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Abstract. Let H be a reductive subgroup of a reductive group G over an algebraically
closed field k. We consider the action of H on Gn, the n-fold Cartesian product of G with
itself, by simultaneous conjugation. We give a purely algebraic characterization of the closed
H-orbits in Gn, generalizing work of Richardson which treats the case H = G.

This characterization turns out to be a natural generalization of Serre’s notion of G-
complete reducibility. This concept appears to be new, even in characteristic zero. We
discuss how to extend some key results on G-complete reducibility in this framework. We
also consider some rationality questions.
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1. Introduction

Let G be a reductive linear algebraic group over an algebraically closed field, and suppose
G acts on an affine variety V . A fundamental problem in geometric invariant theory is to
determine the closed orbits of G in V . These orbits correspond to the points in the quotient
variety V//G, so this is the first step towards understanding the geometry of the quotient.
Often it is of particular interest to find the open subset of stable orbits, which consists of
points on which the quotient map π : V → V//G is especially well-behaved. Moreover, once
the closed orbits are known, one can study degeneration phenomena: the way in which a
point in a non-closed orbit can be brought inside a closed orbit by taking a limit along a
cocharacter.

An important family of examples arises as follows. Take G to be a subgroup of GL(W )
for some finite-dimensional vector space W , choose a subvariety C of End(W ) that is stable
under conjugation by G, and take V to be Cn for some n ∈ N, where G acts on Cn by
simultaneous conjugation. Typically C carries some algebraic structure: it might be a sub-
group of GL(W ), a Lie subalgebra, or an associative subalgebra of End(W ). For instance,
if G = GL(W ) and C = End(W ), then, by work of H. Kraft ([10, Prop. 4.4] or [11, II.2.7
Satz 2]), for any v = (c1, . . . , cn) ∈ Cn = V , the orbit G · v is closed if and only if W is
semisimple as an A-module, where A is the associative subalgebra of End(W ) generated by
c1, . . . , cn; moreover, if G · v is not closed, then the degeneration process referred to above is
the “semisimplification”, in which one replaces the A-module W with the direct sum of its
composition factors.

Now consider the case when C = G. In his seminal work [18, Thm. 16.4], Richardson gave
an algebraic characterization of the closed G-orbits in Gn. In [2, Thm. 3.1] it was shown that
his criterion for an orbit to be closed can be formulated using the representation-theoretic
notion of G-complete reducibility, due to Serre, [19]. This concept has been much studied
and it has proved a useful tool for exploring the subgroup structure of simple algebraic
groups. The approach to G-complete reducibility via geometric invariant theory has proved
very fruitful, cf. [2], [3], [4], and [5].

It is natural to extend Richardson’s study and determine the closed H-orbits in Gn for
an arbitrary closed reductive subgroup H of G. In this paper we show that there is also an
algebraic interpretation of the closed orbit condition in this case. We introduce the notion
of a relatively G-completely reducible subgroup of G with respect to H (Subsection 3.1) and
prove the following result.

Theorem 1.1. Let H be a reductive subgroup of G. Let K be the algebraic subgroup of G
generated by elements x1, . . . , xn ∈ G. Then H · (x1, . . . , xn) is closed in Gn if and only if K
is relatively G-completely reducible with respect to H.

This generalizes Richardson’s result [18, Thm. 16.4] which is the special case of Theorem
1.1 when H = G.

Note that we can embed G in some GL(W ), so this fits into the general setting discussed
above (take C = G and replace G with H). In fact, we can take G to be equal to GL(W ) if
we wish (cf. Corollary 3.6).

The definition of G-complete reducibility involves cocharacters of G. Theorems about G-
complete reducibility often involve taking not arbitrary cocharacters of G but cocharacters
of a proper reductive subgroup H of G [4, Prop. 5.7]. The notion of relative complete
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reducibility gives a systematic way to formalise such arguments: hence our results are of
interest even if one is concerned mainly with G-complete reducibility.

Armed with Theorem 1.1, we explore some basic properties of relative G-complete re-
ducibility in Section 3. We study the extent to which results about G-complete reducibility
extend to relative G-complete reducibility, concentrating on what happens when one variesH
or other parameters in the definition. Returning briefly to the more general setting described
above, we extend the notion of relative G-complete reducibility to certain Lie algebras and
associative algebras associated to G: for instance, we consider the case when C is the asso-
ciative subalgebra of End(W ) spanned by G. We also characterize the H-stable orbits in Gn

in terms of this notion of relative G-complete reducibility (Proposition 3.16); this generalizes
Richardson’s result for the special case H = G, [18, Prop. 16.7].

In Section 4, we define relative G-complete reducibility over an arbitrary field. We answer
a generalization of a question due to Serre about the behaviour of G-complete reducibility
under separable field extensions (Theorem 4.12). We finish the paper with a section contain-
ing a collection of examples. In particular, we study the case of relative GL(W )-complete
reducibility and give some characterizations in terms of the natural module W .

2. Notation and preliminaries

2.1. Basic notation. Let k be an algebraically closed field, and let H be a linear algebraic
group defined over k. We denote by 〈S〉 the algebraic subgroup of H generated by a subset
S of H. We let Z(H) denote the centre of H and H0 the connected component of H that
contains 1. If K is a subgroup of H, then CH(K) is the centralizer of K in H and NH(K) is
the normalizer of K in H. We say that H is linearly reductive if every rational representation
of H is semisimple.

For the set of cocharacters (one-parameter subgroups) of H we write Y (H); the elements
of Y (H) are the homomorphisms from k∗ to H. There is an action of H on Y (H) given by
(h · λ)(a) = hλ(a)h−1 for λ ∈ Y (H), h ∈ H and a ∈ k∗.

The unipotent radical of H is denoted Ru(H); it is the maximal connected normal unipo-
tent subgroup of H. The algebraic group H is called reductive if Ru(H) = {1}; note that we
do not insist that a reductive group is connected.

Throughout the paper, G denotes a reductive algebraic group, possibly non-connected.
We use the notation g for LieG; likewise for closed subgroups of G.

Frequently, we consider the diagonal action of G on Gn, the n-fold cartesian product of G
with itself, by simultaneous conjugation:

g · (x1, . . . , xn) := (gx1g
−1, . . . , gxng

−1),

for all g ∈ G and (x1, . . . , xn) ∈ Gn. Note that any subgroup H of G acts on Gn in the same
way. We also consider the action of G on gn by diagonal simultaneous adjoint action.

If H is a closed subgroup of G and x = (x1, . . . , xn) ∈ G for some n ∈ N, then we say H

is topologically generated by x (or by x1, . . . , xn) if H = 〈x1, . . . , xn〉.

2.2. Non-connected reductive groups. Since we want to work with reductive groups
which are not necessarily connected, we need to extend several familiar ideas from connected
reductive groups. The crucial ingredient of this extension is the introduction of so-called
Richardson parabolic subgroups (R-parabolic subgroups) of the reductive group G. We briefly
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recall the main definitions and results; for more details and further results, the reader is
referred to [2, Sec. 6].

Definition 2.1. For each cocharacter λ ∈ Y (G), let Pλ = {g ∈ G | lim
a→0

λ(a)gλ(a)−1 exists}
(for the formal definition of such limits, see Definition 2.2). Recall that a subgroup P of G
is parabolic if G/P is a complete variety. The subgroup Pλ is parabolic in this sense, but
the converse is not true: e.g., if G is finite, then every subgroup is parabolic, but the only
subgroup of G of the form Pλ is G itself. We define Lλ = {g ∈ G | lim

a→0
λ(a)gλ(a)−1 = g}.

Then Lλ is a reductive subgroup of G and we have Lλ = CG(λ(k∗)) and Pλ = Lλ nRu(Pλ).
We also have Ru(Pλ) = {g ∈ G | lim

a→0
λ(a)gλ(a)−1 = 1}. The map

cλ : Pλ → Lλ given by cλ(g) = lim
a→0

λ(a)gλ(a)−1

is a surjective homomorphism of algebraic groups with kernel Ru(Pλ); it coincides with the
usual projection Pλ → Lλ. The subgroups Pλ for λ ∈ Y (G) are called the R-parabolic
subgroups of G. Given an R-parabolic subgroup P , an R-Levi subgroup of P is any subgroup
Lλ such that λ ∈ Y (G) and P = Pλ. Note that if P,Q are R-parabolic subgroups of G
with P 0 = Q0 then Ru(P ) = Ru(Q). If G is connected, then the R-parabolic subgroups
(resp. R-Levi subgroups of R-parabolic subgroups) of G are exactly the parabolic subgroups
(resp. Levi subgroups of parabolic subgroups) of G; indeed, most of the theory of parabolic
subgroups and Levi subgroups of connected reductive groups carries over to R-parabolic and
R-Levi subgroups of arbitrary reductive groups. In particular, Ru(P ) acts simply transitively
on the set of all R-Levi subgroups of an R-parabolic subgroup P . Also note that Pλ = G if
and only if λ is central in G [2, Lem. 2.4]. When it does not cause any confusion, we speak
of “R-Levi subgroups of G” when we mean “R-Levi subgroups of R-parabolic subgroups of
G”.

In this paper, we are interested in reductive subgroups of reductive groups. If H is a
subgroup of G, then there is an obvious inclusion Y (H) ⊆ Y (G) of the sets of cocharacters.
When H is reductive and λ ∈ Y (H), there is then an R-parabolic subgroup of H associated
to λ, as well as an R-parabolic subgroup of G. In order to distinguish between R-parabolic
subgroups associated to different subgroups of G, we use the notation Pλ(H), Lλ(H), etc.
where necessary, but we write Pλ for Pλ(G) and Lλ for Lλ(G). Note that Pλ(H) = Pλ ∩H,
Lλ(H) = Lλ ∩H and Ru(Pλ(H)) = Ru(Pλ) ∩H.

2.3. Groups acting on varieties. We recall some general results from geometric invariant
theory required in the sequel, see [5], [1, §2], [15], and [16, Ch. 3]. Let V be an affine variety.

Definition 2.2. Let φ : k∗ → V be a morphism of algebraic varieties. We say that lim
t→0

φ(t)

exists if there exists a morphism φ̂ : k → V (necessarily unique) whose restriction to k∗ is φ;

if this limit exists, then we set lim
t→0

φ(t) = φ̂(0).

Now suppose the reductive group G acts on V . For v ∈ V let G · v denote the G-orbit
of v in V and CG(v) the stabilizer of v in G. It follows easily from Definition 2.2 that if
lim
t→0

λ(t) · v exists for a cocharacter λ ∈ Y (G), then this limit belongs to the closure G · v of

G · v in V . The well-known Hilbert-Mumford Theorem [9, Thm. 1.4], gives a converse to
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this: if v ∈ V is such that G · v is not closed in V , then there exists a cocharacter λ ∈ Y (G)
such that lim

t→0
λ(t) · v exists and lies in the unique closed G-orbit in G · v.

We often use the following simple lemma in the sequel, [5, Lem. 2.11].

Lemma 2.3. Suppose G acts on an affine variety V . Let v ∈ V , let λ ∈ Y (G) and let
u ∈ Ru(Pλ). Then lim

a→0
λ(a) · v exists and equals u · v if and only if u−1 · λ centralizes v.

The next result is [5, Thm. 3.4] in case k = k.

Theorem 2.4. Suppose G acts on an affine variety V . Let v ∈ V and let λ ∈ Y (G) such
that v′ := lim

a→0
λ(a) · v exists and is G-conjugate to v. Then v′ is Ru(Pλ)-conjugate to v.

2.4. Generic tuples. In order to establish the link between relative G-complete reducibility
with respect to H and H-orbits of tuples, needed for Theorem 1.1, we require the following
notion of a generic tuple, see [5, Def. 5.4].

Definition 2.5. Let K be a closed subgroup of G and let G ↪→ GLm be an embedding
of algebraic groups. Then k = (k1, . . . , kn) ∈ Kn is called a generic tuple of K for the
embedding G ↪→ GLm if the ki generate the associative subalgebra of Matm spanned by K.
(Frequently we simply say that k generates the associative subalgebra of Matm spanned by
K.) We call k ∈ Kn a generic tuple of K if it is a generic tuple of K for some embedding
G ↪→ GLm.

Clearly, generic tuples exist for any embedding G ↪→ GLm for n sufficiently large. The
main properties of generic tuples are given by the next lemma, which is [5, Lem. 5.5].

Lemma 2.6. Let K be a closed subgroup of G, let k ∈ Kn be a generic tuple of K for some
embedding G ↪→ GLm and let K ′ be the closed subgroup of G generated by (the components
of) k. Then we have:

(i) CH(k) = CH(K ′) = CH(K) for any subgroup H of G;
(ii) K ′ is contained in the same R-parabolic and the same R-Levi subgroups of G as K;
(iii) If K ⊆ Pλ for some λ ∈ Y (G), then cλ(k) is a generic tuple of cλ(K) for the given

embedding G ↪→ GLm.

Note that in Lemma 2.6(iii), cλ(k) is the tuple obtained by applying cλ to each entry in
k.

Remark 2.7. If K is a closed subgroup of G which is topologically generated by a tuple
k = (k1, ..., kn) ∈ Kn, then k is a generic tuple for K in the sense of Definition 2.5. To see
this, consider an embedding G ↪→ GLm. Since the minimal polynomial of each ki has non-
zero constant term, we can express k−1

i as a polynomial in ki. Hence, if A is the associative
subalgebra of Matm generated by k, then A contains the inverses of each of the ki, so it
contains the subgroup of GLm generated by k. But A is closed, so it contains K.

3. Relative G-complete reducibility

3.1. Relative G-complete reducibility. The key idea for the proof of Theorem 1.1, which
is proved in the next subsection, is the notion of relative G-complete reducibility, defined
below.
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Definition 3.1. Let K be a subgroup of G and let H be any reductive subgroup of G. We
say that K is relatively G-completely reducible with respect to H if for every λ ∈ Y (H) such
that K is contained in Pλ, there exists µ ∈ Y (H) such that Pλ = Pµ and K ⊆ Lµ. We
sometimes use the shorthand relatively G-cr with respect to H.

Remarks 3.2. (i). In the case H = G, Definition 3.1 coincides with the usual definition of
G-complete reducibility [2, Sec. 1], [19, 3.2]; we sometimes refer to this as the absolute case.
Note that a subgroup of G is relatively G-completely reducible with respect to H if and only
if it is relatively G-completely reducible with respect to H0. Thus we may assume without
loss that H is connected. If H0 is central in G, then every subgroup of G is relatively
G-completely reducible with respect to H.

(ii). If K ⊆ H, then K is relatively G-cr with respect to H if and only if K is H-cr.
(iii). Recall that in characteristic zero a subgroup of G is G-completely reducible if and

only if it is reductive. We don’t know of any simple characterization of relative G-complete
reducibility in this case. So this appears to be a new notion even in characteristic zero.

(iv). We note that one of the basic properties [19, Prop. 4.1] of G-cr subgroups is not
inherited by relatively G-cr subgroups in general: if we take H ⊆ Z(G), then all subgroups
of G are relatively G-cr with respect to H. In particular, it is possible for non-reductive
(even unipotent) subgroups to be relatively G-cr with respect to a subgroup H.

(v). As noted in (iv), in general a relatively G-cr subgroup of G need not be G-cr. Also
a G-cr subgroup need not be relatively G-cr. For instance, let L be an R-Levi subgroup of
some R-parabolic subgroup P of G. Then L is G-cr by [19, Prop. 3.2], [2, §6.3]. Let M be
any other R-Levi subgroup of P . Then for any maximal torus T of G that lies in M we have
that L is not relatively G-cr with respect to T . For there is a λ ∈ Y (T ) with P = Pλ and
for any such λ, we have Lλ = M by [2, Cor. 6.5]. Hence L 6⊆ Lλ. Here is another example:
there exists reductive G with a reductive subgroup H and a subgroup K of H such that K
is G-cr but not H-cr [4, Prop. 7.7]; then K is not relatively G-cr with respect to H by (ii)
above.

For examples of relatively G-cr subgroups, see Section 5 where we specifically study the
case when G = GL(V ).

The following lemma gives some detailed information about conjugacy of R-Levi subgroups
in the subgroups Pλ and Pλ(H) for λ ∈ Y (H).

Lemma 3.3. Let H be a reductive subgroup of G.

(i) Let λ, µ ∈ Y (H) such that Pλ = Pµ and let u be the element of Ru(Pλ(H)) such that
uLλ(H)u−1 = Lµ(H). Then uLλu

−1 = Lµ.
(ii) Let K be a subgroup of G. The K is relatively G-completely reducible with respect to H

if and only if for every λ ∈ Y (H) such that K ⊆ Pλ there exists u ∈ Ru(Pλ(H)) such
that K ⊆ Lu·λ.

Proof. (i). Set µ′ = u · λ; then µ′ ∈ Y (H), since u ∈ Ru(Pλ(H)). We have Lµ′(H) =
uLλu

−1 = Lµ(H), so µ, µ′ ∈ Y (Z(Lµ(H))0). Let T be a maximal torus of Lµ containing
Z(Lµ(H))0. Then since µ′ ∈ Y (T ), we have T ⊆ Lµ′ , and Lµ′ is an R-Levi subgroup of Pλ.
Thus Lµ and Lµ′ are R-Levi subgroups of Pλ containing a common maximal torus, so they
are equal, by [2, Cor. 6.5].

(ii). This is clear from part (i) and Definition 3.1. �
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Remark 3.4. Let H ≤ G be reductive. Let K be a closed subgroup of G, let k ∈ Kn be a
generic tuple of K and let K ′ be the closed subgroup of G generated by k. Then it follows
from Lemma 2.6(ii) that K is relatively G-cr with respect to H if and only if K ′ is.

3.2. Relative G-complete reducibility and closed orbits. Throughout the rest of this
section, H denotes a reductive subgroup of G. The following result is [5, Thm. 5.9] gener-
alized to our relative setting. In view of Remark 2.7, the final assertion in part (iii) gives
Theorem 1.1. The proof of [5, Thm. 5.9] goes through here with the obvious modifications
and alterations of notation. For the convenience of the reader, we include a proof.

Theorem 3.5. Let H be a connected reductive subgroup of G.

(i) Let n ∈ N, let k ∈ Gn and let λ ∈ Y (H) such that m := lima→0 λ(a) · k exists. Then
the following are equivalent:
(a) m is H-conjugate to k;
(b) m is Ru(Pλ(H))-conjugate to k;
(c) dimH ·m = dimH · k.

(ii) Let K be a subgroup of G and let λ ∈ Y (H). Suppose K ⊆ Pλ and set M = cλ(K).
Then dimCH(M) ≥ dimCH(K) and the following are equivalent:
(a) M is H-conjugate to K;
(b) M is Ru(Pλ(H))-conjugate to K;
(c) K ⊆ Lµ for some µ ∈ Y (H) such that Pλ = Pµ;
(d) dimCH(M) = dimCH(K).

(iii) Let K, λ and M be as in (ii) and let k ∈ Kn be a generic tuple of K. Then the assertions
in (i) are equivalent to those in (ii). In particular, K is relatively G-completely reducible
with respect to H if and only if H · k is closed in Gn.

Proof. (i). This follows immediately from Theorem 2.4 and [6, Prop. I.1.8].
(ii) and (iii). Let k ∈ Kn, let K ′ be the closed subgroup of G generated by k and

let λ ∈ Y (H). Then lima→0 λ(a) · k exists if and only if K ′ ⊆ Pλ. Now assume that
m = lima→0 λ(a) · k exists. Let u ∈ Ru(Pλ(H)). Then k = u ·m if and only if u · λ fixes k
(Lemma 2.3) if and only if K ′ ⊆ Lu·λ = uLλu

−1. Since Ru(Pλ(H)) acts simply transitively on
the R-Levi subgroups of Pλ of the form Lµ with µ ∈ Y (H) (Lemma 3.3), the first assertion
of (iii) follows once we have proved (ii). For this purpose we pick a generic tuple k ∈ Kn of
K. Then m = cλ(k) is a generic tuple of M , by Lemma 2.6(iii). Now the first assertion of
(ii) follows from Lemma 2.6(i) and the fact that dimH ·m ≤ dimH ·k (see [6, Prop. I.1.8]),
since dimH · k = dimH − dimCH(k) and likewise for m. Now we prove the equivalences in
(ii). Clearly, (b) implies (a) and (a) implies (d). Furthermore, we have for u ∈ Ru(Pλ(H))
that K ⊆ Lu·λ if and only if K = cu·λ(K) = uMu−1. So (b) is equivalent to (c). Now
assume that (d) holds. Then, thanks to Lemma 2.6(i) again, we have dimH ·m = dimH ·k.
So m is Ru(Pλ(H))-conjugate to k by (i). We have seen above that this means that K ′ is
contained in an R-Levi subgroup of Pλ. Since k is generic the same must then hold for K,
by Lemma 2.6(ii), that is, (c) holds. The final assertion of (iii) follows from the first and the
Hilbert-Mumford Theorem. �

Corollary 3.6. Let M be a reductive subgroup of G. Let K and H be subgroups of M and
assume that H is reductive. Then K is relatively G-completely reducible with respect to H if
and only if it is relatively M-completely reducible with respect to H.
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Proof. Since a subset of Mn is closed if and only if it is closed in Gn, the result follows
immediately from Theorem 3.5(iii). �

We have an analogue of part of [2, Prop. 3.12]:

Corollary 3.7. Let H be a reductive subgroup of G, and let K be a subgroup of G which is
relatively G-completely reducible with respect to H. Then CH(K) is reductive.

Proof. Let k be a generic tuple for K. Since K is relatively G-cr with respect to H, the orbit
H · k is closed in Gn, by Theorem 3.5(iii), and therefore affine. Hence CH(k) = CH(K) is
reductive, by [17, Lem. 10.1.3]. �

3.3. Relative complete reducibility for Lie subalgebras of g. It is straightforward to
extend our definitions and results to Lie subalgebras of g. We first record a standard result
which gives some properties of the Lie algebras of R-parabolic and R-Levi subgroups of G
(cf. [18, §2.1]).

Lemma 3.8. For λ ∈ Y (G), put pλ = Lie(Pλ) and lλ = Lie(Lλ). Let x ∈ g. Then

(i) x ∈ pλ if and only if lim
a→0

λ(a) · x exists;

(ii) x ∈ lλ if and only if lim
a→0

λ(a) · x exists and equals x if and only if λ(k∗) centralizes x;

(iii) x ∈ Lie(Ru(Pλ)) if and only if lim
a→0

λ(a) · x exists and equals 0.

Definition 3.9. For λ ∈ Y (G) define the subalgebras pλ and lλ of g as in Lemma 3.8.
Let k be a subalgebra of g and let H be any reductive subgroup of G. We call k relatively
G-completely reducible with respect to H if for every λ ∈ Y (H) such that k ⊆ pλ, there exists
µ ∈ Y (H) such that Pλ = Pµ and k ⊆ lµ. In case H = G, we say k is G-completely reducible.

The following can be shown with the same arguments as Theorem 3.5. We emphasize that
Theorem 3.10(iii) characterizes the closed H-orbits in gn.

Theorem 3.10. Let H ≤ G be reductive.

(i) Let n ∈ N, let k ∈ gn and let λ ∈ Y (H) such that m := lima→0 λ(a) · k exists. Then
the following are equivalent:
(a) m is H-conjugate to k;
(b) m is Ru(Pλ(H))-conjugate to k;
(c) dimH ·m = dimH · k.

(ii) Let k be a Lie subalgebra of g and let λ ∈ Y (H). Suppose k ⊆ pλ and set m = cλ(k).
Then dimCH(m) ≥ dimCH(k) and the following are equivalent:
(a) m is H-conjugate to k;
(b) m is Ru(Pλ(H))-conjugate to k;
(c) k ⊆ lµ for some µ ∈ Y (H) such that Pλ = Pµ;
(d) dimCH(m) = dimCH(k).

(iii) Let k, λ and m be as in (ii), and suppose k ∈ kn for some n is a generating tuple for k
(as a Lie algebra). Put m = cλ(k). Then the assertions in (i) are equivalent to those
in (ii). In particular, k is relatively G-completely reducible with respect to H if and only
if H · k is closed in gn.

Remark 3.11. For H = G, Definition 3.9 is due to G. McNinch, [14]. The final statement
of Theorem 3.10(iii) generalizes [14, Thm. 1(1)] which is the case H = G. Note also that
Theorem 3.10 generalizes [5, Thm. 5.25] which is the special case H = G.
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3.4. Relative complete reducibility for associative subalgebras of End(V ). Let G =
GL(V ) and let H be any reductive subgroup of G. Using the characterization of parabolic
and Levi subgroups of G in terms of flags in V , we see that pλ and lλ, for λ ∈ Y (H), are
associative subalgebras of End(V ). This means that one can define the notion of relative G-
complete reducibility with respect to H for associative subalgebras of End(V ) in the obvious
way. Observe that in the absolute case, i.e., when H = GL(V ), we obtain that an associative
subalgebra A of End(V ) is G-completely reducible precisely when V is a semisimple A-
module.

Obviously, a closed subgroup of G or a subalgebra of g = gl(V ) is relatively G-cr with
respect to H if and only if this holds for the associative subalgebra of End(V ) that it
generates. If K is a closed subgroup of G which is topologically generated by a tuple
k ∈ Kn, then k generates the associative subalgebra of End(V ) generated by K. Similarly,
if k is a subalgebra of g which is generated by a tuple k ∈ kn, then k generates the associative
subalgebra of End(V ) generated by k (cf. Remark 2.7).

If a tuple a ∈ End(V )n generates the associative subalgebra A of End(V ), then the
analogue of Theorem 3.5 holds; in particular, A is relatively G-cr with respect to H if and
only if H · a is closed. Therefore, in the absolute case H = GL(V ), the final statement
of the analogue of Theorem 3.5(iii) in this setting recovers a fundamental result in the
representation theory of associative algebras due to H. Kraft: V is a semisimple A-module
if and only if the G-orbit G · a is closed in End(V )n, see [10, Prop. 4.4] or [11, II.2.7 Satz 2].
In that sense, this concept of relative GL(V )-complete reducible associative subalgebras of
End(V ) with respect toH generalizes this fundamental work of Kraft. We hope to investigate
this concept in a future study.

3.5. H-stable points in Gn and relative G-irreducibility with respect to H. Recall
the notion of a stable point for the action of a reductive group G on a variety V [17, 1.4]:

Definition 3.12. Let Z =
⋂

v∈V CG(v) be the kernel of the action of G on V . We say that
v ∈ V is a stable point for the action of G or a G-stable point provided the orbit G · v is
closed in V and CG(v)/Z is finite.

Remark 3.13. Let V//G be the variety corresponding to the k-algebra k[V ]G and let π : V →
V//G be the morphism corresponding to the inclusion k[V ]G → k[V ]. In general, π is not
a quotient morphism in the sense of [6, §6]. Let V s denote the set of G-stable points in V .
Then V s is a (possibly empty) G-stable open subset of V and V s = π−1(π(V s)). Further,
π(V s) is an open subset in V//G and is a geometric quotient of G. For v ∈ V s, we have
G · v = π−1(π(v)) (see [12, Sec. 4]).

In [18, Prop. 16.7], Richardson characterizes the G-stable points in Gn. We can easily
extend this result to the H-stable points in Gn for reductive subgroups H of G. To do this,
we first extend the notion of G-irreducibility from [19, §3.2] to the relative setting:

Definition 3.14. Let H and K be subgroups of G with H reductive. We say that K is
relatively G-irreducible (G-ir) with respect to H if whenever λ ∈ Y (H) and K ⊆ Pλ, we have
Pλ = G. For H = G, this relative notion agrees with that of G-irreducibility, cf. [19, §3.2],
[2, §2.4].

Remark 3.15. Obviously, relative G-irreducibility with respect to H implies relative G-
complete reducibility with respect to H. It is clear that for subgroups H, K and M of
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G with H and M reductive and H,K ⊆ M , if K is relatively G-irreducible with respect to
H, then K is relatively M -irreducible with respect to H, cf. [2, Cor. 2.7].

The notion of relative G-irreducibility is exactly what we need to characterize H-stability
in Gn. In view of Remark 2.7, our next result generalizes [18, Prop. 16.7]; see also [2, Prop.
2.13]. Since Richardson’s proof applies mutatis mutandis, we do not include it.

Proposition 3.16. Let H be a reductive subgroup of G. Let K be a subgroup of G and let
k ∈ Kn be a generic tuple for K. Then K is relatively G-irreducible with respect to H if and
only if k is an H-stable point in Gn.

The following provides analogues of Corollaries 3.22 and 3.5 in [2].

Proposition 3.17. Let H and K be subgroups of G and suppose that H is reductive.

(i) Let S be a torus of CH(K) and set L = CG(S). Then K is relatively G-completely
reducible with respect to H if and only if K is relatively L-completely reducible with
respect to H ∩ L.

(ii) The R-Levi subgroups Lµ of G for µ ∈ Y (H) that are minimal with respect to containing
K are precisely the subgroups of the form CG(S) where S is a maximal torus of CH(K).
If L is such an R-Levi subgroup of G, then K is relatively G-completely reducible with
respect to H if and only if K is relatively L-irreducible with respect to H ∩ L.

Proof. First we prove the first assertion of (ii). If S is a torus in G, then CG(S) = Lλ for
some λ ∈ Y (S) by the arguments of the proof of [2, Cor. 6.10]. Now assume that S is a
maximal torus of CH(K). If µ ∈ Y (H) such that K ⊆ Lµ ⊆ CG(S), then µ(k∗) commutes
with S and is contained in CH(K). So, by the maximality of S, µ(k∗) ⊆ S and Lµ = CG(S).

Now assume that λ ∈ Y (H) and Lλ is minimal among the R-Levi subgroups Lµ of G with
µ ∈ Y (H) and K ⊆ Lµ. Put S = (Z(Lλ) ∩H)0. Then one easily checks that Lλ = CG(S).
Let T be a torus of CH(K) with S ⊆ T . Then K ⊆ CG(T ) ⊆ CG(S) = Lλ. As we have seen
above CG(T ) = Lµ for some µ ∈ Y (T ) ⊆ Y (H). So, by the minimality of Lλ, CG(T ) = Lλ

and T ⊆ S. So S is a maximal torus of CH(K).
To prove (i) and the second assertion of (ii) let k be a generic tuple for K. Let S be a

torus of CH(K) and let L = CG(S). Note that H ∩ L = CH(S) is reductive. By Theorem
3.5(iii), K is relatively G-completely reducible with respect to H if and only if H ·k is closed
in Gn and likewise if we replace G and H by L and H ∩ L, respectively. So (i) now follows
from [17, Thm. C].

Now assume that S is a maximal torus of CH(K). Then H · k is closed in Gn if and only
if k is a stable point for the (H ∩ L)-action on Ln by [18, Lem. 16.6]. By Proposition 3.16,
this is equivalent to K being relatively L-irreducible with respect to H ∩ L. �

Lemma 3.18. Let H be a reductive subgroup of G and let λ ∈ Y (H). Then the R-parabolic
subgroups Pµ of G contained in Pλ with µ ∈ Y (H) are precisely the subgroups of the form
QnRu(Pλ), where Q = Pν(Lλ) and ν ∈ Y (Lλ(H)).

Proof. If µ ∈ Y (H) such that Pµ ⊆ Pλ, then Pµ is of the stated form if some Ru(Pλ(H))-
conjugate of Pµ is of this form. Now we can replace µ by an Ru(Pλ(H))-conjugate which lies
in Y (Lλ(H)). The rest of the proof is completely analogous to that of [2, Lem. 6.2(ii)]. �

We can now generalize [5, Prop. 5.10], showing that we can associate to each H-conjugacy
class of subgroups of G a unique H-conjugacy class of subgroups which are relatively G-cr
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with respect to H; Theorem 3.19 below is the group-theoretic analogue of the statement that
the closure of each H-orbit in Gn contains a unique closed H-orbit.

Theorem 3.19. Let H and K be subgroups of G and suppose that H is reductive.

(i) There exists λ ∈ Y (H) and a subgroup M of G which is relatively G-completely reducible
with respect to H such that K ⊆ Pλ and cλ(K) = M . Moreover, M is unique up to
H-conjugacy and its H-conjugacy class only depends on the H-conjugacy class of K.

(ii) Any automorphism of the algebraic group G that normalizes H and stabilizes the H-
conjugacy class of K, stabilizes the H-conjugacy class of M .

(iii) If K ⊆ Pµ for µ ∈ Y (H), then the above H-conjugacy class associated to cµ(K) is the
same as that associated to K.

Proof. Let λ ∈ Y (H) be such that Pλ is minimal among the R-parabolic subgroups Pµ of G
with µ ∈ Y (H) and K ⊆ Pµ. Then Pλ is also minimal among the R-parabolic subgroups
Pµ of G with µ ∈ Y (H) and cλ(K) ⊆ Pµ by the same arguments as in the proof of [5,
Prop. 5.10]. It now follows from Lemma 3.18 that cλ(K) is relatively Lλ-irreducible with
respect to Lλ(H). But then cλ(K) is relatively G-cr with respect to H by Proposition 3.17(i).

The rest of the proof is completely analogous to that of [5, Prop. 5.10]. One has to
conjugate with elements from Ru(Pλ(H)) rather than Ru(Pλ). The cocharacters λ and µ
in the proof of [5, Prop. 5.10] can now be put in a common maximal torus of Pλ(H) and
Pµ(H). �

Remark 3.20. A statement analogous to Theorem 3.19 holds for Lie algebras: that is, given
any Lie subalgebra k of g, we can find a uniquely defined H-conjugacy class of subalgebras of
g containing cλ(k) for some λ ∈ Y (H), each member of which is relatively G-cr with respect
to H.

3.6. Optimal parabolic subgroups. Let K be a subgroup of G. If K is not relatively
G-cr with respect to H, then there exists at least one cocharacter λ ∈ Y (H) such that
K ⊆ Pλ, but K 6⊆ Lu·λ for any u ∈ Ru(Pλ(H)). Following work in [5, Sec. 5], we now show
how to make a canonical choice for this λ ∈ Y (H); being able to make such a choice has
many advantages and shortens some of the proofs which follow. Since the constructions we
are going to discuss are very similar to those in [5, Sec. 5], where the case of a non-G-cr
subgroup of G is addressed, we omit some details and content ourselves with pointing out
the necessary modifications to allow the results to go through here.

We first need to adapt some of the notation from [5, Sec. 4, Sec. 5] to the relative setting.
Suppose K is a subgroup of G and suppose λ ∈ Y (H) is such that K ⊆ Pλ. Set M := cλ(K)
and let Sn(M) = H ·Mn (note that this depends on H as well as M and n). Then Kn is
a uniformly Sn(M)-unstable set for the action of H on Gn in the sense of [5, Sec. 4]. Any
G-invariant norm on Y (G) restricts to an NG(H)-invariant norm on Y (H); let ‖ ‖ be such
a norm. Then [5, Sec. 4] provides a set Ω(Kn, Sn(M)) of cocharacters of H, the so-called
optimal class. Similarly, if k is a Lie subalgebra of g and λ ∈ Y (H) is such that k ⊆ pλ, then
setting m := cλ(k) and Sn(m) = H ·mn, we get an optimal class Ω(kn, Sn(m)) ⊆ Y (H).

We have the following analogue of [5, Thm. 5.16] in the relative setting:

Theorem 3.21. Let K be a subgroup of G and let n be minimal such that Kn contains
a generic tuple for K. Let M be a subgroup of G and suppose that M = cλ(K) for some
λ ∈ Y (H) with K ⊆ Pλ. Put Ω(K,M) := Ω(Kn, Sn(M)). Then the following hold:
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(i) Pµ = Pν for all µ, ν ∈ Ω(K,M). Let P (K,M) denote the unique R-parabolic subgroup
of G so defined. Then K ⊆ P (K,M) and Ru(P (K,M) ∩ H) acts simply transitively
on Ω(K,M).

(ii) For g ∈ NG(H) we have Ω(gKg−1, gMg−1) = g · Ω(K,M) and P (gKg−1, gMg−1) =
gP (K,M)g−1. If g ∈ G normalizes H, K and Sn(M), then g ∈ P (K,M).

(iii) If µ ∈ Ω(K,M), then dimCH(cµ(K)) ≥ dimCH(M). If M is H-conjugate to K, then,
trivially, Ω(K,M) = {0} and P (K,M) = G. If M is not H-conjugate to K, then K is
not contained in any R-Levi subgroup of P (K,M) of the form Lµ, where µ ∈ Y (H) is
such that Pµ = P (K,M).

Proof. We apply [5, Thm. 4.4] with (G′, G, V,X, S) = (NG(H), H,Gn, Kn, Sn(M)). Since we
associate to K and M an R-parabolic subgroup of G rather than H in loc. cit., we need to
give some more arguments.

(i) and (ii). The statements about Ω(K,M) follow immediately from [5, Thm. 4.4]. Let
µ ∈ Ω(K,M). By [5, Thm. 4.4(iv)], Ru(Pµ(H)) = Ru(Pµ) ∩ H acts simply transitively on
Ω(K,M). Hence Pµ = Pν for all µ, ν ∈ Ω(K,M). The final assertion in (ii) is proved in the
same way as the final assertion of [5, Thm. 4.4(iv)].

(iii). The proof of this is completely analogous to that of [5, Thm. 5.16(iii)]. Note that
P (K,M) = G implies that Ω(K,M) consists of the trivial cocharacter of H only. �

Remark 3.22. Note that Theorem 3.19 provides an obvious choice for the subgroup M in
Theorem 3.21: for by Theorem 3.19, if we are given a subgroup K then there is a unique
conjugacy class of subgroups of the form M = cλ(K) for λ ∈ Y (H) which are relatively
G-cr with respect to H. Since these subgroups are all H-conjugate, the set Sn(M) does
not depend on which representative M we choose from this conjugacy class, and hence the
optimal destabilizing R-parabolic subgroup P (K,M) of G also does not depend on the choice
of M from this class. This leads to the following definition.

Definition 3.23. Let K be any subgroup of G, and let M be a representative from the
H-conjugacy class attached to K of subgroups which are relatively G-cr with respect to H,
provided by Theorem 3.19. Define Ω(K) = Ω(K,M) and P (K) = P (K,M). By Theo-
rem 3.19 and Theorem 3.21, K and NNG(H)(K) are contained in P (K) and for µ ∈ Ω(K),
cµ(K) is relatively G-completely reducible with respect to H. So, by Theorem 3.5(ii), if K
is not relatively G-completely reducible with respect to H, then K is not contained in any
R-Levi subgroup of P (K) of the form Lµ with µ ∈ Y (H) and Pµ = P (K). Note that, triv-
ially, P (K) = G if K is relatively G-completely reducible with respect to H. We call Ω(K)
the optimal class of cocharacters for K in H and P (K) the optimal destabilizing R-parabolic
subgroup for K with respect to H. In case H = G, we call P (K) the optimal destabilizing
R-parabolic subgroup for K.

We have a result analogous to Theorem 3.21 for Lie algebras with a similar proof.

Theorem 3.24. Let k be a subalgebra of g and let n be minimal such that kn contains a
generating tuple for k. Let m be a subalgebra of g and suppose that m = cλ(k) for some
λ ∈ Y (H) with k ⊆ pλ. Put Ω(k,m) := Ω(kn, Sn(m)). Then the following hold:

(i) Pµ = Pν for all µ, ν ∈ Ω(k,m). Let P (k,m) denote the unique R-parabolic subgroup of
G so defined. Then k ⊆ LieP (k,m) and Ru(P (k,m) ∩ H) acts simply transitively on
Ω(k,m).
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(ii) For g ∈ NG(H) we have Ω(g · k, g · m) = g · Ω(k,m) and P (g · k, g · m) = gP (k,m)g−1.
If g ∈ G normalizes H, k and Sn(m), then g ∈ P (k,m).

(iii) If µ ∈ Ω(k,m), then dimCH(cµ(k)) ≥ dimCH(m). If m is H-conjugate to k, then,
trivially, Ω(k,m) = {0} and P (k,m) = G. If m is not H-conjugate to k, then k is not
contained in lµ for any µ ∈ Y (H) with Pµ = P (K,M).

Definition 3.25. Let k be any subalgebra of g, and let m be a representative from the
H-conjugacy class attached to k of subalgebras which are relatively G-cr with respect to
H, provided by Remark 3.20. Define Ω(k) = Ω(k,m) and P (k) = P (k,m). We call Ω(k)
the optimal class of cocharacters for k in H and P (k) the optimal destabilizing R-parabolic
subgroup for k with respect to H. In case H = G, we call P (k) the optimal destabilizing
R-parabolic subgroup for K.

Armed with Theorems 1.1, 3.5 and 3.21, we can extend many results about G-complete
reducibility within the framework of relative G-complete reducibility. In the following sub-
sections we aim to illustrate interesting points of our new construction by looking at a
selection of results, mainly from [2]; some of these results generalize immediately, while oth-
ers are more subtle. We observe that all the results below have interpretations in terms of
closedness of orbits in Gn in view of Theorem 1.1.

3.7. New relatively G-completely reducible subgroups from old. In this section we
explore how to generate new relatively G-cr subgroups from a given relatively G-cr subgroup
M ; for example, by taking suitable normal subgroups of M or looking at suitable subgroups
of NG(M). Our first result generalizes [2, Thm. 3.10], as the latter is simply the special case
H = G of Theorem 3.26. The apparent direct analogue of [2, Thm. 3.10] in this context,
namely that a normal subgroup N of a subgroup M of G is relatively G-cr with respect to
some reductive subgroup H of G provided M is, fails in general; see Examples 5.6 and 5.7
below.

Theorem 3.26. Let H be a reductive subgroup of G and let K and M be subgroups of G
such that K ⊆ M ⊆ KNNG(H)(K). If M is relatively G-completely reducible with respect to
H, then so is K.

Proof. We prove the contrapositive. So suppose K is not relatively G-cr with respect to
H. Let P (K) be the optimal R-parabolic destabilizing subgroup for K with respect to
H (Definition 3.23). Then by Definition 3.23, M ⊆ KNNG(H)(K) ⊆ P (K) and K is not
contained in any R-Levi subgroup of P (K) of the form Lµ with µ ∈ Y (H) and Pµ = P (K).
Hence M cannot be contained in such an R-Levi subgroup of P (K), as K ⊆M . Thus M is
not relatively G-cr with respect to H. �

The following result generalizes the second statement of [2, Prop. 3.19].

Proposition 3.27. Suppose H is a reductive subgroup of G. Let K be a subgroup of G which
is relatively G-completely reducible with respect to H, and suppose M is a reductive subgroup
of G which contains K and is normalized by a maximal torus of CH(K). Then M is also
relatively G-completely reducible with respect to H.

Proof. Choose a maximal torus S of CH(K) which normalizes M . Since MS is reductive
and M ⊆ MS ⊆ MNH(M), we may assume that S ⊆ M , by Theorem 3.26. Let λ ∈ Y (H)
be such that M ⊆ Pλ. Since M contains K and K is relatively G-cr with respect to H, we
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may assume that K ⊆ Lλ. Then we have λ(k∗) ⊆ CH(K)∩Pλ. But S is a maximal torus of
CH(K)∩Pλ, so there exists g ∈ CH(K)∩Pλ such that for µ := g ·λ we have µ(k∗) ⊆ S ⊆M .
Clearly, we also have µ ∈ Y (H) and Pµ = Pλ. Since M ⊆ Pλ = Pµ, we have Pµ(M) = M .
Since M is reductive, this means that µ(k∗) is central in M , by Definition 2.1. So M ⊆ Lµ,
as required. �

Remark 3.28. Note that Proposition 3.27 applies in particular to reductive subgroups of
G which contain all of KCH(K). In particular, if K is relatively G-completely reducible
with respect to H, then, provided they are reductive, NG(K) and KCG(K) are relatively
G-completely reducible with respect to H. This generalizes [2, Cor. 3.16]; recall that the
reductivity conditions for NG(K) and KCG(K) are always satisfied for a G-cr subgroup K
of G, cf. [2, Prop. 3.12].

The following result generalizes [2, Prop. 3.20].

Corollary 3.29. Suppose H is a reductive subgroup of G. Then any reductive subgroup of G
which is normalized by a maximal torus of H is relatively G-completely reducible with respect
to H.

Proof. Let K be a reductive subgroup of G which is normalized by a maximal torus of H.
By Theorem 3.26, we may assume that K contains a maximal torus S of H. Now S is H-cr
[2, Lem. 2.6], so S is relatively G-cr with respect to H. The result follows from Proposition
3.27 applied to the inclusion S ⊆ K. �

3.8. Relative complete reducibility with respect to different subgroups of G. In
our next set of results we explore what happens when we vary the reductive subgroup H,
rather than K. The first result generalizes one direction of [3, Prop. 2.8]. Note that the
converse in this case is not true; just take any example of G, H and K where K is not
relatively G-cr with respect to H, and let N = {1}.

Proposition 3.30. Suppose H is a reductive subgroup of G and N is a normal subgroup of
H. For any subgroup K of G, if K is relatively G-completely reducible with respect to H,
then K is relatively G-completely reducible with respect to N .

Proof. First note that since H is reductive and N is normal in H, N is reductive. Suppose
λ ∈ Y (N) ⊆ Y (H) is such that K ⊆ Pλ. Then, as K is relatively G-cr with respect to H,
there exists u ∈ Ru(Pλ(H)) such that K ⊆ uLλu

−1 = Lu·λ, by Lemma 3.3. But u ∈ H, so u
normalizes N , and thus u · λ ∈ Y (N), and we are done. �

Corollary 3.31. Suppose H is a reductive subgroup of G and K is relatively G-completely
reducible with respect to H. Suppose M is a reductive subgroup of H which is normalized by
CH(K). Then K is relatively G-completely reducible with respect to M .

Proof. Since CH(K) normalizes M , M is normal in MCH(K). By Proposition 3.30, if K is
relatively G-cr with respect to MCH(K), then K is relatively G-cr with respect to M , so we
may assume that CH(K) ⊆ M . Let λ ∈ Y (M) such that K ⊆ Pλ. Then, as K is relatively
G-cr with respect to H, there exists u ∈ Ru(Pλ(H)) such that K ⊆ Lu·λ, by Lemma 3.3.
But then u · λ ∈ Y (CH(K)) ⊆ Y (M), and we are done. �

Our final proposition in this subsection is a strengthening of Proposition 3.17(i) and [4,
Prop. 5.7]. Before we begin the build-up to the result, we note that it would be possible to
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adapt the proof of [4, Prop. 5.7] to prove our new result in positive characteristic. However,
there are problems in characteristic zero: [4, Prop. 5.7] is easy to prove in characteristic zero
because of the nice characterization of G-complete reducibility in this case (a subgroup is G-
cr if and only if it is reductive), but we have no such characterization of relative G-complete
reducibility in characteristic zero, so we need a new proof. The following preparatory work,
which is motivated by the notion of a generic tuple from Subection 2.4, allows us to present
a proof which is valid in any characteristic.

Let W be a finite-dimensional vector space over k and let n ∈ N. We have an action of
GLn(k) on W n given by

A · (v1, . . . , vn) = (v′1, . . . , v
′
n),

where

v′i =
n∑

j=1

aijvj

and aij is the ij-component of A. This action of GLn(k) commutes with the diagonal
GL(W )-action on W n.

Recall the notion of a stable point from Definition 3.12; and recall from Remark 3.13 that
if v is G-stable, then

(3.32) π−1(π(v)) = G · v,
where π : V → V//G is the canonical morphism.

Lemma 3.33. Let w = (w1, . . . , wn) ∈ W n such that the wi are linearly independent. Let
F be a subgroup of GLn(k) such that F is a finite extension of SLn(k). Then w is a stable
point for the action of F on W n.

Proof. Since the wi are linearly independent, CF (w) is trivial. It remains to check that F ·w
is closed. Let λ ∈ Y (F ) such that lim

x→0
λ(x) ·w exists. Choose A ∈ GLn(k) such that A · λ

takes values in the subgroup of F of diagonal matrices. Set w′ = A ·w = (w′
1, . . . , w

′
n). Then

lim
x→0

(A · λ)(x) ·w′ exists. There exist m1, . . . ,mn ∈ Z such that for all x ∈ k∗, we have

(A · λ)(x) · (w′
1, . . . , w

′
n) = (xm1w′

1, . . . , x
mnw′

n).

Since F 0 = SLn(k), we must have
∑n

i=1mi = 0. As w′
i 6= 0 and lim

x→0
xmiw′

i exists for each i,

we must have mi ≥ 0 for each i. This forces all the mi to be zero, and so A · λ is trivial,
hence λ is trivial. We conclude that F ·w is closed, by the Hilbert-Mumford Theorem. �

Now suppose that dimW = n and w ∈ W n consists of a basis for W . Let g ∈ GL(W ).
Then g · w also consists of a basis for W . Hence there exists a unique element A(g,w) ∈
GLn(k) such that

(3.34) g ·w = A(g,w) ·w.
Let w′ ∈ W n be another basis for W . We can write w′ = A ·w for some A ∈ GLn(k). Using
the fact that the actions of GL(W ) and GLn(k) commute, a straightforward calculation
shows that

A(g,w′) = AA(g,w)A−1.

Hence detA(g,w) is independent of w. Moreover, if g′ ∈ GL(W ), then we have

A(g′g,w) = A(g′, g ·w)A(g,w).
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Whence the map

(3.35) GL(W ) → k∗, g 7→ detA(g,w)

is a homomorphism and is independent of w.
We can now give our strengthening of Proposition 3.17(i) and [4, Prop. 5.7]; note our new

result is significantly stronger, since we do not require K to be a subgroup of CG(S). In
the case H = G, Proposition 3.36 and Corollary 3.37 identify instances where G-complete
reducibility implies or is implied by relative G-complete reducibility with respect to a proper
subgroup.

Proposition 3.36. Let K, H and S be closed subgroups of G such that H is reductive and
S normalizes H and K. Put M = CH(S)0.

(i) Suppose that S is reductive and HS-completely reducible. Then M is reductive. More-
over, K is relatively G-completely reducible with respect to H if it is relatively G-
completely reducible with respect to M .

(ii) Suppose that
(a) h/ch(S) does not have any trivial S-composition factors;
(b) ch(S) = LieCH(S);
(c) M is reductive.
Then K is relatively G-completely reducible with respect to M if it is relatively G-
completely reducible with respect to H.

Proof. (i). Suppose that S is reductive and HS-cr (note that HS is reductive because H
and S are). Then M is reductive, since CH(S) is H-cr, by [4, Thm. 5.4(a)]. Suppose that
K is not relatively G-cr with respect to H. We show that K is not relatively G-cr with
respect to M . Let Ω(K) be the class of optimal cocharacters for K in H and let P (K)
be the corresponding optimal destabilizing R-parabolic subgroup for K with respect to H
(Definition 3.23). By Theorem 3.21(ii), since S ⊆ NG(H) ∩ NG(K), we have S ⊆ P (K),
and hence S normalizes P (K)∩H. By [4, Lem. 5.1] (applied to the reductive group HS), S
normalizes an R-Levi subgroup of P (K) ∩H, and by [5, Thm. 4.4(iv)], this subgroup is of
the form Lλ(H) for a unique λ ∈ Ω(K). But S acts on Ω(K), by Theorem 3.21(ii), so S must
fix λ, and we have S ⊆ Lλ = CG(λ(k∗)). Hence λ ∈ Y (M). If K is contained in an R-Levi
subgroup of Pλ(M) then K ⊆ Lu·λ(M) for some u ∈ Ru(Pλ(M)). But then u ∈ Ru(Pλ(H)),
so K is contained in Lu·λ(H), an R-Levi subgroup of M , which is impossible. We conclude
that K is not relatively G-cr with respect to M either.

(ii). After embedding G in some GLm, we may assume that G = GLm. Let E be the
linear span of K in Matm. Let e ∈ Kn for some n be a basis for the associative algebra E.
Then it follows from Theorem 3.10 that K is relatively G-cr with respect to H if and only
if H · e is closed, and likewise if we replace H by M . Before we proceed further, we briefly
give the main idea of the proof. We want to apply [4, Thm. 5.4(b)] to e. We cannot do this
directly because S does not centralize K — it only normalizes K — and hence e need not
be centralized by S. The point of the argument below, and of Lemma 3.33, is to allow us to
replace e with π(e), which is centralized by S.

Since S normalizes K, we have a homomorphism ϕ : S → GL(E) and En is an S-stable
subset of (Matm)n under the diagonal action. Define ψ : S → k∗ by ψ(s) = detA(ϕ(s), e),
where A(g, e) is as in Eqn. (3.34). If ψ(S) is finite, then we define F ≤ GLn by F =
det−1(ψ(S)). Now assume that ψ(S) = k∗. Let Λ ≤ k∗ be the subgroup of all roots of unity
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and for a positive integer l let Λl ≤ k∗ be the group of lth roots of unity. Since Λ is dense in
k∗ and the inverse image of a dense subgroup under a surjective homomorphism of algebraic
groups is dense, we have that the ascending chain ψ−1(Λl!)l≥1 of subgroups of S is dense
in S. By similar arguments as in [4, Prop. 3.7], we can now replace S by some ψ−1(Λl!)
without changing M and such that assumptions (a), (b) and (c) still hold. Now we are again
in the situation that ψ(S) is finite and again we define F ≤ GLn by F = det−1(ϕ(S)). Let
π : (Matm)n → (Matm)n//F be the canonical projection.

Now assume that K is relatively G-cr with respect to H. Let λ ∈ Y (M) such that e′ :=
lim
a→0

λ(a)·e exists. Since H ·e is closed, we have e′ ∈ H ·e. So π(e′) = lim
a→0

λ(a)·π(e) ∈ H ·π(e).

By our choice of F we have that for every s ∈ S, A(ϕ(s), e) ∈ F . So π(e) is S-fixed. Now
M · π(e) is closed in H · π(e), by [4, Thm. 5.4(b)], so π(e′) ∈M · π(e). But then e′ ∈M · e
by Lemma 3.33 and [5, Cor. 3.6(ii)]. So M ·e is closed and thus K is relatively G-completely
reducible with respect to M . �

We get the following analogue of [2, Cor. 3.21].

Corollary 3.37. Let G, H, K, S, and M = CH(S)0 be as in Proposition 3.36. Suppose
that S is linearly reductive. Then K is relatively G-completely reducible with respect to H if
and only if it is relatively G-completely reducible with respect to M .

Proof. Since S is linearly reductive, S is HS-cr [2, Lem. 2.6] and conditions (a)–(c) of Propo-
sition 3.36(ii) all hold [17, Lem. 4.1, Prop. 10.1.5]. The result now follows from Proposition
3.36. �

4. Rationality questions

There is an obvious way to extend the notion of relative G-complete reducibility by con-
sidering non-algebraically closed fields. Throughout this section, k denotes any field and
we assume that G is a reductive k-group. Furthermore, we assume that H is a reductive
k-defined subgroup of G. We let ks denote the separable closure of k, and k the algebraic
closure of k. We denote the Galois group Gal(ks/k) = Gal(k/k) by Γ. Algebraic groups and
varieties will always be defined over k and points will always be k-defined points. If V is
a k-variety and k1/k is an algebraic extension, then we denote the set of k1-points of V by
V (k1). We call elements of V (ks) separable points. Note that Γ acts on V = V (k). A closed
subvariety W of V is defined over k if and only if it contains a Γ-stable set of separable
points of V which is dense in W ; see [6, Thm. A.14.4]. The set of k-defined cocharacters of
a k-group K is denoted Yk(K).

We begin with the definition of relative G-complete reducibility over k:

Definition 4.1. Let K be a subgroup of G. We say that K is relatively G-completely
reducible over k with respect to H if for every λ ∈ Y (H) such that Pλ is k-defined and
K ⊆ Pλ, there exists µ ∈ Y (H) such that Pλ = Pµ, Lµ is k-defined and K ⊆ Lµ.

In order to deal with the definition of relative G-complete reducibility over k, we need
some more detailed information about R-parabolic subgroups defined over k.

Lemma 4.2. Let λ ∈ Y (H). If Pλ is k-defined, then Pλ(H) is k-defined. The analogous
assertions hold for Lλ and Ru(Pλ).
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Proof. Thanks to [20, Prop. 12.1.5], Pλ(H) = Pλ ∩ H is k-defined if LiePλ(H) = LiePλ ∩
LieH; similarly for Lλ and Ru(Pλ). The result now follows from Lemma 3.8 applied to G
and H. �

Lemma 4.3. Let H be a k-defined reductive subgroup of G, let λ ∈ Y (H) and assume that
Pλ is k-defined. Then there exists µ ∈ Yk(H) such that Pλ ⊆ Pµ and P 0

λ = P 0
µ .

Proof. This follows from the proof of [5, Lem. 2.5(ii)], replacing the maximal torus of Pλ

with a maximal torus of Pλ(H). �

Remark 4.4. It is not true that any k-defined R-parabolic subgroup of G stems from a
cocharacter defined over k; see [5, Rem. 2.4].

The next lemma gives a version of Lemma 3.3(i) over k. Note that any two k-defined R-Levi
subgroups of a k-defined R-parabolic subgroup are Ru(P )(k)-conjugate [5, Lem. 2.5(iii)].

Lemma 4.5. Let λ, µ ∈ Y (H) such that Pλ = Pµ and let u be the element of Ru(Pλ(H))
such that uLλ(H)u−1 = Lµ(H). Then uLλu

−1 = Lµ. Furthermore, if G, H, Pλ, Lλ and Lµ

are k-defined, then u ∈ Ru(Pλ(H))(k).

Proof. The first part of this is Lemma 3.3. The final assertion follows from [5, Lem. 2.5(iii)]
and the fact that Ru(Pλ(H))(k) = Ru(Pλ(H)) ∩Ru(Pλ)(k). �

Corollary 4.6. Let λ ∈ Yk(H) and let µ ∈ Y (H) such that Pλ = Pµ and Lµ is k-defined.
Then there exists ν ∈ Yk(H) such that Pλ = Pν and Lµ = Lν.

Proof. By Lemma 4.5, there exists u ∈ Ru(Pλ(H))(k) such that Lu·λ = uLλu
−1 = Lµ, so we

can take ν = u · λ. �

We can now show that when discussing relative G-complete reducibility over k, it suffices
to consider R-parabolic subgroups of the form Pλ with λ ∈ Yk(H), rather than all k-defined
R-parabolic subgroups stemming from a cocharacter of H.

Lemma 4.7. Let K be a subgroup of G. Then K is relatively G-completely reducible over
k with respect to H if and only if for every λ ∈ Yk(H) such that K is contained in Pλ, there
exists µ ∈ Yk(H) such that Pλ = Pµ and K ⊆ Lµ.

Proof. Assume that for every λ ∈ Yk(H) such that K is contained in Pλ, there exists µ ∈
Yk(H) such that Pλ = Pµ and K ⊆ Lµ. Let λ ∈ Y (H) such that Pλ is k-defined and K ⊆ Pλ.
Note that Pλ(H) is k-defined by Lemma 4.2. After conjugating λ by an element of Pλ(H) we
may assume that λ ∈ Y (T ) for some k-defined maximal torus T of Pλ(H). By Lemma 4.3
(with H = T ) there exists µ ∈ Yk(T ) such that Pλ ⊆ Pµ and P 0

λ = P 0
µ . By [5, Lem. 2.2], we

have Lλ = Lµ ∩ Pλ. By assumption there exists ν ∈ Yk(H) such that Pµ = Pν and K ⊆ Lν .
By Lemma 3.3 there exists u ∈ Ru(Pµ(H)) = Ru(Pλ(H)) such that uLµu

−1 = Lν . But then
u · λ ∈ Y (H) and Lu·λ = uLλu

−1 = u(Lµ ∩ Pλ)u
−1 = Lν ∩ Pλ contains K.

By [5, Lem. 2.5(iii)], Lu·λ is k-defined, since L0
u·λ = L0

ν is k-defined. Hence K is relatively
G-cr over k with respect to H. The other implication follows from Corollary 4.6. �

In order to generalize Theorem 1.1 to arbitrary fields, we need a notion of a “closed orbit”
for a group H(k) of k points of a reductive k-group H acting on a k-variety. As we shall
show, the correct notion for us is given by the following definition, see [5, Def. 3.10]:

18



Definition 4.8. Let H be a reductive k-group and let V be an affine H-variety over k. Let
v ∈ V . We say that the H(k)-orbit H(k) · v is cocharacter-closed over k if for any λ ∈ Yk(H)
such that v′ := lima→0 λ(a) · v exists, v′ is H(k)-conjugate to v.

For the proof of Theorem 4.11 we need the following two extensions of Theorem 2.4 to
non-algebraically closed fields. The first result is [5, Thm. 3.4]. Here we require the field to
be perfect.

Theorem 4.9. Suppose k is a perfect field. Let H be a reductive k-group and let V be an
affine H-variety defined over k. Let v ∈ V and let λ ∈ Y (H) such that v′ := lim

a→0
λ(a) · v

exists and is H(k)-conjugate to v. Then v′ is Ru(Pλ(H))(k)-conjugate to v.

The second result is [5, Thm. 3.12]. Here we require H to be connected and the two
assertions need to be quantified over all k-defined cocharacters from H.

Theorem 4.10. Let H be a connected reductive k-group and let V be an affine H-variety
defined over k. Let v ∈ V . Then the following are equivalent:

(i) H(k) · v is cocharacter-closed over k;
(ii) for all λ ∈ Yk(H) such that v′ := lima→0 λ(a) · v exists, v′ is Ru(Pλ(H))(k)-conjugate

to v.

Using the preceding discussion, we can now extend parts of Theorem 3.5 to non-algebraically
closed fields. The final assertion in part (iii) is the desired extension of Theorem 1.1 to ar-
bitrary fields.

Theorem 4.11. Assume that H ≤ G is connected reductive.

(i) Let n ∈ N, let k ∈ Gn and let λ ∈ Yk(H) such that m = lima→0 λ(a) · k exists. Then
the following are equivalent:
(a) m is Ru(Pλ(H))(k)-conjugate to k;
(b) there exists µ ∈ Yk(H) such that Pλ = Pµ and µ(k∗) fixes k.
If k is perfect, then (a) and (b) are also equivalent to the following:
(c) m is H(k)-conjugate to k.

(ii) Let K be a subgroup of G and let λ ∈ Yk(H). Suppose K ⊆ Pλ and set M = cλ(K).
Then the following are equivalent:
(a) M is Ru(Pλ(H))(k)-conjugate to K;
(b) K ⊆ Lµ for some µ ∈ Yk(H) such that Pλ = Pµ.

(iii) Let K, λ and M be as in (ii) and let k ∈ Kn be a generic tuple of K. Then the assertions
in (i) are equivalent to those in (ii). Furthermore, K is relatively G-completely reducible
over k with respect to H if and only if H(k) · k is cocharacter closed over k.

Proof. (i) and (ii). The proofs of the equivalence of (a) and (b) in both cases follow from the
fact that Ru(Pλ(H))(k) acts simply transitively on the set of R-Levi subgroups of Pλ that
are of the form Lµ, where µ ∈ Yk(H) is such that Pµ = Pλ, by Lemma 4.5. The equivalence
of part (a) and part (c) in (i) follows from Theorem 4.9.

(iii). The equivalence of (i)(b) and (ii)(b) in this situation is obvious, so (i) and (ii) are
equivalent. For the final assertion of (iii) use Theorem 4.10 and the equivalence of (i) and
(ii). �

The following result extends [5, Thm. 5.11] to our setting of relative G-complete reducibil-
ity. The proof is completely analogous to the proof given in loc. cit.
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Theorem 4.12. Suppose k1/k is a separable extension of fields. Let K be a k-defined
subgroup of G. If K is relatively G-completely reducible over k1 with respect to H, then K
is relatively G-completely reducible over k with respect to H.

We end this section with a converse of Theorem 4.12 in case k is perfect. For this we need
a version over k of the results on optimal parabolic subgroups from Section 3.6.

We adapt some of the notation from [5, Sec. 4, Sec. 5] to the relative setting over k.
Suppose K is a subgroup of G and suppose λ ∈ Yk(H) is such that K ⊆ Pλ. Set M := cλ(K)
and, as in Section 3.6, let Sn(M) = H ·Mn. Then Kn is uniformly Sn(M)-unstable over k
for the action of H on Gn in the sense of [5, Def. 4.2]. Any G(k)-invariant norm on Yk(G)
restricts to an NG(k)(H)-invariant norm on Yk(H); let ‖ ‖ be such a norm. Then [5, Def. 4.3]
provides an optimal class Ω(Kn, Sn(M), k) ⊆ Yk(H) of k-defined cocharacters of H.

Theorem 4.13. Let K be a subgroup of G and let n be minimal such that Kn contains
a generic tuple for K. Let M be a subgroup of G and suppose that M = cλ(K) for some
λ ∈ Yk(H) with K ⊆ Pλ. Put Ω(K,M, k) := Ω(Kn, Sn(M), k). Then the following hold:

(i) Pµ = Pν for all µ, ν ∈ Ω(K,M, k). Let P (K,M, k) denote the unique R-parabolic
subgroup of G so defined. Then K ⊆ P (K,M, k) and Ru(P (K,M, k) ∩ H)(k) acts
simply transitively on Ω(K,M, k).

(ii) Ω(gKg−1, gMg−1, k) = g ·Ω(K,M, k) and P (gKg−1, gMg−1, k) = gP (K,M, k)g−1, for
g ∈ NG(k)(H). If g ∈ G(k) normalizes H, K and Sn(M), then g ∈ P (K,M, k).

(iii) If µ ∈ Ω(K,M, k), then dimCH(cµ(K)) ≥ dimCH(M). If M is H-conjugate to K,
then, trivially, Ω(K,M, k) = {0} and P (K,M, k) = G. If M is not H-conjugate to
K, then K is not contained in any R-Levi subgroup of P (K,M, k) of the form Lµ with
µ ∈ Y (H) and Pµ = P (K,M, k).

Proof. The group NG(ks)(H) is Γ-stable, since H is k-defined. Let N be the closure of
this group. Then N is a k-defined closed subgroup of G, H is normal in N , and N(k) =
NG(k)(H). Now we apply [5, Thm. 4.4] with (G′, G, V,X, S) = (N,H,Gn, Kn, Sn(M)) with
the modifications indicated in the proof of Theorem 3.21. �

Definition 4.14. Maintain the notation as in Theorem 4.13. We call Ω(K,M, k) the optimal
class of k-defined cocharacters for K and M with respect to H and we call P (K,M, k) the
optimal destabilizing R-parabolic subgroup for K and M over k with respect to H. If the
G-conjugacy class given by Theorem 3.19 contains a group M of the form M = cµ(K) for
some µ ∈ Yk(G), then we set Ω(K, k) := Ω(K,M, k) and P (K, k) := P (K,M, k). We call
Ω(K, k) the optimal class of k-defined cocharacters for K with respect to H and we call
P (K, k) the optimal destabilizing R-parabolic subgroup for K over k with respect to H. If k
is algebraically closed, then we usually suppress the k argument and write simply Ω(K,M),
etc.

Remarks 4.15. (i). Suppose the G-conjugacy class given by Theorem 3.19 contains a group
M of the form M = cµ(K) for some µ ∈ Yk(G) (this is automatic if k is algebraically
closed). By Theorems 3.19 and 4.13, K and NNG(k)(H)(K) are contained in P (K, k) and for

any µ ∈ Ω(K, k), cµ(K) is relatively G-completely reducible with respect to H.
(ii). If K is relatively G-completely reducible with respect to H, then, trivially, P (K, k) =

G. If K is not relatively G-completely reducible with respect to H, then K is not contained
in any R-Levi subgroup of P (K, k) of the form Lµ with µ ∈ Y (H) and Pµ = P (K, k).
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Now choose an NG(H)-invariant k-defined norm ‖ ‖ on Y (H) (such norms exist, see [5,
Def. 4.1]). We get the following rationality result. The proof is completely analogous to that
of [5, Thm. 5.18].

Proposition 4.16. Let K and n be as in Theorem 4.13 and assume that K is k-closed.

(i) Suppose that M is a subgroup of G such that M = cλ(K) for some λ ∈ Yks(G) and
such that Sn(M) is k-defined (this is the case in particular if M is k-defined). Then
Ω(K,M, ks) is well-defined and contains an element defined over k and P (K,M, ks) is
defined over k.

(ii) If k is perfect, then Ω(K) is well-defined and contains an element defined over k and
P (K) is defined over k.

The following is a converse to Theorem 4.12 which generalizes [2, Thm. 5.8].

Theorem 4.17. Suppose k1/k is an extension of perfect fields. Let K be a k-defined subgroup
of G. If K is relatively G-completely reducible over k with respect to H, then K is relatively
G-completely reducible over k1 with respect to H.

Proof. By Theorem 4.12, we may assume that k1 = k. Suppose K is not relatively G-
completely reducible with respect to H. Then H is not contained in any R-Levi subgroup
of the optimal destabilizing R-parabolic subgroup P (K) with respect to H. Now P (K) is
k-defined by Proposition 4.16(ii), so H is not G-completely reducible over k with respect to
H. �

5. Examples and counterexamples

5.1. Relative GL(V )-complete reducibility. In this subsection we investigate the con-
cept of relative complete reducibility in case the ambient reductive group is a general linear
group.

Let V be a finite-dimensional k-vector space and set G = GL(V ). Recall that if K is a
subgroup of G, then K is G-cr if and only if V is a semisimple module for K. In this section
we give an analogous interpretation for relative G-complete reducibility with respect to a
smaller general linear group H inside G.

Proposition 5.1. Let U be a subspace of V , and pick a direct complement Ũ to U . Let
H = GL(U) ⊆ G embedded in the obvious way. Let K be a subgroup of G = GL(V ). Then
K is relatively G-completely reducible with respect to H = GL(U) if and only if the following
two conditions hold:

(i) every K-submodule of V contained in U has a K-complement in V containing Ũ ;
(ii) every K-submodule of V containing Ũ has a K-complement in V contained in U .

Proof. First suppose K is relatively G-cr with respect to H. For condition (i), let W ⊆ U be
a K-submodule of V contained in U , and suppose that the dimension of W is r. Choose a
basis {e1, . . . , er} for W and extend it to a basis {e1, . . . , em} for U ; together with our fixed
basis for Ũ , this gives us a basis {e1, . . . , en} for all of V . Let λ ∈ Y (G) be the cocharacter
whose matrix has block form

λ(a) =

(
aIr 0
0 In−r

)
, for a ∈ k∗,
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with respect to this basis. Then we can view λ as a cocharacter of H and of G, and Pλ is
precisely the stabilizer of W in G, so K ⊆ Pλ. Since K is relatively G-cr with respect to H,
there exists u ∈ Ru(Pλ(H)) such that K ⊆ Lu·λ, by Lemma 3.3. Now Lλ corresponds to a
decomposition V = W ⊕W ′, for some subspace W ′ containing Ũ , and thus Lu·λ = uLλu

−1

corresponds to a decomposition V = W ⊕ W̃ , where W̃ = uWu−1 is now a K-submodule.
Also, since Ũ ⊆ W ′, u ∈ H, and H centralizes Ũ , we have Ũ ⊆ W̃ , as required.

For condition (ii), suppose W is a K-submodule of V such that Ũ ⊆ W , and let the
dimension of W be r. Let W ′ be any subspace of U such that V = W ′ ⊕W as a vector
space. Choose a basis {e1, . . . , en−r} for W ′ and a basis {en−r+1, . . . , em} for U ∩W ; together
with our fixed basis for Ũ , this gives a basis for all of V . Now let λ ∈ Y (G) be the cocharacter
whose matrix has block form

λ(a) =

(
a−1In−r 0

0 Ir

)
for a ∈ k∗,

with respect to this basis. Then we can view λ as a cocharacter of H and of G, and
K ⊆ Pλ. Similarly to the previous paragraph, we can now conjugate the subspace W ′ to a
K-submodule W̃ ⊆ U , as required.

Conversely, suppose conditions (i) and (ii) hold, and let λ ∈ Y (H) be a cocharacter with
K ⊆ Pλ. We can choose a basis of U so that λ has the following block form

λ(a) =


an1Ir1 0 · · · 0 0

0 an2Ir2 · · · 0 0
...

...
. . .

...
...

0 0 · · · ansIrs 0
0 0 · · · 0 In−m

 for a ∈ k∗,

where each ni ∈ Z with n1 > n2 > . . . > ns, and
∑s

i=1 ri = m. Then Pλ(H) is the stabilizer
of a flag

0 = U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Us = U

of subspaces in U . To see how this flag gives rise to a flag in V corresponding to Pλ, there
are two cases to consider: firstly, when ni = 0 for some i, and secondly, when we have a
sequence n1 > . . . > ni−1 > 0 > ni > . . . > ns (here we include the extreme cases 0 > ni and
0 < ni for all i).

In the first case, Pλ is the stabilizer of a flag

U0 ⊂ U1 ⊂ . . . ⊂ Ui−1 ⊂ Ui ⊕ Ũ ⊂ Ui+1 ⊕ Ũ ⊂ . . . ⊂ Us ⊕ Ũ = V

of subspaces of V . Since K ⊆ Pλ, each entry in this flag is a K-submodule (here we mean,
for example, that Ui+1⊕ Ũ is K-stable, not that Ui+1 and Ũ are K-stable individually); note
also that each entry is either contained in U or contains Ũ . Thus we can apply (i) and (ii)
to successively find complements which provide a flag of K-submodules

U ′
s ⊂ U ′

r−1 ⊂ . . . ⊂ U ′
i ⊂ U ′

i ⊕ Ũ ⊂ . . . ⊂ U ′
1 ⊕ Ũ ⊂ U ′

0 ⊕ Ũ = V,

where each U ′
j is a subspace of U with U = Uj ⊕ U ′

j (here, for each 1 ≤ j ≤ i− 1, we find a

K-complement Wj to Uj containing Ũ , and then we write Wj = U ′
j ⊕ Ũ as a vector space,

where U ′
j = U ∩Wj). This flag corresponds to a parabolic subgroup Q of G opposite to Pλ;

i.e. L := Pλ∩Q is a Levi subgroup of Pλ. Since the flag defining Q consists of K-submodules,
we have K ⊆ Q, hence K ⊆ L.
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Now the flags U0 ⊂ . . . ⊂ Us and U ′
0 ⊃ . . . ⊃ U ′

s are opposite flags in U , and thus correspond
to opposite parabolic subgroups of H. The common Levi subgroup of these parabolics gives
a decomposition of U into direct summands. Pick a new basis of U compatible with this
decomposition, and define a new cocharacter µ of H which has the same block form with
respect to this new basis as λ had with respect to the old basis. Then Pµ = Pλ, P−µ = Q,
and Lµ = L.

In the second case, we get a flag

U1 ⊂ . . . ⊂ Ui ⊂ Ui ⊕ Ũ ⊂ Ui+1 ⊕ Ũ ⊂ . . . ⊂ Us ⊕ Ũ = V,

and the same construction works. In both cases, we have shown that given λ ∈ Y (H) with
K ⊆ Pλ, there exists µ ∈ Y (H) with Pλ = Pµ and K ⊆ Lµ; i.e., K is relatively G-cr with
respect to H, as required. �

Remarks 5.2. (i). Note that conditions (i) and (ii) in Proposition 5.1 are “dual” to each other
in the sense that the complement in (i) is a submodule of the form in (ii), and vice versa.
One considers only those decompositions of V as a direct sum of K-submodules that are
compatible with the fixed decomposition V = U ⊕ Ũ (even though the latter is not required
to be K-stable!). Even in the very special case considered in Proposition 5.1 the concept of
a relatively completely reducible subgroup of GL(V ) appears to be new.

(ii). Note that for H = G in Proposition 5.1 we recover the fact that K is GL(V )-
completely reducible if and only if V is a semisimple K-module.

(iii). Fixing the complementary subspace Ũ to U in Proposition 5.1 fixes the embedding
of H in G. Note that this is crucial, as the result depends on the choice of Ũ . To see this,
consider the special case that K acts completely reducibly on V and U is a K-submodule of
V . Then it follows from Proposition 5.1 that K is relatively G-cr with respect to H if and
only if Ũ is also a K-submodule.

We can refine Proposition 5.1 to show more accurately how the conclusion depends on the
structure of V as a K-module, and how this interacts with the subspace U . To do this, we
first define two operations on the set of subspaces of V . Firstly, for any subspace W ⊆ V ,
let σK(W ) be the K-submodule of V generated by the submodules contained in W ; note
σK(W ) ⊆ W . Secondly, let ιK(W ) denote the smallest K-submodule of V containing W
(i.e., the intersection of all such submodules). Then we have the following result.

Proposition 5.3. Let G, U , Ũ , H and K be as in Proposition 5.1. Then K is relatively
G-completely reducible with respect to H if and only if the following two conditions hold:

(i) σK(U) is a completely reducible K-module;
(ii) V = σK(U)⊕ ιK(Ũ).

Proof. Suppose K is relatively G-cr with respect to H. We first show (i). Let W be a K-
submodule of σK(U). ThenW ⊆ U , so there exists aK-submodule W̃ ⊇ Ũ with V = W⊕W̃ ,
by condition (i) of Proposition 5.1. Then W̃ ∩ σK(U) is a K-complement to W in σK(U).

We now show (ii). By condition (i) of Proposition 5.1, since σK(U) is a K-submodule
contained in U , there exists a K-complement to σK(U) containing Ũ . Since ιK(Ũ) is the
smallest such K-submodule, we must have σK(U) ∩ ιK(Ũ) = {0}. By condition (ii) of
Proposition 5.1, since ιK(Ũ) is a K-submodule containing Ũ , there exists a K-complement
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to ιK(Ũ) contained in U . Since σK(U) is the largest such K-submodule, we must have
σK(U) + ιK(Ũ) = V .

Now suppose (i) and (ii) hold. If W is a K-submodule of V contained in U , then W ⊆
σK(U), by definition. By (i), there exists a K-complement W ′ to W in σK(U). Then
W ′ ⊕ ιK(Ũ) is a K-complement to W in V containing Ũ , by (ii), giving condition (i) of
Proposition 5.1. If W is a K-submodule of V containing Ũ , then W ⊇ ιK(U), by definition.
Let W ′ be a K-complement to W ∩ σK(W ) in σK(W ). Then W ′ is a K-complement to W
in V contained in U , giving condition (ii) of Proposition 5.1. �

The following corollary gives a necessary condition for a subgroup to be relativelyG-cr with
respect to a Levi subgroup L of G in terms of the corresponding direct sum decomposition
of V :

Corollary 5.4. Suppose L is a Levi subgroup of G = GL(V ), with corresponding decompo-
sition V = U1 ⊕ · · · ⊕ Us. Let K be a subgroup of G. Then if K is relatively G-completely
reducible with respect to L, the following two conditions hold for each i:

(i) every K-submodule of V contained in Ui has a K-complement containing
⊕

j 6=i Uj;

(ii) every K-submodule of V containing
⊕

j 6=i Uj has a K-complement contained in Ui.

Proof. We have L = GL(U1)× · · · ×GL(Us). If K is relatively G-cr with respect to L then
Proposition 3.30 implies that K is relatively G-cr with respect to GL(Ui) for each i. The
result now follows from Proposition 5.1. �

5.2. More examples and counterexamples.

Remark 5.5. We noted in Remark 3.2(iv) that in general a relative G-cr subgroup need not
be reductive. However, one can ensure that it is reductive under suitable conditions. For
example, if H is a maximal rank reductive subgroup of G and K is a subgroup of G which is
relatively G-completely reducible with respect to H and which is normalized by a maximal
torus of H, then K is reductive.

In order to show this we closely follow Serre’s original argument [19, Prop. 4.1]. Sup-
pose that Ru(K) 6= {1}. By [7, Prop. 3.1] (which extends to the case when G is not
connected, thanks to [12, Prop. 5.4]), there exists an R-parabolic subgroup P of G such
that NG(Ru(K)) ⊆ P and Ru(K) ⊆ Ru(P ). In particular, T,K ⊆ P for some maximal
torus T of H. Since H has maximal rank, T is also a maximal torus of G, so we can find
λ ∈ Y (T ) ⊆ Y (H) such that Pλ = P . Since K is relatively G-cr with respect to H, there ex-
ists µ ∈ Y (H) such that K ⊆ Lµ and Pλ = Pµ. It follows that Ru(K) ⊆ Lµ ∩Ru(Pµ) = {1},
a contradiction. Consequently, K is reductive, as claimed.

We noted at the beginning of subsection 3.7 that the direct analogue of [2, Thm. 3.10],
namely that a normal subgroup N of a subgroup M of G is relatively G-cr with respect
to some reductive subgroup H of G provided M is, fails in general. We now present two
examples which demonstrate this failure.

Example 5.6. Let char k be arbitrary. Let G = GL3(k) and let H be the image of SL2(k)

embedded in G by A 7→
(

1 0
0 A

)
. Let T be the standard maximal torus of G consisting

of the diagonal matrices in G. Let α and β be the standard simple roots of G with respect
to T (corresponding respectively to the (2, 3)- and (1, 2)-entries of matrices in G). Let B be
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the Borel subgroup of G consisting of upper triangular matrices in G. Put K = UαUα+β.
Then K is relatively G-cr with respect to H, but the normal subgroups Uα and Uα+β of K
are not.

Take for example N = Uα+β and define λ ∈ Y (H) by λ(a) = diag(1, a, a−1). Then
N ⊆ Pλ = sαBsα which is a Borel subgroup of G. Clearly, N is not in any Levi subgroup of
Pλ, since N ⊆ Ru(Pλ). So Uα+β is not relatively G-cr with respect to H. The argument for
Uα is similar; take the same λ ∈ Y (H) and replace Pλ by P−λ.

Now we show that K is relatively G-cr with respect to H by showing that λ ∈ Y (H)
and H ⊆ Pλ implies that λ = 1. Let λ ∈ Y (H). We can find h ∈ H such that µ := h · λ
is in diagonal form. Then we have for k ∈ K that lim

a→0
λ(a)kλ(a)−1 exists if and only if

lim
a→0

µ(a)hkh−1µ(a)−1 exists. Since K is stable under conjugation by H we may now assume

that λ is in diagonal form, that is, λ(a) = diag(1, an, a−n) for some integer n. It is now
straightforward to show that n = 0.

The next example shows that a connected reductive normal subgroup of a connected
reductive group that is relatively G-cr with respect to H need not be relatively G-cr with
respect to H.

Example 5.7. Suppose p = 2. Let V1 and V2 be copies of the vector space k2 and let
H1 = H2 = k∗× SL2(k). Define δi ∈ Y (Hi) by δi(x) = (x, Ii), where Ii is the identity matrix
in Hi. Define an action of H1 ×H2 on V1 ⊕ V2 by

((x1, A1), (x2, A2)) · (v1, v2) = (x−1
2 A1v1, x

−1
1 A2v2),

whereAivi denotes the usual matrix product. We choose an embedding of (H1×H2)n(V1⊕V2)
inside a reductive group G. Let πi : Hi × Vi → Vi be the canonical projection. Let Mi be
the copy of SL2(k) inside Hi. We can choose a copy Ni of PGL2(k) inside Mi n Vi such that
πi(Ni) = Mi but Ni is not (Hi nVi)-conjugate to a subgroup of Hi; to see this, note that the
image of the adjoint representation of SL2(k) in GL3(k) lies in [P, P ], where P is a maximal
parabolic subgroup of GL3(k), and [P, P ] is isomorphic to Mi n Vi, so we can take Ni to be
this image.

Let H = {((x1, A1), (x2, A2)) ∈ H1 × H2 |x2 = x−1
1 } and set K = N1N2. Then K is

isomorphic to N1 × N2, since N1 and N2 commute with each other and have disjoint Lie
algebras. So K is a connected reductive group and N1, N2 are connected normal subgroups
of K. We show that K is relatively G-cr with respect to H but N1 and N2 are not.

Let λ ∈ Y (H) such that K ⊆ Pλ. We can write λ = λ1 + λ2 where λi ∈ Y (Hi). We
have Ni ⊆ Pλ. Now Z(Hi) ⊆ Pλ because Z(Hi) centralizes the image of λ. Since Z(Hi)
acts trivially on Mi and acts non-trivially as multiplication by scalars on Vi, it is clear that
Mi and the non-trivial subgroup Ui of Vi generated by the set {πi(n)n−1 |n ∈ Ni} are both
contained in Pλ. Because Mi does not lie in a proper parabolic subgroup of Hi, we must
have λ = n1δ1 + n2δ2 for some n1, n2 ∈ Z. We must have n1 + n2 = 0 by our choice of H.
We have λ(x)vλ(x)−1 = xn1−n2v for v ∈ V1 and λ(x)vλ(x)−1 = xn2−n1v for v ∈ V2. Since the
non-trivial subgroups U1 and U2 lie in Pλ, this forces n1 = n2 = 0. Hence λ is the trivial
cocharacter and we conclude that K is relatively G-cr with respect to H.

A similar argument shows that N1 ⊆ Pλ, where λ = δ1−δ2. Now Ni is not H-conjugate to
a subgroup of Hi, and this implies that N1 is not relatively G-cr with respect to H. Similarly
N2 is not relatively G-cr with respect to H.
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