.) If the curve is rational (genus zero),
then the map can be linearized, in which case the logarithmic heights grow linearly,
hn ∼ Cn for some constant C, while a curve of genus one is birationally equivalent
to an elliptic curve, for which the heights grow as hn ∼ Cn2. (See chapter 17 in
[6] for an introduction to archimedean heights on elliptic curves, or chapter VIII
in [39] for a more general discussion of heights.) Similar considerations apply to
algebraically integrable maps in three dimensions, where the algebraic curves are
the level sets of two independent integrals, or to systems with N − 1 algebraic
integrals in N dimensions (as considered in [23] from the viewpoint of singularity
confinement). However, in general these level sets can have two or more irreducible
components; see [16] for several examples with two components in three dimensions.

Here we prove that all of the discrete systems constructed here, except for dE9,
pass the Diophantine integrability test, before presenting numerical results which
show more detailed behaviour of the growth of heights for some of these systems.
For the theoretical and numerical analysis here it is convenient to set ǫ = 1/2; since
the right hand sides of the difference equations are homogeneous (of degree two),
this can always be achieved by scaling xn, yn, zn by the same factor.

Theorem 7.1. The discrete systems dEi for i = 1, . . . , 8 are all Diophantine inte-
grable.

Proof of Theorem 7.1. Without loss of generality we set ǫ = 1/2, as mentioned
above, and consider each of the maps with rational initial data x0, y0, z0 (and pa-
rameter ξ ∈ Q for the case of dE7). This implies that all of the iterates (xn, yn, zn)
of these birational maps are also rational numbers for all n (except on a set of initial
data where these maps become singular).

For the maps dE1 and dE2 it is clear from the explicit solutions, as given in
Eqs. (18-20) and Eqs. (21-23) respectively, that in each case the iterates are given
in terms of parameters α, β, γ ∈ Q, and these rational iterates have numerators
and denominators which grow linearly in n. Hence the logarithmic height satisfies
hn = log n + O(1) (sub-polynomial growth) for these two maps.
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The maps dE3 and dE5 are naturally considered together, because their explicit
solutions given in Theorem 5.1 are in terms of hyperbolic functions (or equivalently,
exponential functions of n) in each case, which means that the intersections of the
level sets of their two integrals are curves of genus zero. This implies that the heights
of iterates should grow like hn ∼ Cn. To prove this directly for dE3, note that one
can eliminate yn from the third equation in (34) by setting yn = Ĥ3xn, and then
further eliminate zn between that equation and the first equation in (34) to get an

expression of the form zn = F (xn, xn+1, Ĥ3) with F being a rational function. This
leads to a single recurrence of second order for wn = 1/xn, namely

wn+2 =
4w3

n+1 + (1 + Ĥ2
3 )(2wn+1 + wn)

4wnwn+1 − (1 + Ĥ2
3 )

.

The latter recurrence has the conserved quantity

L̂ =
2(w2

n + w2
n+1) + 1 + Ĥ2

3

4wnwn+1 − (1 + Ĥ2
3 )

,

and furthermore admits the linearization

wn+2 − 2L̂wn+1 + wn = 0, (47)

which linearizes the system dE3; in terms of the original integrals and solution
parameters we find L̂ = (2 + K̂3)/(2− K̂3) = cosh 2δ. From the second order linear
recurrence (47) it follows directly that the height H(wn) grows exponentially with

n, and hence h(wn) = h(xn) ∼ Cn (cf. Figure 1) for some C > 0. Since yn = Ĥ3xn,
and zn can be written as a rational function of xn and xn+1, it follows that h(yn)
and h(zn) also have linear growth in n. Analogous arguments apply to dE5.
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Figure 2. Plot of log h(xn) versus log n for the first 125 iterates
of the integrable map dE4 for ǫ = 1/2 with initial conditions x0 =
7/3, y0 = 11/13, z0 = 23/47.

Similarly, it is natural to consider the maps dE4 and dE6 together, because the
intersections of the level sets of their two integrals are curves of genus one; the details
for dE4 are given in the Appendix. For dE4 each of the coordinates xn, yn, zn of a
point on an orbit can be written in terms of Jacobi functions, which are related by
a Möbius transformation to the Weierstrass ℘ function. For instance, the solution
for zn in (29) is linear in the Jacobi sine, which is an elliptic function of order two
with two simple poles in each period parallelogram; this implies that a relation of
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the form zn = (aXn + b)/(cXn + d) holds, for some constants a, b, c, d, where Xn is
the nth term in a sequence of X coordinates of points P0 + nP ∈ E, for an elliptic
curve E given in Weierstrass form as Y 2 = X3 + AX + B (for some A, B). It
is known that, as long as P is not a torsion point (which would correspond to a
periodic orbit), the height grows like h(Xn) ∼ Cn2 as n → ∞, where the constant
C > 0 only depends on the height of the point P [39]. Since zn is related to Xn by
a rational map of degree one, it follows that h(zn) has the same quadratic growth
in n, and similarly for h(xn) and h(yn). The same arguments apply to dE6, this
being a special case of the Hirota-Kimura discrete Euler top, whose solutions are
most naturally written in terms of Jacobi functions.
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Figure 3. Plot of log h(yn) (bottom set of points) and log h(zn)
(top set of points) versus log n for the first 2000 iterates of the in-
tegrable map dE7 for ǫ = 1/2 with initial conditions x0 = 3/7, y0 =
11/13, z0 = 23/47 and parameter ξ = 19/17. The bottom points
have been fitted against log n + 1.64 (a straight line on this scale),
and the top points against log n + 2.64; the curve log n + log log n
is also shown.

Finally, for the systems dE7 and dE8 we make use of direct estimates of the
growth of heights, based on the original maps. For both these systems, note that
from the explicit solution we have h(xn) = h(n+ τ) = log n+O(1). It is convenient
to define Yn = yn/xn and Zn = zn/xn in each case, and then note that h(yn) =
h(Yn) + O(log n), and similarly for h(zn). From the second part of the map dE7 we
have

Yn+1 =

(
n + τ + 1 − ξ/2

n + τ + ξ/2

)
Yn, (48)

which implies

h(Yn+1) − h(Yn) ≤ log n + O(1) =⇒ h(Yn) ≤ n log n + O(n),

where the second implication follows by summing over n. Thus h(Yn) has weaker
than quadratic growth in n. Similarly for Zn we have

(n + τ − 1/2)Zn+1 = (n + τ + 3/2)Zn + 2ξYnYn+1,

which implies that

h(Zn+1) ≤ h(Zn) + h(YnYn+1) + O(log n) ≤ h(Zn) + n logn + O(n),
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and hence h(Zn) ≤ 1
2n2 log n + O(n2), which is weaker than cubic in n. For dE8,

analogous estimates show that h(Yn) ≤ n logn + O(n) and h(Zn) ≤ 2n2 log n +
O(n2), so this system is Diophantine integrable as well.

Having proved that the systems are all Diophantine integrable, we can compare
the theoretical results with some numerical experiments. For the system dE3 we
see that the log-log plot gives what we expect: genus zero means linear growth of
logarithmic height, so log h(xn) = log n + O(1); this is evident from the plot of
points in Figure 1, which lie asymptotically on a straight line of slope 1. Similarly
for the genus one case, we expect log h(xn) = 2 log n + O(1), and Figure 1 shows
points which asymptote to a line with slope 2. In this case the offset, corresponding
to the correction at O(1), is function of the height of a point on an associated elliptic
curve, and both the point and the curve vary with the initial data of the map.

2.82

2.84

2.86

2.88

2.9

2.92

2.94

0 50 100 150 200

Figure 4. Plot of log(h(xn)/n) versus n for dE3 with the same
data as Figure 1.

The theoretical results on the growth of heights for the algebraically integrable
systems dEi for 1 ≤ i ≤ 6, as detailed in the above proof, are confirmed by the nu-
merical calculations, and for those cases we have an exact expression for the leading
order asymptotic behaviour. Moreover, one can also look at how the asymptote is
approached. Taking the system dE3 for example, h(xn)/n approaches a constant
as n → ∞, and from the numerical plot in Figure 4 one can see that this limit is
reached in a very uniform manner, in keeping with a correction of O(1/n) to this
constant. Similarly, in the case of dE4, corresponding to motion on an elliptic curve,
we see from Figure 5 that once again the convergence of h(xn)/n2 to a constant
appears to be almost monotone.

The non-algebraically integrable cases, dE7 and dE8, have some extremely inter-
esting features compared with the others. First of all, the method of proof used
in Theorem 7.1 above has not necessarily provided the leading order asymptotics
of the logarithmic heights, but has merely given upper bounds on the growth of
the form Cnj log n with j = 1 for h(yn) and j = 2 for h(zn) in each case. Let us
focus on the case of dE7. Upon looking more closely at Eq. (48), it would appear
that the upper bound for h(Yn) might be sharp, so that h(Yn) ∼ n log n (and h(yn)
would have the same leading order asymptotics). However, studies of particular
sequences of rational iterates show that cancellations occur between the numerator
and denominator of Yn and the prefactor (n + α + 1 − ξ/2)/(n + α + ξ/2), which
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Figure 5. Plot of log(h(xn)/n2) versus n for dE4 with the same
data as Figure 2.

means that the height of Yn+1 is therefore smaller than the crudest estimate for the
upper bound. This weaker growth has a knock-on effect, meaning that the growth
of heights of zn also seems to be much weaker than expected. Indeed, Figure 3 sug-
gests that the correct asymptotics should be linear growth in n for the logarithmic
heights of both yn and zn, i.e. h(yn) ∼ C1n and h(zn) ∼ C2n for positive constants
C1, C2. For the particular sequence of heights plotted in that figure, a numerical
fit shows that log C1 ≈ 1.64 and log C2 ≈ 2.64 ≈ log C1 + 1. We have also plotted
log n + log log n for comparison, to show how the upper bound for h(yn) fails to
be sharp. Another surprising feature of this system is that for different choices of
initial data we find (to within numerical accuracy) the same values of C1 and C2;
this is in contrast to the algebraically integrable setting described above, where the
coefficient in front of the leading order term is dependent on the initial data. Thus
we might conjecture that for this map C1, C2 are independent of initial data, and
also that C2 = e C1 holds identically, in which case there should be some deeper
arithmetical explanation for this asymptotic behaviour. Similarly to the case of dE7,
numerical results for the system dE8 also show linear growth of logarithmic heights.
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Figure 6. Plot of 400 iterates of log(h(xn)/n) versus n for dE7

with the same initial data and parameters as in Figure 3.
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Supposing that the numerical observation of linear growth of hn for these discrete
systems with transcendental invariants is indeed the correct asymptotic behaviour,
it is then interesting to look at how hn/n approaches a constant value. The results
we find are in stark contrast to the algebraic setting: rather than the almost mono-
tone convergence seen in the previous examples, for dE7 we find that hn/n shows
rapid fluctuations which persist for increasing values of n. These fluctuations in the
asymptotics are somewhat reminiscent of the “random”-looking error terms that
appear in some famous arithmetical functions, such as the difference between the
prime-counting function π(n) and the logarithmic integral [26]. It would be inter-
esting to know whether these fluctuations might provide a means of characterizing
the difference between discrete systems which are algebraically integrable and those
with transcendental invariants.

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5

Figure 7. Plot of log h(xn) versus log n for the first 17 iterates
of Kahan’s discretization of the Lotka-Volterra system with initial
conditions x0 = 1/2, y0 = 5/3 and parameter ǫ = 9/14.

For comparison with the Diophantine integrable examples above, in Figure 7
above we have plotted the growth of hn for a particular case of the discrete Lotka-
Volterra system due to Kahan, which is the degree two birational map given in Eq.
(2). This figure shows that the logarithmic height seems to grow exponentially,
indicating non-integrability of this system. Indeed, the heights of iterates grow so
fast that even on a fairly new computer it took 1 hour to calculate the heights of
17 rational iterates with Maple; the value of h(x17) is of the order of 10325009 in
this case. Upon examining the data used in Figure 7 more carefully, it is apparent
that h(xn+1) ≈ 2 h(xn) to very good accuracy, so we expect hn ∼ C 2n. This
would mean that the logarithmic height essentially doubles with each step, giving
a Diophantine entropy of log 2 for generic (aperiodic) orbits. This appears to be
the same as the algebraic entropy of the map when ǫ2 6= 1, which was calculated by
A. Ramani [34]. In any case, this is the entropy value that one would expect for a
generic (non-integrable) birational map of degree two.

Finally we should mention the results of numerical calculations of the growth of
heights for the map dE9 for various cases with ξ 6= ±1 (that is, excluding the two
special cases where the map is already known to be algebraically integrable). For
generic rational values of the parameter ξ we find that the map dE9 is not Dio-
phantine integrable, but rather the Diophantine entropy is log 3 for generic orbits,
this being the typical value to be expected for a non-integrable birational map of
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degree three. (See Figure 8 for an illustration of the exponential growth of loga-
rithmc heights when ξ = −1/2.) These numerical results suggest that while that
the original continuous system E9 is algebraically integrable (in the sense of having
two independent algebraic integrals), the corresponding discrete system is not. We
shall return to this point in our conclusions.
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Figure 8. Plot of log h(xn) versus log n for the first 11 iterates
of the map dE9 for ǫ = 1/2 with initial conditions x0 = 2/5, y0 =
7/3, z0 = 11/13 and parameter ξ = −1/2.

8. Concluding remarks. In this paper we studied three-dimensional birational
maps which provide integrable time-discretizations of quadratic bi-Hamiltonian
flows associated with pairs of real three-dimensional Lie algebras, as presented in
[3, 11]. We have shown that for the six cases of continuous flows which are alge-
braically integrable, the Hirota-Kimura type discretization provides maps admitting
two independent rational integrals of motion, in involution with respect to a pair of
compatible Poisson tensors. We have also provided explicit solutions of the resulting
discrete systems dEi for i = 1, . . . , 6, which are given in terms of either rational, hy-
perbolic or elliptic functions in each case. These results confirm the conjecture that
the property of algebraic integrability is preserved by this discretization scheme.

We have also applied the same procedure to two cases of integrable continuous
flows in three dimensions having one rational and one transcendental integral of mo-
tion, for which the resulting maps, dE7 and dE8, admit explicit solutions in terms of
rational functions and either gamma or digamma functions. In each of these cases,
we have found an explicit formula for one transcendental integral of the map, but
the second integral is only defined implicitly by the solution. Nevertheless, this is
sufficient to assert that the latter two cases are also completely integrable in the
Liouville-Arnold sense. Therefore the Kahan-Hirota-Kimura discretization scheme
preserves integrability even in these transcendental cases. However, for another ex-
ample of a continuous integrable system with one transcendental integral, it appears
likely that the corresponding discretization dE9 is not integrable for generic values
of the parameter in the map.

In an attempt to gain a better understanding of the difference between the alge-
braic and transcendental cases, we have also analyzed all of these discrete systems
from a different viewpoint, within the arithmetical setting of Diophantine inte-
grability. So far, the Diophantine integrability test has been applied to various
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algebraically integrable systems and discrete Painlevé equations [12], as well as
to certain birational maps that are not algebraically integrable and fail the test
[18, 19]. Our theoretical results show that dE7 and dE8 provide examples of dis-
crete integrable systems with transcendental invariants that are also Diophantine
integrable, in the sense defined by Halburd. Moreover, more detailed numerical
results suggest that these discrete integrable systems might be distinguished from
algebraically integrable maps by the manner in which the logarithmic heights con-
verge to their leading order asymptotics. This asymptotic behaviour deserves to be
studied more carefully in the future.

The discretizations of the algebraically integrable cases presented here produce
deformations of linear (Lie-Poisson) structures which are either cubic polynomials
or degree three rational functions. We are not aware of any classification results
for cubic Poisson brackets. Very recently, quadratic deformations of Lie-Poisson
brackets in R3 have been classified up to linear diffeomorphisms [24].

A further interesting point is the comparison with Kahan’s discretization of the
Lotka-Volterra system, which is an integrable flow in the plane with a transcendental
integral. The discrete system provides a non-standard symplectic integrator of this
flow, and seems to preserve the qualitative features of the continuous counterpart.
However, the numerical results indicate that the discrete system is not Diophantine
integrable, which adds further evidence to the conjecture that (for generic values of
ǫ) it should not be Liouville integrable either.

Similar considerations apply to the discrete system dE9: numerically it appears
that for generic values of the parameter ξ, it fails the Diophantine integrability test.
Since the continuous system E9 has algebraic integrals for ξ ∈ Q, this means that in
general algebraic integrability (in the weakest sense of the term) is not preserved by
the Kahan-Hirota-Kimura discretization. Actually one could already observe this
for the system E7, since it has the integral H7 which is algebraic for all ξ ∈ Q, but
the integral Ĥ7 for dE7 is transcendental unless ξ ∈ Z. This suggests that one should
impose a much stronger notion of algebraic complete integrability (a.c.i.) if this is
to be preserved by the discretization scheme. For instance, one can require that the
generic level sets of the integrals are smooth abelian varieties, possibly extended by
(C∗)m for some m. An excellent discussion of various different definitions of a.c.i.
can be found in chapter V of [41].

As for the case of the discrete three-dimensional Euler top (see [15, 31]), there
is one other standard attribute of integrable systems that remains to be found for
the maps dEi for i = 1, . . . , 8, namely their Lax representation. This is an open
problem which deserves further investigation.

There are three other bi-Hamiltonian flows in the list of Gümral and Nutku, all
of which have one transcendental invariant. Preliminary results suggest that their
Kahan-Hirota-Kimura type discretizations are qualitatively similar to the system
dE9, and we expect that these maps are not Liouville integrable. We reserve the
study of these systems for future work.

Finally we remark that another non-standard symplectic integrator for the Lotka-
Volterra model, with similar numerical properties, has been given by Mickens in
[27]. It would be very interesting to see if the approach to discretization proposed
by Mickens shares some of the remarkable properties of Kahan’s.
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Appendix: solution of the system dE4 in elliptic functions. Here we derive
the formulae (27-29) corresponding to the solution of dE4, as in Theorem 5.1. The
first observation to make is that the curve V in affine three-dimensional space defined
by the equations

V : xy = H
[
1 + ǫ2(x2 + y2)

]
, x2 + y2 + z2 = 2K

[
1 + ǫ2(x2 + y2)

]
,

corresponding to the intersection of the level sets Ĥ4 = H , K̂4 = K, has genus one
(at least for generic values of H and K). To see this, note that V is a double cover
of the curve

C : xy = H
[
1 + ǫ2(x2 + y2)

]

in two dimensions, via the covering map

π : V → C
(x, y, z) 7→ (x, y)

which is ramified over the four points (x, y) ∈ C obtained from the simultaneous
solutions of xy = H(1+ ǫ2(x2 +y2)), (1−2Kǫ2)(x2 +y2) = 2K (when z = 0). Since
the curve C is a conic (genus zero), it follows from the Riemann-Hurwitz formula
[28] that V is (the affine part of) a curve of genus one. The first order recurrence
relations for xn, yn, zn, namely





xn+1 − xn = −ǫ(xn+1zn + xnzn+1),

yn+1 − yn = ǫ(yn+1zn + ynzn+1),

zn+1 − zn = 2ǫ(xn+1xn − ynyn+1),

(49)

correspond to a birational map from this curve to itself, inducing an automorphism
of an isomorphic elliptic curve (i.e. a plane curve defined by a Weierstrass cubic),
and it follows that xn = X(u + nv) for a suitable elliptic function X , and similarly
for yn, zn. One can see some points on a real connected component of such a curve
in Figure 9.

From the equations for V it is easy to see that the functions corresponding to
xn, yn, zn each have simple poles at the same places, and they are elliptic functions of
order two. These facts suggest that it may be most convenient to write the formulae
in terms of Jacobian (rather than Weierstrassian) elliptic functions. Indeed, if we
set

s = x + y, d = x − y,

then the equations for V become

(1 − 2Hǫ2)s2 − (1 + 2Hǫ2)d2 = 4H, (1 − 2Kǫ2)(s2 + d2) + 4z2 = 4K,

which are reminiscent of (linear combinations of) the quadratic relations

sn2(u) + cn2(u) = 1, k2sn2(u) + dn2(u) = 1,

for Jacobi functions.
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Figure 9. Plot of the first 1000 points on the orbit of the inte-
grable map dE4 with initial conditions x0 = 7/3, y0 = 11/13, z0 =
23/47.

In order to obtain the formulae (27-29), it is instructive to take a detour through
Jacobi theta functions, by deriving bilinear equations from (49). Upon setting

xn =
An + Bn

2ǫDn
, yn =

An − Bn

2ǫDn
, zn =

Cn

ǫDn
,

the system (49) is equivalent to the following three bilinear equations:





An+1Dn − AnDn+1 = −(Bn+1Cn + BnCn+1),

Bn+1Dn − BnDn+1 = −(An+1Cn + AnCn+1),

Cn+1Dn − CnDn+1 = An+1Bn + AnBn+1.

(50)

One should hesitate to call (50) the Hirota bilinear form of Eqs. (49), because
there are four unknowns (tau-functions) An, Bn, Cn, Dn but only three equations,
so the system is underdetermined. Despite this apparent problem, we can solve this
bilinear system in terms of Jacobi theta functions ϑj , j = 1, . . . , 4, by comparing
these equations with the identities in exercise number 3 on page 488 of [43]; the
first of these is the relation

ϑ1(u ± v)ϑ2(u ∓ v)ϑ3ϑ4 = ϑ1(u)ϑ2(u)ϑ3(v)ϑ4(v) ± ϑ3(u)ϑ4(u)ϑ1(v)ϑ2(v) (51)

the last is

ϑ3(u ± v)ϑ4(u ∓ v)ϑ3ϑ4 = ϑ3(u)ϑ4(u)ϑ3(v)ϑ4(v) ∓ ϑ1(u)ϑ2(u)ϑ1(v)ϑ2(v) (52)

and there are four other relations of this kind, for different permutations of the
four indices. Here ϑj without argument denotes a theta constant (i.e. ϑj = ϑj(0),
which depends on the modulus k). By taking the sum of the two equations given in
(51) with opposite choices of ± signs, and similarly taking the difference of the two
equations specified by (52), one sees that both ϑ1(u+v)ϑ2(u−v)+ϑ1(u−v)ϑ2(u+v)
and ϑ3(u+v)ϑ4(u−v)−ϑ3(u−v)ϑ4(u+v) are proportional to ϑ1(u)ϑ2(u), modulo v-
dependent factors. Thus if v is regarded as a fixed constant, and the shift u → u+2v
is identified with n → n+1, then the first equation in (50) is satisfied if (suppressing
all arguments and the index n) the identifications

C ∼ ϑ1, B ∼ ϑ2, A ∼ ϑ3, D ∼ ϑ4
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are made, up to suitable v-dependent scaling denoted by the ∼ symbol. Moreover,
these identifications are consistent with the second and third equations in (50),
which are consequences of the aforementioned other four bilinear relations between
Jacobi theta functions.

Given that the Jacobian elliptic functions are defined in terms of theta functions
by

sn(u) =
ϑ3

ϑ2

ϑ1(u/ϑ2
3)

ϑ4(u/ϑ2
3)

, cn(u) =
ϑ4

ϑ2

ϑ3(u/ϑ2
3)

ϑ4(u/ϑ2
3)

, dn(u) =
ϑ4

ϑ3

ϑ3(u/ϑ2
3)

ϑ4(u/ϑ2
3)

,

it follows that the solution of the difference equations (49) has the form

xn = λdn(κ + 2nδ) + µ cn(κ + 2nδ),

yn = λdn(κ + 2nδ) − µ cn(κ + 2nδ),

zn = ν sn(κ + 2nδ),

for constants δ, κ and suitable prefactors λ, µ, ν which are given in terms of δ and
the theta constants. The expressions (27-29) can also be verified directly from the
addition formula for sn, namely

sn(u + v) =
sn(u)cn(v)dn(v) + sn(v)cn(u)dn(u)

1 − k2sn2(u)sn2(v)
, (53)

as well as the analogous formulae for cn and dn. Using (53) to calculate sn(u+ v)−
sn(u−v), and then setting u → κ+(2n+1)δ, v → δ, gives an expression for the left
hand side of the third equation in (49), and performing analogous computations for
the right hand side and for the other two difference equations allows the prefactors
λ, µ, ν to be determined directly in terms of Jacobi functions with argument δ, in
agreement with (27-29).

Finally, note that the solution depends on the required number of arbitrary
constants, namely the three parameters δ, κ, k. The parameter δ and the modulus k
are determined by the values of the integrals Ĥ4 and K̂4, by solving the relations (30)

as a system for k and snδ and then performing the elliptic integral δ =
∫ snδ

0
dξ/η,

while κ is found from

κ =

∫ ǫz0

ksnδ

0

dξ

η
, η2 = (1 − ξ2)(1 − k2ξ2).
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